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A toroidal eompactification of the Fermi surface for the discrete 
Schrfdinger operator 

D. B,~TTIG 

1. Introduction 

Let~176 7/• a27 / � 9  a37/be a lattice in R 3 and q a real valued square-integrable 
function on the torus ~3\F. For each ~ = (41, 42, ~3) ~ $1 • S l x  S ~ the self-adjoint 
boundary value problem, called the independent electron approximation of  solid 
state physics (see [1]), 

( - A  + q)q, = , ~ ,  

~(x  + v) = ~ l~2G3q~(x)  V7 ~ r ,  

has discrete spectrum, denoted by 

El(~ ) <_ E2(~ ) < E3(~ ) < . . .  

The (physical) Fermi surface for energy 2 is the set 

Fphys.;.(q) '= {4 ~ S1 • S1 • Sl [ g,(4) = 2 for some n > 1}. 

In [3] one defines the complex Fermi surface by 

Fa(q) ,= {(r ~3) ~ C* x C* x C* [ there exists a non-trivial function ~, in 

H~oc(~ 3) solving the above boundary value problem}. 

Clearly F;.(q) contains all points that can be reached by analytic continuation of  
Fphys,2(q). Using regularized determinants (see [7]) it can be shown, that Fa(q) is a 
complex analytic hypersurface in C * x  C * x  C*. In [3] it was shown that for 

potentials q(x) of  the form pl(xl)+p2(x2)+P3(X3) o r  pl(Xl)+p2(xz, x3) the 
surface F;.(q) is irreducible, i.e. in this c a s e  Fphys , a (q )  , if it is a nonempty set of  
dimension two, determines Fz(q) uniquely. 
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In this paper we consider a discrete version and show that for each (complex) 
potential q, the Fermi surface is always irreducible. 

So let V : 7 / 3 ~ C  an arbitrary function periodic with respect to the lattice F. 
Furthermore let A be the discrete Laplace operator defined by 

(A~)(m, n, p) = d/(m - 1, n, p) + ~k(m + 1, n, p) + ~k(m, n - 1, p) 

+O(m,n  + l ,p )  + r  - 1) + ~ ( m , n , p  + 1) 

for functions ~b : 2~3~ C. 
We are interested in the spectral problem 

( - d  + V)~ = 2~ 

with boundary conditions 

~k(rn + a l , n , p ) = ~ l r  ~k(m,n +a2,p)=~2~b(m,n,p) ,  

~(rn, n, p + a3) = r n, p) 

for functions ~ :7 /3 - - ,C  and (2,~I,~2,~3) E C • 2 1 5  and define as 
above the complex Fermi surface F~(V) for this discrete problem (see [4]). Further- 
more we assume that a~, a2 and a 3 are relatively prime, positive natural numbers 

greater to two. 
Due to the boundary conditions the spectral problem can be written in terms of 

the values ~k(m, n,p)  with l < m -< al, I < n ~ a2, 1 < p - a 3. The Fermi surface 
F~(V) is then given by the vanishing of the determinant of  a certain a~a2a3 x 
ala2a3-matrix, or concrete, it is the zero-set of a polynomial P in the variables 
~ ,  ~i -~, ~2, ~ f t  and ~3, ~3 ~, where the coefficients depend on 2: 

e = ( _ 1 ) a 2 a 3 ( a l  -- 1)~2a3 + ( _ l)a2a3(al - I )~  l a 2 a 3  

+ ( - 1) ~ ,~ (o~-  ~)~,o~ + ( - 1 ) ~ , o , ( ~ -  ~)~ f ~ ,~  

~- ( - -  1)ala2(a3-  1 ) ~ 1 a 2  -J[- ( - -  1)ala2(a3-  l ) r  2 -~- �9 . �9 

lower order terms, i.e. an algebraic surface in C* x C* x C*. 
For potentials V =  C =constant ,  F~(V) can be calculated explicitly, using 

discrete Fourier analysis. Namely let #al be the multiplicative group of  ai-th root of  

unity. Then for p = (Pl, ,02, P3) E/.tal • ]~a2 • [.La3 consider the set 

Now #o, x #,2 x #-3 acts on te~(V = C) by p �9 z = (plz~, pzz2, P3z3). Then one has 
Fa(V) = P~(V = C)/#. ,  x #-2 x ~-3, and so Fa(V) is irreducible. 
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It is well known,  that the one-dimensional  Bloch variety B(W),  defined by (see 

[4], [81) 

B(W)  = {(r 2) E C* • C I there exists a non-trivial function qJ : 7 / ~ C  solving 

-- [~b(m -- 1) + ~k(m + 1)] + W(m)d/(m) = 2~b(m), ~b(m + a) = ~k(m)}, 

where W : 27 - .  C has period a, is a hyperelliptic curve of  ari thmetic genus a - 1, 
which can be compactif ied by adding two smooth  points. 

In this paper  we construct  a compactif icat ion F~(V)comp of  F~(V), such that  the 
generic points of  F2(V)com p a re  smooth  points o f  F2(V)com p, 

T H E O R E M  1. F~(V)comp- F~(V) is the union of  twenty algebraic curves due to 
twenty one -dimensional spectral problems: 

(i) eight rational curves Ql . . . . .  Q8 with (al - 1)(a2 - l)(a3 - 1) + 
Ei~j  ( a , . -  l)(aj - 1) ordinary double points. These curves do not depend on 
the potential V. 

(ii) Twelve hyperelliptic curves Hij : Hlz, H34, 1156, H78 (resp. H14, H58, 
H~3, H67; resp. H15, 1t26, 1t37, H48) of arithmetic genus a~ - 1 (resp. a z - 1, 
resp. a 3 -  1), each isomorphic to the one-dimensional Bloch variety B(W) ,  
where W is the averaged potential 

1 a2 a3 
w ( - ) =  y ,  y ,  v (  . , i, k )  

a 2  a 3  i = 1 k = 1 

resp. ~ ~ V(i, ", k); r e s p . -  V(i, k , .  . 
ala3 i=l k=l a l a 2  i = l  k = l  

(iii) F~(V)~omp is smooth on all smooth points of  F~(V)~omp - Fa(V). 
(iv) All the above curves intersect transversally, only on smooth points of  

F;~(V)~omp and the intersection pattern is given by the following picture: 
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As an immediate consequence we get 

T H E O R E M  2. The Fermi surface F~(V) is irreducible. 

Naively one could try to compactify F~(V) by embedding C * x  C * x  C* in 
P~ x W x pl  and closing the Fermi surface in there. This doesn' t  work, since the 
new points added to Fx(V) are highly singular. Instead we construct (as in [2] and 
[8]) a compact  three-dimensional torus embedding Xr,  such that 

F~(V) ~ C* x C* x C* = Xz. 

A torus embedding Xr is a scheme such that algebraic torus C* x C* x C* can be 
embedded in Xz in a way, that the action of  the algebraic torus can be extended 
to the whole torus embedding XE. Information and facts about  torus embeddings 
can be found in [5], [6] and [9]. The closure of  Fx(V) in this space Xz (after 
resolution of  certain singular points of  Xr)  is the compactified Fermi surface 

F,l (V)comp- 
Furthermore we not only construct the torus embedding Xz, but also an 

infinite-dimensional vector bundle Y, the vectorspace F of all functions ~ : Z ~ C as 
fiber, on Xz. On C* x C* x C* x F c Y we have four commutat ing operators: 

- A + V - 21, S(.~,o.o) _ ~l 1, S(~176 - ~21, S(~176 - -  ~31, 

for (~1, r ~3)  • C* x C$ x C* (here S (~'a'~) denotes the shift operator  in direction 
(~, fl, y)). The Fermi surface is then the support of  the bundle 

{(~1, ~2, ~3, ~) e C* x C* x C* x F [  the above four operators have a 

common kernel @}. 

By extending this bundle to the whole Xz the rational and hyperelliptic curves 

mentioned in Theorem 1 will appear  in a straightforward way. 
Let us close by mentioning, that a similar construction was worked out in detail 

for the two-dimensional Bloch variety in [2]. 

2. The construction of the toroidal octahedron 

In this chapter we construct the three-dimensional torus embedding, in which 
F~.(V) will lie. Consider the eight vectors 1, 2 . . . . .  8 in R 3 given by 
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1,=(al, a2, a3), 2 , = ( - a l ,  a2, a3), 

3 , = ( - a l ,  - - a  2, a3), 4,=(al ,  --a2, -a3),  

5,=(al, a2, -a3),  6 , = ( - a l ,  a~, -a3),  

7 , = ( - a ~ ,  -a2 ,  --a3) , 8:=(al, -a2 ,  -a3).  

~e 6 

\ 
I " I 

t I ' 

'$. .... i 

We introduce the following notation: 

0-~ means the strongly convex polyhedral cone generated by the vector i. 

So for example 0-12 = {t(al, a2, a3) + s ( - a l ,  az, a3) Is, t e R~o}, where R~o de- 
notes the non-negative real numbers. 

We define the fan X to be the collection of the six three-dimensional cones 0- ~z56, 
0-2367 0-3478, 0.1458, 0-5678 and 0- ,234 and all it's faces. There are two-dimensional faces 

as 0-1~ or 0-~5, one-dimensional faces as 0-~, 0-2 and one zero-dimensional face 
0-0= {0}. We call the torus embedding Xr associated to this fan toroidal octahe- 
dron. It is compact (see [5]). Explicitly Xz is given by a coordinate covering 
(X~)~ z. The (X~)'s are (quasi)-affine varieties defined by 

X~ = Spec C[ . . . .  ~ , ~ 2 ~ 3  . . . .  ], 

where C [ . . . ,  ~ , ~ 2 ~  . . . .  ] is the algebra generated by the polynomials ~ ] , ~ ] 3  
with (r~, r2, r3) in Z 3 such that ((rl,  r2, r3), a )  ~ O. 

If  ~r" and 0-# are two cones in Z, then the charts X~, and X~p are patched 
together along X~.nX,,#.  So, for example X~I~ and X~3 are glued together on 

Xol~nXo,, =X~,. 
Clearly we have X~,o = Spec C[~l, ~{l ,  ~2, ~ f l ,  ~3, ~ f l ]  = C* • C* x C*. So we 

embed the Fermi surface F~(V) by the inclusions 

F,(v) = c* x c* x C* = X.o = x~ 

in the toroidal octahedron. 
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In the following we analyze Xx.  

Since the action of the algebraic torus C* x C* x C* on itself can be extended 
to Xx,  the toroidai octahedron is a disjoint union of C* x C* • C* orbits. There is 
now a one-to-one correspondence between these orbits in Xz and the cones a �9 Z; 
so we can label an orbit by a cone a : O , .  Furthermore we can organize this 
labeling such that (see [5]): 

O,  c Xx.  dim c G~ = 3 - dima a, 

and O,  = C* x C* x C* �9 2b(0 ), where 2b(0) is the point 

lim Xo(t) = lim Spec C[ . . . .  {~t {~2(~3 . . . .  ]lsetting ~i= tbi' 
t~0  t ~ 0  

where b = ( b l ,  b2, b3) �9 7/3 is a point in the interior of a. 
It is easy to draw a schematic picture of the toroidal octahedron Xz. (compare 

with [2] and [7]): 

The "interior" of this ~ ' ~ . ~  / / __  _ _ ~ - % ( ~ z , ~  

octahedron represents 0 ~ / . / 0 . o  = C* x C* x C*. \ \~0.~5 . ~ 0 o .  

tr 4~3u 

Using the symmetry of the fan 2; we can restrict to the orbits O~o, G~ 1, G~ ,2 and 
0~23,. Let Yo, Zo be integers with a2yo + a3zo = 1. 

LEMMA 1. (i) Xoo = Spec C[(i, ( i  -1, {2, (~ - l  ~3, (~-11 = 12" x 12" x 12". 
( i i)  Xo.l = S p e c  C [ ~ l l ( { ~ o ~ p )  OI, ~ l ( ~ Y o ~ o )  - a l  , ~ { o ~ p ,  ~2-a]{~2, ~ 3 ( 3 - a 2 ] ,  i.e. 

X ~  is isomorphic to C* x C* x C* with local coordinates 

u l ,=~ i - l ( {~~176176149  *, vt. '=r149 and wt ,=~-~3r149 *. 
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Furthermore 0o~ = {(ul, wl) ~ C* • C*, D 1 = 0 } .  

(iii) Xo,~ = Spec C[r162162 ~t (~or r r163162 r  i.e. Xo,~ 

isomorphic to Spec C[x, y, w, z, z - ~ ] / ( x y  = w2~'). 13~,2 = {z ~ C*, x = y = w = 0}, 
i.e. each point o f  ~3~,2 is singular o f  type A2~, _ ~. 

Proof  
(i) Trivial. 

(ii) Clearly the three vectors (1, -a~yo,  - a ,  zo), (0, Yo, zo), (0, - a 3 ,  a2) form a 
7/-basis of Z 3. So each (r~, r2, r3) e 7/3 can be written as 

(rl, r2, r3) ----- r I ( I, --alyo, --a,Zo) + s(O, Yo, Zo) + t(O, --a3, a2) (1) 

with s, t e T/. Now ((r l ,r2,  r3),a ~> > 0  exactly if a ~ r , + a 2 r 2 + a : 3 > O .  But s is 
equal to a, rl + a2r2 + a3r3 by (1). Therefore X~, is given as stated in the lemma. 
Computing O~, is straightforward. 

(iii) We have two Z-bases of 7/3; first the three vectors ( 1 , - a , y o , - a ~ z o ) ,  
(0,  y0, z0), ( 0 , - - a 3 , a 2 )  and second the vectors (1, alYo, atZo), (0,yo, zo), 
(0, - a3 ,  a2). So for each (rl, r2, r3) ~ 7/3 we can write 

(rl, r2, r3) = rl(1, - a l y o ,  -a lZo)  + s(O, Yo, Zo) + t(O, - a 3 ,  a2), 

(rl, r2, r3) = r l (1 ,  alyo, alzo) + ~(0, y0, Zo) + ~'(0, - -a3 ,  a2), 

(2) 

(3) 

with s, t, g, t 'e  7/. Since ((r~, r2, r3), 0"12> > 0 if and only if a ir  t + azr2 + a3r 3 > 0 and 
-a~r~ + a2r2 + a3r3 >-0 it follows with (2) and (3) that 

a~r~ + a2r2 + a3r3 = s = 2a~rl + g > 0, 

alr~ + a2r2 + a3r 3 = .g = - 2 a i r  I + s ~ O. 

Let first be r~ ~ 0, then both inequalities are fulfilled exactly if g > 0. Secondly let 
r~ <- 0, then the necessary and sufficient condition is s > 0. This proves (iii) (again 
0o,2 is easy to calculate). 

We do not need the chart X~,234 since we have: 

LEMMA 2. The closure F~(V) o f  the Fermi surface Fz(V)  in X~ doesn't intersect 
the zero-dimensional orbits. 

Proof. It is enough to show that O~,23,c~Fx(V) = ~ .  Since dim c O~,23, = 0 the 
(singular) point O,,23, has coordinates (in X,,2r,) ~ ] ' ~ 3 = 0  for all 
( r l ,  r2, r3) E 7/3 with ((r, ,  r2, r3), ~1234) ~ 0. 
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Clearly ~3 ~ C is a coordinate of X. ,2_~, so the polynomial P, defining F;.(V), has 
a pol in ~3 of order a~a2. On the other hand since P ~ ~ J ~ = ~'i# a i j k (A)~ t~2~3  with (due 
to the boundary conditions defining the Fermi surface) at Iil + a=lJl + a~{kl ~ ata=a~ 
it follows that each summand ~ { ~ k + ~ ' a 2 4 : l  of the polynomial ~ t - 2 p  is a 
coordinate of X~123,. 

Therefore the closure of F;,(V) in Xr lying in the chart X, t234 is given by the 
equation 

~l~2p = 0. 

But ~ ' ~ 2 P I o . , , 3 ,  = ( - 1) ~'~:~3 -I> # 0. 

Motivated from this lemma we are only are interested in the closure F~.(V) of  
Fa(V) in 

X* = Xr - {union of  the zero-dimensional orbits}. 

3. T h e  c o m p a e t i f i e a t i o n  

We consider the compactified Fermi surface as the solution of  a spectral 
problem on a vectorbundle Y of infinite rank on X*. 

We define by F the infinite-dimensional vector space of all functions @ : 7/3 ~ C. 
The vectorbundle n ' Y ~ X ,  will be trivial over each affine part Xo of X* 
(a e ,V). 

On Ylxoo = Xoo x F = C* x C* x C* x F we have four commutating operators 

T - 2 1 , = - - A  + V - 2 1 ,  S~a"~176 Ct 1, S(~176 ~21 , S ( ~ 1 7 6  , 

for (~t, ~2, ~3) e X.o. 

DEFINITION.  The (uncompactified) Fermi surface Fa(V) is the support of the 
bundle 

{(r r ~3, Yo) ~ Xoo x F ] the above four operators have a common kernel ~0}. 

By symmetry and lemma 2 (since we want the closure Fa(V) of  F~(V) in X* to 
coincide with the support of bundle on X~) it is enough to extend the vectorbundle 
Ylxoo on Xo, and X,,2. We give the transition functions, using iemma 1: 

(i) X~, = Spec C[ut, ui  ~, v~, wl, wi-I], i.e. the coordinates are (Ul, vt, wt) 
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C* x C x C*. We now identify (r r r ~0) �9 X,o x F with (ul, vl, wl, ~#l) �9 
X ~  x F on X ~ X ~ o = X ~ o  (o r  equivalently on vl :#0) by 

(this is the coordinate  change on Xz f rom X~o to X , , )  and 

Oo(m, n, p) = v7 +" +Pr  (m, n, p). 

(ii) On Xo~2 we have coordinates  (x, y, w, z) �9 C 3 x C* with xy  = w 2a~. Ident i fy 

( r  r  ~3 '  I~/0) �9 Xo-O x F with (x, y, w, z) e X~ 12 x F on X~ ~2 c~ X~o (i.e. on w :# 0) by 

x = r i-l(~Y~162176 a', y -~- ~l(~Y0r al, W = r162 _7 : ~ 2 a 3 r  

and 

~bo(m, n, p) = w"  + " + Px-m/~l~bl2(m, n, p). 

Denote  by F~(V) the closure of  F~(V) in X*.  

P R O P O S I T I O N  1. (F~(V) - F z ( V ) ) c ~  X ,  ~2 is the union o f  two rational curves Q1 

and Q2 with the following properties; 

(i) Qi (i = l, 2) has (al - 1)(a2 - 1)(a3 - 1) + Y'i+j (ai - 1)(aj - 1) ordinary dou- 
ble points. Qt does not depend on the potential V. 

(ii) Q1 ~Q2 is a point (=:Pl2) .  P12 lies on the singular orbit O~2.  
(iii) F~(V) is smooth on all smooth points o f  QI u Q 2 -  {PI2}. 

Remark. Since P~2 is singular, we will resolve this point.  The  strict t r ans fo rma-  
tion o f  F;.(V) on the except ional  divisor is then one o f  the hyperell iptic curves 

ment ioned  in theorem 1 of  the introduct ion.  

P R O P O S I T I O N  2. QI is given on the chart X~l as the support o f  the bundle 

(Ul, vl, wl, ~kl) �9 Y with 

(S  ( -  1,o,o) + S~O,- Lo) + S~O,O,- ~))~,~ = O, 

s(-a,.~176 = ull//l, S(~ = Wl ~//1, S(~ = ~11 

with v~ = O. 

We first p rove  Propos i t ion  2, then Propos i t ion  1 will follow easily. 
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Proof of proposition 2. The spectral problem on X~o x F 

T~o = ,~q~o, Sr176176176162 = r q/o, Sr176176176162 = G r  Sr176176176 = ~ o  

can be written alternatively as 

TS(~ 0 = J.~o~o~//o, s(-al,~176 = ~ 11 ~/o, 

since the shift operators are invertible and the vectors ( - a l ,  O, O), (O, a2Yo, 
a3zo), (0, -a3a2,  a3a2) are also a basis for the lattice F. 

By the construction of the vectorbundle Y these four equations transform to 

- -  ( S  ( -  l,a2y 0,a3zO)l]/1 + U 2 S(1,a2y O,a3zO)~/1 + S(o,a2yo - 1,a3z0)~/l 

"~ U 21 S (O'a2yO + l ' a3z~ -]- S (O'a2yO'a3zO - l ) ~ l  "JI- V 2 S(o,a2yo,a 3 z 0 + 1)~/I ) 

-~ V 1 VS(~176176162 l _~_ U l 2S(~176 l ,  

S~-~176176 = u~qJl, S~~176176 = qJl, S~~176176 = wlqJ,, 

on  X~, x F. 
But X , , -  X~0 = {v~ = 0} and on the open set X,,  wX~o = X~o by the continuity 

of the transition function the spectral problems on Y ]x,0 and Y [x~, coincide. 
Therefore (F~(V) -Fx(V))nX~,  is the support of the following spectral problem 

( S  ( -  l'a2y~176 + S (O'a2yO - l'a3ZO) + S (O'a2yO'a3zO - 1))~/l : 0 ,  

s ( - a l ' ~ 1 7 6 1 6 2  = Ul I/ / l ,  S(~176176162 "~" ~/1, S(~ = Wl ~/1, 

which leads immediately to proposition 2. 

Proof of proposition 1. (i) Clearly Q1 does not depend on V. To calculate the 
genus of this curve, we consider a covering of Ql with ala2a3 sheets, as in [4]. 

Let #a~ (resp. /Za2a3) be the multiplicative group of al th (resp. a2a3th) root of 
unity and (zi - a i , z J  2a3).'=(ul, wl). Then the functions ep(z)(m, - n , n )  = 
(PlZl)'(P2Z2)" with p = (Pl, P2)~#at  x/~a2~3 form a basis of the vectorspace of 
functions 

~k : Z2--~C, (m, -r t ,  rt) --* ~b(m, - n ,  rt) with S(-a~'~176162 = ul~q, 

S(0 '  -- a2a3"a2a3)l~ r 1 = ]4/1 I~ 1" 
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The operator S (- ',a2yo,a3zo) + S(O,a2yo - l,a3zo) + S(o,a2yo,a3zo - 1) diagonalizes in this ba- 

sis and considering the covering 

C ' C*  x C *  ~ C *  x C * ,  (Zl,  z2) ~ ( Z l  al , z 2  a2a3) = (Ul,  Wl) 

Q x = c  l(Ql) i s g i v e n b y  

{(Z1, Z2) E C *  x C ~t I ( P l Z l ) - 1  dt - (D2z2)a2Yo--I Ai - (P2z2)a2YO ~. 0}. 
P 

This means Q1 is rational. Let Cp = {(p~zl) -1 + (p=z2),2yo- 1 + (P2Z2),2yo = 0}. Per- 
form the changes of coordinates 

zl = y a2Yox a3zo, Z 2 = y x  1 

Cp transforms to 

p f l x y  + pE~3zox + p~2yoy = O. 

Since a2 and a3 are relatively prime we have #-2-3 = #~2 | #~3 i.e. each P2 ~ #a2a 3 can 
be written as /52/531 with /52 ~ #a2, /53 ~ #a 3" Therefore Cp = C~p~.Z2,~3) is given by 

p ~ - l x y  + / 5 2 1 x  ~- / 531y  = O. 

For p E #~, x #~2 x #-3 the action on 01 is given by p . (x ,y)  = ( p l l f i 2 x ,  pi-1/53y), 
and we have p . C p , =  Cp~,. Now by B6zout's Theorem Cl and Cp intersect 
transverse in C* x C* in exactly one point, given by 

/5;1 _/5~, /5~1 _/5;1 
x(p)  = - y (p)  = 

P F '  - / s i  1' PF 1 - / 5 3  I 

if p is not of the form (1, 1, fi3), (1,/52, 1), (Pl, 1, 1). In this second case we have 
C1 c~Cp re(C* x C*) = ~ .  To prove (i) it remains to show that 

(x(p), y(p))  v~ (x(p  '), y(p ' ) )  

because then Q1 has exactly 

a l a 2 a 3 -  1 - ( a l -  1) - ( a 2 -  l) - ( a 3 -  l) 

ordinary double points. 

for p :/: p ' ,  
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Observe  tha t  argx(p) = ~ = angle in ~21 of  the triangle pi  -~ , /52  ~, ~ - ~ .  Put  
p ~-~ = e 2~ml/~1, p ~ -  ~ = e 2"~"a/"1, ~31 = e 2"~'~3/~3 and /5~- ~ = e 2~m~/~3 with 

mi, m~ ~ {0 . . . . .  ai - 1}. One shows 

= ~  m 3 _ m l  , 

[a3 al l  

so if x(p) = x(p') then a3(m 1 + rn'l) = al(m3 + m'3). Since as and a3 are relatively 
pr ime it follows that  

(m, + re'l, m 3  -I- m~) ~ {(0, 0), ___(al, a 3 ) } .  

In the first case we get either P1=P~," P 3  = /5; or  p l=p ' l  ~, P3 . . . .  = P3 1 I f  

Pl = P ~ , ' P 3 = P ;  using x ( p ) = x ( p ' )  we have ~ 2 = / 5 ; .  I f  on the other  hand  
Pl = P ' I -  1,/53 = / 5 ; - ~  by assuming argy(p) = argy(p')  it follows t52 = ~5;- 1, i.e. x(p) 
is real, so e e {0, ~) and therefore Pl = t53 = 1 which contradicts  y (p )~  C*. The  

cases m i + m~ = ++_ag are t reaten similarly. 
(ii) The  spectral  p rob lem on Xo J2 x F is given in the coordinates  (x, y, w, z) o f  

Xol2 by 

TS(~176176 = ~,w~//o, S (-a,'O'O)l//0 = x w  - -a l l~0 , 

S(~ : WffJo, S(~162 = Zl~o. 

By the const ruct ion of  the vectorbundle  the last three equat ions t r ans form to 

S (-al  '~176 = xw-a1~112 , s(O'a2Y~176 S(~ : z1~r 

The first equat ion  gives (on  x = y = w = 0), using S(~ 2 = ~,2, 

(S(O,- 1,o) + S(O,O,- 1))~2 = O, 

i . e .  S ( ~  ~-- - i / / 1 2 .  

I t  follows S(~ which leads to z = ( - 1 ) a 2 a L  This 
means  Fa(V) caO,12=one point  (P12) with coordinates  x = y  = w  = 0 ,  
z = ( - 1)a2% 

(iii) On X~I,Fa(V)  is given as the zero set o f  po lynomia l  

P(Ul,U~-I,Wl, W l I , v l ) = Q ( u l , u ? I , W l ,  W l I ) + v I R ( u l , u i - I , W l , W i - I , V l ) ,  where 
the zero set o f  Q describes Q~. So F~(V) is smoo th  on the smoo th  points  o f  
QI c (xot  ca {v, = 0}). 
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N o w  we resolve the singular point  P~2 o f  type A2a,_ l- Its coordinates  are 

x = y  = w = 0, z = ( - 1 )  a~a3. 

Blowing up this point  in C 4 al-times, the exceptional divisor is the transverse union 

of  a~ hyperplanes E~ (i = 1 . . . . .  al), where the E~ is the exceptional divisor o f  the 

ith blowing up. 

P R O P O S I T I O N  3. The blowing up o f F , ( V )  at the point P~z intersects only the 
exceptional divisor Ea~. The strict transform of  Fx(V) (on E, 1) is a hyperelliptie curve 
of  arithmetic genus al - 1. The blowing up of  Fa(V) is smooth on all smooth points 
of  this curve. Furthermore the curve is determined by the following one-dimensional 
spectral problem 

S~- ~176176 = xo~ O, S(~176176176 = O, S (~ 1'1)0 = - ~, 

- O ( m  - 1, n, p )  - ~ ( m  + 1, n, p )  

+ - -  V(m, i , j)  O(m, n, p) 
a 2 a 3  i = 1 j = 1 

= zO(m, n, p) 

where the coordinates Z, xa~ are defined by resolving the point PJ2: 

w = # ,  x = p ~ x ~ ,  Y = #~Yal,  

(1 + ( - 1) a2"3 -~z) = aza3( - 1)"2Y~ - ~) 

(here # = 0 is the exceptional divisor E~o 
Due to the shift operators  S (~ and S (~ 1.1) the curve on E,~ is already 

determined by the values o f  ~(m, n,p) on the line spanned by the vector  

(al, 0, 0). Therefore Proposi t ion 3 and Proposi t ion 2 prove the theorems in the 

introduction.  

Proof. We first calculate the strict t ransform of  Fa(V) on E~I. Blowing up P~z 
al-times, we get the coordinates  

w = #, x = #"~x~,, Y = #~'Y~ 1, 

( 1 + ( - 1) a2a3 - 12) = a2a3( -- 1)"2Yo#(3 -- 2) 
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Deno te  by U the char t  generated by the coordinates  (#, x a 1, Ya 1,3), i.e. 

U = {(/a, xol,  Y,1, z') e C x C* x C* x C I x~,yal  = 1}. 

N o w  X : c ~  U = Xoo and define the transi t ion funct ion for  the vectorbundle  Y by 

~'o(m, n , p )  = / :  + v~,(m, n,p) .  

The spectral  p rob lem on Xoo x F is given in the coordinates  of  U by 

TSC~176176 = #2~0o (1) 

s ( - a l ' ~176162  0 = Xal~]O,  S(~176176 0 = #~b o, (2), (3) 

# - !{1  + ( -- 1) " : 3 -  ~ S ( ~  o = a2a3( - 1)~2Y~ - 2)~o (4) 

Using the t ransi t ion funct ion the equat ions  (1), (2) and (3) t r ans form to 

- S (~  ~,~:o)~O - S ( ~ 1 7 6  l ) ~  

"3i- ~ { - -  S ( -  l'a2Yo'a3zo)ff] - -  S (l'a2y0'a3zO)~I "Ji- V S ( ~ 1 7 6 1 7 6  } 

- -  ]~2{S(o,a2y 0 + 1,a3ZO)l] / ..1_ S(o,a2yo,a3zo + l )~  } = ]~,~1// 

and 

S ~ -  o1,o,o)~0 = xo  I qj, S ~ O , ~ o , ~ o ) q j  = ~. 

Therefore  on E~1 = {p = 0} we have  

S(O,-  1,1)1/] = _ ~/1, S ( -  a 1,0,0)~ = Xa 1 ~ll, S (~176176  ~- ~1. 

T o  explore (4) observe  tha t  

a2a 3 -- 1 
1 + ( - 1) ~ : 3 -  Is(O'--a2a3"a2a3) = E ( -- 1)~(SiO,- 1:) + S(i+ 1)(0,-- 1,1)) 

i=O 

On the other  hand  we have fo rm (1) 

(S~~ + S "+ ~•176176 = - S  ~ - ~ ' - " +  "q'o - S " ' - ' ' '+  ~)~'o 

_ S~O,-~a+ 2)0/~ _ S~O,-~+ L~+ 1)d/~ + ( V ( m ,  n - -  i, p + i + 1) - 2 ) S  ~~ t)~b o 
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T h u s  

# - - l { 1  -31-( - -  1 ) a 2 a 3 -  1s(O,--a2a3,a2a3)}~jO = # 
a2a 3 -- 1 

i = 0  

( - -  1 ) i { _ _ # n + p +  l ( S ( - l , - i , i +  i ) ~  

"JV S ( l ' - i ' i +  1)1//) - -  # n + P +  2 ( S ( ~  2 ) ~  71- S ( O ' - i +  l , i +  1)~]) 

+ # n + p +  l ( V ( m  ' n - i , p  + 1 + i) - 2)S  ( ~  ~ 

So on  # = 0 (4)  t r a n s f o r m s  to 

a2a 3 -- 1 

E 
/ = 0  

( _ 1 ) i { _ ( S ( - 1 ,  t,~+ 1) _ SO,-~,t+ 1) + ( V ( m ,  n - i , p  + 1 + i) 

- -  ) ~ ) S ( O , - i , i +  1)~/} = a2a3 ( _ 1)a2yo(3 _ 2)1~. 

Since  S ( ~  = --~1 we get  

a2a 3 -- 1 

- -a2a3S(- l '~176 --  a2a3S(l '~176 - ) 'a2a3S(~176176 + 2 
/ = 0  

= a 2 a 3 ( - -  1)a2Y~ -- 2 )S  (~176 1)1~. 

V ( m ,  n - i, p + i)~b 

But  S (~176 = S ( ~ 1 7 6 1 7 6  - (O' -a2yO'a2yO)  a n d  we have  

_ S < -  1,o,o)~, _ SO,O,O)~  + _ _  
1 a2a 3 -- 1 

E 
a2 a3 i = o 

V ( m ,  n - i, p + i )O = zO.  

N o w  a2 a n d  a3 a re  r e l a t ive ly  p r i m e ,  t he r e fo re  we get  the  des i r ed  spec t r a l  p r o b l e m  as 

in p r o p o s i t i o n  3. 

L e t  n o w  rc~ be  the  i th  b l o w i n g  u p  o f  the  p o i n t  P12 a n d  Et the  e x c e p t i o n a l  d iv i sor .  

So we have  

w = #, x = # ix t, y = # ty t, (1 + ( - 1)"2"3- ~z) = a2a 3 ( --  1)a2Yo#(z - -  2 ) .  

Le t  Ut = {(#, X i,  Yt, z') ~ C 4 [ xtYi  = #2, ,  - 2t} be  the  n e w  cha r t .  O n  Ut ca X~o = X~o 

def ine  the  t r a n s i t i o n  f u n c t i o n  Oo(m,  n, p ) =  #"  +POt (m ,  n, p) .  T h e  spec t r a l  p r o b l e m  

on  X~o x F is g iven  by  the  e q u a t i o n s  (1),  (3),  (4)  a n d  

S ( - a l  ,O,O)s(a | - i)(O,a2Yo,a3zo)~] 0 ~. Xi~] 0 

S("~'~176 - i)(~176176 = Yi~'o 



16 D. B,~TTIG 

The last two equa t ions  give on the except ional  divisor  Ei = {# = O} 

x i = y ~ = O  f o r i # a ~ , i . e .  

~-- I (F2(V)  -- e l 2 )  ( '~E i  : (Ei)singular 

Denote  by H i :  the above  hyperel l ip t ic  curve. N o w  F~(V)comp is smoo th  on the 

s m o o t h  poin ts  o f  HIz  - (HIE ~ Q~ c~ Q2) as in p ropos i t i on  2. Observe  tha t  Q1 c X~2 

lies in the p lane  x = 0, so by the b lowing-ups  Q1 intersects  H~2 t ransversa l ly  at  

xa~ = 0 ( and  s imilar ly  Q2 intersects  H~2 at  Xa~ = y;~l = 00), i.e. on (see the in t roduc-  

t ion) a smoo th  po in t  o f  Hi2.  This  proves  p ropos i t i on  3. 
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