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A toroidal compactification of the Fermi surface for the discrete
Schrodinger operator

D. BATTIG

1. Introduction

Let®*yF a,Z ® a,Z @ a,Z be a lattice in R? and q a real valued square-integrable
function on the torus R*\I'. For each & = (£, &,, &) € ' x 8! x §! the self-adjoint
boundary value problem, called the independent electron approximation of solid
state physics (see [1]),

Ylx +7) =E1ERePY(x) Vyel,

has discrete spectrum, denoted by

Ei(Q) S E(Q) < E(§) <---
The (physical) Fermi surface for energy A is the set
Forysi(q)={E €S' x S' x §'| E,(&) = 1 for some n > 1}.
In [3] one defines the complex Fermi surface by

Fi(q)={(&,, &, &) € C* x C* x C* | there exists a non-trivial function ¥ in

H},.(R’) solving the above boundary value problem}.

Clearly F,(¢) contains all points that can be reached by analytic continuation of
Fys.:(q). Using regularized determinants (see [7]) it can be shown, that F(q) is a
complex analytic hypersurface in C* x C* x C*. In [3] it was shown that for
potentials g(x) of the form p,(x;) + p.(x;) + pa(x3) or p;(x;) + p.(x;, x3) the
surface F,(q) is irreducible, i.e. in this case F,,(g), if it is a nonempty set of
dimension two, determines F;(g) uniquely.
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In this paper we consider a discrete version and show that for each (complex)
potential g, the Fermi surface is always irreducible.

So let ¥V :Z° - C an arbitrary function periodic with respect to the lattice I'.
Furthermore let 4 be the discrete Laplace operator defined by

(Al//)(ma nap) = ll,(m - la n,p) + ‘//(m + 19 n9p) + l/’(ma n— 1’ P)
+!/’(m," + I,P) +ll’(m9 np-— l) + 'l/(ms n,p + 1)

for functions y : 7> > C.
We are interested in the spectral problem

(—A4+VW =
with boundary conditions

'//(m + a,n, p) = illll(m, n, P), ll’(’n’ n+ a, P) = é2‘/l(m’ n, p);
l//(m9 np + 03) = €3|p(ms n, p)

for functions Y :Z°>C and (4, &, &, &) eC xC* x C* x C*, and define as
above the complex Fermi surface F,(V) for this discrete problem (see [4]). Further-
more we assume that a,, @, and a, are relatively prime, positive natural numbers
greater to two.

Due to the boundary conditions the spectral problem can be written in terms of
the values Y(m, n,p) with 1 <m <a;,1<n<a,,1<p <a;. The Fermi surface
F,(V) is then given by the vanishing of the determinant of a certain g,a,a; x
a,a,a;-matrix, or concrete, it is the zero-set of a polynomial P in the variables
ELETY &, E5 " and &, E57Y, where the coefficients depend on 4:

P=(— 1)"2"3(“1 - l)c“lzﬂs +{~ 1)“2“3(“; - ‘)é 929
+ ( _ l)alaJ(az— l)ég,@ + ( - l)a,ag(zzz« l)fz—ﬂlag
+(— 1)“1“2(‘13— 1)5‘;1“2 +(~ 1)“102("3— 1)63‘“102 4+ .-

lower order terms, i.e. an algebraic surface in C* x C* x C*.

For potentials ¥ = C =constant, F;(V) can be calculated explicitly, using
discrete Fourier analysis. Namely let u, be the multiplicative group of a;-th root of
unity. Then for p =(p,, p3, p3) € Uy, X Ha, X H,, consider the set

p

3
Fy=0={ {(21, 2),23) € C* x C* x C*| Z (piz) ™' +(pizi)) = 4 — C}-

Now pu,, x ug, x u,, acts on F.(Ww=C)by pz=(p 21, p222, p323). Then one has
F,(V) = F(V = C)[uy, X foy, X o, and so Fy(¥) is irreducible.
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It is well known, that the one-dimensional Bloch variety B(W), defined by (see
(4], (8D

B(W) ={(&, 1) e C* x C | there exists a non-trivial function ¢ : Z - C solving
~[Y(m — 1) +y(m + D] + Wmpp(m) = ip(m), Y(m +a) = y(m)},

where W :Z — C has period q, is a hyperelliptic curve of arithmetic genus a — 1,
which can be compactified by adding two smooth points.

In this paper we construct a compactification F;(V)om, of F;(¥), such that the
generic points of F;(V).omp are smooth points of F;(V).omp-

THEOREM 1. F;(V)comp — F:(V) is the union of twenty algebraic curves due to

twenty one-dimensional spectral problems:
(i) eight rational curves Q;,...,Qz with (a,— 1)a,— INa;— 1)+
Z, ., (a; — 1)(a; — 1) ordinary double points. These curves do not depend on

the potential V.

(i) Twelve hyperelliptic curves H;: Hy,, Hy,, Hsg, Hyy  (resp. Hi,, Hsg,
H,y, Hyy; resp. His, Hyg, Hy;, H,g) of arithmetic genus a, — 1 (resp. a, — 1,
resp. a; — 1), each isomorphic to the one-dimensional Bloch variety B(W),

where W is the averaged potential

as

LY
3 =
a

(resp. a11a3,~ 3 V(, -, k); resp. — Z Z V@, k, - )>

=1ks= a1y i =1 k=1

W(')—

i M.&

(iii) F;(V)comp is smooth on all smooth points of F;(V)comp — Fi(V).
(iv) All the above curves intersect transversally, only on smooth points of
F;(V)comp and the intersection pattern is given by the following picture:
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As an immediate consequence we get
THEOREM 2. The Fermi surface F,(V) is irreducible.

Naively one could try to compactify F,(V) by embedding C* x C* x C* in
P! x P! x P! and closing the Fermi surface in there. This doesn’t work, since the
new points added to F,(V) are highly singular. Instead we construct (as in [2] and
[8]) a compact three-dimensional torus embedding X, such that

F,(V) c C* x C* x C*  X;.

A torus embedding X is a scheme such that algebraic torus C* x C* x C* can be
embedded in X, in a way, that the action of the algebraic torus can be extended
to the whole torus embedding X;. Information and facts about torus embeddings
can be found in [5}, [6] and [9]. The closure of F,(V) in this space X, (after
resolution of certain singular points of X;) is the compactified Fermi surface
Fy(V )eomp-

Furthermore we not only construct the torus embedding X, but also an
infinite-dimensional vector bundle Y, the vectorspace F of all functions ¥ : Z—>C as
fiber, on X;. On C* x C* x C* x F « Y we have four commutating operators:

—A+V—A1, S@OO_g ] §O0a0_g | gO0a)_g ]

for (&,, &, &) € C* x C* x C* (here S®#7 denotes the shift operator in direction
(e, B, 7). The Fermi surface is then the support of the bundle
{(&, &, &5,¢) e C* x C* x C* x F'| the above four operators have a

common kernel ¢ }.
By extending this bundle to the whole X the rational and hyperelliptic curves
mentioned in Theorem 1 will appear in a straightforward way.

Let us close by mentioning, that a similar construction was worked out in detail
for the two-dimensional Bloch variety in [2].

2. The construction of the toroidal octahedron

In this chapter we construct the three-dimensional torus embedding, in which
F,(V) will lie. Consider the eight vectors 1,2,...,8 in R? given by
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1:=(a,, a,, a3), 2:=(—ay,a,,as),
3i=(—a,, —a,, a3), 4:=(a,, —a,, —a,),
5:=(a,, a,, —as), 6:=(—a,,a,, —a;),
Ti=(—a;, —a,, —a;), 8:=(a,, —a,, —as).

We introduce the following notation:
o’ means the strongly convex polyhedral cone generated by the vector i.

So for example 6" = {t(a,, a,, a3) +s(—ay, a,, a3) | 5,1 € R,,}, where R, de-
notes the non-negative real numbers.

We define the fan X to be the collection of the six three-dimensional cones o !2°¢,
BOT 53478 51458 55678 and ¢!?** and all it’s faces. There are two-dimensional faces
as ¢!? or ¢'°, one-dimensional faces as ¢!, 62 and one zero-dimensional face
0% = {0}. We call the torus embedding X; associated to this fan toroidal octahe-
dron. It is compact (see [5]). Explicitly X, is given by a coordinate covering
(X,)sc s The (X,)’s are (quasi)-affine varieties defined by

[

X, =SpecC[...,{¢7ey, ... 1

where Cf ..., EpERED, ... ] is the algebra generated by the polynomials £ ERER
with (r,, ry, r3) in Z3 such that {(r,;, 7, r3), 0> 2 0.

If 6% and ¢# are two cones in X, then the charts X,. and X,; are patched
together along X,.n X,s. So, for example X, and X, are glued together on
X,,uﬂX,,u = X‘,l .

Clearly we have X, o= Spec C[&,, &71, &, E51, &5, E51] = C* x C* x C*. So we
embed the Fermi surface F,(V) by the inclusions

F(V)cC*xC*xC*=X,0c X5

in the toroidal octahedron.
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In the following we analyze X;.

Since the action of the algebraic torus C* x C* x C* on itself can be extended
to X, the toroidal octahedron is a disjoint union of C* x C* x C* orbits. There is
now a one-to-one correspondence between these orbits in X; and the cones g € X
so we can label an orbit by a cone o : O,. Furthermore we can organize this
labeling such that (see [5]):

0, c X5, dim: O, =3 — dimg g,
and O, = C* x C* x C* - 1,(0), where 4,(0) is the point
lim X,(0) = lim Spec C[... ., €7 E7ER, - Yheuimg = 1
where b = (b,, b,, b;) € Z* is a point in the interior of o.

It is easy to draw a schematic picture of the toroidal octahedron X, (compare
with [2] and {[7]):

The “interior’ of this

\
octahedron represents Oc_?/ e \ 00_45
0,0=C* x C* x C*. L& (L
\

O+

o

00.423‘['

Using the symmetry of the fan X we can restrict to the orbits O,0, O,:, 0,2 and
O, 123¢. Let y,, z be integers with a,y+ ayzo = 1.

LEMMA 1. (i) X,o=8pec C[{;, {71, 85,85, &5, &5 =C* x C* x C*.

(i) X,1=Spec C[{7 " (E3EPR)™, &1(E3850) ~7, Epo¢%, 5 MEPR, (985 ™], e
X1 is isomorphic to C* x C* x C* with local coordinates

up=Er(EREP)M e, v:={PiPeC and wi=¢{;¢PeCh
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Furthermore O, = {(u;, w,) € C* x C*, v, =0}.

(iil) X,12 = Spec C[CT ' (E3E50)™, &i(E0830)™, E3sy, £ 1ER, EpE5 %] ie. X, 0,
isomorphic to Spec Clx, y,w, z,z " 'J/{xy =w?), O,={zeC* x=y=w=0},
i.e. each point of O™ is singular of type Ay, _ ;.

Proof
(i) Trivial.
(il) Clearly the three vectors (1, —a, ¥y, —@;2), (0, o, 25), (0, —as, a,) form a
Z-basis of Z*. So each (r,, r,, r;) € Z* can be written as

(ri, 2, r3) =r (L, —a,y0, —a,z) + 5(0, yo, 2) + £(0, —as, a) n

with s,t € Z. Now {(r\, ry, ry),6'> 20 exactly if a,r, +a,r, + a;r; 2 0. But s is
equal to a,r, + ayr, + ayry by (1). Therefore X, is given as stated in the lemma.
Computing O, is straightforward.

(iii) We have two Z-bases of Z?; first the three vectors (1, —a,y,, —a;2),
(0, ¥0,20), (0, —a;,a,) and second the vectors (1,a,ys, a120), (0, Vg, 20),
(0, —a,, a,). So for each (r,, ry, r;) € Z> we can write

(r1, ra, r3) =r (1, —ayyo, —ay29) + 50, yo, 20) + (0, —a3, ay), (2)

(?'1, T2 r3) = rl(l, a1, alzo) +§(0a Yo, ZO) + ?(0’ —as, aZ)a (3)
with s, £, §, £ € Z. Since {(r,, r,, 13), ¢'2) 2 0if and only if a,r, + a,r, + a;r; 2 0 and
—a,r + ayr, + asr; 2 0 it follows with (2) and (3) that

arn +ar+ara=s5s=2ar,4+520,

air+a,ry,tary=5=—2a;r;+s290.
Let first be r; = 0, then both inequalities are fulfilled exactly if § = 0. Secondly let

r; <0, then the necessary and sufficient condition is s = 0. This proves (iii) (again
0,12 1s easy to calculate).

We do not need the chart X, 23 since we have:
LEMMA 2. The closure F,(V) of the Fermi surface F,(V) in X5 doesn’t intersect

the zero-dimensional orbits.

Proof. 1t is enough to show that O, F,(V) = &. Since dimg O,12:4 = 0 the
(singular) point O, has coordinates (in X, i) EPERER=0 for all
(r19 Ty r3) € Z3 WIth <(rl’ ry, r3)9 61234> Z 0
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Clearly £, € C is a coordinate of X, 231, so the polynomial P, defining F,(V), has
a pol in &, of order a,a,. On the other hand since P = X, a;; (A)¢] E45£5 with (due
to the boundary conditions defining the Fermi surface) a,|i| + a,|j| + a; k| < a,a,4,
it follows that each summand E{&4E5+9%2£ 1 of the polynomial £9“P is a
coordinate of X, i234.

Therefore the closure of F;(V) in X lying in the chart X 1.4 is given by the
equation

gnep = 0.

But £512Plg, 105 = (— 1)1 "V 3.0,
Motivated from this lemma we are only are interested in the closure F;(V) of
F,(V)in

¥ = X; — {union of the zero-dimensional orbits}.

3. The compactification

We consider the compactified Fermi surface as the solution of a spectral
problem on a vectorbundle Y of infinite rank on X¥.

We define by F the infinite-dimensional vector space of all functions  : Z* - C.
The vectorbundle n: Y - X¥ will be trivial over each affine part X, of X%
(6 €2).

On Y|y o=X,0x F=C* x C* x C* x F we have four commutating operators

T—Ali=—A4+V—Al, S@O_¢1  §Oa0_g | §00a)_r
for ¢y, &5, 83) € X0

DEFINITION. The (uncompactified) Fermi surface F;(V) is the support of the
bundle

{(€1, &2, &3, o) € X,0 x F | the above four operators have a common kernel ,}.

By symmetry and lemma 2 (since we want the closure }m of F,(V)in X¥ to
coincide with the support of bundle on X'%) it is enough to extend the vectorbundle
Y| x,0 00 X, and X, ... We give the transition functions, using lemma 1:

(i) X,1=Spec Clu,,u; ', v,,w,,w;'], ie. the coordinates are (u,,v,, w,) €
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C* x C x C*. We now identify (&, ¢&,, &, W) € X,0 X F with (u;,v,, w;, ¥,) €
X, x Fon X,1nX,o= X,o (or equivalently on v, # 0) by

up=ErN(ER LR, v =&l ow =8P
(this is the coordinate change on Xy from X,. to X,,) and
‘I’O(m’ n, P) = vr1n+n+p'//1(m’ n, P)

(i) On X, > we have coordinates (x, y, w, z) € C* x C* with xy = w2, Identify
(&1, &2, &3, W0) € X0 x Fwith (x, y, w,2) € X,12 X Fon X,2nX,0 (ie. on w #0) by

x=¢7M &R, y=6EREP)N, w=EREy, z=¢7LP,
and

l/I()(rn’ n, P) = wm+n+pxwm/a1|/l12(m, n, P)-
Denote by F,(V) the closure of F,(V) in X%.

PROPOSITION 1. (F,(V) — F,(V)) "X, 12 is the union of two rational curves Q,
and Q, with the following properties;
(i) Q;(i=1,2) has (a, — 1)(a, — 1)(as — 1) + X, ., (a; — 1)(a; — 1) ordinary dou-
ble points. Q, does not depend on the potential V.
(i) Q10 Q, is a point (=:P;). Py, lies on the singular orbit Q..
(iii) F,(V) is smooth on all smooth points of Q10U Q,— {P1,}.

Remark. Since P,, is singular, we will resolve this point. The strict transforma-
tion of F,(V) on the exceptional divisor is then one of the hyperelliptic curves
mentioned in theorem 1 of the introduction.

PROPOSITION 2. Q, is given on the chart X, as the support of the bundle
(uy, 01, wi, Y1) € Y with

(S(fl,0,0) + S(O,—-I.O) + S(O,O,Al))l//1 — 0,
S(—ﬂl-o-o),l,l =u, Wl , S(O-—azas,azas)‘l,l — wl‘/’l , S(O,az)’oﬂazo)ll,l - ll/l

with v, = 0.

We first prove Proposition 2, then Proposition 1 will follow easily.
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Proof of proposition 2. The spectral problem on X,o x F

Ty, = Ay, §@00, = &y, S(o'az’o)‘po = &0, S(O’O’HS)WO = 3o

can be written alternatively as

TS ©-4250, aszo)w = AEREDY,, S(~a1,0,o)lp0 =¢&7 1 Yo,

§Oaroaszoly, = 3L, SO mmanmiy, = £33y,

since the shift operators are invertible and the vectors (—a, 0, 0), (0, a,y,,
a2y), (0, —aya,, a,a,) are also a basis for the lattice I'.

By the construction of the vectorbundle Y these four equations transform to

_..(S(* l,azyo»aslo)llll + U%S(l’azyo’aﬂo)wl + S©a270 - 1’“320)l,[,1

+ U%S(O,a2y0+ 1,a3zo)¢l + S(O,azyo,a3zo — l)lb1 + U%S(O-aLVO»“BZO + 1)41‘)

+ v, VS(O,azm-“szo)./,l = leS(O,azJ’o;aazo)llJl ,

S0, =y, SOavoaszoly, = oy, SO @ty = w i,

on X,,l x F.

But X,: — X,0= {v; =0} and on the open set X, U X,o = X,o0 by the continuity
of the transition function the spectral problems on Y |, , and Y |, , coincide.

Therefore (F, ,l(V) —F,(V))nX,: is the support of the following spectral problem

(S(— Layyg.a3zp) + S ©.a2y0 — Lazzp) + S§0.azy0.a329 — 1))4,1 =0

S(—ax.0,0)lI,l = ul'/’l’ S(O.azyo,azzo)l/,l . S(O,—aza3,"2“3)¢1 — Wl'/’l,

which leads immediately to proposition 2.

Proof of proposition 1. (i) Clearly @, does not depend on V. To calculate the
genus of this curve, we consider a covering of Q, with a, a,a; sheets, as in [4]

Let p,, (resp. u,,,,) be the multiplicative group of a,th (resp. a,a;th) root of
unity and (z;%,z;%*):=(,w;). Then the functions e,(z)(m, —n,n)=

(p121)™(p222)" with p =(py, p;) € Uy, X Yy, form a basis of the vectorspace of
functions

ll, : ZZ g C9 (ma —n, n) - w(ma —n, n) with S(—al'o,O)llll =U l)[Il ’

S(O, ~apay ,a2a3)‘/ll — W1 ‘Ijl .
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The operator $¢~2v0.a320) . §Oazy0 — Laszo) 4 §Oa2309320 - 1) diggonalizes in this ba-
sis and considering the covering

c. C* X C*_*C* X C*a (21522)—)(21_111922_“2“3) =(u1s wl)

J,=c () is given by
U {(zy,2,) eC* x C* | (012)) 7'+ (p22,) 20 4 (pyz,) 20 = 0},
p

This means @, is rational. Let C, = {(p,z,) 7' + (p12,)*° ™! + (p,2,)*?° = 0}. Per-
form the changes of coordinates

z, =y 9oy i zp=yx !
C, transforms to

pilxy +py@iox + pgoy =0.

Since a, and a; are relatively prime we have y, ,, = ., ® ,, i.. each p; € y,,,, can
be written as p,p; ! with g, e Ha,» P3 € Y. Therefore C, =C, ;, 5, s given by

piixy+py x+p5'y=0.
For p € p,, X Jt,, X H,, the action on §, is given by p - (x, ») = (o1 'p2x, p1 ' $33),

and we have p-C,=C,,. Now by Bézout’s Theorem C, and C, intersect
transverse in C* x C* in exactly one point, given by

P 1 o~
ps'—p pi'—p
x(p) = =2, Wp) = -

P P2 pit—p3!

if p is not of the form (1,1, ), (1, §;, 1), (p,, 1, 1). In this second case we have
CinC,N(C* x C*) = . To prove (i) it remains to show that

(x(0), y(p)) # (x(p"), y(p7))  for p#p’,
because then Q, has exactly
ayaya;—1—(aqy~1)~(a— 1) ~(a; - 1)

ordinary double points.
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Observe that arg x(p) = « = angle in §; ' of the triangle p*, g5, 95", Put
pl«l — eZniml/al’ p;—l = e2nim’,/al’ ﬁ;l — e2nim3/a3 and ﬁ3~1 — eznimj/a3 with
m;, m; €{0,...,a —1}. One shows

my m

a, a

a=T7

b

so if x(p) = x(p’) then a;(m, + m}) = a,(m; + mj). Since a, and a, are relatively
prime it follows that

(ml i m’ls s im;) € {(09 O)’ i(ah 03)}-

In the first case we get either p,=pi, py=p3 or py=p; L, p3=p3"" If
pL=p1,Pp3=p5% using x(p) =x(p) we have j,=p5. If on the other hand
pr=pi" ', By =p3" ' by assuming arg y(p) = arg y(p’) it follows j, = 53~ ', i.e. x(p)
is real, so « € {0, ®) and therefore p, = ;=1 which contradicts y(p) e C*. The
cases m; + m; = +a, are treaten similarly.
(ii) The spectral problem on X, X F is given in the coordinates (x, y, w, z) of
Xalz by

TS(O'azyo'a3z°)l/’o = Awlg, S @00y, = xw 2y,

§Oa20.3%00) = SO~ amazaay -z

By the construction of the vectorbundie the last three equations transform to
SO0, = xw =y, S(O'azyo'aﬂo/)‘/’lza §O-maaiN,, =2,

The first equation gives (on x =y =w = 0), using SO2os%h =y,
(SO~19 4 50Dy, =0,

ie. SOy, =~y

It follows S —@2e3:@maly = —~1)2%y,, which leads to z =(—1)2%. This
means F,(V)nQO,z=one point (P,,) with coordinates x=y=w=0,
z =(—1)%%,

(i) On X, ., F(V) is given as the zero set of polynomial
Pluy,urtw, wi', ) = Quy, ui ', w, wi') + v, Ry, uy ', wi, wil,v), where
the zero set of Q describes Q,. So F,(V) is smooth on the smooth points of
Q1= (Xo1n{v, =0}).
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Now we resolve the singular point Py, of type 4,,, _,. Its coordinates are
x=y=w=0, Z:(—l)aZaB.

Blowing up this point in C* @, -times, the exceptional divisor is the transverse union

of a, hyperplanes E; (i =1, ..., a,), where the E, is the exceptional divisor of the
ith blowing up.

PROPOSITION 3. The blowing up of E(T/_) at the point P, intersects only the
exceptional divisor E, . The strict transform of F,(V) (on E, ) is a hyperelliptic curve
of arithmetic genus a, — 1. The blowing up of F,(V) is smooth on all smooth points
of this curve. Furthermore the curve is determined by the following one-dimensional
spectral problem

S(wa,,o,o)lll =X, , S(O,azyo,agzo)l/l — l//, S(O,—l,l)lll — —l//,
1

—'/j(m - l,n,P) _l//(m + l’ n9p)

+-L ( $ 5 vom, i,j))nlz(m, n p)

a3 \i=1j=1

= 2Y(m, n, p)
where the coordinates Z, x,, are defined by resolving the point P,,:

w=p,  x=p%,, y=u9y,,

(1 +(=1)®25"1z7) = gya,(— )™ou(Z — 1)
(here u =0 is the exceptional divisor E,

Due to the shift operators S©@«2»e-%%0) and §~1Y the curve on E,, is already
determined by the values of y(m,n,p) on the line spanned by the vector

(a,,0,0). Therefore Proposition 3 and Proposition 2 prove the theorems in the
introduction.

Proof. We first calculate the strict transform of F;(V) on E, . Blowing up P,
a,-times, we get the coordinates

w=upy, x=p"x,, y=p4y,,

(L (= )%~ 12) = aay(— 1) — 4)
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Denote by U the chart generated by the coordinates (i, x,,, y,,, 2), i.e.
U= {1 X4, Ya,,2) €CxC*x C* x C|x,,y,, =1}

Now X,onU = X,o and define the transition function for the vectorbundle Y by
Yo(m, n, p) = pu"* PY(m, n, p).

The spectral problem on X, o x F is given in the coordinates of U by

TSCevomioy, = uis (1)
SCaO0y = x, Yo, SO = (2 (3)
p L (= Dy SO e, = ayay(= 1) — A @)

Using the transition function the equations (1), (2) and (3) transform to
— §©azy0 - l,agzo)l/, — S§O.azyp.a329 — 1)./,
+ #{_S(—l.ﬂzyo,aslo)l/, — S(l,az}’oﬂzzo)lp + VS(O-ﬂz)’oﬁszo)l‘[,}

— p3{SQavo+ Laszoly, 4 §Oap0asz0+ DY = i)
and
S(~al,0,0)‘// - xall)[l’ S(o,azyo,ayo)lp =y.
Therefore on E, = {u =0} we have
S(O,—l,l)ll/ = —y, S(—al,0,0)w = Xa ¥ S(O,azyo,a3zo)ll/ =y.

To explore (4) observe that

azay— 1

1 + ( _ 1)0203— ls(O.—a2a3,a2a3) — Z ( - l)i(Si(O,-l,l) + S(i+ l)(O,—],l))
i=0

On the other hand we have form (1)

(Si(O,-—l,l) + S(l'+ l)((),—l,l))‘l/o _ S(—l,—i,i+ 1)./,0 — S(l,—-i,i+ D'/’O

— S(O,—i,i+ Z)WO — S(O,-—i+ Li+ 1)¢’0+ (V(m, n— i,p + i+ 1) — l)s(o,—i,i+ 1)‘/’0
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Thus

azay — 1

u -1{1 +(—1)@s- 1S(0,4a2a3,a2a3)}¢0 — #4 zi (— l)i{_ﬂn+p+ 1(S(—1,—i,|'+ ')l/I
i=0
4 SA-ii+ l)lﬂ) . #n+p+2(S(0,—i,i+ 2)¢ + SO~i+ l.i+l)l/,)
+u "tV (mn — i p+ 1 41) — SO+ Dy}
So on p =0 (4) transforms to

azaz — 1

Y (D=L - §EHED L (V(m,n— i, p + 1 +1)
i=0
— ASO©HH DY} = aya,(—1)27F — Y.
Since S©~1Dy = —y we get

azaz — 1

—a,a; ST — 4,0, SOV — Aaya, SO + Y Vimon—i,p+ iy
i=0
= ayas(— 1)®(z — 2)SO0 Dy,
But §©0~1 = §O.~av0.—az20) g~ 0.~a20.4250) and we have

azaz — 1

1
—SCL00y A0y 4 S Ym,n —i,p + D = E.

Qa3 =0

Now a, and q; are relatively prime, therefore we get the desired spectral problem as
in proposition 3.

Let now =, be the ith blowing up of the point P,, and E; the exceptional divisor.
So we have

w=y, x=p%, y=uy, (1+(=1)257"2) =aa;(—~1)?ou(@E ~ ).

Let U, = {(u, x;, y;, 9 € C*| x,y, = p**~ %} be the new chart. On U,nX,0= X0

define the transition function y,(m, n, p) = u" Py, (m, n, p). The spectral problem
on X, o x Fis given by the equations (1), (3), (4) and

S(=a1.00) gla; ~ i)(0-ﬂ2J'o,a320)ll,0 = xi‘//O

S(al ,0,0)S(al - i)(O,a;yo,agzo)lllo = yi‘l’o
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The last two equations give on the exceptional divisor E; = {u = 0}
x;=y;=0 fori+#a,Iie.

Tc—](Fi(V) - P12) f\E,- = (Ex )singular

Denote by H,, the above hyperelliptic curve. Now F;(V).omp is smooth on the
smooth points of H,, — (H,; n @, @,) as in proposition 2. Observe that @, < X, 1.
lies in the plane x =0, so by the blowing-ups Q, intersects H,, transversally at
X,, = 0 (and similarly Q, intersects H,, at x,, =y, ! = 00), i.e. on (see the introduc-
tion) a smooth point of H,,. This proves proposition 3.
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