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A volume-preserving counterexample to the Seifert conjecture 

G R E G  K U P E R B E R G  

Abstract. We prove that every 3-manifold possesses a C ~, volume-preserving flow with no fixed points 
and no dosed trajectories. The main construction is a volume-preserving version of the Schweitzer plug. 
We also prove that every 3-manifold possesses a volume-preserving, C | flow with discrete closed 
trajectories and no fixed points (as well as a PL flow with the same geometry), which is needed for the 
first result. The proof uses a Dehn-twisted Wilson-type plug which also preserves volume. 

THEOREM 1. Every 3-manifoM possesses a C l volume-preserving flow with no 
fixed points and no closed trajectories. 

The author was motivated to consider Theorem 1 by the recent discovery of a 
real analytic counterexample to the Seifert conjecture [5]; the conjecture states that 
every flow on S 3 has either a fixed point or a closed trajectory. However, the 
construction presented here is based on the original C 1 counterexample due to 
Schweitzer [11] and not the new counterexample. 

An important property of  a volume-preserving flow in 3 dimensions with no 
fixed points is that the parallel 1-dimensional foliation is transversely symplectic. In 
particular, such a flow on a 3-manifold M can be understood as a Hamiltonian flow 
coming from a symplectic structure on M x R. In this context, the Weinstein 
conjecture [14] provides an interesting contrast to Theorem 1. It states that a flow 
on a closed (2n + 1)-manifold M which is not only transversely symplectic but also 
contact must have a closed trajectory if H~(M, Z) = 0. (A contact form on an 
(2n + 1)-manifold is a 1-form co such that co A (dco) ̂ n does not vanish; the 
corresponding contact flow is parallel to the kernel of dco.) Hofer [4] has recently 
established the Weinstein conjecture for S 3, his result holds in the C I category. 
Thus, the flow established by theorem 1 is not contact. 

For  most manifolds, although not S 3, Theorem 1 depends on the following 
result. 

The author was supported by an NSF Postdoctoral Fellowship, grant 6DMS-9107908. 
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T H E O R E M  2. Every 3-manifoM possesses a Coo volume-preserving flow with no 
fixed points and a discrete collection of  closed trajectories, as well as a transversely 
measured 1-dimensional PL foliation with discrete closed leaves. 

Theorem 2 is an extension of the 3-dimensional case of  Wilson's theorem [ 15], 
which establishes flows with no fixed points and discrete closed trajectories, but 
without the volume preservation condition. Like Wilson's theorem and all known 
counterexamples to the Seifert conjecture, Theorems 1 and 2 both use the standard 
technique of constructing plugs and inserting them into other flows. However, 
volume preservation restricts the behavior of  a plug; in particular, a volume-pre- 
serving plug cannot stop an open set. To work around this serious constraint, 
Theorem 2 uses twisted plugs, which are plugs whose insertions into manifolds can 
change the topology of the manifolds. The twisted plugs constructed here are only 
Coo and not real analytic. The generalization of Theorem 2 to the real analytic case 
remains open. 

I am grateful to Krystyna Kuperberg for encouragement and important discus- 
sions about the research presented here. I would also like to thank Shmuel 
Weinberger and l~tienne Ghys for their interest in the results and useful comments. 

1. Preliminaries 

In this paper, we will mainly consider three smoothness categories: C r for finite 
r, C ~ or smooth, and PL. In many contexts, an object will have implicit smooth- 
ness; for example, a map between PL manifolds will be assumed to be PL. Unless 
explicitly stated otherwise, all of  the arguments assume that manifolds are oriented 
and connected but generalize easily to non-orientable and disconnected manifolds. 

The paper will use several different C ~ bump functions and transition functions. 
Let b: [0, 1 ] ~ R  be a non-negative Coo function with support [1/3,2/3] whose 
integral is 1 and which does not exceed 4. Let B: [0, 1] ~ R be a non-negative C ~ 
function shows value and derivatives vanish at 0 and 1 and such that 
B(x) > b(x) > 0 for 0 < x < 1. Let e: [ - 1, 1] --* R be a non-negative Coo function 

such that: 

=! Ixl->2/3 
e(x) < I x l > l / 2  

= Ix l -<  1/2 

Finally, let o: [ - 1 ,  1]--*• be a C oo odd, increasing function (i.e., o(x )> o(y) if 
x > y and o ( - x )  = - o ( x ) )  such that o(1) = 1 and all derivatives of  o vanish at the 
origin. 
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1. I. Foliations and volume-preserving flows 

In a standard mathematical treatment of  fluid motion, a vector field ~ in R n 
represents a static flow, and if the divergence equation 

F.3=o 

holds, the flow preserves volume. This definition must be carefully generalized to 
flows on manifolds. A smooth measure structure on a smooth n-manifold is in 
general given by a smooth, non-vanishing n-form or volume form. It is a simple 
result that any volume form is equivalent to Lebesgue measure by a local 
diffeomorphism. More interestingly, Moser 's theorem [7] states that a compact 
manifold M with two volume forms #~ and #2 with the same total volume admits 
a diffeomorphism taking #! to #2. Given a volume form # on a manifold M, the 
divergence equation for a tangent vector field 3 on a manifold becomes 

d( t~ (# ) )  = o,  

where the operator z~ is contraction with 3. The closed (n - 1)-form z~(#) is a flux 
form. This formalism is compatible with another view of flows. For M closed, a 
flow can be defined as a smooth group action r  R x M - ,  M; the vector field 3 is 
related to the group action r by 

d~ 
3 = - -  

dr"  

it  is easy to check that the condition that # is invariant under r is equivalent to the 
divergence equation. 

Since contraction with # is an invertible linear transformation, given a flux form 
to, any volume form # yields a vector field 3 such that 

to = t~(#), 

with the conclusion that 3 preserves #. Moreover, the trajectories of  3, that is the 
curves parallel to 3, are determined by to, since 09 has a 1-dimensional kernel at a 
point of  M where it does not vanish, and it is easy to check that 3 is a 
non-vanishing vector in the kernel at that point. Where to does vanish, 3 vanishes 
also. 

A useful special case of  the flux form view is n = 2, for then a flux form to is the 
differential of  a (possibly multi-valued) function f.  After dualizing by some area 
form, the trajectories of  the vector field 9 obtained from to = df  are simply the 
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contours o f f  I f  the manifold M has a Riemannian metric and the volume form is 
given by the metric, then ~ can also be defined as J ( ( f ) ,  where J is a rotation by 
90 degrees. This expression is also validated by the standard identity 

( .  J<Yf )  = o 

from 2-dimensional vector calculus. 
I f  ~ has no fixed points, its trajectories form a l-dimensional, oriented foliation 

of the manifold M. The usual Seifert conjecture can be phrased as a question about 
foliations rather than flows: Is there an oriented 1-foliation o f S  3 with no closed leaves? 
In the volume-preserving case, the foliation ~ is determined by the flux form co and 
otherwise does not depend on b or the volume form; ~- can be defined as the unique 
foliation parallel to the kernel of ~o, which is a line bundle over M. Since co is closed, 
it determines a (transverse) measure on ~ .  A measure on a k-foliation of an 
n-manifold is in general defined as a measure for every transverse (n - k)-disk which 
is invariant under isotopy of the disk parallel to the foliation. In this case, given an 
(n - 1)-disk D"-1  transversely embedded by a: D " - I ~  M, the measured on D"-1  
is given by the pullback a*(co), which is a smooth volume form. The measure induced 
by co can be called smooth and locally Lebesgue just as volume forms are. 

As a point of terminology, if ~- is a foliation of M, M is the support of ~a~. Also, 
henceforth the term foliation will mean an oriented 1-foliation except where explicitly 
stated otherwise. 

The simplest important construction with foliations is the suspension. (In topology 
the suspension is called the mapping torus and the term suspension is used for a 
different construction). Given a manifold M and a diffeomorphism or: M ~ M, the 
suspension is the manifold M x R foliated by linesp x l a n d  quotiented by the relation 
(p, x) ~ (a(p), x - 1). The main properties of  the suspension used in this paper are 
that o~- is measured if a preverses volume on M and that closed leaves o f~ -  correspond 
to finite orbits of  tr. Note also that if a is isotopic or even pseudoisotopic to the identity, 
the support of  ~- is diffeomorphic to M x S ~. 

1.2. PL foliations 

Recall that a k-foliation of an n-manifold is an atlas of  charts such that each gluing 
map preserves horizontal kplanes in R". In other words, each gluing map can be 
written as 

g(xl  . . . . .  x . ) = ( g l ( x l  . . . . .  x . ) , g 2 ( x l  . . . . .  x . )  . . . . .  

gk (x~  . . . . .  x~) ,  gk  + , (Xk + ~ . . . . .  X~)  . . . . .  g . ( X k  + , . . . . .  X~)) .  
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A k-foliation is PL if the gluing maps are PL, smooth if the gluing maps are 
smooth, and has a (locally Lebesgue) measure if the transverse part  (gk+~ . . . .  g,) 
of each gluing map preserves Lebesgue measure on R n- k. In the smooth case, this 
definition is equivalent to the one in terms of flux forms. However, in the PL case, 
the atlas definition seems to be the best substitute for flux forms. Note that 
suspensions generalize the PL case. 

Similarly, a (locally Lebesgue) measure structure on an n-manifold can be 
defined as an atlas of  charts such that the gluing maps preserve Lebesgue measure 
on Rn; in the smooth case such an atlas is equivalent to a volume form. In the PL 
case, such an atlas is an example of  a simplicial measure. A measure on a PL 
manifold is simplicial relative to a triangulation T if on each simplex the measure is 
given by a linear embedding of  the simplex in Euclidean space. The following 
analogue of Moser 's  theorem demonstrates that simplicial measures are the PL 
analogue of  volume forms: 

T H E O R E M  3. Two simplicial measures on a connected, compact PL n-manifold 
M with the same total volume are equivalent by a PL homeomorphism. Moreover, any 
simplicial measure is locally PL-Lebesgue. 

Proof. Let /~1 and /l 2 be two simplicial measures on M and let .~- be a 
triangulation for which both measures are simplicial. For any pair of  simplices T1 
and T 2 of 5 that meet at an n -  1-dimensional face, there is a family of  PL 
homeomorphisms of  T1 u / ' 2  which take measures which are simplicial on the 
triangulation { T1, T2 } to other such measures and which transfer measure from 7"1 
to T2. Figure 1 shows an example of  such a homeomorphism: In the figure, T1 and 
T 2 are embedded in such a way that their volumes are proportional to their given 
measure. We retriangulate 7"1 u T 2 with simplices U~ . . . . .  Un that share a 1-dimen- 
sional edge. There is then a homeomorphism t~ which is linear and volume-preserv- 
ing on each simplex Ui such that image is a union of two simplices T~ and T~ whose 
volumes differ from Tt and T 2. By identifying T'I with/ '1 and T~ with T2, ~b can be 
understood as a PL map that transfers measure from T~ to T2. 

Thus, using PL homemorphisms modelled on t~, we can transfer measure 
arbitrarily between adjacent simplices of  ~--, as long as the measure of  each simplex 
remains positive. Such moves clearly suffice to connect any two measures/~ and #2: 

Figure 1. Transfer of measure between adjacent simplices. 
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By analogy, a connected graph of people, each with a positive amount of money, 
can arbitrarily redistribute their assets solely by having adjacent individuals transfer 

money; moreover, the transfers need not drive any individual into debt. 
The PL maps so produced fix the vertices of ~J, even though they are not linear 

on the simplices of 3-. To show the second claim, let # be a measure simplicial 
relative to J-,  let x be a point in M, and let y be a point in M in the interior of some 
simplex of J-. The measure ~ is clearly PL-Lebesgue in a neighborhood of y. Let 
#1 = #, let #2 = ct(#l), where ~ is a PL homeomorphism of M that takes y to x, and 
let q /be  a mutual refinement of 5" and ~ ( J ) .  The points x and y are both vertices 

of q / and  #1 and #2 are both simplicial relative to a//. Applying the above argument, 
# is locally the same as x and y, and therefore # is PL-Lebesgue at x also. [] 

1.3.  T h e  C r c a s e  

A non-vanishing C r vector field on a manifold M yields a C r foliation (a 
foliation with C r gluing maps), which yields a C r structure for the manifold, but 

unfortunately the smoothness of vector fields on a C r manifold is only defined up 
to C ' -1 .  Similarly, a C" manifold with volume-preserving gluing maps only has a 

C ' -  ~ volume form. If  both structures are present, the vector field can be smoothed 
to C r [13], but usually at the expense of crumpling a C ~ volume form to C "-~. 

Alternatively, by a refinement of Moser's theorem [8], a C ' -  1 plus H61der volume 
form can be smoothed to C ~, but only by a C r plus H61der diffeomorphism which 

might crumple a C ~ vector field so that it is only C ~- 1 plus Hblder. 
In this paper, a volume-preserving C r flow means a C ~ vector field which is 

divergenceless relative to a smooth volume form on a smooth manifold. It suffices 
to consider C" flux forms on smooth manifolds (or at least C r§  manifolds). In 
particular, such a flux form defines a measured C r foliation. Although a C r flux 

form is not exactly the same as such a foliation, it is very similar and for some 
purposes it will be convenient to treat it as one. When we need to glue together flux 

forms, we will require that they are smooth in the gluing regions, so that in these 
regions they are equivalent to smooth measured foliations. 

2. Plugs 

To define plugs, we must consider a class of manifolds with at least some kinds 
of comers. The smallest convenient such class is the class of orthant manifolds. An 

n-dimensional orthant manifold is a Hausdorff space locally homeomorphic to 
some open subset of the orthant in R n of points with non-negative coordinates. In 
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Parallel boundary 

Comer separation 
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Transverse boundary 

Figure 2. Comer separation 

the PL category, an orthant manifold is just a manifold with boundary, but in the 
smooth category, the boundary might not be smooth. For  example, a paraUelo- 
piped is a smooth orthant manifold. 

A foliation can have many different kinds of  structure at the boundary of an 
orthant manifold, not to mention the boundary of an ordinary manifold with 
boundary, but to define a plug three kinds of boundary structure suffice: parallel 
boundary, transverse boundary, and corner separation between parallel and trans- 
verse boundary. Figure 2 shows an example of each type of boundary. Recall some 
definitions from reference [6]: Aflow bordism is a foliation ~ on a compact orthant 
manifold P such that 3P is entirely transverse boundary, parallel boundary, or 
corner separation, and such that all leaves in the parallel boundary of P are finite. 
If  p is a flow bordism, let F_be the (closure of) all transverse boundary oriented 
inward, and similarly let F§ be the transverse boundary oriented outward. The 
foliation ~ might in addition have one or both of the following properties: 

(i) There exists an infinite leaf with an endpoint in F_. 
(ii) There exists a manifold F and homeomorphisms ~• F ~ F_+ such that if 

0t+(p) and ~t_(q) are endpoints of a leaf of  ~ ,  then p = q. 

Figure 3. A bridge immersion. 
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If  ~ satisfies property (ii), it has matched ends. The foliation ~ is a plug if it has 
properties (i) and (ii), but only a semi-plug if it has property (i) but not prop- 
erty (ii). It is an un-plug if has property (ii) but not property (i). The manifold 
F_ is the entry region of ~ ,  while F+ is the exit region. If ~ has matched ends, 
then F is the base of  ~.  The entry stopped set S_ of ~ is the set of points of F 
which are endpoints of infinite leaves; the exit stopped set s+ is defined similarly. 
If  ~ has matched ends, the stopped set S is defined as a - l ( S _ )  = a 2~(S+). If 
has matched ends and S contains an open set, then ~ stops content, i.e., has 
wandering points in F. 

An important construction due to Wilson [ 15] turns a semi-plug into a plug. 
If ~ and ~2 are two flow bordisms such that the exit region of ~1 is the same 
as the entry region of ~2, their concatenation is a flow bordism obtained by 
identifying trivially foliated neighborhoods of this shared region. The mirror 
image ~ of  a flow bordism ~ is given by reversing the orientation of the leaves 
of ~,  which has the effect of switching the entry and exit regions. The mirror- 
image construction is the concatenation of ~ and ~ ;  it is easy to see that the 
result of  this concatenation has matched ends. 

The primary purpose of plugs is the operation of insertion. An insertion map 
for a plug ~ into a foliation Y" is an embedding F ~ X of the base of ~ which 
is transverse to Y'. Such an insertion map can be extended to an embedding 
a : F  x I ~ X which takes the fiber foliation of F x I to 8f. An n-dimensional 
plug ~ is insertible if F admits an embedding in •" which is transverse to 
vertical lines. Such an embedding is equivalent to a bridge immersion of F in 
R n-a, i.e., an immersion which lifts to an embedding one dimension higher. 
Figure 3 shows a bridge immersion of a punctured torus pT; the corresponding 
embedding of F x I is the one that Schweitzer also uses. 

Let N Fx  I be an open neighborhood of d(F x I). The next step in plug inser- 
tion is to remove a((F x I) - N r •  ~) from X and glue the open lip tr(NF• ~) tO P 
by a leaf-preserving homeomorphism a: NFx + ~ N?, where N e is a neighborhood 
of 8P. Moreover, the identification at should satisfy a(p, 0 ) = a _ ( p )  and 
a(p, 1 ) =  a+(p). A map a with these properties is an attaching map for ~.  As 
explained in Reference [6], plugs always possess attaching maps. 

Let a be an insertion map of a plug ~ into a foliation Y" on a manifold X, 
and let 3~ be the foliation on the manifold ,~ resulting from the insertion of  
into 3f. The plug ~ is untwisted if the attaching map a extends to a homeomor- 
phism F • I--+ P, and twisted otherwise. If ~ is untwisted, then X and )[ are 
necessarily homeomorphic, while if ~ is twisted, then X and ,~ need not be 
homeomorphic. This paper will use both twisted and untwisted plugs. 

A useful lemma about plugs proved in Reference [6] is the following: 
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LEMMA 4. A flow bordism with an infinite leaf with non-empty entry or exit 
region is either a plug or a semi-plug. 

2. I. Measured and C r plugs 

The technique of  plugs generalizes without any substantive changes to the 
category of measured foliations, either smooth or PL. The base F of a measured 
plug is measured, but by Moser's theorem, the only relevance of  this structure is 
that a bridge immersion of  F with large volume into a disk with small volume is 
inconvenient, although not strictly impossible, if F has large volume. One way to 
overcome this inconvenience is to rescale the transverse measure of the plug to 
make the measure of F small. Note also that a measured plug cannot stop content. 

The category of measured, C r foliations is trickier. Following the prescription of 
subsection 1.3, a measured C r flow bordism is realized by a C ~ flux form on a 
smooth manifold. A flow bordism with support P is attachable if the flux form is 
smooth in a neighborhood Ne of the boundary, so that the foliation method can be 
used to insert it without loss of smoothness. 

A n-dimensional, measured C" semi-plug ~ with support P can always be made 
attachable by the following method: Since the flux form 09 is defined over all of P 
and P bounds 3P, it is the differential of an (n - 2)-form v in a neighborhood of  the 
boundary N e. Let v' be an (n - 2 ) - f o r m  which is a smooth approximation to v in 
a smaller neighborhood of OP, agrees with v in a neighborhood of P-Np, and is an 
interpolation with a smooth bump function in between. In addition, choose v' so 
that dr' has the same parallel and transverse boundary at 3P as does 09. Then the 
flux form which is dr' on Ne and co on P -  Np yields an attachable semi-plug ~ '  
with the same leaf structure as ~ .  Furthermore, the mirror-image construction 

applied to ~ '  yields an attachable plug. 

3. Isolated dosed trajectories 

The main construction of the proof  of  Theorem 2 is a measured, Dehn-twisted 
plug. Before constructing or even defining such a plug, we recall several facts about 
Dehn twists and Dehn surgery: The boundary of a solid torus S ~ x D 2 has a 

distinguished embedded circle, the meridian, which is unique up to isotopy and 
which is identified by the fact that it bounds a disk in the solid torus. A framing of  
a solid tortes is a homotopy class of  another circle in the boundary; the framing may 
or may not equal the meridian. A framing is integral if it homologically crosses the 
meridian exactly once. A Dehn surgery on a 3-manifold consists of  removing a 
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collection of disjoint framed tori and gluing them back in such a way that the new 
meridian circles match the old framing circles; the topology of the resulting 
manifold does not otherwise depend on the gluing maps. The Lickorish-Wallace 
theorem [ 10] asserts that every closed, oriented 3-manifold can be obtained from S 3 
by integral Dehn surgery, or equivalently every closed, oriented 3-manifold can be 
obtained from every other by integral Dehn surgery. In the second formulation, the 
theorem also holds for non-orientable manifolds. 

Suppose that ~ is a plug with base F = S j x I whose support P is homeomor- 
phic to a solid torus S ~ x D 2. Recall that there is an attaching map 0c: Nrx,~Ne 
between neighborhoods of the boundary, and note that the thickened base F x I is 
also a solid torus. I f p  e S  I, the curve m = {p} x d(I x I)  is a meridian of F x / ,  
while the curve l = S ~ x {0} x {0} is a convenient standard framing which will be 
called the longitude. Recall that when ~ is inserted, its support P replaces an image 
of F x I by the attaching map ct. Therefore if ct(m) is a meridian of P, meridian 
replaces meridian, ~ extends to a homeomorphism ct: F x l --* P, and ~ is untwisted. 
If, alternatively, the meridian of P replaces some other curve of F x / ,  ~ can be 
called Dehn-twisted, because its insertion effects a Dehn surgery. In particular, if 
either 0t(m + l) or ~(m - l) (using homological notation for other curves besides m 
and l) is a meridian of P, ~ is integrally Dehn-twisted. 

An integrally Dehn-twisted plug 9 ,  assuming that it exists, can be used to 
construct a foliation on any closed, oriented 3-manifold with finitely many closed 
leaves as follows. The 3-torus T 3 possesses a smooth, measured foliation ~-- such 
that all leaves are dense; if T 3 is given with periodic coordinates 0~, 02, 0~, define oj- 
to be parallel to the vector field 

003 ' vth ov2 

where rl, r2, and r 3 are linearly independent over the rationals. Let M be some 
other 3-manifold, and let L be a link in T 3 such that some integral surgery on L 
yields M. I f  the link L is transverse to ~--, which can always be achieved by isotopy, 
then L determines insertion maps for copies of  9 .  The longitudes of the thickened 
bases F x I along L are determined by 5 ;  they can be chosen to be any desired 
integral framing by adding coils to L, as shown in Figure 4. The framing for the 
surgery induced by inserting ~ is then given by the formula m + 1 above, and this 
is also an arbitrary integral framing on each component of  L. 

Non-orientable manifolds can similarly be handled as follows: A rotation of a 
round 2-sphere S 2 by an irrational angle descends to a volume-preserving, smooth 
diffeomorphism of the projective plane ~p2 with only one periodic point, a fixed 
point. The suspension of  this diffeomorphism is therefore a measured foliation of  
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Figure 4. Coiling a Dehn-twisted insertion. 

R P  2 • S 1 with one closed leaf. Every other non-orientable, closed 3-manifold can 
be obtained from this one by appropriate insertions of ~.  An alternative approach 
is to use the wormhole plug defined in subsection 3.2 to add a non-orientable 
handle to a foliated, orientable 3-manifold. 

In conclusion, the smooth, compact case of  Theorem 2 follows from the 
following lemma: 

LEMMA 5. There exists a smooth, measured, integrally Dehn-twisted plug 
with two closed leaves. 

Proof. As a warm-up, we construct an untwisted, measured plug with two 
closed leaves. Let F = {(r, 0) [ _< r _< 3} be an annulus in the plane given in polar 
coordinates, but with the volume form dr ^ dO rather than the form given by the 
embedding in the plane. Consider C = F x [ - 1, 1] in cylindrical coordinates r, 0, 
and z. Let f :  [ 1, 3] x [ - 1, 1] --* R be given by 

f ( r ,  z) = z2(r - 2) + ( 1 - z2)(r - 2) 3. 

The contours of  f are given in Figure 5. The function f has one critical point at 
(2, 0), and all contours o f f  connect the top and the bottom, although the r = 2 
contour is singular. Let if" be a vector field on C given by 

Let ~f's be the foliation of C which is parallel to I~. The vector field ff/~ is 
divergenceless because both te rms  are divergenccless, and therefore ~f's is measured. 
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Figure 5. Contours o f f  

By the geometry of f ,  the leaves of W" s at r 4:2 connect the top and the bottom of 
C, but the leaves at r = 2 spiral to a closed leaf with r = 2 and z = 0. It is easy to 

check that (OF)x ! is parallel boundary of ~r  s, while F x ~I is transverse 
boundary. In conclusion, ~r is a semi-plug with one closed leaf. The mirror-image 

construction described in section 1 applied to ~r yields a plug #~ with two closed 

leaves. 
The plug ~ is necessarily untwisted, because in the notation preceding the 

lemma, the circle ~(c) consists of two arcs with constant 0, one in the entry region 

and the other in the exit region, connected by two leaves of ,Or. (See Figure 6a.) By 
the mirror-image construction, if a leaf winds by some angle 0 in W" s, it unwinds by 
the same angle in the mirror image ~/r so the two leaves together with the two 

connecting arcs do not wind around the hole of the support of #" and ~t(c) is a 

meridian. 

A V O L U M E - P R E S E R V I N G  C O U N T E R E X A M P L E  T O  T H E  S E I F E R T  C O N . l E C T U R E  

:.. i . . . . . . . . . . . . . . . . . . . . .  g. 
- " i i ..... .-. 

i[ .................... " 

a(c) 

o~(c) 

Figure 6. The curves ~(c) in .#r and .~. 
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The main construction is a variant ~ which is a concatenation of a semi-plug ~ l  
and the mirror image of another semi-plug ~2 which is a modification of ~ t -  Both 
semi-plugs are supported on the space C defined above. The semi-plug ~2 is parallel 
to the vector field 

where g: [1, 3] x [ - 1 ,  1] ~ R  is given by 

g ( r ,  z )  = e ( z ) o ( r  - 2) + ( 1 - e ( z ) ) ( r  - 2). 

The function g has zero first derivative on the line segment {2} x [ - 1 / 3 ,  1/3], and 
therefore the foliation #2 has an annulus of closed leaves {2} x S ~ x [ - 1 / 3 ,  1/3]. 
The semi-plug ~ is parallel to the vector field 

/~, = J ( f f g ) + ( 3 7 r b ( ~ ) o ' ( r - 2 ) + 1 ) ~  0 

when z e [ -  1/3, 1/3] and r > 2, and equals /~ otherwise. The coefficient of d/d0, 
although complicated, does not involve 0, so P1 is still a sum of two divergenceless 
terms. On the other hand, a calculation shows that, for an arc of a trajectory of Pj 
with r > 2 and z ~ [ - 1/3, I/3], d O / d z  is 3rrb ( 1 + 3z/2) greater than it is for a similar 
arc in t;2, and the integral over z of  this difference is 2m In other words, a leaf of 
~1 with r > 2 has the same endpoints as some leaf of ~2, but winds in the 0 direction 
by an extra angle of 2~r exactly. If we concatenate the mirror image of ~2 to ~ in 
the manner of the mirror-image construction, the result is that the leaves with r > 2 
wind an angle of  2rt while leaves with r < 2 wind an angle of 0. Therefore for the 
plug ~ ,  the two sides of  the circle ~(c) do not wind around the same amount, and 
�9 (c) is not a meridian for ~,  as shown in Figure 6b. In fact, ~ is integrally 
Dehn-twisted. 

The plug ~ has two annuli of closed leaves. Since the stopped set of #~ is a circle, 
#"  can be inserted in such a way that all of  these closed leaves are broken. The 
insertion of # "  into ~ produces the desired plug ~ with two closed leaves. [] 

To achieve a measured foliation with very few closed leaves, namely two, on an 
arbitrary compact 3-manifold M, we can insert a single copy of W" that breaks all 
closed leaves of  the foliation of Theorem 2. As an alternative to the proof  of 
Lemma 5, we could equally well insert copies of the plug ~ to effect Dehn surgery 
on T 3 or RP 2 x S ~ and then use one copy of  ~ r  in the final step. 
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T 
............. ;;S??;;?;?;???????L.?~ ? 

Figure 7. The map f: T ~ U. 

U 

3. I. The PL case 

The foliation Y- on T 3 is also a measured PL foliation. An irrational rotation of 
~p2 can also be realized as an area-preserving PL homeomorphism. Therefore the 
following lemma establishes Theorem 2 in the PL case by the same reasoning as in 
the smooth case: 

L E M M A  6. There exists a PL, measured, integrally Dehn-twisted plug with two 
closed leaves. 

Proof. Let R be a compact, PL submanifold of the plane, given in coordinates 
x and y. Let f :  R ~ R be a PL homeomorphism, and let I be a real number. Let s 
be the foliation of R x I  such that, for fixed (x,y)  e R  and z ~ R ,  the set 
{(x, y + Ix, z) ] (x, y + lz) ~ R, z ~ I} is a leaf. Orient the leaves in the direction of 
increasing z. The slanted suspension o f f  with slope l is defined as the space R x I 
with (x, y, 1) identified to ( f (x ,  y), 1), together with the foliation 6e induced by ~ .  
The slanted suspension 6 e is manifestly a PL foliation also. Moreover, if f preserves 
area, then 5e is measured. 

Let T be the trapezoid in the plane with vertices a~ = (0, 0), a2 = (0, 2), 
a 4 = ( 1  , 1), and a5 = (1 ,0 ) ,  and let a3 = (�89 as  shown in Figure 7. Let U b e  the 
reflection of T about the line x = �89 and let bi be the image of a; under this 
reflection. Let f :  T ~ U be the unique PL map which sends a~ and b 6 _ i and is linear 
on each of the three triangles which share the vertex a 3 . Evidently f is an 
area-preserving PL homeomorphism. Moreover, f decreases the y coordinate of  a2 
the most and increases the y coordinate of  a4 the most. 

Let R~ = [ - 1, 1] x [0, 3] be a rectangle consisting of  four congruent copies of  T, 
as shown in Figure 8. We can conjugate f with three isometries of the plane to 
extend f to an area-preserving PL homeomorphism gl: Rl --* Rl as also indicated in 
Figure 8. It is easy to check that the slanted suspension 6~ of g~ with slope 1 is a 
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Ri 

gl ) 

f 

RJ 

Figure 8. The map gl. 

PL analogue of  the semi-plug W, ; it is a semi-plug that stops a circle anal has one 
closed leaf. 

Let R2 be the rectangle Rt union a triangle with vertices (0, 3), (1, 3), and (1,5). 
Let g2:R2 ~ R2 be a map pieced together from four copies o f f : f  itself, its reflection 
(in the sense of  conjugation) about the y axis, the rotation by 180 degrees of that 
reflection about the point ( -  �89 ~), and the image of  f under the attine transforma- 
tion (x, y) ~ (1 - x, 5 - 2x -- y). The four copies of f determine g2 everywhere 
except in the triangle with vertices (0,2), (3, 1), and (3, 3); g2 is defined by 
g2(x, y) = (x, y + x) on the triangle. Figure 9 gives a diagram of the map g2. Let .#z 
be the slanted suspension of ct 2 with slope 1. It is easy to check that ~2 is a 
semi-plug with one closed leaf as well. 

The goal is to concatenate 6e z and 6e2 to produce a plug 6eeL, but we must be 
careful to properly match the entry and exit regions. Let F~.• and F2,• be the entry 
and exit regions of 6ej and 6e2; all four are subsets of R 2 x [0, 1] with R 2 x {0} and 
R 2 x {1} identified. Let F = Fi._ = F 2 . - ,  and let n~: FI.+ ~ F  and rt2: F2.+ -- ,F be 

/ "> \ l /  
f 

R2 R2 

Figure 9. The map g2- 
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vertical projections. Note that ~1 and n2 preserve transverse measure and the 
transverse measure agrees on F1._ and F2_. The essential property of  ~ and 6e 2 
is that i f p  and rci-~(q) are the endpoints of a leaf of 5el, then p and n21(q) are the 
endpoints of  another leaf of 5a2 that winds around the suspension direction one 
extra time. Therefore if b~ and S? 2 are concatenated with the map rc 2 o ~i -1 as a 
gluing map, the result is an integrally Dehn-twisted plug 6~ whose geometry is very 
similar to that of the plug ~ 6onstructed in the previous subsection. The plug 5e has 
two closed leaves, as desired. [] 

3.2. Non-compact 3-manifolds 

The only extra difficulty in establishing Theorem 2 in the non-compact case is 
that the Lickorish-Wallace theorem does not generalize. It is not true, for example, 
that every open 3-manifold is obtained from R 3 by Dehn surgery on a locally finite 
link, because any such surgery produces a manifold with only one end. (Recall that 
the set of  ends of  a manifold is the inverse limit of  the connected components of 
complements of  compact subsets.) On the other hand, the theorem does have the 
following useful generalization. 

T H E O R E M  7. (Generalized Lickorish-Wallace theorem) Given two compact, 
orientable 3-manifolds A and B with a homeomorphism ~: OA ~OB, there exists a 
3-manifold d obtained from A by integral Dehn surgery on a link disjoint from aA 
such that ct extends to a homeomorphism ~: .~---, B. 

Proof (Sketch) For closed manifolds, the Lickorish-Wallace theorem essentially 
says that any 3-manifold bounds a 4-manifold, since an integral Dehn surgery is a 
Morse reconstruction at a critical point of index 2, for 3-manifolds viewed as level 
surfaces of  Morse functions on 4-manifolds. Contrariwise, if two 3-manifolds are 
level surfaces of  the same Morse function, the Morse stratification produces a Dehn 
surgery connecting them, since any possible Morse reconstruction can be repro- 
duced with Dehn surgery. In the case at hand, C = A u B u(dA x I )  is a closed 
3-manifold if 3A x {0} is identified with aA and dA x {1} is identified with dB using 
a. The manifold C bounds a 4-manifold W; in fact, W is naturally an orthant 
manifold if 3A x ! is positioned to meet A and B orthogonally. Choosing a Morse 
function that is 0 and A, 1 on B, and x on t3A x {x }, we obtain a sequence of Morse 
moves that connect A to B, which can again be converted to Dehn surgeries. [] 

L E M M A  8. Every non-compact, orientable 3-manifoM M can be realied by a 
Dehn surgery on locally finite link in an infinite collection of  spheres with connecting 
handles. 
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t zF 

Figure 10. A 2-dimensional wormhole. 

Proof. Let M be a non-compact 3-manifold. Consider a locally finite collection 
of embedded surfaces in M which separate M into compact 3-manifolds 
M~, M2 . . . .  with boundary. Let Sj, $2 . . . .  be a collection of 3-spheres, and connect 
Si to Sj by a handle (in the sense of connected sums) for each connected component 
of Mi n Mj. The resulting manifold P is tiled by punctured 3-spheres P1, P2 . . . .  
with the property that P~ n Pj consists of n 2-spheres if Mg n Mj has n connected 
components. By attaching handles to these 2-spheres, we can obtain a new tiling 
P'I, P~, . . . .  such that P~ n Pj. is homeomorphic to Mj c~ Mj. Applying Theorem 7 to 
P, there exists a finite surgery in each P'~ that yields Mi. The union of all such 
surgeries is a locally finite surgery on P that yields M. [] 

Given Lemma 8, Theorem 2 is established with the aid of a volume-preserving, 
twisted plug ovf with base D 2 u D  2 and with support (D2x  I)4~(D2 x I). In 
particular, the base of ~ is not connected, but the support is; ~ is therefore a 
wormhole plug. The insertion of ~ into a foliation of a disconnected manifold 
effects a connected sum between two different components of the manifold. 

LEMMA 9. There exists a smooth, measured plug 9~ with base D2•D 2 and 
support (D z • I) ~ (D 2 • I). 

Proof The first step in constructing 9f ~ is to construct a semi-plug ~fs with the 
same support. Figure 10 shows a flow which is a 2-dimensional analogue of the 
desired semi-plug: It is a flow in an orthant manifold which is homeomorphic to an 
annulus. The outside boundary is a square, the inside boundary is an inverted 
square, and both the annulus and its flow might be invariant under inversion in a 
circle in the center of  the annulus. Excepting the two fixed points, it is otherwise a 
flow bordism. Roughly speaking, the 3-dimensional semi-plug ~ s  is parallel to a 
flow obtained by revolving the 2-dimensional analogue about the vertical axis and 
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adding motion in the angular direction to turn the fixed points into a closed 
trajectory. 

Explicitly, parameterize II~ 2 by Cartesian coordinates x, y, and z, and let C be the 
cylinder given by x 2 + y 2 ,  z 2 <  16. Let ~ o = d x  ^ d y  be a flux form on C; the 
parallel foliation is simply parallel vertical line segments. Let ~t: R 3 --, •3 be given by 

1 
�9 (x, y, z) = 1 + xZ +yZ  + z z (x,y,  z). 

Define ~.~ to be the foliation parallel to the flux form 

~t*(t~) + x dx A d z  + y dy ^ dz 

on the domain ~t-~(C). The foliation ~ has all of the claimed properties. 
The mirror-image construction applied to o~r s produces a plug ~ , ,  whose 

support H,~ consists of  two cubes connected by two handles, rather than the desired 
two cubes connected by one handle. However, the manifold H,, can be written as 

H,, ~ (D 2 x I )  ~ (D 2 x I)  # ( S  2 x $1). 

Since there exists a Dehn surgery on S 2 x S ~ that yields S 3, there is a way to insert 
copies of the Dehn-twisted plug ~ into o.~m to produce a plug with support 
(D 2 • I) ~ (D 2 x I). This plug is .,~r [] 

A PL analogue of ~ also exists; the details are omitted. 

4. No closed trajectories 

Since the construction of the proof  theorem 1 is a modification of a Schweitzer 
plug, we begin with a brief review of that example. 

4. I. Schweitzer's construction 

I f  a and b 4:0 are real numbers, let a mod b be the corresponding element in the 
circle R/bZ.  Let r be an irrational real number. Let 

w(x) = - I  (tan_l( x + 1) - tan-l(x)) 
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and consider a sequence o f  open intervals 1. o f  length I1. [ = w(n) placed on the unit  
circle in the same order  as n m o d  v. More  specifically, let 

1. = (a.  m o d  1, a. + w(n) rood 1) c R/Z = S 1, 

where 

an = ~ w(k). 
k:k rnod r E [O,n mod T) 

Since the total  length of  the ln 's is exactly 1, they are dense in S ~ but they do not  
intersect each other. Because o f  the ordering of  the I . ' s ,  there exists a h o m e o m o r -  
phism ~: S 1 ~ S  ~ such that  ~(ln) = I .+  1- The m a p  ~ is a Denjoy homeomorphism. It  
is realized as a C 1 di f feomorphism if its derivative on I~ is defined to be 

d~ 
n = l +  
dx 

I1.+,1- I1.1 

where L .  : In ~ [ 0 ,  1] is a linear isomorphism,  for those n such that  41/.+~ S> 31I. [. 
For  the finite number  of  n such that  this inequality fails, let ~ be any diffeomor- 
phism f rom 1. to I .  +1 with derivative 1 at the endpoints.  The  derivative of  ~ is 1 
outside of  the 1. 's and since 

lim 11"+'1-1I"1=0, 
II.I 

the derivative is continuous.  The  m a p  �9 has no periodic orbits and has a unique 
minimal  set, namely  5 e l _  U .  I . .  

Let  ~ be the suspension o f  �9 and let T be its support .  The manifold  T, which 
is a torus because ~ preserves orientat ion,  is a priori only a C ~ manifold,  but  it has 
a smooth  refinement such that  ~ is parallel to a C I vector  f i e ld / ) .  Let m be the 

subset o f  T which is the suspension o f  the minimal  set S J - U .  I .  ; m is the minimal  

set o f  ~ .  The  set m is a Denjoy continuum. 
Consider  the manifo ld  T • [ - 1, 1] with the [ - 1, 1] factor  parameter ized by z. 

L e t f b e  a non-negative,  non-zero C ~ function on T which vanishes on m. Consider  
a vector  f ie ld /~  given by the formula:  

0 
--ZS+z 2 +c_--.  
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By inspection of/~, the parallel foliation g has no closed leaves, because all leaves 
either travel in the position z direction or coincide with leaves of ~ on T • {0}. 
Moreover, g has infinite leaves contained in its minimal set m x {0}. Therefore, by 
lemma 4, g is a semi-plug whose base is a torus. The mirror-image construction 
applied to ~ yields a plug ~ which also has no closed leaves and has the same base. 
We identify the support of ~ with T. 

Since the torus has no boundary, ~ is not insertible. However, ~- also possesses 
a leaf l with two endpoints; we can take l to be the extension of the leaf in g 
containing (p, 0), where p e T  satisfies f (p )> 0. The restriction 5e of ~" to 
T x I - Nt is therefore a plug with base pT, a punctured torus. Since l is unknotted 
(which follows from the fact that E is non-negative in the z direction, and, by the 
mirror image construction, the leaves in N~ do not twist around l), 5e is an 
untwisted plug. Following Section 1, copies of 5 e can be inserted to break any 
discrete collection of closed leaves in a foliation. Indeed, as discussed in the 
appendix, a 3-dimensional plug with a twisted or knotted leaf neighborhood 
removed can nevertheless be extended to an untwisted, insertible plug. The existence 
of the plug 5 p together with Wilson's theorem (or its variant in Section 3) 
establishes a counterexample to the usual Seifert conjecture for all 3-manifolds [11]. 

4.3. Preserving volume 

The difficulty in making Schweitzer's construction volume-preserving is the fact 
that ~ does not possess a transverse measure in the sense of Section 1. Such a 
measure would induce an ~t-invariant measure # on the circle which is locally 
equivalent to Lebesgue measure. By compactness, the total #-measure of the circle 
would be finite, but the I , 's  would have equal and non-zero measure, a contradic- 
tion. In other words, any homeomorphism of S 1 conjugate to ct has the inevitable 
effect of squeezing I, as n goes to + ~ and stretching I~ as n comes from - or. Our 
strategy for overcoming this difficulty is to compensate squeezing of I, by stretching 
in the z direction. This transverse stretching must be sufficiently slight that there is 
no net motion in the negative z direction. 

Finding a suitable amount of transverse stretching is the difficult part of 
Theorem 1 because it is bounded both above and below by different constraints in 
the construction. One particular problem is that, if the rotation number z of the 
Denjoy homeomorphism ~ is approximated too closely by rationals, orbits of 
rotation by ~ are too unevenly distributed for the construction to work. Although 
any irrational number whose continued fraction expansion has bounded coefficients 
would work in principle, we let z = 1 + x/~/2 be the golden ratio for simplicity. In 
any case, the construction requires some involved if elementary Diophantine 
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estimates. For  convenience, the presence of the constant C in an equation will mean 
that there exists a real number C > 0 such that the equation holds. Although C is 
independent o f  all variables, it may have a different value in different equations, or 
even in different sides of  the same equation. 

The first step is to construct the Denjoy foliation, or at least its minimal set, in 
such a way that the underlying torus has a convenient measure. Consider the 
cylinder S 1 x R parametrized by 0 and ~b. Let Sn c S ~ x R be a sequence of infinite 
cylindrical strips such that the intersection S, c~ (S ~ • {~b}) has length w(n -d?) and 
such that the S~'s have the same ordering. Explicitly, let I~,~ c S ~ x {~b} be the open 
interval given by 

ln,~ = (an,~ m o d  1, a,,,~, + w(n - ~)  rood 1) c S 1 x R = R / 7 / •  ~ ,  

where 

an,~ = E w ( k  - -  ~), 
k rnod  r ~ [ 0 , .  rood  1:) 

and let Sn be the union of all intervals In,x. Let a : S ~ x  ~ - - , S ~ x  ~ be the 
homeomorphism given by 

a(0, 4~) = (0 + a~.~+ ~, r + 1). 

The map a is smooth, preserves area on S 1 x R, and sends Sn to Sn+~. The 
quotient T of  S 1 x R by a has an open strip S which is the image of each Sn under 
the quotient map, and the volume form dO A dq~ descends to a form # on T. The 
complement m of  s in T is dear ly a Denjoy continuum. In fact, by this definition, 
the pair (T, m) is an explicit smooth refinement of  the objects of  subsection 4.1 with 
the same name. 

Consider S t x • x [ - 1 ,  1] with the third coordinate parameter i~d  by z and 
with measure # Adz. The next step is to define vector fields h and 6 on 
S I x R x [ - 1, 1] with the following properties: 

(i) They are both invariant under a x id and therefore descend to 
T x [ - 1 , 1 ] .  

(ii) They are both. divergenceless C 1 vector fields (relative to dO A dq~ Adz or 
I~ A dz) whose ~b components vanish. 

(iii) The vector field / ~ + 0 / 3 ~  is parallel to m x {0}. On the other hand, 
vanishes on m x {0}. 

(iv) The z component  of  t3 is pos_itive except on m x {0} and exceeds the 
absolute value of  the z component  of  h. 
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Assuming for the moment  the existence of ~ and/~, the trajectories of  the vector 
field /~ '=  ~ +h+3/c3Cb have the same geometry as those o f /~ ;  moreover /~' is 
divergenceless. Following the rest of Schweitzer's construction and the formalism of 
Section 2, the flux form given by /~ '  yields a measured C ~ plug, which establishes 
Theorem 1. 

We temporarily fix a value of ~b and work in the coordinates 0 and z with the 
measure dO ^ dz. Let w'(x) denote the derivative of w(x). Let 

w ' ( n  - -  qS) 
f(O) -- w--~ 2 - ~  b(L..,(O)) 

for 0 e I.,o and 0 elsewhere, where L.,e, : _In, , --, [0, 1] is a direction preserving linear 
isomorphism. Let 

F(O) = w(n - (~) 3/2B(L,,.o(O)) 

for 0 e In,~ and 0 elsewhere. Define/~ and ~ by the equations 

1 fO+z fool = f(02) dO2 dO~ (1) H(O, z) 2 ,jo- z 

v(o,z) cf~176 = -- r(02) dO2 dO, (2) Z dO-5z 

s -_ j (Y/~)  = e/-/ 
,gz ' S o  

extended to z = 0 by continuity. 
Except for C ~ continuity, properties (i), (ii), and (iii) are routine. The fact that 

/~is C ~ follows from C 2 continuity of  H, which is immediate from the continuity of  
f The function F is C t as follows: The derivative exists on each In.C, and it extends 
continuously to a function P: S I --* ~ which is zero outside of the I,,~'s (check). We 
claim that F is the antiderivative of  ft. It could only disagree with the antiderivative 

if it were discontinuous or if the set F ( S ~ -  [,.),, I,,,~,) had non-zero Lebesgue 

measure, and neither of  these is the case. Since F is C ~, V is C 3 everywhere except 
where z = 0; at such points V is C 2 by L'Hospital 's  rule. Therefore ~ is C ~ also. 
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Proper ty  (iv) is the hear t  o f  the matter ,  and  we prove it with a sequence o f  

lemmas.  I f  a,b E R/~7_, let Z(a,b)  be the set o f  all integers n such that  

n m o d  r e (a, b), and let d(a, b) be the distance f rom a to b on the circle R/3~. Here 

the no ta t ion  (a, b) denotes  an interval  (a, b) whose endpoints  are a and  b and which 

is or iented from a to b in the na tura l  or ienta t ion  of  the circle. 

L E M M A  10. Let F. be the n'th Fibonaeei number, with F o =  FI = 1 and 
F. + 2 = Fn + I + F.. Then 

d(F. rood 3, 0) = 3 -".  

Moreover, F2. m o d  3 and F2. +, mod ~ converge to 0 from opposite sides. 

Proof. By induct ion and apply ing  the ident i ty  ~ - '  = ~ - 1, we have 

F2~ mod  3 = (F2~_ l + F2~_ 2) rood ~ = - 3  -~2.-17+ 3-~2~-2~ 

= z -~2~ - 17(3 _ I) = ~ -2., 

and 

3 - F2,,+ i m o d 3  = 3  -(F2n + F ~ _ I )  rood 3 = 3  - ( 3 - 2 " -  3 - ~ -  I) + 3) 

= 3 - ~ -  i )  _ ~ - 2 , ,  = 3 - ~ ' ( ~  - 1 )  = 3 - ~ 2 . *  ~) [ ]  

L E M M A  11. I f  0 < p < F., then 

d(F. rood 3, 0) < d(p m o d  3, 0). 

Proof. Apply ing  the identi ty ~ - ~ =  3 - 1 inductively to r - ~  yields 

3 -"  = ( - 1)"(F. - F .  _, ~). 

Hence,  the l emma can be rephrased as 

IF.  - 3 F . _ , I  < - rq l ,  

for some integer q. The  p r o o f  follows now from Theorem 182 o f  H a r d y  and Wr igh t  

[1], since the ra t ios  F._ I/F,, are the par t ia l  eva lua t ions  o f  the cont inued  f ract ion 

expans ion  o f  3 - ~ []  



A volume-preserving counterexample to the Seifert conjecture 93 

LEMMA 12. Let n~ and n~ + k~ be a pair of consecutive elements in Z(a, b), and 
let n2 and n2 + k2 be another such pair. Then kl < Ck2. 

Proof The case in which (a, b) is more than half of the circle I1~/z 7/is trivial. In 
the non-trivial case, d(a, b) is the length of the interval (a, b). Choose the largest n 
such that d(F, mod z, 0) > d(a, b). Since kl mod z < d(a, b), it follows that kl > Fn 
by Lemma 11. On the other hand, by Lemma 10, since d(Fn+~modz, O)< 
d(a, b), d(F,+3 mod z, 0) < d(a, b)/2 and d(Fn+ 4 mod z, 0) < d(a, b)/2 also, and 
Fn+3modz and Fn+amodz are on opposite sides of 0. At least one of 
kl + F,+a mod z and kl + F,+4 mod T is in (a, b), since kl mod ~ is at least d(a, b)/2 
away from one endpoint of (a, b). Therefore F~ < kl < F,+4, and since Fn+4 < CF~ 
and all arguments also apply to k2, the conclusion follows. [] 

LEMMA 13. I f  O q~ Z(a, b), then 

n e Z(a ,b)  n e Z(a ,b)  n e Z(a ,b)  

Proof. Let k be the element of Z(a, b) with the least absolute value, and assume 
without loss of generality that k > 0. By Lemma 12, the minimum gap between 
elements of Z(a, b) is at least Ck. It follows that 

1 2 C 

Z l ~ 2 n ~ = 0 ( k  + n f k ) 2 - k 2 n ~ = o ( C _ t _ n )  2 ~ z ~ a ,  b~ n ~ ~ C 2 - k 2 �9 

Therefore, 

COROLLARY 14. For any a, b, and dp, 

w(n-qS)3'2<C( ~z~a w(n-q~)5 /2) /~  ~" w(n-q~)) 
n e Z (a ,b )  n E ,b) �9 Z(a ,b)  

Proof The case 0 e Z(a, b) is trivial; suppose that 0 r Z(a, b). Without loss of 
generality, 0 ~< q~ < l, and with this restriction, 

c C 
n2>-- w(n - c~) > -~ . 

The inequality renders the corollary equivalent to Lemma 13. [] 



94 GREG KUPERBERG 

LEMMA 15. I f  nl a n d  n2 are  distinct integers, there exis ts  an integer n 3 such that 

n 3 rood z e (n I rood z, n2 mod z) and  

In3[ < C max(lnl[, [n2l) 

Lemma 15 is a corollary of Lemmas 10 and 11 in the same way as Lemma 12 
is. 

COROLLARY 16. I f  n 1 and  n 2 are distinct integers, then the intervals In~.~, and  

In2,~, sat is fy  

d(I. , .r 1.2.~ ) > C max([I.,.o l, [I.2,t~ [). 

P r o o f  Combining the estimate 

C C 
n- 5 > w( n - c~ ) > n- 5 

with Lemma 15, there exists an n3 such that 1.3,~ lies between I.,.+ and 1.2, ~ and 
such that 

w(n3 - r~) > C min(w(nl - q~), w(n: - fb)). 

Since the length of I..~ is w(n - c~), the lemma follows from the fact that I.,,~ and 
1.2.~ are sufficiently far apart to make room for 1.3.~. [] 

To establish property (iv), expand 0 and ff as 

0 
e = vos0 + v~-z 

hz ~ h = ho ~ + c~z " 

We wish to show that vz > Ihz I when z r O. Once again fix 4~, and note from 
equations 1 and 2 that these two quantities are given by 

1 fo ~ hz = ~ f(O1) dO1 
- - Z  

C fo+ 5z 
v~ = --  F(01) dO1. 

Z dO-5z 
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Figure II. Bounding the length of I '  v. 

The absolute value [h= [ is also bounded by 

] ~00+z ho , = V(0 , ) l  ao,. 
- z  

Let /~ = [0 
Ih =[0  - z ,  
inequalities 

- 5 z ,  0 + 5z] be the domain of  integration for vz, and similarly let 
0 + z]. One possibility is that Ih is a subset of  some I,,~. In this case, the 

z < II..  I 

B(x) > 6(x) 

C w ( n  - -  ~b) 312 > Iw ' (n  - 4')1 

together imply that vz > ha6 s. 

Alternatively, suppose that  I h does not lie in a single I,.~. Let I '  v be the closure 
of  the union of  all In,~'s which are contained in Iv. Since I h is the middle fifth of  I v, 
and since the integrand of  hah~ is only non-zero in the middle third of  an interval 
I,,~, the integrand of  h~b, is zero in the region in lh -l'v. Le., 

h.b, <-- f V(O,)[dO~. (3) 

The region I. - I'v in general consists of  a subinterval of  some interval I . ,  ,r on one 
side and a subinterval of  some other interval 1.2,# on the other side. By hypothesis, 
I'o contains at least one point  in Ih, which is the middle fifth of  Io, and therefore if 
II'ol < clI l = Cz, then the intervals I.,,~ and 1.2.~ both have length at least Cz. (See 
Figure I 1.) It follows by Corollary 16 that II'v ] > Cz and that 

C ft F(O1)d01. vz > [lo--; ] ; (4) 
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(a) (b) (c) 
Figure 12. Isotopy of a plug insertion. 

In the main case, the set Z~ of all n such that I,,~ c I'~ is exactly a Z(a, b). In this 
case, the right sides of equations 3 and 4 are related by Corollary 14, which 
demonstrates that vz >habs, as desired. The alternative possibilities are that 
a =na m o d z  or that b =nb mod z and that Zv is Z(a, b) union {na} or {n b} or 
both; these exceptional cases can be treated in the same way as the main case. 

5. Appendix: Plugs with knotted holes 

The Schweitzer construction and its modifications here and in the work of 
Harrison [3] suggest but do not depend on the following question: Suppose that 
is a plug whose base is a closed, oriented surface and suppose that ~ has a knotted 
leaf with two endpoints. Let Nt be a foliated tubular neighborhood of l and let ~ /  
be ~ with Nz removed. Since ~ t  is twisted, can it be inserted into a foliation of M 
without changing the topology of  M? 

In Harrison's construction, the base of ~ is a torus and, moreover, ~ is a 
slanted suspension (in the C 2 category) of a homeomorphism of an annulus, made 
into a plug with the mirror-image construction. In this case, following Harrison, 
there exists a finite cover of  ~ such that a lift of  l is necessarily unknotted. By the 
mirror-image construction, N~ is necessarily untwisted. 

Taking the general case, suppose that the base o f ~  is S; the base o f ~  is therefore 
pS, or S with one puncture. Let Pt be the support of ~t.  Consider Schweitzer's insertion 
of # t  into the un-plug with base a disk D 2 in Figure 12a. If ~t  were an untwisted 
plug, its insertion would be realized by an embedding 0t ofpS  x / w h i c h  is a thickening 
of  the insertion map for the base. Ignoring the vertical foliation on D 2 x / ,  this 
embedding is isotopic to the standard embedding of  the closed surface S, punctured 
and thickened, as shown in Figure 12b and Figure 12c. The complement 
(D 2 x I) - ot(pS x I) is topologically the exterior of  a solid torus connected by a 
handle to a solid torus. Recognizing Pt as S x I with a knotted hole, it admits an 
embedding fl in D 2 x I whose complement is homeomorphic to the complement of  
o~(pS x I), as shown in Figure 13. Since the complements are the same, the insertion 
of  ~1 does not change the topology of  D 2 x  I even though ~z is twisted. 
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Figure 13. A plug with a knotted hole. 
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