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Intersection homology operations 

R. MARK GORESKY* 

w Introduction 

In this paper we construct Steenrod squares in intersection homology, 

Sq' :IHa (X; 7//(2)) ~ "+~ m IH~ (X; 7//(2)) 

for any topological pseudomanifold X. Here, ~i and /~ are perversities ([GM1], 

[GM2]) with 

b(c)>-2a(c) for each c---2. 

These homomorphisms are natural with respect to normally nonsingular maps, 

and they agree with the usual Steenrod squares on the normalization of X when 

~i = b = 0. They also satisfy a Cartan formula. 
If X is an n-dimensional 7//(2)-Witt space ([S], [GM2]) then the "middle" 

intersection homology group IH*(X;  7//(2)) satisfies Poincar~ duality. Thus the 

Steenrod square 

Sq' : IH~-i(X; 7//(2)) ~ H0(X; 7]/(2)) ~ Z/(2) 

may be used to define (in the usual way) a Wu class Iv c IH*(X;  7//(2~) and an 

intersection homology Whitney class Iw = Sq(lv). 
For piecewise linear pseudomanifolds X, we give a combinatorial formula for 

this intersection homology Whitney class, and compare it with Sullivan's whi tney  

class for Euler spaces. 
The intersection homology whi tney  class Iw does not normally lift to intersec- 

tion homology (even if X is a complex algebraic variety.) However the single 

characteristic number 

I x (X;  7//(2)) = Iw,~ �9 Iwo = ~ rank IH~(X;  7]/)2)) 
i 
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486 R. M A R K  G O R E S K Y  

determines the cobordism class of X in the Witt-space cobordism groups of P. 
Siegel ([S]). 

The  results in this paper  on Steenrod operations and Wu classes may be 
considered as part  of a program to describe ways in which the intersection 
homology groups of certain singular spaces behave like the ordinary homology 
groups of a nonsingular space ([CGM] w It remains as open question whether 
there is an intersection h o m o l o g y -  analogue to the rational homotopy  theory of 
Sullivan. For example,  one would like to know when Massey triple products are 
defined in intersection homology and whether  they always vanish on a (singular) 
projective algebraic variety (see [DGMS]). 

I am grateful to C. McCrory,  R. MacPherson,  and R. Porter  for valuable 
conversations concerning cohomology operations. I would especially like to thank 
R. MacPherson for his help with the argument  in w and N. Habegger  for his 
careful reading and criticism of the first draft of this paper.  

w Intersection homology sheaves 

In this chapter we summarize basic material f rom [GM1], [GM2] and fix 
notation which will be used throughout this paper. 

2.1. Let  X denote an n-dimensional topological pseudomanifold,  with singular 
set X c X. By sheaf we shall mean a sheaf of 7//27/ modules on X. 

Choose a topological stratification 

XoC  X ~  X 2 c .  . . ~ x . _ 2 = . ~ c  x . =  x 

by closed subsets X~ of dimension --<i. ([GM1]), [GM]). Thus, each x c X i - X ~  1 
has a fundamental  neighborhood U~ which is homeomorphic  (by a stratum 
preserving homeomorphism)  to N~ x cone (L) where L is the (topologically 
stratified) link of the s tratum X~-X~_I.  

For any perversity d =  (a(2), a(3), a(4) . . . .  ) there is a bounded complex of 
injective sheaves IC~- which is constructible with respect to this stratification and is 
uniquely determined up to chain homotopy  by the following conditions: 

(a) IC~ = 0 for all i < 0 

(b) IC~- [ ( X -  ~)  ------- 7/1(2)x_:c 

(c) For all c-->2 and for any x e X - X n  c-~, 
Y(~ (Ux ; IC~-) = 0 whenever  i - a (c) + 1. 
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(d) For all c-->2 and for any x ~ X - X , _ , .  ~, 

N~(U~ ; IC;-) = 0 whenever i <- n - c + a (  c ) + 1. 

(Here U~ denotes a fundamental  neighborhood of x, of the type considered 
above. ~0~ denotes hypercohomology and ~,. denotes hypercohomology with 

compact  support.) 
The cohomology groups of the complex of global sections, 

�9 . .  --> F ( X ;  IC~a ~) ----> F ( X ;  IC~) ----> F ( X ;  IC/J l) - - ~  " "  �9 

are the intersection homology groups of X. 

2.2 In this section we give an explicit construction of the sheaves IC~-. 
If A" is a complex of sheaves and peT/, Deligne defines ([GM2]) the 

complexes ~-<~" and ~--<~A" as follows: 

f 
0 for j > p 

(l-~r~A) ~ :  k e r d  f o r j = p  

L A  ~ for j < p 

(I-<~A) j = I 
O f o r j > p + l  

I m d  f o r j = p + l  

A i for j --< p 

Clearly, z<pA c w<pA and this inclusion induces isomorphisms on cohomology. 
Now let I" denote  a fixed injective resolution of the constant sheaf 7//(2) over  

X. Let I;~ denote  its restriction to the open set Uk = X - X , _ k .  Define A;~ 

inductively by the rules 

(a) A~ = I ;  

(b) A~§ = ('r~.(k)ik.A~) | I~+1 

where ik : Ok --> Uk- i  is the inclusion. Then IC~- = A~+I is the intersection homol-  

ogy complex. 

R e m a r k s :  1. The tensor product  with I~+~ is formed in step (b) because it 

injectively resolves the sheaf "r<_a(k)i*I~ in a canonical way. 
2. The truncation functor ~.<~(k) could be used instead of ~'--<~(k). 
3. Indexing schemes: In this paper  we will use "cohomology"  notation for the 

intersection homology groups and sheaves. This means that IC;-[ (x-.~)~:~/(2) 
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in degree 0. The hypercohomology of the complex ICa is denoted 

~ '  (X; IC~-) = IH~(X) 

If X is an n dimensional piecewise linear pseudomanifold then the intersection 
homology groups IHT(X) defined geometrically in [GM1] may be identified with 
the hypercohomology with compact  support  

~(n-,(X ; IC~) 

as in [GM2]. For  compact  X we shall use both notations IH~(X) and IH'~-i(X). 

2.3. Multiplication on the nonsingular part, 

77/(2)x ~ | 7// (2)•  --> 7//(2)x_~ 

extends in a unique way to a product structure 

Ic~- | Ic~ ---> Ic~-+~ 

whenever  a+/~ is a perversity. If 8 + b  = t =(0 ,  1, 2, 3 . . . )  then this product is a 
Verdier  dual pairing, i.e., the associated map 

IC~ --> R H o m  (IC~, D~:) 

is a quasi-isomorphism. (Here D x  is the dualizing complex in the derived category 
of constructible sheaves of ~/(2)-modules on X).  In particular, for compact  X, 

IH7(X; 7//(2))--~ H o m  (IH~_,(X; 7//(2)), ;Y/(2)). 

w Steenrod squares 

In this chapter  we show how to define, for any perversity ti, mod 2 Steenrod 
operations 

Sq':IH~(X; ~7/(2)) --o IH~+i(X; 7//(2)) 

where b(c)>_2a(c) for each c. These operations are compatible with the usual 
Steenrod operat ions in cohomology. 

The Steenrod squares do not usually define "opera t ions"  on intersection 
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homology.  This can be seen f rom a simple example:  suppose X is a 6 dimensional  
piecewise l inear pseudomani fo ld  with an isolated singularity Xo and suppose 

v c IH '2(X)  is a homology  class which is represented by a P.L. cycle Z which 
contains xo. (Here rh is the "midd le"  perversity of [GM1].)  Then Sq2(v) = v �9 v is 
represented by Z N Z '  where  Z '  is a cycle transverse but homologous  to Z 

([MC1]). This means  Z '  may also contain the singular point  {x0}, so the intersec- 
tion Z ffl Z '  does also. Howe ve r  Z C3 Z '  is a 2-dimensional  cycle and in order  that 

a 2 dimensional  cycle represent  an e lement  of II-I~2(X) it must not contain the 
s t ratum {Xo}. Thus,  Sq 2 does not lift to an opera t ion on IHa' (X)  unless all the 
intersection homology  classes of dimension 4 can be " m o v e d  away"  f rom the 

singular point  {x0}, i.e., unless I H 4 ( X  , x -  Xo) = O. 

3.1. In this section we review the construct ion of Steenrod squares as found  in 
Bredon [B] w Fix a topological  pseudomani fo ld  X, and let I" be an injective 

resolution of  the constant  sheaf 7//(2) on X. Bredon defines a sequence of sheaf 

morphisms 

hm: �9 I P |  m 
p + q = n  

which (do not  c om m ut e  with the differentials but) are de te rmined  "up  to 

h o m o t o p y "  (see w by the condit ions 

(a) ho is induced f rom multiplication 

7//(2) | 7//(2) ~ 7//(2) 

(b) hm +h,~ 'c=dh, ,_ l  +hm+ld 

where 1- : I p | I q ~ I q | I p switches the factors. 
The  S teenrod  squares are defined as follows: If U is any open  subset of X, and 

a ~ F(U,  I p) is a section such that  da = 0 then 

Sti(a) = ho_i(a ~ a)~ F(U,  I p+i) 

is also a cycle. Fur the rmore ,  if a = db then 

Sti(a)  = dho_i(b | db) + dh~_i_t(b | b) + 2dhp_~_2(b | b). 
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Using relation (b) above, it follows easily that St ~ induces a homomorphism,  

Sq' : n ~  --> H~ 

which is the Steenrod squaring operation. 

3.2. The following construction is an important  step in extending the Steenrod 
operations to the intersection homology sheaves. 

Suppose .~" and 1]" are complexes of sheaves on a pseudomanifold X, and 
suppose a sequence of sheaf morphisms 

p + q  = n  

have been defined for all integers m, such that 

(a) J,, = 0 for all m < 0 

(b) d.],. +, + ] , ,  +, d = .]., + . i , . r  

where -r switches the factors. Let  I" denote  an injective resolution of the constant 
sheaf 7//(2). Le t  A" = A" | I" and B" = I1" | I" denote  the corresponding injective 
resolutions of A" and B ' .  

D E F I N I T I O N .  The  sheaf morphism 

J . , :  Q~) A O |  " - ~  
p + q  = r t  

induced f rom {J,,} is given by the following formula: For any open set U c X, 

J m ( ( a | 1 7 4 1 7 4  = ~ J i r " l - i ( a | 1 7 4  "" i ( u |  
i = 0  

whenever a, b �9 F(U, .~');  u, v �9 F(U, I ' )  are homogeneous  elements such that 

deg (a) + deg (u) = p, deg (b) + deg (v) = q. 

(Here, r switches factors, and h,, are the sheaf morphisms of Bredon, see w 
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P R O P O S I T I O N .  The maps Jm also satisfy the relations 

(a) J m = 0  for all m < O  

(b) dJ,.+l + J, .+ld= Jm + J~'r 

Proof. Direc t  calculation. 

3.3. In this sect ion we  will restrict  the maps  h., of w to the nonsingular  par t  
X - N  of X, and show that  they natural ly induce maps  on the intersection 
homology  sheaves.  

Suppose  ~i and /~  are pervers i t ies  with 2a ( c )  < -- b(c) for  each c. Le t  A~ and B;, 
be the cor responding  intersect ion homology  complexes  over  the open  sets Uk = 

X - X ~ _ k ,  as in w 

P R O P O S I T I O N .  Suppose sheaf maps 

J~.,k : A~ | A~, ---~ B;~[- m] 

have been defined for each m such that 

(a) Jm.k = 0  whenever m < 0  

(b) d J , . .  ~.k + Jm+ ~.kd = J,..k + J,..k7 (where -c switches factors). 

Then each J,,,.k extends in a natural way to a sheaf map 

J~,k+l :A~+I | Ai,+l ~ B ~ + l [ - m ]  

which is defined over Uk+l, and these maps also satisfy the equations (a) and (b) 
above (but with k replaced by k + 1). 

Proof. Apply  ik* to  each of the  sheaves.  W e  obta in  a d iagram 

(r~a(k~ ik .A~) | (r~_a~k~ik*Ai) . . . . . .  , (r<b(k~ik*Bi)[-- m ] 

ik*(A~)| = ik*(A~| -~ ik*B~[-m] 
Jm.~ 

But (-r _b(k)ik.B~)[--m ] is a subcomplex  of ik*Bk[--m], and the  image  of 4~ lies in 
this subcomplex .  (This is obvious  except  when m = 0. But  h0 is a chain map  so it 
takes ker  ( d ) |  ker  (d) to ker  (d).) Thus  we have  found sheaf  morph i sms  

Jm.k+, :X~+, | ]~k+l[--m] 



492 R. MARK GORESKY 

satisfying (a) and (b) above, where 

/~*k+l = T ~ a ( k ) i k * A k  and 1[1~+1 = T ~ b ( k ) i k * B k -  

The construction of w now gives canonical extensions of the J,~.k+l to the 
injective resolutions, 

Jm,k+l :A~§ ~A~+1 --+ B; ,+l[-m] 

as desired. 

C O R O L L A R Y .  I f  2d(c)-----/~(c) for all c, then the maps h m defined by Bredon 

have canonical extensions 

Jm : IC~- ~ IC~--> IC~[-  m] 

such that 

(a) J m = 0  for all m <O 

(b) J, .+ld + dJm+l = Jm + J.~r 

(c) & I(x-:~)= hm I(x-2~) 

3.4. Suppose d and/~ are perversities such that 

2a(c)-< b(c) for each c. 

We define Steenrod operations for any open set U X, 

Sq" : IH~a( U) ---+ IH~,+'( U) 

as follows: if a ~ F(U, IC~-) let 

Str(a) = h~_,(a | a). 

The same calculation as w shows that St r induces a homomorphism Sq r on 
cohomology. 

Remarks .  1. Suppose z ~ IH~(X;  77/(2)). If r > s  then S q ' ( z ) =  0. If r = s then 
Sq ' ( z )  = z �9 z ~ IH2~(X; 7//(2)). 
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2. The  method of [GM2] w can be used to show the homomorphism 
S q ' : I H ] ( X )  ~ IH~+~(X) is topologically invariant and does not depend on the 
choice of stratification of X. 

3.5. It is easy to see from the method of w that J,, is defined naturally as a 
morphism 

Ic~- | Ic~- --> I c ~  

where b(k)= 2 a ( k ) - m  for each k. (One must replace the complex B~+I by the 
quasi-isomorphic complex l"-->b(k)ik*B~ in the proof of Prop. 3.3.) 

Problem. Can one use this fact to (a) lift the Steenrod squares 

Sq r : IH~ --~ IH~ +~ 

to a perversity 5 < 2d and to (b) lift the corresponding Whitney classes of w to 
intersection homology? 

Now suppose 4--</7 are perversities, and X is locally (4,/;)-acyclic, i.e., 

IH~-(k+I)(L) = IH~-(k+2~(L) . . . . .  IH~(k~(L) = 0, 

whenever L is the link of a codimension k stratum. This implies that the natural 

homomorphism 

IH*a(X) ----) IH*(X)  

is an isomorphism ([GM2] w For which perversities 4<--5 is it possible to 
multiply the Whitney classes of a locally (4,/~)-acyclic space X, and obtain 

cobordism invariant characteristic numbers? 

3.6. In this section we show that the maps Jm of w are essentially unique. 

P R O P O S I T I O N .  Let 4 and b be perversities such that 2 a ( k ) ~  b(k) for all k. 
Suppose A" and B" are complexes of injective sheaves which are quasi-isomorphic 

to IC~ and IC~ respectively. Suppose K m : A ' |  is a system of 

morphisms such that 

(a) Km = 0  for all m < O  

(b) dK,,,+l + Km+ld = Km + Km'r 
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(c) Kol (X-  ~) induces the multiplication map on the cohomology sheaves over 

the nonsingular part X -  ,~ of X 

K o [ ( X - ~ ) : 7 ~ 2 @ 7 ~ 2 - - - - ~ 7 ]  2. 

Suppose Y,, :A '@A"- ->  B ' [ - m ]  is another system of morphisms which also satisfy 

(a), (b), and (c). Then there exists a system of morphisms 

Dm :A" | A" --> B ' [ - m ]  

such that 

Jm - Hm = Dm+ld +dD~+l +Din + D, ,r  

(Consequently, if ~ is a section of A" such that d~ = 0 then J,,(~ | ~) - Hm(~ | ~) = 
dDm+l(~ | 1~) so Sq*(,~) is independent of choices.) 

Proof. First we show that Jo and Ko are chain homotopic.  The multiplication 
on the nonsingular part  X - X  has a unique lift in Db(X)  to a morphism 

~b : IC~- | IC~ --> IC~ 

by [GM2] w and w Since A" and ll" are injective, they are homotopy  
equivalent to ICa and IC~ respectively. The morphism & then corresponds to a 
unique homotopy  class of maps f rom A ' |  A"---~ ! i ' .  But Jo and K0 are both in 
this homotopy  class. 

We now follow Bredou [B] w Let D~ be a homotopy  between Jo and K0. 

Thus 

o r  

(Jo - Ko)(1 + ~') = Did(1  + "r) + dDl(1 + "r) 

(J, - K,  - DI(1 + ~-))d + d(J,  - K~ - D~(1 + ~')) = 0. 

Thus, J1 - K1 - D~(1 + ~-) is a chain map and gives an element  of Homo~•  (A" | 
A ' ,  B ' [ - 1 ] ) .  The  same argument  as [GM2] w w shows that this e lement  is 
determined by its action on the cohomology sheaves over  the nonsingular part  of 
X. But this action is 0. So H 1 - K 1 - D I ( I + ' r )  is homotopic  to 0 by some 
homotopy  D2. Continuing in this way the maps D,,  can be defined inductively. 



Intersection homology operations 495 

3.7. In this section we show the Steenrod squares are compatible with the 
canonical maps between intersection homology groups with different perversities. 

P R O P O S I T I O N .  Suppose g~<--g and b<--d are perversities such that 2~i(k)~ 
b(k) and 2c(k)<-d(k)  for each k. Then the following diagram commutes: 

IH~(X) B,  IH~(X) 

IH~+r(X) ~ , IH~ +r(X) 

Furthermore, if gi = b = 0 then S q r : I H ~ ( X ) ~  IH~+r(X) coincides with the usual 
Steenrod square on the (ordinary) cohomology of the normalization of X. 

Proof. Let A~, B~, C/, and ID/, denote the corresponding complexes of sheaves 
on the open set Uk (see w One checks by induction that the following diagram 
of sheaf maps commutes:  

A~| ~ C~| 

B;~[-m] ~ , D;~[-n]  

The case k = 2 is trivial. The maps/3 are inclusions of complexes, so the inductive 

hypothesis is easily verified. 
Now suppose that X is normal and ~ = b = 0. The injective complexes r and 

IC~ are quasi isomorphic. Thus there is a homotopy equivalence & : I" -~  IC~- and a 
homotopy inverse ~b : ICa-+  r .  Apply the uniqueness result (w to the systems 
of morphisms {Jm} (from w and {&hint&}. We conclude that they determine the 

same Steenrod squares. 

3.8. In this paragraph we show that the Steenrod squares satisfy a Cartan 

formula. 

P R O P O S I T I O N .  Suppose ~ and b are perversities such that b(k)->2a(k) for 
each k. Suppose ~ c H ' ( X )  and "q ~ IH~(X). Then the following equality holds in 
iH~+S +r(X). 

S q ' ( t  �9 n ) =  Y, Sq*(g~) . Sq' -J(n) .  
J 

Proof. The proof is similar to [B] w 
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Consider the family of morphisms of sheaves 

Km: ( r  | IC~-) | ( r  | Ic~-) ~ r | IC~ 

which assigns to a homogeneous  section u | a | v @ b the section 

K m ( u @ a |  ~, h i , r i (u |174 ,n-i = J,,,_i'r (a | b). 
i = 0  

A direct calculation shows that 

dKm+l + K,n+ld =Km + Km'r 

and that Ko induces the multiplication map on the cohomology sheaves over  the 
nonsingular part  X - X  of X. 

Let  4~ :I" t~IC~---~ IC~- be the quasi- isomorphism which is induced from multi- 
plication on the nonsingular part  of X (and which induces the product  H*t~ IH* 
IH*). If we apply the uniqueness result (w to the systems of morphisms, 
Jm o (~b | tb) and ~b o Kin, we obtain morphisms 

D,n : ( r  ~ IC~-) | (I" @ IC~-) --~ IC~ 

such that 

Jm ~ d~ ~ dO-4~ ~ = D~+ld + dD,n+l + D,, + Dm'r 

Now suppose u and a are sections of I '  and IC~ respectively, and that du = 0 and 
da = 0. Then 

Sqr([u] . [a]) = [Js+t--r(4)(U @ a) | cb(u | a))] 

= ~ ~ h i ( u ~ u ) ~ J s + , _ r _ i ( a ~ a )  
t .  i = 0  

+[dDs+r | a | u | a)] 

�9 = s [Sqi(u)] �9 [Sqr-J(a)] 
j = 0  

where [a] denotes the homology class represented by the section a. 
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w Open questions on the geometry of Steenrod operations 

4.1. A homology operation which doubles perversity can be constructed using the 
geometric technique outlined by McCror~ [MC2] w i.e., by dualizing the 
construction in [SE]VII.1. Does this agree with the operations Sq i defined in w 
An investigation of this question might lead one to study a Smith theory of 
involutions for the intersection homology groups. 

4.2. It would be interesting to study the relationship between the operations Sq r 
and the "branch point" operations of [MC2] and [HMC]. Intuitively, Sq*(~) 
represents the Whitney class of the "normal bundle" of a cycle ( in a space X. (It 
is precisely this when ~ and X are manifolds.) The "branch point operation" 
g*(~) represents the Whitney class of the "inverse tangent bundle" of (. One 
might hope for a Whitney duality formula relating these operations. 

4.3. The following question is due to R. MacPherson: 
Steenrod operations (in ordinary cohomology) arise as an obstruction to 

finding a cochain-level representation of the cup product which is both commuta- 
tive and everywhere defined. If we take an everywhere defined product (as in 
sheaf theory, or by using front and back faces of simplices in the singular theory) 
then it fails to be commutative, and the amount by which it fails is precisely the 
Steenrod square. If instead we take a commutative product on the cochain level 
(as in the geometric intersection of transverse cochains [G], [GM1]) then it fails to 
be everywhere defined. Is it possible to use this second choice of product to give a 
geometric construction of the Steenrod operations in intersection homology, as 
the amount by which the product fails to be globally defined? 

w Witt spaces and Wu classes 

5.1. Throughout  this chapter we shall assume X is a locally compact n- 
dimensional piecewise linear pseudomanifold. 

DEFINITION.  [S], [GM2] X is a 7]/(2)-Witt space if, for some (and hence for 
every) stratification of X, and for every stratum of odd codimension c in that 
stratification, 

IH~(L;  7]/(2)) = 0 

where L is the link of that stratum and c = 2l + 1. 
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Remark. It follows ([S]) that the natural map 

IH~(X; Y/(2)) --~ tHe(X; 71/(2)) 

is an isomorphism, so II~,(X; 7//(2)) is self-dual. 
For the rest of this chapter IH* will be used to denote the intersection 

homology with middle perversity, IH*. 

DEFINITION.  A Witt space with boundary (X, OX) is a compact 
pseudomanifold X with collared boundary OX such that both X - O X  and OX are 
7//(2)-Witt spaces. We shall say two compact 7//(2)-Witt spaces X1 and X2 are 
cobordant if there is a 7]/(2) Witt space with boundary (X, 3X) such that 
O X  = X 1 U X 2. The technique of IS] gives: 

PROPOSITION.  The cobordism group of n-dimensional 7//(2)-Witt spaces is 

_ I O for n odd 

~v i t , - [7 / / (2 )  for n even. 

The cobordism class of a compact n-dimensional Witt space X is determined by the 
single characteristic number 

Ix(X;  7//(2)) ~- ~ rank IH~(X; 72/(2)) 
i = 0  

(mod 2) 

Remark. The cobordism groups of rational-Witt spaces were calculated [S] to 
coincide with the higher Mischenko-Witt  groups of Q, [R] [Mis]. 

Remark. It is interesting to compare the 7//(2)- Witt space cobordism groups 
to the 7 / / (2) -Euler  space cobordism groups of Akin and Sullivan [A]. The 
7//(2)-Euler space cobordism class of an Euler  space X is completely determined 
by the (usual) mod 2 Euler  characteristic of X. McCrory showed [MC3] that each 
Whitney class defines a homology operation in Euler  space bordism theory. We 
do not know whether there is an analogous operation in Witt-space bordism 

theory. 

5.2. In this section we define Wu classes in intersection homology and Whitney 
classes in ordinary homology for 7//(2)-Witt spaces, using the original method of 
Wu. We will allow the n-dimensional Witt space X to be noncompact in this 
section, and use IH*(X)  to denote the intersection homology with compact 

supports. 
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Let a :IH*(X)--+Y/(2) denote the augmentation, i.e., a ( ~ ) = O  unless ~c  
IH~(X) and in that case a(~) is the number  of points in any cycle representation 
of ~:. This augmentation is defined for any perversity. 

D E F I N I T I O N .  The intersection homology Wu class, Iv*cIH*(X)  is the 
unique class such that, for all ~: ~ IH*(X) the following formula holds: 

,~(Sq(~)) = , , ( I v * .  ()  

where 

Sq = l + Sql + Sq2 + -'" 

Following Wu we define the intersection homology Whitney class to be 

IW(X)  = Sq(Iv*) ~ H*(X) = Hu, M.(X) 

The Whitney class is an element of the (Borel-Moore) homology of X with 
closed supports. If X is compact  we shall write IW~(X) for the component  of 

IW(X) in Hi(X).  

Remarks. 1. Iv*(X) and Iw(X) are topological invariant of X since the 
squaring operations on the intersection homology sheaves are topologically in- 

variant. 
2. Ivi(X) = 0 for all j > n/2. 
3. If X is a Z/(2)-homology manifold then Iv*(X) and IW(X)  agree with the 

usual Wu and Whitney classes. 
4. Iw(X) does not necessarily lift to IH*(X), even if X is a complex algebraic 

variety. For example take X to be the Thorn space of the negative line bundle 
E - - + C I F  4 whose first chern class is - 2 .  Then IW2(X) is nonzero in Ha(X). 
However,  the map IHa(X)-+ Ha(X) is zero. (see also w 

5.3. In this section we calculate the pullback of the intersection homology 

Whitney class under a normally nonsingular map. 

T H E O R E M .  Suppose X and Y are 7//(2)-Witt spaces, and f:X--+ Y is a 
normally nonsingular map ([FM], [G], [GM2]) with normal bundle v. Then the 

following equation holds in IH*(X): 

f * ( t w ( Y ) )  = w(,~). I w ( x )  

where W(v) is the Whitney class (in H*(X)) of the normal bundle v. 
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Proof. We will prove this formula for compact X in two special cases, 

Case 1. F is a normally nonsingular inclusion 

Case 2. f is a projection M • Y--~ Y where M is a smooth manifold. 

The general case follows from these because any normally nonsingular map 

can be factored into a composition of these two types. 

Case 1. By restricting to a tubular neighborhood of X in Y, we may suppose 

that f is the inclusion of the zero section X into a vector bundle ~ r : Y - - ~ X  
(which, therefore, coincides with v). Then it suffices to show that 

l r w ( v )  = z r * ( W ( . ) )  �9 7 r * ( / W ( X ) )  

(Here IW(Y)  is an element of the closed support homology of Y or, equivalently, 

of the relative homology H , (Y ,  Y - X ) .  
Let a:IH*(X)--~ 7//(2) be the augmentation. 

L E M M A  1. Define R ~ IH*(X) to be the unique class which satisfies the 
following equation for all [3 E IH*(X), 

a(W(u)" Sq([3))= a([3" R) 

Then ~*(R) is the Wu class of Y. 

Proof. Let a '  denote the augmentation on IH*~(Y). Let t h : IH*(X)~  IH*(Y) 
be the Thorn isomorphism, with Thorn class U=q~(1). For any [3'~IH*~(Y) we 

can write [3' -- q~([3) = -rr*([3) �9 U for some /3 e IH*(X). Therefore, 

~ ' ( S q ( [ 3 ' ) )  = ~'(~*Sq([3)" S q ( U ) )  

= ~ ' (~ r*Sq( [3 )  �9 4 ( W ( - ) )  

= ~'(Sq([3). w(~))  

= a'([3" R) 

-- a'([3' �9 ~r*(R)). Q.E.D. 

It follows that IW(Y)= ~-*Sq(R), so we must show that the following equa- 

tion holds on IH*(X): 

Sq(R) = W(v). Sq(Iv(X)). 
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L E M M A  2. The nondegenerate bilinear pairing 

n*(X) • n , ( X )  - ~  Z/ (2)  

(which is given by Ca, b} ~- a(a �9 b)) is compatible with the nondegenerate bilinear 
pairing 

IH*(X)  x IH*(X)  -* ~/(2) 

(which is given by ( a , b ) = a ( a . b ) )  with respect to the canonical maps 
n * ( x )  A IH*(X)  B_~ H . ( X ) .  

Proof. Obvious. 

Remark. It follows that (A(a) ,  b)=(a ,B(b) )  for any a c H * ( X )  and bE 
IH*(X) .  Thus, A and B are adjoints with respect to these inner products. 

We may unambiguously define the adjoint 

Sq* : H * ( X )  --~ I H * ( X )  

by the formula 

(b, Sq(a)) = (Sq*(b), a) 

for any b �9 H*(X)  and a �9 IH*(X).  

L E M M A  3. S q ( R ) =  W(v) .  Sq(Ic(X)) 

Proof. We shall show that for any 13 �9 H*(X),  the following formula holds: 

(/3, Sq(R)) = ([3, W(v ) .  Sq(Iv(X))). 

We shall use I~' to denote  the cohomology class Sq-l(W(v)).  This is well defined 
because Sq is invertible when considered as an operation on ordinary 

cohomology. Now calculate 

(/3, Sq(R)} = (/3, Sq Sq*W(v))  since R = Sq*W(v) 

= (Sq Sq*/3, Sq~Yr since W = Sq ('v~r 

= a(Sq(Sq*(/3) �9 ~7r by t a r t a n  formula 

= ~ ( s q * ( / 3 )  �9 ~ .  Iv(x)) 

= (Sq*(/3), !7r Iv(X))  

= (/3, w(v)-  Sq(Iv(X))) as desired. 
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This concludes the p roof  of Case 1. 

Case 2. Suppose  f : M  x Y ~ Y is the projec t ion to the second factor,  where 

M is a smoo th  manifold.  T h e n  u ~= w*(TM) so we must  show / W ( M x  Y ) =  
f * ( I W ( Y ) ) ,  w*(W(M))  where  w : M  x Y--~ M is the pro jec t ion  to the first factor. 
F rom the Kunne th  formula  for middle intersection h o m o l o g y  ([GM2]) and the 

Car tan  formula  for  Sq, it follows that  the intersection h o m o l o g y  Wu class of 

M x Y is the p roduc t  of the W u  classes of M and Y and, therefore ,  (by the Cartan 
formula  again) the intersection homology  Whi tney  class is the p roduc t  of  the 
Whi tney  classes of M and of  Y. This completes  the proof  in Case 2. 

5.4. In this section we give a combinator ia l  formula  for  the intersection homology  
Whi tney  class of  a compac t  piecewise linear pseudomanifold .  

L E M M A .  Suppose X is a compact 7//(2)-Witt space. Then 

[Wo(X) -=- I x (X;  7//(2)) = Y. rank I H  ~ (X; 7//(2) 
i 

(mod 2). 

Proof. If n = d i m ( X )  is odd  then I x ( X ) = O  by Poincar6 duality, while 

/Wo(X)  = 0 by remark  (2) above.  If dim (X) is even (say n = 2l) then / W o ( X ) =  
Iv l �9 Iv z and I x (X)~-rank  IH~(X; 7//(2)) (mod 2). By Milnor [Mil], IH~(X; 7//(2)) 

breaks into an or thogona l  direct  sum 

(e i )E t ) ( ez )O- ' "  G(er)G H 

where  (ei) is a one  dimensional  subspace genera ted  by a vector  el such that  e~ = 1, 
and where  H is hyperbolic.  (i.e., h �9 h = 0 for all h ~ H.) This means  that  H is even 

dimensional ,  and Iv ~ = el + e2 + �9 �9 �9 + er. Therefore ,  / W  o = e~ + e~ + �9 �9 �9 + e 2 ~ r -= 

rank ( IHI(X))  (mod 2) as desired. 

T H E O R E M .  Suppose X is a compact n-dimensional 7//(2)-Witt space. Then 
I W ( X )  equals the Whitney class W. ( f )  which corresponds to the constructible 
function f(x) = Ix(X,  X -  x) = ~ = o  rank IHff' (X, X -  x ; 7//(2)) (as defined by Fulton 
and MacPherson [FM]). 

Proof. The  proof  is a lmost  the same as [FM] w which was due originally 

to R. T h o m  [T]. 

First we check that  I W o ( X ) =  Wo(f), i.e., that  bo th  Whi tney  classes have the 

same Euler  characteristic.  Cons ider  the spectral sequence  for  I H * ( X )  which is 
associated to  the complex  of  sheaves IC" ([GM2]).  We  have E~ "q= C~  I l l  q) 
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where I I t  q represents the local intersection homology sheaf. By the preceding 
lemma, IWo(X)=Ix(X)=~((E~'q)=Y~p.q rank C P ( X ; I I t  q) (if these are all finite 
dimensional). Choose any triangulation of X to compute these cochain groups. 
Each simplex cr will contribute a tern 

Y~ rank IH  q (X, X -  d-) = f(dr) 
q 

where dr is the barycentre of t. Therefore,  

i ~ , ( x )  = Y. f ( e )  
cr  

which is the formula for W0(f) in [FM] w 
Now we shall show, for each cohomology class ~ H * ( X ; Y _ / ( 2 ) )  that 

( ~ , / W ( X ) ) = ( ( ,  W,(f)). By cobordism theory, ( is the Thorn class of some 
normally nonsingular map g : Y ~ X with some virtual normal bundle v. There-  

fore, 

(~, I W ( X ) )  = (g*( IW(X)) ,  [Y]) 

= ( w ( v ) . / W ( Y ) ,  [Y]) by w 

= (w(v ) .  W(g*(f)), [Y]) by induction 

= (g*(W(f)),  [Y]) by [FM] 

= (~, W(f))  Q.E.D. 

C O R O L L A R Y  1. If X is a complex algebraic variety then 
whenever j is odd. 

Proof. Let f be the constructible function 

I ~ ( x )  = 0 

f (x)  = Ix(x,  x -  x). 

Then 

r w ( x )  = w ,  ff) 

= C, ( f )  (mod 2) 

where C ,  is the homology chern class of MacPherson [M]. 

C O R O L L A R Y  2. Let K' be the first barycentric subdivision of any triangula- 
tion of a compact Witt space X. Then IWj(X)  is represented by the chain which is 
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the sum of all the j-simplices cr ~ K '  such that Ix(X,  X -  x) = 1 for any point x in the 

interior of (r. 

C O R O L L A R Y  3. Suppose a compact Witt space X can be stratified with even 

dimensional strata {S,~}. Then there exist numbers {F~ and {G,~} (in 2~/(2)) such 

that 

w , ( x )  = Y. G n v ( & )  
o 

and 

i w ( x )  = Y~ G w . ( & ) .  
cx 

(Here W ,  denotes the Sullivan Whitney class [Su] of a mod 2 Euler space.) 

Proof. For each stratum S~ consider the 7//(2)-valued constructible functions f~ 
and g~ which are supported on the closure S~ and are defined by 

L(x) = Ix(So, So - x )  

g~(x) = x(S~, So - x )  

(mod 2) 

(mod 2) 

for any x e go. If x e S~ then f , , (x)= g~(x)= 1. Therefore,  {f~} and {g~} are both 
bases for the space of 2[/(2)-valued functions on X which are constructible with 
respect to the stratification {So}. Therefore ,  we can find numbers  Fo and G ,  so 

that 

ZFjo 
o 

and 

zxtx,  x -  x) -- Y. Q g . .  

However ,  each S~ is simultaneously a 2z/(2)-Witt space and a 7//(2)-Euler space so 
each of the functions /~ and g~ satisfy the local Euler  condition of [FM]. 
Therefore,  we can apply W,  to each of these equations, which gives the desired 

formula. 
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