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Some topological aspects o! C* actions on compact Kaelller man- 
ifolds 

JAMF.S B .  CARRELL (1) a n d  ANDREW JOHN SOMMESE (2) 

la. Introduction 

T. Frankel proved in [F] the classical description of the homology of a compact 
Kaehler manifold X of dimension n admitting an infinitesimal isometry V with 
zero (V) = F ~  d~. 

THEOREM. The contraction i ( V ) O  of V and the Kaehler form O of X is exact: 
i.e., there exists a smooth real function f on X such that i ( V ) O  = dr. Moreover, f is a 
Morse function on X whose critical manifolds are the components 1::1 . . . . .  F~ of F. 
For any coefficient field, Z o or Q, 

bk(X) = ~. bk_~,,(F i) (1) 
J 

where h i is the index of f on F i, each X~ is an even integer, and finally, X has torsion 
if and only if F has torsion. 

More recently, Carrell and Lieberman showed that if X admits a holomorphic 
vector field with variety of zeros F, then H p (X, D q) = 0 if I P -  q[ > dime F [C-L1]. 
In addition, if F is finite, there exists a filtration of H~ ~ )  whose associated 
graded ring is H ' ( X ) ,  where H ' ( X )  denotes cohomology of X with complex 
coefficients ([C-L2]). 

In this note, we shall enlarge upon these results in two ways. First of all, we 
prove in Theorem 1 a geometric version of Frankel's Theorem for a compact 
Kaehler manifold X having a holomorphic C* action with fixed point set F:P d~ 
which is valid even for Z coefficients. It follows, for example, that if H.(F, Z )  
admits a basis of analytic cycles, then so does H.(X,  Z) .  Moreover, Theorem 1 
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leads to an interesting description of the Picard variety of X (Theorem 3) and to 
the Hodge numbers hP'q(X) in terms of certain Hodge numbers hP-k'q-k(F) 
(Theorem 2). The proofs of these results use the Bialynicki-Birula decomposition 
[B-B] as proved for compact Kaehler manifolds in [C-S]. An additional crucial 
ingredient is the fact that the Morse function f increases on the trajectories of the 
vector field generated by R+=  C*. Recently, J. Jurkiewicz [J] gave a surprising 
example of a compact algebraic variety with a C* action with fixed points on 
which no such function can exist. It seems that because of this example, one 
cannot in general expect Frankel type theorems to hold for algebraic nonKaehler 
manifolds. 

We remark in IIc that Theorem 1 is still true when a C* action on a compact 
algebraic manifold has finite fixed point set provided the B-B decomposition satisfies 
an extra transversality condition. On the other hand, the results connecting 
the cohomology ring of a compact Kaehler manifold X and the zeroes of a 
holomorphic vector field give one a different perspective on the relation between 
topology and fixed points, and it is an interesting question as to how this relates to 
Theorem 1. In light of the differences that can arise between Kaehler and 
nonKaehler C* actions, it is worthwhile to carry over to the nonKaehler case 
what one can say concerning vector fields. 

lb.  Statement of some results 

Let X denote a compact Kaehler manifold of complex dimension n with a 
holomorphic C* action, C*x X--+ X. The fixed point set F of the action will 
always be assumed nontrivial. Let F1 . . . . .  F, denote the connected components of 
F, and let )'i denote 2n-(index of f on F,)-dimR F i. 

THEOREM 1. There exist injective morphisms defined over Z, Q, or Zq, for 
any prime q, of the form 

~,k : Hk_~(Fj) ~ H~(X) (2) 

so that/~k =~i  P-j,k (1--<J -<r) 'is an isomorphism, for any k =0,  1 . . . . .  2n. 

THEOREM 2. Let H' (X)  denote deRham cohomology of X over C and let 
Hk(X) = ~p+q=k HP'q(X) be the Hodge decomposition. Then if 0 <--k <-2n and 

p*:Hk(X)--~ ~) Hk-X,(Fi) (1_<]___ r) (3) 
i 
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denotes the isomorphism dual to lzk, we have tz*(/-/P'q(X))= ~)j HO-a,'q-a,(Fj) where 
d i = hi/2. Consequently, hP'q(x)= ~i hP-a"q-a'(fi). 

T H E O R E M  5. Let V be a special holomorphic vector field (IIIb) with nontri- 
vial zero set Z on a compact complex manifold X of class ~ (Ilia). Then for any k 
with O<-k <-2n, 

~. h O'q(X)= ~. h P'q(Z) (4) 
p - - q = k  p--q = k  

In particular if Z has components Z1 . . . . .  Z~ and k~ = m a x { p - q  :hP'q(Z~)#0}, 
then if r=max{k~}, hP'q(X)=0 for Ip-ql>r. 

This result sharpens the vanishing theorem of [C-Lx]. 

It. The Bialynicki-Birula decomposition 

The remarks made in this section are valid when X is a compact Kaehler 
manifold or a compact algebraic manifold. Let  C * x  X---> X be a C*-action with 
nontrivial fixed point set F having components F1 . . . . .  F,. Each F~ is a complex 
submanifold of X. It is a basic fact [$1] that for any x 
X, C* • (h, x)---~h �9 x extends to a holomorphic map p1 x{x}-->X. Thus 
lim~__,o it �9 x and limx_~ it. x exist, and by the group action properties, both must 
lie in F. The immediately suggests two invariant decompositions of X, the plus 
and minus decompositions: 

and X T = { x e X :  l i m A . x e F j } .  

These decompositions were first discussed in the algebraic case by Bialynicki- 
Birula [B-B] and subsequently shown to exist in the compact Kaehler case in 
[C-S], where proofs of the following assertions can be found. Assume Xj is one of 
X;- or X[ .  Each X~ is a complex submanifold of X Zariski open in its closure (i.e. 
Xj is an analytic subvariety: see IIb); the natural map pj :X~ ---> F i is a holomorphic 
C*-equivariant maximal rank surjection; F i is a section of Xi; and the normal 
bundle of Fj in Xj is a specific subbundle of the normal bundle of F i in X which 
we now describe. 
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For each x e X, A ~ C* acts linearly on the holomorphic tangent bundle T(X),, 
of X via the differential dA~. It is well known that the resulting complex 
representat ion of C* is determined by the existence of a basis vl . . . . .  v, of 
T(X),, and integers a~ . . . . .  a ,  such that A �9 v~ = dAx(v~) = M',v~. The  al  . . . . .  a ,  are 
called the weights of the action of C* on T(X)x. Therefore ,  for each j, one 
has a canonical holomorphic direct sum decomposit ion T(X) ]F~ = 
T(Fi)~N(Fj)§ -, where N(F~) § (resp N(Fi)-)  is the holomorphic vector 
bundle on F i whose fibre at x is generated by vi corresponding to positive (resp. 
negative) weights a~, and T(F~)x is generated by vi with a~ = 0. Then N(Fi) § (resp. 
N(Fi)-)  is the normal bundle of F i in X [  (resp. X~-). Note that using the definition 
of A i from Theorem 1 gives )t~ = dim R N(Fi)~ + for any x ~ Fj. 

Finally, we recall that there are exactly two distinguished components  F1 
(called the source) and Fr (called the sink) such that X~ and X~- are Zariski open 
in X. Note that N(F~)- and N(Fr) + both have rank 0. 

There  are two important  sources of examples of C* actions. The  first class is 
made up of the algebraic homogeneous spaces G/P, where G is a complex 
semi-simple Lie group and P a parabolic subgroup. Every regular one parameter  
subgroup H of P defines a C* action on G/P with finite F, and, by a result of E. 
Akyildiz [A], the B-B decomposition coincides with a Bruhat  decomposition. 
Thus for most actions, the X~ may be regarded as generalized Schubert cycles. 
The second class of examples, in which one finds some nonprojective actions, 
consists of the torus embeddings (i.e. equivariant completions of ((C*)"). These 
are studied in [K-K-M-St. D] and [M-O]. 

IlL The Lyupanov function 

Associated to a C* action on X are the circle and radial actions arising from 
the circle S 1 c C* and the radial subgroup R § of C* consisting of all positive real 
numbers. In this section we will show that the Morse function f of w is a 
Lyupanov function, i.e. is strictly increasing along the radial orbits in X. We will 
also prove some geometric consequences of the existence of this function. 

l.~t X have Kaehler  form O which we may suppose is invariant under  the 
circle action. The  two actions give rise to a pair of vector fields V and W on X 
such that J V  = W, where J is the complex structure tensor of X. For any smooth 
function g on X, set 

d / io 
Vxg = ~ gte �9 x) le=o (O~R) 

d 
Wxg = ~r  g(r" x)tr=l  (r ~ R § 
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Note that zero (V) = z e r o  (W) = F. 
The  trajectories of W, that is, the rays r .  x, have limits in F as r ~ 0 or oo. The 

next lemma shows that these lie in different components  of F. 

L E M M A  1. The Morse function f is increasing along the trajectories of W. 

Proof. One need only show that if x r  F, then dr (W)> 0 at x, and this is 
obvious since 

a f ( w )  = ( i ( v ) o ) w  = o ( v ,  w )  = o ( v ,  J r )  > o 

unless V~ = O. 

C O R O L L A R Y  1. The index of f at x ~ F~ is dim R N(Fi) ; .  Consequently the 
index is even. 

C O R O L L A R Y  2. The source Fx of X is {x ~ X :  f assumes its absolute 
minimum at x}. Similarly, the sink Fr of X is {x ~ X: f assumes its absolute 
maximum at x}. 

Proof. This follows from the fact that T(X)  IFI = T(F1)~I)N(F1) + and conse- 
quently f is increasing in every direction normal to F1. The other  assertion is 

similar. 
Therefore  the fixed point components  can be indexed F~, F2 . . . . .  Fr so that 

f(FO < f(F2) - -<""  <f(Fr-1)  < f(Fr) (5) 

J. Jurkiewicz has given an example in [J] of a 3 dimensional torus imbedding 
containing nonfixed points x l , . . . ,  x6 for which 

lim r 'xi  =l im r'x~+l ( 1 - - i - - 5 )  

and 

lim r .  x 6  = l i m  r -  x~  
r - -*~ r ---~0 

Such X cannot admit a Lyupanov function. 
It is useful to have the following example since by Blanchard's Theorem,  any 

projective manifold X admitting a C* action with F #  tk admits an equivariant 
projective imbedding. 



5 7 2  JAMES B. CARRELL AND ANDREW JOHN SOMMESE 

E X A M P L E .  Suppose X = P"  and let a t  . . . . .  a~ be integers such that a t -  
�9 �9 �9 --< a,.  One defines a C* action by on X by A. [Xo . . . . .  x , ]  = [h%Xo . . . . .  hq-x,]. 
Then  it is not  hard to see that with respect to the Fubini-Study metric 12 on P", 
i(V)12 = dr, where 

f[Xo . . . . .  = Y I,qt2/E 

This function separates the components  of F. 
One obtains some interesting information from this example for a projective X 

embedded equivariantly in P". In fact, if O*(resp. f*)  denoted the pull back of 
(resp. D to X, then i (V)12"= dr*, so f* is a Morse function of X. It follows that 
C* has fixed points on X (hence the Borel  Fixed Point Theorem).  Indeed, the 
B-B decomposition for X i s induced  on X from the B-B decomposition of P". 
The  following fact is slightly more surprising. 

P R O P O S I T I O N  1. Suppose X is as above and, in addition, X is contained in 
no C* invariant hyperplane o[P". I[ 171 (resp. F*) denotes the source of P" (resp. 
X),  then F* = X fq Fx. An analogous result holds for the sinks. 

Proof. Since the hyperplane Xo = 0 is invariant, there exists a point x in X of 
the form [1, x~ . . . . .  x,].  Since limr--.o r . x  lies in F~, it must also lie in F~* by 
Lemma 1. It follows that 

FI* = / * - ' ( a t ) ,  so FI* = f = -1(at) = / - 1 ( a t )  N X = F1 N X. 

This completes the proof. 

Therefore  f (X)=/(P") ,  however it is not true that X meets every component  
of (p,)c*. We conjecture the following: if X c• is finite and X is equivariantly 
imbedded in P", then x(X)=#XC*<-x(P")  = n + l ,  where X denotes Euler  
characteristic. 

l i b .  C o n s t r u c t i o n  o f  t h e  m a p s  P-~,k 

Let  X be compact Kaehler,  let C* act on X, and let F i be any component  of 
the fixed point set F. In this section, we shall construct morphisms 
tzi, k:Hk_xj(Fi)---~Hk(X) which may be viewed as realizations of the following 
construction: for any cycle z in Fi, let z + = p.-l([zl) and let t~i.k(z) be the closure 
of  p~-l(z). (Actually, we should denote  tzj.k by/~,+k since there is dually a natural 
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gi,  k for the minus decomposition.) Then gj.k(z) is a cycle in X. Note that the 
degree of /xj,k(z) is (degree of z)+k,~, since A i =dimR N(Fj) +. 

Recall that it was stated, but not explicitly proved, in [C-S] that ~7~- is a 
subvariety of X in which X~ is Zariski open. We shall now explicitly prove this by 
constructing a certain compactification Bi of X~ so that the holomorphic 
equivariant map i : X~ ~ X extends meromorphically to $i : Bi ~ X. 

Let  ~- denote the trivial line bundle on Fj and let/3i - + -(Xj ~ 1")-F~. On/3~ take 
the product C* action and denote C*\ /~  by B r Clearly pi makes Bi a holomor- 
phic fibre bundle over X +. The points of Bi will be denoted [v, t]. Note that X;- 
sits naturally inside Bi as the set of all points of the form [v, 1]. The space 
P~ = B i -  X + is a holomorphic fibre bundle over F~ whose fibre over x is isomor- 
phic to the V-manifold C*\(N(F~)+-zero).  

L E M M A  2. i : B i - Pi --4 X extends meromorphically  to r : Bj ~ X .  

Proof. Begin by choosing a nonsingular point [Vo, 0] of Pj, where, say, Vo e X~. 
Near [Vo, 0], B~ may be parameterized by ZI"•  where A is a sufficiently small 
disc about 0 in C and m = d i m X ~ - - 1 .  Define ~ i : A " •  by ~bi(v, 8 )=  
i([$-x, v, 1]) = i(8 -1- v). By Lemma IIA of [$1], lims~o (~-1. v) exists and, in fact, 
for each v, ~ ~ (~ - l . v )  is holomorphic at the origin. Therefore ~ extends 
holomorphically to {v} x zi for each v ~ Am. It follows from Lemma IA and Siu's 
Extension Theorem [$1] that ~b i extends meromorphically to B~. 

+ 

The assertion that X~ is a subvariety of X in which Xj is Zariski open follows 
immediately from Remmert 's  Proper Mapping Theorem and the fact that the 
closure F i of the graph of ~b i in B i x X is an irreducible subvariety of B i x X. By 
Hironaka's resolution of singularities [H], there exists smooth compact complex 
manifold t0~ and a holomorphic map 0 i : ~ ~ F~. One obtains holomorphic maps 
h~ : ~ ---> X and gi : ~ ~ Fj from the following diagram 

B~ x X  

/"i ~" (7) 

,--Bj Z 

Let Hi denote cohomology with compact supports, and let bj = dime Fj. The 
map/xi, k : Hk_x,(F~)~ H k ( X )  is defined (for Z or field coefficients) by the compos- 
ition 

Hk_x,(Fi) ~ n~Zb,-k+a,(Fj) , 

- -  j *  ...~ H2b _k+x (/~j) ._. ~ a H k ( F ~ I - - - *  H k ( X )  (81 
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where the first and third maps are Poincar6 duality maps. For ot ~ Hp_~(Fi), we 
denote /~j.p(ot) simply by ot +. As mentioned there is a corresponding class a -  
obtained by replacing X.j. § by X~- in the above discussion. 

The construction we have just described works of course without the Kaehler 
assumption. The next lemma, however, requires the existence of the Lyupanov 
function. 

L E M M A  3. Suppose the Morse function [ has value a i on F i, and let z be a 
cycle representing a ~ H.(Fi). Then there exists a cycle z + in X representing a + with 
[z+l C 3f; .  Consequently f(Iz+l)c[a~, 4.  Similarly, there exists a representing cycle 
z -  for a -  such that f(lz-I)=]-oo, a~] 

Proof. Since /~---> X factors through 3~ ,  and since [ is increasing along the 
radial trajectories, [ (X~)c  [a~, a~[. This proves the first assertion. The second 
assertion is similar. 

Remark.  It is clear from the construction of a § that if a is an analytic cycle on 
Ft, then ot + is an analytic cycle on X. Consequently, if H.(Fj) admits a basis of 
analytic cycles, then Theorem 1 implies that the same is true for H.(X).  

l lc.  Proof of Theorem 1 

The importance of the construction of IIb is that for any a, (3 e H.(F~), the 
intersection product ~x § (3- can be computed on F~, as we shall show. Note that if 
Fi =F1,  the source (resp. F ,  the sink), then a -  (resp a +) is i . ( a )  where i : F  i --*X 
is the inclusion. 

L E M M A  4. Assume et ~ Hr(Fi) and (3 ~ Hs(Fj). Then ct +. (J- = i . ( a  . (3). 

Proof It is an easy exercise to show that Ol+'(3-EHr+s_2b(X) where b =  
dime F i. The proof therefore follows from Lemma 3. 

In light of Frankel's Theorem, to prove Theorem 1, one need only show that 
for each q, 0 -  q-< 2n = 2 dime X, and, for coefficient field Z o, 

j J 

is a monomorphism. Let oti ~/-/q_~,(Fi) for each j and suppose ~ = Y~i.q(aj)= 0. 
We first claim that or1, the class at the lowest level of f, vanishes. For if or1 ~= 0, 
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then one can find/31 ~ H2b-q+~,(F1) so that al"/31 # 0 in Ho(F1). Now 

131" ~ = 13-; " a ~i = i , (131" a O 

Hence i.(/31" al) = 0, a contradiction 
Similarly, having renumbered the Fj so that F2 . . . . .  Fm are at the next critical 

level, we can show by the same technique that a2 . . . . .  am all vanish. By 
continuing in this manner, we finally deduce that all aj = 0. 

Remark. The main construction in the proof of Theorem 1 will go over 
unchanged to any compact complex manifold for which the Bialynicki-Birula 
decomposition exists. The injectivity argument only breaks down when one has 
cycles ala IIa, and thus the Morse function is useful because it guarantees that no 
cycles exist. If X is compact complex, F is finite, the B-B decomposition exists, 
and all X T and X~ are transverse, then a theorem of Smale [Sm] guarantees the 
existence of a Morse function f on X so that: (a) the critical point set of f 
coincides with F, (b) the index of f at x~ ~ F  is dimRN({x~})-, (c) f(x~)= 
dimR N({xi}) , and (d) f is increasing on radial orbits. Thus the injectivity of the 
maps (2), when F is finite, is true as long as the B-B decomposition exists. For X 
in a large class of compact complex manifolds, namely those with a C* action with 
finite F #  ~ in the class M defined in IIIa, the surjectivity is also true, and may be 
seen by applying Theorem 4 of IIIa, Corollary 4 of [C-L1], Corollary 1.7 of [Fu], 
and the fact that the B-B decomposition exists if X is in d~. 

COROLLARY 3. I f  X is of class ~ ,  F is finite, and all X- i and Xk  are transverse, 
then Theorem 1 is valid. 

l id. Proof of Theorem 2 

In this section we will be concerned with studying the duals of the isomorph- 
isms/~k : ~iHk_xj(F~)--* Hk(X) defined by (8). We shall consider complex coeffi- 
cients only, and the complex dual of Hk will be understood to be the complex 
deRham cohomology group H k. Let Hk(X)=EI~p+q=kHP'q(X) be the Hodge 
decomposition. This decomposition arises from the fact that on a compact 
Kaehler manifold, the Laplacian a preserves type. Consequently if ~- = ~p+q =k Tp.q 
is a k-form where %.q has type (p, q) and if zl, = 0, then A%.q = 0 for all %,q. We 
shall show that if #* denotes the complex dual of ~k, then 

V,*(Hp.q(X)) c ~ Hp-a, ,q-d, (Fj) 
i 
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where 2 4 = h i. The bijectivity of t~k* will then imply Theorem 2. 
Reversing arrows in (8) gives 

H k (~ )  ~ (/_/~b,-k +~,(~))* ~ (/_/~b,- k +4, (Fj))* ~ H k-x' (F~) (9) 

The composition of the maps in (9) is the classical Gysin map g~. = g .  associated 
to g~:~ ~ F i. In DeRham cohomology, g.'r, for ,re H k ( ~ ) ,  is determined by the 
condition 

IF  g . ' r ^ t r - - / r  "r^ g*~, (10) 

for an arbitrary class t r e  H2b,-k+X~(Fj). Finally, by definition,/z* = g .h*  where h* 
is induced by the holomorphic map h : ~ -~ X. 

Let  ,r e/-P"q(X) with p + q  = k, and let ~ be a smooth closed (p, q) form on X 
representing 1-. We shall show that for any tr~ Hr'~(Fj), 

IF  g.h*'r  ^ o- = 0 (11) 

unless r = bj + ~ - p and s = bj + d i - q. Let # be a closed (r, s)-form representing 
o-. Then by (10) 

But, since h*~ has type (p, q) and g*ff has type (r, s), (11) holds unless p + r =  
q + s = b i + 4 = dime ~ .  It follows immediately that g.h*,r ~ HV-a,'q-a,(Fj), and 
Theorem 2 is proved. 

The following result was suggested to us by F. Connelly. 

C O R O L L A R Y  4. Let C* act on X with fixed point components 1:;1 . . . . .  F,. 
Then index (X)  =Y~(- 1) d, index (F~) where ~ = ltd2. 

Proof. By the Hodge Index Theorem, 

index (X) = ~ ( -  1)VhP'q(X) 
P,q  

= ~, ~., (-1)PhP-a,'4-a,(F~) 
p ,q  i 

= ~ ( -  1)a,~, ( -  1)Jh',k(G) 
i i ,k 

= Y, ( -  1) d, index (G). 
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l ie.  Some applications 

l e t  X be compact Kaehler  and admit a C* action with source F~ (resp. sink 
F,). We give two applications of the B-B  decomposition and Theorem 1 to 
compute  two basic groups on X in terms of the source (or sink). 

T H E O R E M  3. Let i : F~ --~ X be the inclusion. Then (a) i . :  Irl(F1, Xo) --~ 
(X, Xo) is an isomorphism, and (b) There exists an exact sequence for Picard 
varieties 

0 -o K ~ Pic (X) -*  Pic (F~) --o 0, 

where K is isomorphic to the Z-module of divisors generated by the ff~ where 
x(F~) = rank N(F~)- = 1. 

Proof. For (a), recall that by the construction of IIb, X is bimeromorphic to a 
V-manifold B via a meromorphic  map ~b : B ~ X such that there is a commuta- 
tive diagram 

,b 
B---~X 

F1 

where 1r is a locally trivial holomorphic map. Now it is well known that ~b induces 
an isomorphism on fundamental  groups. Since each fibre of -rr is a compactifica- 
tion of an afline space, 1r also induces an isomorphism. Thus i .  is an isomorphism. 

To  prove part  (b), consider the commutative dtagram 

H~(X, ~x) ~ HI( X, ~*) ~ HE( X, Z)  --~ H2(X, ~x) 

.\ ,I J 
HI(F~, ~F,) ~ Hi(F1,  (7*) ~ H2(F~, Z)  ~ H2(F, ,  r 

where the vertical maps are all induced by i:  F1 ~ X, and the rows are exact, 
being induced by the exponential sequences 0 ~ Z ~ ~ ~ ~?* ~ 0 on X and F1. 
By the argument of part (a), a and "y are isomorphisms. We will first show 
exactness of Pic ( X ) ~  Pic ( F 1 ) ~  0 by showing /3 is onto. To  do this, it will 
suffice, by a standard argument, to show that i* is onto. Suppose veH2(F~), and 

let tx ~ H2b,-2(F1) be the Poincar6 dual of v. Let  Ix+eH2n_2(X ) be the image of Ix 
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and, finally, let "rEH2(X) be the Poincar6 dual of t~ +. Then it is not hard to show, 
by a diagram chase, that i*-r--v. To complete the proof of (b), note that, by 
definition, 

0 ~ Ker i* ~ Pic (X) ~ Pic (/71) 

is exact, so it remains to identify Ker i* = Ker (H2(x )  --~ HE(F~)). But  if ere Ker  i*, 
then the Poincar6 dual of ot in HE,_E(X) must come from 
~),~<F,)=~ HEb,(F~). In other  words, the Poincar6 dual of a class in Ker  i* is a linear 
combination over  Z of the divisors X~-, for which x(F~) = 1, as was to be shown. 

Remark. Assertion (a) of-Theorem 3 is true in much more generality than we 
have stated. For  example, it holds for X in the class M of IIIa, so in particular for 
compact algebraic varieties. The  isomorphism HI(X)=HI(F~)~-H~(F~) follows 
directly from (a). 

Note that Theorem 3(a) implies that the source and sink have isomorphic 
fundamental  groups. 

Ilia. Holomorphic vector felds and the dass 

In this section we will develop ideas needed for the proof of Theorem 5. In so 
doing, we generalize the main theorems of [C-L1, Cl-a] to the class d~ consisting 
of all compact complex manifolds M such that 

M is bimeromorphic to a compact Kaehler  manifold Y via a 
holomorphic map f :  Y ~ M (12) 

Suppose M e ~ .  Then  it is well known that if V is a holomorphic vector field on 
M and Y satisfies (12), then there exists a holomorphic vector field W on Y so 
that [ ,W= V. This follows, essentially, from Hartog 's  Lemma,  since the set of 
points where a meromorphic  map is not defined has codimension at least two. 

Lemma 5. W has zeros if and only if V has zeros. 

Proof. Clearly V has zeros if W does. Suppose that V has a zero. By [C-L1] or 
[$2], a holomorphic vector field W on Y has zeros if and only if the contraction 
operator  i(W) annihilates H~ g]~r). In our  case, this follows from the fact that 
H~ 0~,) is a birational invariant. That  is, given to e H~ 0~,), there exists an 
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to' ~ H~ O~a) such tha t /* to '  = to. Thus 

i (W)o~ = i ( W ) f *  to' = f * i ( V ) t o '  = 0 

since i(V)to' is a holomorphic function on M with a zero (since V has zeros) and 
consequently is identically zero. 

Associated to the contraction operator i (V):Dg~--~Oh -1 is a complex of 
sheaves 

and spectral sequences 

'E~ p'q= Hq(M, OK) 

"E~ "q = HP(M, ~v~) (13) 

where ~ denotes the cohomology sheaf 

Ker i(V)[ " ,+1 O ~ l i ( V ) O ~  [C-L1]. 

The key fact is that if M is compact Kaehler and V has zeros, then all the 
differentials dr in the 'E  spectral sequence are 0. We shall show that this is also 
true if M e d L  Let  [ :  Y---~M satisfy (12), suppose [ . W =  V, and assume V has 
zeros. Then [ induces a mapping of spectral sequences 

f* : 'Er -p'q--~ 'Er -p'q, i.e. f ' t / =  d [* ,  

which is injective on the 'El  level by [W]. Since dl = 0 on Y (lemma 5), dl  = 0 on 
M also. The degeneracy of the 'E  spectral sequence for M ed~ follows im- 
mediately by induction 

Let  Z denote the variety of zeros of V having sheaf of rings/Tz = r 
as structure sheaf. 

T H E O R E M  4. Let V be a holomorphic vector lield on M e d~ with Z ~ dp. Then 

(a) / - P ' ( M , O ~ ) = 0  if I p - q l > d i m c Z  

(b) if dime Z = 0, then there exists a filtration 

H~ r = F_ ,  = F_,+~ = . . .  =/7o = C, n = dirn~ M, (15) 
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such that F~Fj = F~+j with the property that 

F-d F-i + l -~ IT ( M, O ~a) 

By the Chow Lemma, compact algebraic varieties lie in the class dL Conse- 
quently, 

C O R O L L A R Y  4. The conclusions of Theorem 4 hold if M is a compact 
algebraic manifold. 

IHb.  Proof  of  T h e o r e m  5 

We now consider a class of holomorphic vector fields which includes the vector 
fields generated by C* actions. Suppose V is a holomorphic vector field on a 
complex manifold M with zero set Z #  ~b. Then say V is special if near any x ~ Z, 
there exists a coordinate neighbourhood U~ with coodinates (Yl . . . . .  Y, 
z~ . . . . .  z~) such that 

(a) Z n Ux = ((y,  z ) :  y . . . . .  y, = 0}  

(b) X=F.[=I  a~0/ayi, where a l  . . . . .  a~ are holomorphic functions on Ux. 

(c) Ilaadayill has rank r on Z N U~. 

The  special vector fields are always nondegenerate  in the sense of Bott  and the 
variety Z is always nonsingular. A key fact about  special vector fields is 

L E M M A  6. (D. Lieberman). For every p, q the injection i: Z ~ M induces 
isomorphisms HP(M, ~'~)-~ I-P'(Z, 0~). 

Proof. For  each z = ( z l  . . . . .  z~), let U(z )={(y ,  z): y arbitrary} be the slice 
through z. Then 

0 --~ ,Oh(z) ~ , -1 1 .Ou(,) ~ �9 �9 �9 - "  ~u ( , )  "-> ~u(,) "-~ 0 (16) 

is a Koszul complex with differential i ( v lU( z ) ) .  
Note that k _ ~ u ( z ) - 0  if k ~ 0  and, because V[ U(z) vanishes to first order  at 

(0 ,  z ) ,  o _ ~ t r ( z ) -  Cto,z, the sheaf on U(z) supported at (0, z) with stalk C at (0, z). 
Now the proof  of (16), given say in [S], works with parameters.  Consequently,  if 
O ~  denotes the subsheaf of O ~  generated by differentials containing no dz 
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terms, then 

j.o �9 ~+1.o = ~0, if 0 
Keri(V) lOtAl(V)Ot~ t~znu,  if ] = 0  

q ~ZNU The lemma now results from the fact that tensoring (16) by Ozuu  over 
yields the isomorphism ~ q =  O~nu. 

We shall now prove Theorem 5. Consider the diagram of complexes 

0.---), ~t]~VI----> O~4--1 -.~ . , ,  -..~ ~'~/~1---~ ~M ---). 0 

0 --.~ ! ~  ---~ !~--1 --~ ~ - . --~ ! ~  --~ !Z ---~ 0 

with differentials i(V) and i(VI Z)= 0 respectively, and with vertical mappings 
given by i*. By the above lemma, these complexes have spectral sequences with 
isomorphic "E~ "q terms. Let q/ be a Leray covering of M, and let 0//, denote the 
restrictions of the open sets of a//to Z. q/' may be assumed to be a Leray cover of 
Z. Form the double complexes {CP(q/, O~), i(V), ~} {CP(~ ', O~:), 0, ~}, where 
denotes Cech differential. The total complex KM, where 

Kh= ~ CO(~ 
p --q = r 

with total differential D given on C~ FI~) by i (V)+(-1)q6 gives rise to the 
spectral sequences (13) and (14) of V. A similar remark is true for the analogous 
total complex Kz. From the isomorphism of "17,2 terms, one concludes that 
H'(Kz)=H'(KM) for any r. But H'(Kz) = ~)p_q=,HP(Z,O~:) while, because of 
the degeneration of E~P'q=Hq(M,D~), if M is in the class d~, one has 
dim H'(KM)=~p_q=, hP'q(M). Theorem 5 follows from these considerations. 

Remark. Hopefully Theorem 5 will give some information about the mysteri- 
ous filtration (15) of Theorem 4. For some specific calculations of this filtration, 
see [C], [C-L2]. 
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