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Double  collisions for a classical particle system with 
nongravitational interactions 

RICHARD MCGEHEE 

1. Introduction 

In 1907 K. F. Sundman proved that a solution of the Newtonian gravitational 
three body problem for which the angular m om en tum is nonzero can be written in 
terms of a power  series convergent  for all time [12]. The major  obstacle overcome 
by Sundman was presented by collisions between the particles. The condition that 
the angular momen tum be nonzero allowed him to eliminate the possibility of a 
collision between all three particles. Since he could not eliminate the possibility of 
a collision between two of the particles, he was forced to investigate the nature of 
solutions with double collisions. 

Sundman discovered that a solution which has a double collision as t ~ t* can 
be written as a convergent  power  series in ( t*-01/3 .  This solution cannot be 
extended holomorphically to t*. However ,  using analytic continuation in the 
complex plane around the branch point t*, Sundman found a real analytic 
extension for t >  t*. Introducing a new variable, which locally has the form 
( t *  - -  t) 1/3 at each collision, he was able to extend the solution through each double 
collision and to write it as a convergent power series in the new variable. A 
complete  description of Sundman's  construction can be found in the book of 
Siegel and Moser [10]. 

From the vantage point  provided us by the current theory of dynamical 
systems, we can question the significance of Sundman's  power series expansion. 
Today  an ordinary differential equation is viewed as a vector  field on a manifold, 
and its solutions are viewed as determining a flow on that manifold. One attaches 

a s  much importance to the smoothness of the flow with respect to initial data as to 
its smoothness with respect  to time. Sundman's  extension of an orbit  through a 
double collision would be considered of questionable significance if it were 
unrelated to nearby orbits. Since Sundman's  extension accounts only for the 
dependence  on time and not for the dependence on initial data, we do not know a 
pr/oti whether  his extension is related to nearby orbits. 

Levi-Civita has given us a different method for extending orbits through 
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double collisions [6]. He  eliminated the singularities in the vector field by 
transforming the equations to ones without singularities. The extension through 
double collisions then is given by the transformed equations and is automatically a 
smooth function of initial data. 

It  happens that Sundman's  extension and Levi-Civita 's extension coincide. 
One is tempted to believe that somehow the power  series technique carries with it 
the dependence on initial data. Since holomorphic functions are completely 
determined by their behavior on small sets, and since the solutions of the three 
body problem are holomorphic,  one can easily imagine that an analytic extension 
in t ime will automatically give analytic dependence on initial data. It does so for 
the gravitational potential, but we shall see below that it fails to do so for other 
potentials. 

To  contrast  these two methods of extension we study a particle system with 
nongravitational interactions. Instead of assuming that the pairwise potential  
energy is r -1, where r is the distance between the two particles, we assume that 
the potential  energy is r -~ where a is some positive real number.  We then study 
Sundman's  technique versus Levi-Civita's.  We shall see that solutions can be 
extended as a power series in time whenever ot is in a certain dense subset of the 
rationals. However ,  only a few of these values of ot produce double collisions 
which can be extended according to Levi-Civita. For the other values, Sundman's  
technique gives extensions which are not continuous with respect to initial data. 

Thus we see that it is only a peculiar property of the gravitational interaction 
which gives us the same orbit  extensions for the two different techniques. If one 
were to carry out Sundman's  entire program for a three body problem with a 
nongravitational potential,  one might obtain a power series solution, convergent 
for all time, but for which small changes in initial data could produce drastic 

changes in the orbits. 

2. Equations of motion 

We study a system of two particles. Since the two particles will always move in 
some fixed plane, we take R 2 for the position space. We fix the center of mass at 
the origin, so the system reduces to that of a single particle of unit mass in a central 
force field. We take the potential energy function to be 

U ( x )  = - I x l  -~, ~ > 0, 

where x e R 2 is the position of the single particle. The motion is described by the 
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differential equation 

s = - g r a d  U(x )=-a  Ixi-~'-2x, (2.1) 

where the double dot represents the second time derivative. 
A double collision occurs if the two particles coincide and corresponds to x = 0 

in the reduced problem. The origin is a "singularity" of equation (2.1), i.e. it is a 
point where the equation is undefined. Indeed, the potential energy approaches 
--oo as X --> O. 

A "singularity" of a solution of (2.1) is a time t* beyond which the solution 
cannot be extended as a smooth function of real t. A precise definition of this 
notion is given in Section 3 below. We shall show that, for equation (2.1), 
singularities of the solution correspond to singularities of the differential equation, 
i.e. x ---> 0 as t ---> t*. The only singularities are therefore double collisions. 

In Section 4 we develop some properties of the solutions of equation (2.1). We 
shall see that a = 2 is a dividing line between two very different types of behavior. 
For  example, equation (2.1) has many circular periodic orbits. For o~ < 2 ,  these 
orbits are all stable; for a > 2 ,  they are all unstable. As another example, the 
angular momentum must be zero for a collision orbit if a < 2. However,  if r > 2, 
there are collision orbits with arbitrary angular momentum. 

It is interesting to note that the case a = 2 has another property not discussed 
here. A system of n particles moving along a line with pairwise interaction given 
by an inverse square potential is completely integrable [9]. 

In Section 5 we discuss Sundman's technique of extending singular solutions. 
We call his technique "branch regularization." Roughly speaking, a singularity t* 
of a solution can be considered as a branch point, where time t is regarded as 
complex. We then ask whether we can find a real analytic branch which extends 
the solution. We are able to find such a branch whenever ot has the form 
2( (q /p ) -1 ) ,  where q and p are relatively prime integers with q odd. If p is even, 
as it is for the gravitational potential, then the extension can be described as a 
"reflection," i.e. the velocity vector reverses direction at collision, and the 
particles effectively bounce off each other. If p is odd, then the extension can be 
described as a "transmission," i.e. the direction of the velocity vector is preserved 
at collision, and the particles effectively pass through each other. 

In Section 6 we turn to Levi-Civita's idea of focusing attention on the 
singularities of the differential equation rather  than on the singularities of the 
solution. It is difficult to describe his technique in general terms, since it involves 
an apparently ad hoc change of variable. However,  Easton has given a general 
definition of regularization in the spirit of Levi-Civita [4], Easton's idea is to use 
an isolating block to examine whether orbits passing close to collision determine 
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an extension for an orbit ending in collision. Easton calls his technique "regulari-  
zation by surgery."  However ,  this author feels that the use of surgery plays a 
secondary role to the use of isolating blocks and therefore prefers to call the 
technique "block regularization." 

In Sections 6 and 7 we apply Easton 's  definition to equation (2.1). We find 
that the equation is block regularizable if and only if ot = 2 ( 1 -  n-X), where n is a 
positive integer. We then discuss the similarities and differences between branch 
regularization and block regularization. 

Finally in Section 8 we exhibit a transformation analogous to that given by 
Levi-Civita. Our  transformation works for those values of ct for which equation 
(2.1) is block regularizable. It reduces to Levi-Civita 's transformation when ct = 1. 

3. Shlgularifies of solutions 

In this section we prove that the only singularities of solutions of equation 
(2.1) are collisions. We begin with the general definition of a singularity of a 
solution of the differential equation 

i = F(x).  (3 .1)  

Here  F is a real analytic vector field on some open set U c R " ,  and the dot 
denotes differentiation with respect to t ime t. If x(0)e U, then the gtandard 
existence and uniqueness theorems give us a unique solution x(t) defined for 
t-  < t < t § where -oo ~< t -  < 0 < t § ~ +oo and (t- ,  t § is the maximal interval over  

which the solution can be extended. 

D E F I N I T I O N .  If t §  0% then the solution x(t) is said to end in a singularity at 
t +. If t - > - 0 %  then x(t) is said to begin in a singularity at t-. In either case, t* = t + 
or t -  is said to be a singularity of the solution x(t). 

We can write equation (2.1) as a first order system by introducing the 
momen tum vector y = 2. The equation then becomes 

= Y' (3.2) 
9 = - , ~  lxl-"-2x, 

which is a Hamil tonian system with Hamil tonian function 

n(x ,  y)=�89 ly12- Ixl -~. (3.3) 



528  RICHARD McGEHEE 

The function H represents the total energy of the particle and is a conserved 
quantity; i.e. H is constant along solutions of equations (3.2). 

We now state the main result of this section. The proof is given after the proof 
of Lemma 3.2. 

T H E O R E M  3.1. Suppose that (x(t), y(t)) is a solution of (3.2) with a singular- 
ity at t*. Then x(t) --~ 0 as t --> t*. 

L E M M A  3.2. Suppose that (x(t), y(t)) is a solution of (3.2) with H(x, y) = h, 
and suppose that IX(to)l > 2E > O. Then there exist constants 8 and M, depending on 
h and e, but independent o[ (X(to), y(to)), such that 

l y ( t ) l < M  and lx(t)l>e,  whenever I t - t o l < &  

Proof. We take 

M = ( 2 h + 2 e - ' ~ )  I/z and 8 = e / M .  

It sul~ces to show that 

Ix(t)l>~ whenever It-tol<& 

since H(x(t) ,  y(t))= h implies that 

lY(t)l = (2h + 2  Ix(t)l-~) 1'2, 

and hence that 

l y ( t ) l < M  whenever Ix(t)l>e. 

Suppose that (3.4) is false. Then there exists a tl such 
IX(tl)l <~ ~. By continuity one then can find a t2 such that 

It=-tol<~, 
Ix(t~)l = ~, 

and 

Ix(t)l>e whenever I t - t o l < l t = - t o l .  

(3.4) 

(3.5) 

that It1- to[ < 8 and 

(3.6) 
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Since y = • (3.5) now implies that 

l~ ( t ) l<M for It-tol<[t2-tol. 

Hence Ix(t2)l > IX(to)l- M It2- to[, i.e. e > 2e - M I t2  - -  to[ , or Itz-- tol > elM = 6. But 
this contradicts (3.6), establishing (3.4) and proving the lemma. 

Proof of Theorem 3.1. Let  H(x, y) = h. Assume that x(t) does not approach 0 
as t--* t*. Then there exist an e > 0  and a sequence {t~}, with t,--~ t*, such that 

lx ( t , ) l>2e  for all n. (3.7) 

Let  6 and M be given by Lemma 3.2. Choose n so that It*-t,[<8. Then 

l y ( t ) ] <M and Ix(t)l>~ whenever l t - t , l<6.  

Equations (3.2) then imply that 

I~( t ) l<M and 19(t)l<ot~ -'~-1 whenever I t - t , l<& 

Hence (x(t), y(t)) actually approaches some limiting point (x*, y*) as t --~ t*. By 
(3.7), x*>~2e. Therefore  the solution can be extended beyond t*, which con- 
tradicts the hypothesis that t* is a singularity. Hence x(t) ~ 0 as t ~ t* and the 
theorem is proved. 

4. A geometric description of the flow 

We now present a description of the orbit structure of system (3.2), with 
special emphasis on the orbits near collision. The transformations used here are 
essentially the same as those used by this author and others to study collisions in 
Newtonian gravitational systems. (See [8] for specific references.) Similar transfor- 
mations have been used also by Devaney in his study of the anisotropic Kepler 
problem [3]. 

It is convenient to introduce the constants 

a 1 
/ 3 = ~  and 3 , = / 3 + 1 .  

We identify the real plane R 2 with the complex plane C 1 and consider x as a 
complex number or as a vector in the Euclidean plane, depending on context. As 
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usual, a bar denotes the complex conjugate. We shall use the angular momentum 
integral 

O ( x ,  y) = Im (~y). 

We introduce the new real coordinates r >  0, 0, w, and v by letting 

x = r'~e '~ (4.1) 
y = r-O'~(v + i w ) e  ie. 

System (3.2) then becomes 

= (t3 + 1)v,  

O = r - l w '  (4.2) 

r = r-l(13 - 1)wv,  

f~ = r - l ( w ~  + [3(v 2 -2 ) ) .  

If we take the energy integral H ( x ,  y) given by (3.3) to have the constant value h 
and the angular momentum integral D ( x ,  y) to have the constant value c, then we 
can write 

w :  + v 2 - 2 = 2hr  '~'~, (4.3) 

r(*-~)Vw = c. (4.4) 

We now define the constant energy manifold 

M(h) = {(r, 0, w, v)~ R 4 : r  >/0 and (4.3) holds}. (4.5) 

System (4.2) determines a vector field on M(h) which is undefined when r = 0. We 
let 

N = {(r, 0, w, v) ~ M(h) : r = 0}, (4.6) 

which is the manifold of states corresponding to collision for equation (2.1). From 

the definition of M(h),  we see that 

N = { ( r , O , w , v ) E R a : r = O  and W2 + 1)2 = 2} 
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and hence that N is independent of h. Since 0 is considered modulo 2Ir, N is a two 
dimensional torus. 

As mentioned above, the vector field given by (4.2) is not defined on N. A 
collision corresponds to an orbit which approaches N in finite time. However,  we 
can scale the vector field in such a way that the new vector field can be extended 
to N. We accomplish this scaling by introducing a new time parameter  "r given by 

dt  = r dr.  (4.7) 

Equations (4.2) then become 

r '=  (/3 + 1)rv, 

0 '=  w, 

w '  = (/3 - 1 ) w v ,  

v ' =  w2+/3(vZ-2) ,  

(4.8) 

where the prime denotes differentiation with respect to ~'. For this new vector 
field, N is an invariant set. As we shall see in Lemma 4.1 below, collision orbits 
now approach N asymptotically as ~" ~ +oo. 

The solutions of the entire system (4.8) are determined by the last two of those 
equations in the following sense. The equations for w '  and v' do not involve r and 
0 and therefore may be solved independently. Then r and 0 can be determined 
from the first two of equations (4.8). If h r 0, then r could also be determined 
from equation (4.3). 

We therefore consider the last two of equations (4.8) as a separate system: 

w '  = (/3 - 1 ) w v ,  

v '  = wZ  + [ 3 ( v 2 -  2) .  

These equations admit the integral 

(4.9) 

a(w, v )  = Iwl ~ Iv2+ w2-211-~ (4.10) 

This integral is derived from the angular momentum and energy integrals as 

follows. 

A = I O ( x ,  y)l ~ 12H(x, y)l 1-~ 

is a function of integrals for system (3.2) and is therefore itself an integral. 
Written in terms of r, O, w, and v, this expression becomes equation (4.10). 
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Figure 4.1. 

The orbit structure of system (4.9) is completely determined by the integral A. 
There  are three distinct cases depending on whether/3 < 1,/3 = 1, or/3 > 1. These 
cases are shown in Figures 4.1, 4.2, and 4.3 respectively. In each case, the circle 
{w2+vZ=2} is invariant and corresponds to the collision manifold N. The 
constant energy manifold M(h) projects to {w2+v2~<2} when h < 0 ,  to 
{w2+v2>~2} when h > 0 ,  and to {w2+v2=2}  when h = 0 .  

In the remainder of this section we describe the relevant aspects of the 
solutions of system (4.8). Most of the statements can be derived from an 
examination of the integral A. Those that will be used in later sections are labeled 
as Lemmas and proved. 

When /3  < 1, the flow is similar to that of the Kepler problem, which is given 
by/3  = �89 If we take h >10, which corresponds to hyperbolic or parabolic orbits in 
the Kepler problem, and if we take w~:O, which means that the angular 
momentum is nonzero, then all solutions are unbounded in both directions. The 

W 

Figure 4.2. 
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- W 

Figure 4.3. 

orbits with zero angular momentum either begin or end in collision. If we take 
h < 0, which corresponds to elliptic or circular orbits in the Kepler problem, then 
all solutions are bounded. There are two circular orbits, corresponding to the 
critical points (w, v ) = ( + x / a ,  0) in Figure 4.1. These circular orbits are stable. 
Taking the angular momentum to be zero distinguishes a one parameter  family of 
orbits beginning and ending in collision. All other solutions move along invariant 
tori. One feature that distinguishes the Kepler problem is that each torus is 
foliated by periodic orbits. One does not expect this foliation for arbitrary ot < 2. 
Instead one expects most of the tori to be filled with quasi-periodic orbits. 

For /3  = 1, the variable w becomes the angular momentum integral, as can be 

seen from equation (4.4). In this case, the invariant circle {w2+ v 2= 2} becomes a 
circle of critical points for system (4.9). When h < 0 ,  every solution begins and 
ends in collision. When h > 0  and [w[~<x/2, every orbit either begins or ends in 
collision and becomes unbounded in the other direction. When h > 0  and Iwl> 
x/2, every orbit is unbounded in both time directions. When h = 0, the variable v 
also becomes an integral, as can be seen from equation (4.3). If v~: 0, then the 
first of equations (4.8) immediately implies that r = ro e(a§ and hence that every 
solution begins or ends in collision and becomes unbounded in the other direc- 
tion. Setting v = 0 distinguishes a one parameter  family of circular periodic orbits 
r = to, where ro is constant. 

When /3 > 1, the flow is drastically different from the Kepler problem. The 
circular periodic orbits, corresponding to the critical points (w, v ) =  (+x/a, 0) in 
Figure 4.3, now occur for positive energy and are unstable. Among the orbits 
asysmptotic to one of the circular orbits, some are collision orbits while the others 
are unbounded, w h e n  h > 0 there are unbounded collision orbits as well as orbits 
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beginning and ending in collision and orbits unbounded in both directions. When 
h <~ 0 all solutions begin and end in collision except those with h = 0 and c = 0. 
These begin or end in collision and are unbounded in the other direction. 

In the following lemmas,  we shall consider r as a function of t or  of T, 
depending on whether  we are considering a solution of system (4.2) or of system 
(4.8). The orbits of both systems are the same; only the rate at which solutions 
move along the orbits is different. Using equation (4.7), we can write T as a 
function of t along a particular orbit: 

I ' ds  (4.11) 
T ( t ) = T O +  o r(s)"  

Here  s is a dummy variable for t, so the r(s) under the integral is a solution of 
(4.2). Note  that T0 = T(t0) and that r(To)= r(to), where the first r now denotes a 
solution of (4.8). Note  also that any solution of (4.2) must have r(t) > 0 for all t. 

We now show that orbits with singularities in the original time variable t 
become orbits for which r approaches 0 asymptotically in the new time variable T. 

L E M M A  4.1. Suppose that (r, O, w, v)(t) satisfies (4.2) and that r--*O as 
t ~ t* +. Then ~'(t) -~ ~:~. 

Proof. We prove that t--~ t * -  implies that T ( t ) ~  +oo. The other  case is 
similar. Equation (4.11) implies that T(t) is defined for all t o < t < t *  and is 
increasing. Hence  "r(t) ~ T* as t -+ t* --,  where -r* may be infinite. Then r(~-) ~ 0 
as T ~ "r*. Since equations (4.8) are defined and smooth on M(h),  and since N is a 
compact  invariant set, it is impossible for a solution to approach N in finite time. 
Therefore  T*= 0% and the l emma is proved. 

For  the following two lemmas,  we use the notation 

S • ={(r, 0, w, v) e N : v  = + 42} .  (4.12) 

By the definition of N, 

S ~ = { ( r , O , w , v ) e R 4 : r = O ,  w = 0 ,  v =  +x/2}, 

and hence S + a n d  S-  are both  circles. We denote  by to W) the omega  limit set of 
the point  p = ( r ,  0, w, v) under  the flow on M(h)  defined by equations (4.8). 
Similarly, a ~ )  denotes the alpha limit set. 

L E M M A  4.2. Assume [34:1. Let p(-r)=(r ,  0, w, v)('r) be a solution of (4.8), 
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and write Po = p(0). Then 
(a) r---~O as .r---~+oo if and only if (O(po)CS-, and 
(b) r ~ 0 as I" ~ -o~ if and only if ct (Po) c $+. 

Proof. As above, we prove only (a), since (b) is similar. Since N is exactly the 
set on M(h) where r = 0, r --~ 0 as T --~ +oo if and only if to~0) c N. Since S-  c N, it 
therefore suffices to show that t O , o ) c N  implies that t O , o ) c  S-. Using the energy 
relation (4.3) with r = 0 ,  we can rewrite the equation for v '  in system (4.8) 
restricted to N as 

v' = (1 - / 3 ) w  2. 

Therefore  v defines a Liapunov function on N. Since a Liapunov function must be 
constant on an omega  limit set [1], we must have v '  = 0 on tO(po). But  v '  = 0 on N 
exactly on $+ and S-. We can rule out S § since v is positive in a neighborhood of 
$+ and the first of equations (4.8) implies that r is increasing whenever r is 
positive. Therefore  tO(po)c $-  and the proof is complete.  

L E M M A  4.3. A s s u m e / 3  ~ 1. Let  (r, O, w, v)(t)  be a solution of  (4.2) such that 
r---~O as t----~ t*-t-. Then, as t----~ t *-4-, 

w(t)---)O, v( t ) - -*+x /2 ,  and O(t)---~O*, 

for some constant 0". Furthermore, i f /3 < 1, then w ( t ) -  0 and O ( t ) -  0". 

Proof. As before,  we prove  only the case t --* t* - .  By Lemma  4.1 it suffices to 
prove the same limits for system (4.8) as ~ - ~  +oo. By Lemma  4.2 it suffices to 
prove these limits for all points in M(h) on the stable manifold of $-. On S-, 
0 ' =  0, so S- consists entirely of rest  points. A computat ion shows that the 
eigenvalues at each of these rest points are 0, - x/2(/3 - 1), and - 2x/2/3. The zero 
eigenvalue corresponds to the tangential direction along S-, while the two others 
correspond to the normal directions. For /3 ~ 1, $ -  has hyperbolic normal struc- 
ture, and hence the stable manifold of S- is the union of the stable manifolds of 
each of the points on $-  [5]. Thus the solution (r, O, w, v)(t)  approaches some 
point on $- ,  i.e. 0 ~ 0", w --* 0, and v --~ - x/2. 

When /3 < 1, one normal eigenvalue is positive and the other  is negative. In 
this case the stable manifold is two dimensional and, in fact, consists only of 
points with w = 0 .  (See Figure 4.1) Since 0 ' =  w = 0 ,  0 must be constant. There-  
fore w-= 0 and 0 ~ 0", and the proof  is complete.  

Equat ion (4.4) tells us that the angular m om en tum is zero if w is zero and r is 



536 RICHARD McGEHEE 

positive. Therefore  the final statement of Lemma 4.3 implies that, for /3  < 1, the 
angular momentum must be zero on a collision orbit. Furthermore,  all the motion 
takes place along a fixed line. These properties are not true for/3 i> 1, as is seen in 
Figures 4.2 and 4.3. 

5. Branch regularization o! solutions 

In this section we define the classical notion of regularization of solutions. We 
then determine for which ot equation (2.1) is regularizable in this sense. We begin 
with a general definition concerning the solutions of the equation 

i=F(x ) .  (5.1) 

DEFINITION.  Let  ~bl(t) and ~bz(t ) be solutions of (5.1). Suppose that ~bt ends 
in a singularity at time t* and that ~bz begins in a singularity at the same time. 
Suppose that there is a multivalued analytic function having a branch at t* and 
extending both ckl and ~b2, Then (~1 is said to be a branch extension of ~b2 at t*, 
and ~b2 is said to be a branch extension of ~1 at t :~, 

DEFINITION.  A solution ,b of equation (5.1) which either begins or ends in 
a singularity at t* is said to be branch regularizable at t* if it has a unique branch 
extension at t*. Equation (5.1) is said to be branch regularizable if every solution 
is branch regularizable at every singularity. 

It is important to note that time t is considered to be complex in the above 
definitions. The solutions ~bl and tk2 are real analytic, i.e. they are real for real 
values of t. However,  they are extensions of one another through complex values 
of t. 

It  is also important not  to be confused by our use of complex numbers to 
represent points in the Euclidean plane. A solution x(t) of equation (2.1) is not a 
a real analytic function of t. Instead, x~(t) and x2(t) are real analytic functions of 

t, where x = x~ + ix2. 
We are interested in branch extensions for solutions of equation (2.1) or, 

equivalently, of system (3.2). Since y = ~, y(t) will automatically have a branch 
extension whenever x(t)  has one. It is therefore sufficient to consider only x(t).  

We denote  the rational numbers by Q. Whenever  we write p/q ~ Q, we mean 
that p and q are relatively prime integers. A special subset of Q is important 
here: 

Qo = {p/q ~ Q : q is odd and 0 < p < q}. 
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The following theorem tells us for which values of a equation (2.1) is branch 
regularizable. Recall that a =2/3 and that 3"= (1+/3) -1. Since ct > 0 ,  we must 
have 0 < 3 " < 1 .  

T H E O R E M  5.1. Equation (2.1) is branch regularizable if and only if 3' ~ Qo. 

We break this theorem into two parts, one for each direction of the implica- 
tion. Theorem 5.1 is an immediate consequence of the following two theorems. 
Note that Theorem 5.2 is actually stronger than the implication stated in Theorem 
5.1. 

T H E O R E M  5.2. I f  3'r Qo, then no singular solution of equation (2.1) is branch 
regularizable. 

T H E O R E M  5.3. I f  3"eOo, then every singular solution of equation (2.1) is 
branch regularizable. 

To prove these theorems we must know the exact analytical dependence on 
time of the solutions near a singularity. This information is provided by the 
following three lemmas, which will be proved after they are first used to establish 
Theorems 5.2 and 5.3. 

L E M M A  5.4. Suppose [3 < 1. Let x(t) be a solution of equation (2.1) such that 
x(t) --~ 0 as t --~ 0+. Then 

X(t) = Ktv~(t2av), 

where K is a complex constant with IKI = 1 and where �9 is a real analytic function 
defined on a neighborhood of O, with q~(0) = (x/2(/3 + 1)) v. 

L EMMA 5.5. Suppose [3 > 1. Let  x(t) be a solution of equation (2.1) such that 
x(t) --~ 0 as t --~ 0+. Then 

X(t) = g[tv~z(t  2~, t 2~a-l)v) + itt3v~2(t2Ov , t2(O-n'~)], 

where r is a complex constant with IKI = 1 and where ~1 and riSE are real analytic 
functions deIined on a neighborhood of (0, 0), with ~1(0, 0 )=  (x/2(/3 + 1))L 

L E M M A  5.6. Suppose [3 = 1. Let x(t) be a solution of equation (2.1) such that 
x(t) ~ 0 as t --~ 0+. Let c be the constant value of the angular momentum 12 and h 
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be the constant value of the energy H along the solution. Then c 2 ~ 2, and h > 0 if 
c 2 -- 2. Also, 

x(t) = Kx/2tl/2tic/Ea(a + ht)l/2(a + ht) -i~/2~ if c 2<2,  and 

x(t) = Kv/-~te -'~/2"' if c 2 = 2, 

where a = ( 2 - c 2 )  1/2 and K is a complex constant with IKI = 1. 

Proof of Theorem 5.2. First note  that,  since the equat ions  of  mot ion  are 
au tonomous ,  we need  consider  only  solutions x(t) with a singularity at t * =  0. 
T h e o r e m  3.1 implies that  x(t)---*O as t --~0.  Now note  that, if x = t k ( t )  is a 
solution of  equat ion  (2.1), then x = ~b(-t) is also a solution. There fo re  it suffices to 

show that  no  solution satisfying x(t)--~ 0 as t ~ 0 +  has a real analytic b ranch  for 

t < 0 .  
If  3" is irrational, or  if 3" = p/q, with q even,  then t v has no real branch for  t < 0 .  

The  formulas  of  L e m m a s  5.4 and 5.5 then immedia te ly  imply that  x(t) has no real 

b ranch  for  t < 0 ,  if /3 r 1. If  /3 = 1, which corresponds  to 3' = p/q = �89 then the 
formulas  of  L e m m a  5.6 immedia te ly  imply that  x(t) has no real branch for  t < 0. 
In  any case, no singular solution is branch regularizable when 3"r Qo. 

Proof of Theorem 5.3. By  the considerat ions at the beginning of  the p roof  of 
T h e o r e m  5.2, it suffices to  show that  every  solution x(t) satisfying x ( t ) ~  0 as 
t ~ 0+  has a unique branch  extension for  t < 0 .  We first show that  every such 

solut ion has a unique real analytic cont inuat ion to t < 0. We  then show that  this 

cont inuat ion  is a solution. 

Since 3" = p/q, we have that  /33' = ( q - P ) / q  and (/3 - 1)3" = (q -2p ) /q .  Using 
L e m m a s  5.4 and 5.5, we can then write 

x = 6 ( t )  = K [ u P X d u  2) + iu"-2PX2(u2)],  t > O, 

where  

U ----- t l /q~  

Xl(z) = O/q(zq_p, z._2o), 
when /3 < 1, 

when  /3 > 1, 

and  

0, when /3 < 1, 
X2(z)  = rp=(zq_p, zq_Zv), when  /3 > 1. 
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Since q is odd, t 1/q has a unique real analytic continuation to t < 0 ,  namely 
( t )  I/q Therefore  ~b(t) has a unique real analytic continuation to t < 0 ,  which 

can be written 

4~b (t) = K[( -v )pXl (v  2) + i(-v)"-2pX2(v~)], t < 0, 

where 

- ( t )  TM t ) - -  - -  

We have only left to show that x = Sb(t) is also a solution of equation (2.1). 
For t < 0 we can write 

( -~b( - t ) ,  if p is odd, 
~b~(t) = [~--~-t), if p is even. 

One can check easily that x = - ~ b ( - t )  and x =4~(-t)  are both solutions of 
equation (2.1) for t < 0 ,  since x=4~(t)  is a solution for t > 0 .  Therefore  every 
singular solution has a unique branch extension, and the proof is complete. 

Before proceeding to the proofs of the lemmas, we digress briefly to discuss 
the regularization provided by the proof  of Theorem 5.3. If /3 < 1, then X2 is 
identically zero,  and hence we can write 

( -~b( - t ) ,  if p is odd, 
~bb(t) = t~b(-t),  if p is even. 

Since the motion of a singular orbit takes place along a fixed line when/3 < 1, we 
can interpret this extension as a transmission if p is odd and a reflection if p is 
even. Note that the Newtonian gravitational potential corresponds to a = 1,/3 = �89 
and ~/= plq = 2 ~ Qo. Hence collisions are branch regularizable and the regulariza- 
tion is a reflection. 

Four other  examples are shown in Figure 5.1. In each case q = 5, so the real 
analytic continuation is given by a rotation through an angle of 57r in the complex 
t-plane. When /3  = �88 p is even, so the extension is a reflection. When/3  = 2, P is 
odd, so the extension is a transmission. When /3  = 2 a, we have/3 t> 1, so there are 
collision orbits with nonzero angular momentum. Such an orbit and its branch 
extension are shown in the figure. 

We note  in passing that equation (2.1) is explicitly solvable in terms of circular 
or elliptic functions for the following values of a :  �89 2, 1, -~, 3, 2, 3, 4, and 6 [13]. 
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~ ne 

q=5 

x-plane 

#=1/4 p/q:4/5 

x-plane 

t=2/3, p/q =3/5 

x-plane 

< 
t=3/2, p/q=2/5 

Figure 5.1. 

The equation is branch regularizable for all of these values except 2, 2, and 6. 
Thus there appears to be no relationship between regularizability and explicit 
solvability. 

The remainder of this section is devoted to the proofs of Lemmas 5.4, 5.5, and 
5.6. We start by stating and proving two more lemmas. The first could be proved 
using formal power series expansions and convergence arguments. However, in 
keeping with the geometric spirit of this paper, we prove it using the stable 
manifold theorem. 

LEMMA 5.7. Let k, o/1, and ct2 be positive, and let f:  C 2--), C 1 be real analytic 

near (0, 0), with f( O, O) = O. Assume that the function cb satisfies ~ ( x ) > 0  for x > 0  
and c~ ( x ) ~  0 as x - *  0+, and suppose that y = c~(x) is a solution of 

~d 
- ~  = k + f ( y %  y~).  (5.2) 
dx 

Then there exists a function g : C 2 ~ C 1, real analytic near (0, 0), with g(0, 0) = 0, 
and such that 

~b(x) = x (k  + g(x ~1, x~2)). 
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Proof. We consider the differential equation (5.2) as a vector field in the plane 
by introducing a t ime variable t which satisfies x dt = dx and writing 

~X~ 

= x(k  + f(y", ,  y~Q), 
(5.3) 

where the dot denotes differentiation with respect to t. This system is a real 
analytic vector field on 

Q = - - { ( x , y ) e R 2 : x > O  and y>O}. 

We now introduce the new variables 

~x = x ~', ~2 = x ~2, and n = y/x. (5.4) 

Writing system (5.3) in these variables we obtain 

~2 = o~2~2, (5.5) 

Note that the point (~1, ~a, ~ ) = ( 0 ,  0, k)=--p is a rest point for this system. Since 
k > 0 ,  system (5.5) is real analytic in a neighborhood of p. Applying the real 
analytic version of the stable manifold theorem [11] to p, we find that the local 
unstable manifold W of p can be written 

W --- {(~1, ~2, 1"1) E R 3 : 1" I --- k + g(~l, ~2) for (~1, ~2) near (0, 0)}, 

where g : C 2--~ C t is real analytic near (0, 0) with g(0, 0) = 0. 
Now observe that  system (5.5) has a two dimensional invariant manifold 

M=-{(~x ,~2 , ' q )~R3: l~ l>O,~2>O,n>O,  and ~] '~=~ '} ,  

and that equations (5.4) define a real analytic diffeomorphism from Q to M which 
carries the vector field (5.3) to the vector field (5.5). Furthermore,  since the 
function ~b can be extended to x = 0 as a C 1 function with 4~(0) = 0 and 4,'(0) = k, 
the graph of 4~ is mapped  to the unique orbit  in W fq M. Hence  4~ can be written 

, l , (x) = y = xn  = x ( k  + g (x  ~,, x~'O), 

which completes the proof. 
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L E M M A  5.8. Let  A, c~1, and a2 be positive, and let f :  C2--~ C ~ be real analytic 
near (0, 0). Then the function 

, ( x ) -  ~-~f(~-, ,  ~2) d~ 

can be written 

r = x~g(x ~,, x~), 

where g: CE---~ C 1 is real analytic near (0, 0). 

Proof. Substituting ~ = xt into the above integral gives us 

i' d/(x) = x x tx-l f((xt)  ' ' ,  (xt) '~) dt. 

The result follows immediately upon writing 

[' 
Proof of Lemma 5.4. Transformation (4.1) gives us a solution (r, 0, w, v)(t) of 

system (4.2) such that r - *  0 as t ~ 0+. Lemma 4.3 implies that v(t)--~ +, /2  as 
t--* 0+ and that w ( t ) - 0  and O(t)--0".  Using equation (4.3) we find that 

v(t) = (2 + 2hr(t)2av) 1/2 

for small positive t. The first of equations (4.2) then implies that 

dr 
~-~ = (/3 + 1)(2 + 2hr2OV) 1/2 

for small positive t. Applying Lemma 5.7, we obtain a function R which is real 
analytic in a neighborhood of 0 with R ( 0 ) =  x/2(/3 + 1) such that 

r ( t )  = tR(t2B~). 

Transformation (4.1) then gives us 

x(t) --  K t ' ~ ( t 2 a ' ~ ) ,  

where r = e i~ and ~ ( z ) =  R ( z ) L  
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Proof of  L e m m a  5.5. Transformat ion  (4.1) gives us a solution (r, O, w, v)(t)  of 
system (4.2) such that  r ~ 0 as t ~ 0+.  L e m m a  4.3 implies that  v(t)---~ +`/2, 
w(t)  ~ O, and O(t) ~ O* as t ---> 0+.  Using equat ions (4.4) and (4.3) we compute  
that  

w(t)  = cr (~-1)" 

and that  

v (t) = (2 + 2hr(t)  2a~- car(t)  2(B-1)'Y)l/2 

for  small positive t. T he  first of equat ions  (4.2) then implies that  

dr 
dt (/3 + 1 ) ( 2 + 2 h r  2 ~ -  r 

for  small positive t. Applying L e m m a  5.7, we obtain a function R which is real 
analytic in a ne ighborhood  of (0, 0) with R(0 ,  0 ) =  ,/2(/3 + 1) such that  

r(t) = tR( t  2~,  t2(~-l)~). 

T h e  second of equat ions  (4.2) combined  with equat ion (4.4) now implies that  

dO = ct(c3_ l).C_ l R ( t2B.~, t2(13_1)~)(~3_1)~_1. 
dt  

Applying L e m m a  5.8 we find that  

O(t) = 0" + tq3-1)~O(t 2t3~, tz(13-1)'l), 

where  O is real  analytic near  (0, 0). Trans fo rmat ion  (4.1) then gives us that  

x = r~e~~ (O - 0 " ) +  i sin (0 - 0")]  

= Kt'v[a//l(~l, ~2) + i,/~2~tt2(~1, ~2)], (5.6) 

where  ~1 = t 2~,  ~2 = t2(13-1)'v, 

~,(~1, ~z) =R(~I ,  ~z) ~ cos (~/~20(~,  ~2)), 
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sin (4~20(~ ,  ~2)) 

4~ 

Since R and O are real analytic in a neighborhood of (0, 0), with R (0, 0) > 0, and 
since cos is an even real analytic function, ~1 is real analytic in a neighborhood of 
(0, 0). Note that ~1(0, 0) = R(0, 0)L Since sin is an odd real analytic function, ~2 
is real analytic in a neighborhood of (0, 0). Writing (5.6) in terms of t finishes the 
proof. 

P r o o f  o f  L e m m a  5.6. Since/3 = 1, we have that a = 2 and ~/= �89 Equation (4.4) 
then becomes 

W=C, 

while equation (4.3) becomes 

v 2 + c 2 - 2 = 2hr ,  (5.7) 

from which follows the inequality 

c 2 - 2 < . 2 h r .  

Since r---~ 0 as t---~ 0, we must have that c2<~2. 

We now wish to find the explicit solutions of system (3.2) or, equivalently, of 
system (4.2). Rewriting (4.2) with /3 = 1, we have 

i = 2v, 

O = c/r,  
(5.8) 

i f = 0 ,  

~3 = 2h. 

Using equation (5.7), we see that 

v 2 - - ~ 2 - c  2 = a  2 as t ~ 0 + .  

The possibility that v would approach a negative value is eliminated by the first of 
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equat ions  (5.8). Hence  we have that  

v - - * a  as t - ~ 0 + .  

We  can now solve system (5.8) explicitly to obtain 

v ( t )  = a + 2ht,  

and 

r(t) = 2 a t  + 2hi  2, (5.9) 

Substi tuting the t ransformat ion (4.1) into system (5.8), we obtain the following 
differential equat ion for  x: 

v + ic a + ic + 2 h t  
= x x. (5.10) 

r 2 t ( a  + ht) 

First consider  the case c 2 <  2, so that  a > 0. The  general solution of equat ion 

(5.10) can be written 

x ( t )  = Kt!/21icn~(a + ht) l l2(a + ht) -'~/2~, 

where  K is a complex constant.  Equa t ion  (5.9) implies that  IK[ 2= 2, which gives 

the desired formula  for  the case c 2 < 2 .  
Now consider  the case c 2=  2, so that  a = 0. Equa t ion  (5.7) becomes  

v 2 = 2hr. 

If h were zero, then v would also be zero and r would be constant ,  which would 

contradict  the hypothesis  that  r - ~  0. Thus  we must  have h > 0. Equa t ion  (5.10) 

now becomes  

ic + 2 h t  
= 2ht----- 5 -  x, 

and the general  solution can be writ ten 

x (t) = Kte-iC/2a% 

Equa t ion  (5.9) now implies that [KI 2= 2h, which gives the desired formula  for 

the case c 2 =  2 and completes  the proof .  
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6. An isolating block about collision 

Our next goal is to describe the geometric notion of regtflarization defined by 
Easton. We proceed by first developing the notation of isolating blocks, following 
Conley and Easton [2]. We next find an isolating block for our  central force 
problem. We then complete the business of the present section by using equations 
(4.8) to establish some properties of the block. In Section 7 we give Easton's 
definition of regularization [4] and use the results of the present section to apply 
his definition to the central force problem. Finally, in Section 8, we finish our 
discussion of regularization by describing a transformation similar to that of 
Levi-Civita [6]. 

We begin with isolating blocks. Let M be a smooth manifold and let $ : M  x 
R 1_~ M be a flow on M. A subset N c m is called invariant if $(N, R 1) --N. 

DEFINITION.  A compact invariant set N c M is called isolated if there exists 
an open set U containing N such that W(x, R 1) c U implies x eN.  The set U is 
called an isolating neighborhood for N. 

Now let B be a compact subset of M with non-empty interior and suppose that 
b = 0B is a smooth submanifold of M. Define 

b+-{xeb ' :~k(x,  ( - e ,  0 ) ) n B = ~ b  for some e >0}, 

b -  -- {x e b:  ~b(x, (0, e)) N B  = 4~ for some e > 0}, 

t----{xeb: 6(x, 0) is tangent to b}. 

(6.1) 

DEFINITION.  B is called an isolating block if t = b + n  b-.  

DEFINITION.  Let  N be an isolated invariant set, and let B be an isolating 
block. Then B is said to isolate N if int (B) is an isolating neighborhood for N. 

The  following theorem was proved by Conley and Easton [2]. 

T H E O R E M  6.1. If N is an isolated invariant set, then there exists an isolating 
block which isolates N. I [ B  is an isolating block, then there exists an isolated 
invariant set (possibly empty) which is isolated by B. 

Since it is convenient in our  application to define B in terms of a real-valued 
function on M, we introduce some more notation. Let  I : M  ~ R 1 be smooth. 
Write 

I*(x, t ) -  I(~(x, t)), 
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and define 

I (x )  = I*(x,  0) and it(x) ~ I*(x,  0), 

where  i*  and I*  as usual deno t e  der ivat ives  with respec t  to t ime t. The  fol lowing 
l e m m a  is p roved  by  Wilson and Y o r k e  [14]. T h e  symbol  " D "  denotes  derivat ive.  

L E M M A  6.2. Let  I : M--~ [0, ~) ,  and let 80 > O. Suppose that DI(x )  ~ 0 
whenever 0 < I(x) <~ 80. Suppose also that it(x) > 0 whenever 0 < I(x) ~< 80 and 
i (x) = 0. Then N =  I-1(0) is an isolated invariant set and I-1([0,  8]) is an isolating 
block for N for each 8 ~ (0, 80]. 

We  now define the subsets  of b which are asymptot ic  to N. 

a § = {x ~ b + : to(x, [0, ~)) c B}, 

a -  = {x ~ b -  : to(x, (-0% 0]) c B}. 

By definit ion, if x ~ b §  a § then there  exists a t > 0 such that  to(x, t )6  B. Thus  we 
may  define the t ime spent  in the b lock for  a poin t  x ~ b + - a  + by 

T(x) --= inf {t > 0 : to(x, t) r B}. 

Note  that  to(x, [0, T(x)])~ B and that  to(x, T(x) )~  b - .  Now define the m a p  across 
the b lock 

: b § - a § ---, b -  : x ~ t0(x, T(x)). 

T h e  fol lowing t h e o r e m  was also p roved  by Con ley  and Eas ton  [2]. 

T H E O R E M  6.3. If  B is an isolating block, then q " : b + - a + - - , b - - a  - is a 
diffeomorphism. 

D E F I N I T I O N .  An  isolating b lock B is said to be  trivializable if ~ extends  
uniquely  to a d i f fe rmorphism b+--+ b-. 

T h e  fol lowing l e m m a  shows tha t  trivializabili ty is actually a p rope r ty  of  an 
isolated invar iant  set. T h e  p roof  follows f rom techniques  in Conley ' s  notes  [1] and 
will be  omi t t ed  here .  
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L E M M A  6.4. Suppose that N is an isolated invariant set and that B1 and B2 
isolate N. Then B1 is trivializable if and only if B2 is trivializable. 

DEFINITION. Let B isolate N. Then N is said to be trivializable if B is 
trivializable. 

We now return to the central force problem. For the remainder of this section 
we take ~O to be the flow on M(h) determined by equations (4.8). The manifold 
M(h) is given by (4.5), while the invariant set N is given by (4.6). Dots now 
denote differentiation with respect to ~-. Define 

I:M(h)---~ Rl:(r ,  O, w, v)--~ r, 

ll(h, 8 ) -  {x e M(h) : I(x) ~< 8}. 

L E M M A  6.5. L e t / 3 < 1 .  Given any h, there exists a 80>0  such that B(h, 8) is 
an isolating block for N whenever 0 < 8 <~ 80. 

Proof. We use Lemma 6.2. The tangent space to M(h) at the point x =  
(r, 0, w, v) is given by 

{(~, 0, w, ~): -h,~3,r~"-li + ww + v~ = 0}. 

Since DI(x)(k, 0, w, 6) = ~, we have that D/(x) ~ 0 if (w, v) #: (0, 0). Equation (4.3) 
implies that 

tw2+ v2-21 = 2  Ihl 8 ~ ,  

where I (x)= 8. Therefore, if 8o is small enough, then (w, v )~  (0, 0) whenever 
8 ~< 80. Hence DI(x)~  0 when 0 < I ( x ) ~  < 80. Now, using equations (4.8), we see 
that 

i = ( / 3 + l ) r v  and I=( /3+l ) r (w2+(2 /3+l )v2 -2 /3 ) .  

If I (x)= 8 and if I (x)= 0, then r = 8 and v = 0. Using (4.3), we then have 

= 2(/3 + i)8(h8 ~" + 1 - /3) .  

Since 1 - /3 > 0, we may choose 80 small enough so that I > 0 whenever 0 < 8 ~< 6o. 
Finally, note that N = 1-1(0). Hence, by Lemma 6.2, B(h, 8) is an isolating block 
for N and the proof is complete. 
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By examining Figures 4.2 and 4.3, one can observe that N is not isolated if 
/3 >t 1. Theorem 6.1 then tells us that it is impossible to construct an isolating 
block about  N when [3/> 1. 

We now exhibit for the block B(h, 8) the various subsets defined above. We fix 
h and assume that 0 <  8 ~< 80, where 8o is given by Lemma  6.5. We abbreviate 
B = B(h, 8) and x = (r, 0, w, v). 

b =  {xcM(h) :  r = 8}, 

b + =  {x~b:  v ~<0}, 

b -  ={x~b :v>~0} ,  

t = { x ~ b : v  =0}, 

a + = ~ x ~  b +  : w = 0 } ,  

a -  = { x ~  b -  : w = 0} .  

The projections of some of these sets to the (w, v)-plane are shown in Figure 6.1 
for the case h > 0. 

The following theorem gives us the values of /3 for which N is trivializable. 
The proof will be broken into two parts. The first part is proved in Lemma 6.7 
below, while the second part is postponed until Section 8. The relevance of this 
theorem to the question of whether collisions can be regularized will be discussed 
in the next section. 

T H E O R E M  6.6. The set N given by equation (4.6) is a trivializable isolated 
invariant set for equations (4.8) if and only if [3 = 1 - n  -1, where n is a positive 

integer. 

L E M M A  6.7. Suppose that N is a trivializabte isolated invariant set for 
equations (4.8). Then [3 = 1 - n  -x, where n is a positive integer. 

V 

t ~ t  w 

Figure 6.1. 
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Proof. Since N is not an isolated invariant set when/3 >I 1, we must  have/3 < 1. 
Using the definition of B and equation (4.3), we write 

b={(r ,  0, w , v ) ~ R 4 : r = ~  and w 2 + v 2 = 2 + 2 h ~ ' } .  

Using the integral A (4.10) for system (4.9), we can write the map  across the 
block as 

q~ : b + - a + - - ~  b - - a -  : (r, O, w, v)--->(r, rtto(O, w), w , - v ) ,  

where We is the second component  of ~ .  Here  we are using (0, w) as coordinates 
on b +, so r = 8 and v = - ( 2  + 2h~ av - w 2 )  ~/2. Since equations (4.8) are independ- 

ent of 0, 

~t"o(o, w)  = o + r ( w ) .  

The function F is defined for all w such that 0 <  w2<~2+2hS~L By symmetry,  

F ( - w )  = - F (w) .  (6.2) 

By hypothesis, B is trivializable. Therefore  gt extends to a continuous map 
b + ~ b- .  Thus 

0 + F(0+) = 0 + F ( 0 - )  + 2,rn, 

where n is an integer. By (6.2), F ( 0 - ) =  - F ( 0 + ) .  Hence  we must have 

F(0+)  = 1rn. (6.3) 

The  number  F(0+)  can be computed using geometr ic  methods.  Consider a 
point poe  a § Recall the definition (4.12) of S ~:. By Lemma  4.3, tO(po) is a point s -  
in S-. The orbit  through Po is the stable manifold of s- .  Now let p e b § be close to 
Po. The  orbit  through p follows closely the stable manifold of s- ,  passes close to 
s- ,  and then follows closely the unstable manifold of s- .  We therefore must  

determine the unstable manifold of s- .  
The  unstable manifold of s-  is a subset of N, so we study the flow on N 

determined by equations (4.8). On N, w2+ v 2= 2, so we introduce the angular 
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variable X by 

w + iv = x/2e ix. 

Equations (4.8), restricted to N, then become 

x'=(1-/3)w. 

Hence,  in the (0, X) variables, the unstable manifolds of points on S- are just 
straight lines with slope 1 -/3. (See Figure 6.2.) We are interested in the branch of 
the unstable manifold of s- for which w I>0. Therefore  we take - z r / 2 < ~ X < ~ r / 2 .  

Write 

s -  = (6, 0o, O, - 4 2 ) .  

Then the unstable manifold of the point s-  is exactly the stable manifold of the 
point 

s + -= (6, Oo + 7r(1 - / 3 ) - 1 ,  O, x/2). 

We now can determine F(0+).  The orbit through p first follows the stable 
manifold of s-, then follows the unstable manifold of s-, which coincides with the 
stable manifold of s § and finally follows the unstable manifold of s +. Note that 0 
does not change along the stable manifold of s- or along the unstable manifold of 
s +. Therefore,  as P---~P0, the change in 0 along the orbit approaches the 
difference in 0 between s- and s +. This difference is w(1- /3 )  -1. Hence F ( 0 + ) =  
7r(1-/3)-1. Combining this result with (6.3), we have/3  = 1 - n  -1, where n is an 
integer. Since 0 ~</3 < 1, n is positive and the proof is complete. 

x 
3~/2 S- 

-~r/2 S- 
S 

Figure 6.2. 
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7. Block regularizalion of the vector field 

We now turn to Easton's definition of regularization. We are interested in 
whether equations (3.2) can be regularized. We consider the equivalent system 
(4.2). The set N given by (4.6) is the set of singularities of equations (4.2), i.e. it is 
the set where the vector field fails to be defined. In the previous section we 
worked with system (4.8), for which N is an invariant set. On M ( h ) - N  the orbits 
for the two systems are identical; only the parameterization is different. Later  in 
this section we shall make use of this relationship between the two systems, but 
first we describe Easton's definition. 

Let  M be a smooth manifold, let N be a compact subset of M, and let F be a 
vector field on M - N .  In the previous section N was an invariant set. In this 
section, N is the set of singularities of the vector field F. Let  ~b be the flow on 
M - N  given by F. We use the term "flow" loosely here, since we do not require 
that ~b(x, t) be defined for all t. 

Again let B be a compact subset of M with non-empty interior, and suppose 
that b =  0B is a smooth manifold which does not intersect N. As before, b § b-,  
and t are defined by (6.1). The definition of isolating block is also the same. Let  
~?(x) denote the orbit through x, i.e. 

~(x) = {~b(x, t) : $(x,  t) is defined}. 

DEFINITION.  An isolating block B is said to isolate the singularity set N if 
N c i n t  (B) and if r for all x ~ B - N .  

The subsets a + and a-  are the same as before,  except that now we must allow 
for solutions which are not defined for all t. Thus 

a+={x~b+:~b(x, t )~B for all t~>O for which ~b(x, t) is defined}, 

a -={x~b- :~b(x ,  t ) ~ B  for all t~<O for which d,(x, t) is defined}. 

The map �9 :b §  b-  is defined in exactly the same way as the map ~ in 
Section 6. Again Theorem 6.3 holds [4], and again we have the same definition of 
a trivializable block B. 

DEFINITION.  The singularity set N is said to be block regularizable if there 
exists a trivializable block B which isolates N. 

Easton gives a general procedure,  which he calls "regularization by surgery," 
whereby one can replace the given vector field by a vector field without sing- 
ularities [4]. For our  purposes we give the following interpretation of the above 
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definition. Suppose that one can isolate the singularities of a given system with an 
isolating block, and suppose that the map across the block can be extended. 
Solutions passing close to the singularities then will determine uniquely an 
extension for a solution ending in a singularity. Thus one can construct an 
extended flow with the proper ty  of differentiability with respect to initial data. If, 
on the other  hand, the map across the block does not extend, then such an 
extended flow does not exist. 

As a side remark we note that it may be useful in some applications to relax 
the definition of regularization and to require only that the map across the block 
extends to a homeomorphism.  If the differentiability of the flow were of little 
interest, then such a relaxation would probably be more appropriate.  

We now return again to our  central force problem. Note that whether a certain 
set is or is not an isolating block is independent  of the parameterizat ion of the 
flow. The map across the block is also independent  of the parameterization.  
Therefore,  B(h, 8) is an isolating block for system (4.2) if and only if it is an 
isolating block for system (4.8), and �9 = ~.  Hence B(h, 8) is trivializable for (4.2) 
if and only if it is trivializable for (4.8). We then have, as an immediate 
consequence of Theorem 6.6, our  main result about block regularization of 
system (3.2). 

T H E O R E M  7.1. The singularity set N for system (4.3) is block regularizable if 
and only if/3 = 1 -  n -1, where n is a positive integer. 

The extension provided by this theorem was computed in the proof of Lemma 
6.7. There we saw that orbits passing close to collision are deflected through an 
angle of F ( 0 + ) =  ~ ' (1- /3)  -1 in the x-plane. If this angle is a multiple of 7r, then 
the particle emerges in the same direction regardless of whether it passes the 
singularity on the right or on the left. Hence,  if/3 = 1 - n -1, then the extension of 

a singular orbit  is a rotation through nTr. This extension is a reflection for even n 
and a transmission for odd n. The proof  of Lemma  6.7 also shows that the map 
across the block extends to a homeomorphism when/3 = 1 -  n -1. To  complete the 
proof  of Theorem 6.6, we have only to prove that this homeomorphism is in fact a 
diffeomorphism. This proof is given in the next section. 

In Figure 7.1 we illustrate four examples of the regularization provided by 
Theorem 7.1. In case/3 = �88 F ( 0 + ) =  47r/3, so no unique extension is determined. 
In case /3 = 1, F ( 0 + ) =  27r, so the unique extension is a reflection. In case /3 = 2, 
F(0+)  = 37r, so the unique extension is a transmission. In case /3 =3, /3 >~ 1, so 
there are no nearby orbits from which to determine an extension. 

It  is interesting to compare  Figure 7.1 with Figure 5.1. In the cases/3 = ~ and 
/3 = 3, branch regularization determines an extension while block regularization 
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~o114. F(O,-) -4z /3  /~= 1/2. F(O+)=2~ 

f~=213. I'(0+)= ?,~ 1=3/2 

Figure 7.1. 

does  not.  In  the cases /3 = ~ and /3 = 2, bo th  regular izat ions  p rov ide  the s a m e  
extensions .  

O n e  easily sees tha t  sys tem (3.2) is b ranch  regular izable  wheneve r  it is b lock 
regular izable  and tha t  the two techniques  give the  same  extension.  If  it is b lock 
regular izable ,  then  /3 = 1 - n - I ,  so p/q = (1 +/3)-1 = n/(2n - 1). T h e r e f o r e  q = 
2n  - 1 is odd,  and the sys tem is b ranch  regular izable .  T h e  extension is a reflection 
w h e n  p = n is even  and a t ransmiss ion when  p = n is odd.  

In  general ,  b lock  regular iza t ion does  not  imply  b ranch  regular izat ion.  In a 
prev ious  p a p e r  [7] this au thor  gave an example  of  a b lock  regular izable  sys tem 
which is not  b ranch  regular izable .  I t  seems  reasonab le  to  suppose  tha t  there  are  
sys tems which are  bo th  b ranch  and b lock  regular izable ,  but  for  which the two 

extens ions  are  different.  H o w e v e r ,  this au thor  does  not  know such an example .  

8. Levi-Civita regularization 

W e  now . re turn  to the  original  Hami l t on i an  sys tem (3.2) and  in t roduce  a 
change  of  var iables  ana logous  to the Levi -Civ i ta  t r ans fo rmat ion  of the Kep le r  
p r o b l e m  [6]. Cons ider  the Hami l t on i an  funct ion H(x ,  y) given by  equa t ion  (3.3) 
and  assume tha t  

a = 2/3 = 2(1 - n - l ) ,  
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where n is a positive integer. As usual, we fix the total energy H(x, y) = h. Define 
new complex variables z and w by 

X ~ - - - Z  n 

y = w~  1 - - .  
(8.1) 

Note that these equations define a canonical t ransformation with multiplier n, i.e. 

Re (dE dy) = n Re (d~. dw). 

Note also that the t ransformation is an n-to-1 mapping. Now consider the new 
Hamiltonian function 

K(z, w ) -  I z l 2 ~ " - ' ( H ( z  ", w~.*-")  - h) 

-- �89 I w F -  h Iz? < " - ' -  1. 

We consider (8.1) as an isoenergetic t ransformation from the manifold {H = h} to 
the manifold {K = 0}. The vector field (3.2) on M(h) transforms to 

dz 
do" w, 

(8.2) 
dw 

= 2 ( n  - 1 ) h  Iz12("-2}z, 
on the manifold {K(z, w ) =  0}. The new time variable or is given by 

d t  = n Izl 2~"-" do.. 

Equations (8.2) extend to z = 0 and hence the singularity at collision has been 
"regular ized" in the sense of Levi-Civita. Since Iwl 2-- 2 when z = 0, solutions of 
(8.2) pass right through z = 0. To  recover the behavior  of system (3.2) we apply 
t ransformation (8.1). The case when n = 3 (or = ]) is shown in Figure 8.1. 

We  now state and prove our  final lemma.  This lemma, together with L e m m a  
6.7, establishes Theorem 6.6 and hence Theorem 7.1. 

L E M M A  8.1. Let /3 = 1 - n -1, where n is a positive integer. Then the invariant 
set N for equations (4.8) is trivializable. 

Proof. We use transformation (8.1). The block ll(h, 6) written in the (z, w) 
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z-p~ane 

X=Z ~ 

x-plane 

Figure 8.1. 

coordinates  becomes  

B '  = {(z, w ) e C 2 : K ( z ,  w)= 0, Izl" 

Vec to r  field (8.2) has no invariant  set inside B'.  Hence  the asymptot ic  sets a t and 

a -  for  B '  are empty.  By T he o re m  6.3, the map  across the block is a d i f feomorph-  
ism f rom the entire incoming set to the entire ou tgoing  set. Transforming  back to 
the  coordinates  of  system (4.8), we see that  ~ extends to a diffeomorphism. 
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