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Introduction 

What sort of metric automorphisms do always exist on infinite dimensional 
quadratic spaces? Clearly, we always have the symmetries about (nondegenerate) 
hyperplanes, the identity 1 of the space, - 1 ,  and of course finite products of these 
isometries; they form an invariant subgroup ~ in the full orthogonal group of the 
space. In the finite dimensional case ~ is already the full orthogonal group. In the 
infinite case however, ~ usually represents only a negligible part of the orthogonal 
group associated with the space. In this note we shall show that there are quadratic 
spaces of arbitrarily large dimension whose full orthogonal groups equal ~. In w 1 we 
shall describe how to define such spaces over prescribed (non denumerable)base 
fields. 

The spaces E which we shall investigate below share the following property on 
subspaces F, 

F ~ E & d imF ~> No ~ d i m F  • < dimE.  (*) 

In particular, if such a space E is decomposed orthogonally, E =  E 1 ~ E2, then one of 
the summands E~ necessarily is of finite dimension. Spaces with such few orthogonal 
splittings are an extreme counterpart to quadratic spaces admitting orthogonal bases. 
For subspaces F of spaces wich admit orthogonal bases we invariably have dim ElF • = 

dimF which sharply contrasts (*). We see in particular that d imE~No for all E 
satisfying (*). The construction given in w 1 yields spaces which actually satisfy the 
stronger property on subspaces F, 

F ~ E & d imF t> No ~ d i m F  • ~< No. (**) 

The notion which stands in the center of our discussion of spaces with small 
orthogonal group O in the sense indicated above (~) = ~) is that of a locally algebraic 
isometry (w An isometry T on E is called locally algebraic if T admits for every 
x e E  a polynomial fx(T)  (with coefficients in the base field of E) that annihilates 
x, f x ( T ) x = O .  Iffx does not depend on x we call T algebraic. Theorem 3 of w says 
that the spaces constructed in w admit locally algebraic isometries only; in other 
words, there are infinite dimensional (**)-spaces E with property (2): 'Every 
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isometry on E is locally algebraic'. By means of somewhat complicated examples one 
can however show that (**) does not, in general, imply (2) (the converse implication 
is seen not to be true either by Theorem 3 of w Spaces with property (2) and 
which, in addition, satisfy (*) absolutely (i.e. which preserve (*) under extensions 
of the base field) are seen to have trivial quotientE)/~ (Corollary 1 of Theorem 3 
in w 2). 

In [3] it is shown that certain spaces constructed in w 1 satisfy Witt 's cancellation 
theorem: If  E =  E 1 @E2 = F1 ~)F2 are orthogonal decompositions of E with E 1 and F 1 
isometric, then E 2 and F2 must be isometric; a rare thing indeed to happen in the 
infinite dimensional case. 

Notations. 

Generally speaking, forms ~:  E x E--* k are additive in each argument and satisfy 
~(2x, y)=2~(x,y) ,  ~(x, 2y)=~(x,y)2 ~ with respect to some fixed involution 

(--  antiautomorphism of period 2) of  the division ring k. We shall however always 
assume below that k is commutative. We shall furthermore assume �9 to be e-hermitean, 
i.e. �9 (y, x) = e~ (x, y)~ with e-- + 1 (hermitean) or e-- - 1 (antihermitean). If  ~ is the 
identity, then k is necessarily commutative and we speak of symmetric and anti- 
symmetric forms respectively. In any case, 'x_ky', defined as usual to be ' ~  (x, y ) =  0', 
is a symmetric relation. E • is called the radical of E (rad E). I f  rad E =  (0) we call �9 non- 
degenerate and - in analogy with algebras - the space (E, q~) semisimple. ~ is said to 
be tracevalued if for every xeE  there is a ~ k  such that ~(x ,  x ) = ~ + e ~  ~. We shall 
always assume �9 to be tracevalued, a non trivial requirement only when chark k = 2 
([1] w No. 2). We shall make use of  Witt 's theorem in w below ([1] w No. 3): Let 
E be a space with a non degenerate form ~ which is hermitean or anti-hermitean, and 
tracevalued if it is hermitean. Then any isometry ( =  vectorspace isomorphism that 
preserves ~) between finite-dimensional subspaces can be extended to a isometric 
automorphism of E. 

Let (E, ~)  be an e-hermitean k-vectorspace with respect to the involution ~. 
Assume that the division ring k '  contains k and admits an extension (involution) of 

to k ' .  We know that the abelian group E '  = k '  @k E may be regarded as a vector- 
space over k and as a vectorspace over k ' .  The form ~ ' : E '  x E'-~k' ,  defined by 
~ '  ( ~  2~| ~ l~j| ~, 2 ~  (xl, Yi)P~ for 2~,/~j~k' is 8-hermitean. We say that 
satisfies (*), or (**), absolutely, if the form ~ '  possesses these properties for all exten- 
sions k '  of  k. (E', ~') is called the k'-ification of (E, ~)  or the space obtained from 
(E, ~)  by extending the ring of  scalars. 

A space (E, ~)  is called anisotropic if it contains no isotropic elements, i. e. no 
vectors x r 0 with �9 (x, x) = 0. 

Unless stated otherwise, (E, ~)  will be assumed to be of infinite dimension. 
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In this short section we shall describe the construction of infinite dimensional 
spaces (E, ~) where # is an e-hermitean form satisfying (**) absolutely. 

Let ~ be an involution of the commutat ive field k, c a r d k > N o .  Let X c k  be a 
maximal  subset of  algebraically independent elements over the prime field k o so that 
k is an algebraic extension of  k o (X). Let e = + 1 or - 1. Since ~ is of  period 2, there 
is a subset Y ~ X  with card Y = c a r d X  ( = c a r d k )  and for every r/e Y either e~/~=q or 
er/~r Y. Let then (e,)~ 1 be a basis of  a k-vectorspace with cardk>_-cardl>No.  We 
define an e-hermitean form q~ on E x E  as follows: Pick an ordering on I. For  all 
i < tc in I set q~ (e,, e,) = e~ (e~, e,)" = rl,, e Y such that all elements r/,~ (z < x) are differ- 
ent. Fur thermore  q~(e,, e,)=eq~(e,, e,)~sk such that no q~(e,, e,) equals a ~(e,, e~) 
with t 4: K. We assert that 4) satisfies (**). 

Proof. Let U and V be subspaces of  E with dimV>dimU=No,  (u~)t~N and 
(v,),~ s bases of  U and V respectively, u , = ~  ~,ke~, v , = ~  fl,~e~ where the first sum 
extends over the finite set M i = { x e l [  chiC0}, the second over the finite set N , =  
={KeI [ f l ,~ :~0} .  Set M =  ~.)~ Mi, N= [..)s N,. Thus c a r d N > c a r d M = N 0 .  Our  
assertion is proved if we can exhibit a pair u, ve  U x V with q~ (u, v) r  Such a pair is 

found as follows. 
(i) Xconta ins  a denumerable subset A such that {cq~ I i sN,  ~r is contained in 

the algebraic closure in k of  the subfield ko (A). 
(ii) There is a OoeN\M such that 

A c~ {+(ev, %o), q~ (eQo, e ~ ) l v c I \ ( e o } }  = O. 

Let Qo e Nvo. 
(iii) Xcon ta ins  a finite subset B such that {/~vou [ pEN~o} is contained in the 

algebraic closure in k of  ko(B ). Since M is infinite, there is a xoeM such that 

~(e~o,eoo), ~(eoo , e,~o)r Let xo~M,o. 
(iv) Notice that  ~o r 0o. I f  Xo < Qo we let 

c = {r I e) M,o • Nvo\(( o, Co))); 

if0o <Xo we let 

C = {~(%, e~) [ (Q, x)~Nv~ x M,o\{(0 o, Xo)}}. 

Thus, if  x o < Qo we see by (ii), (iii), (iv) that q~ooo = ~ (e~o, eoo)r u B w C; similarly, if 
0o < Xo we have r/oo~o = q)(eoo, e,,o)r w B w C .  Thus, if kl is the algebraic closure 
in k of  k o (A w B u C) we see that ~l,,ovoCkl if  no <Oo and qQo~oCk 1 when 0o < no. In 
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the first case we consider 
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(r,p)~(ro,Po) 

If we had 4(U,o, V,o)=0 then we had a nontrivial linear equation for r/~o~o with co- 
efficients in k~, so r/~oooek ~. If  Qo < Xo we conclude in the same manner that 4 (V~o,U,o) 
r  Clearly our proof  remains valid if we pass to the form 4 '  on the k'-ification 
E '  = k '  (~k E of E with respect to some overfield k' o f k  (admitting an extension of :t). 
This proves our assertions. We note our result as 

THEOREM 1. For e = + 1 and for e = - 1 there exist e-hermitean forms 4 over 
any commutative field k with given involution and card k > N o which satisfy (**) abso- 
lutely; we may choose the dimension of 4 to be card k. 

We had card k >t dim E for the spaces E in the above construction. We do not know 
if this is necessarily so for spaces with property (**). It is easy to see that (**) does 
imply (cardk)N o >_-dimE. Thus, at least in the special cases where cardk is a beth 
(e.g. when k =  R or C), (**) does imply cardk ~> dimE. 

THEOREM 2. Let k = k o ( X  ) be a purely transcendental extension of k o and 
card X> No. l f  - in the notation of the preceding construction - 4 is chosen symmetric 
with 4(e,,  e , ) = ~ , , e X ( , ,  r E I  and cardI>No) such that ~ ,~=~,  if and only if {z, x} 
= { v, #}, then 4 (x, x)  is a square in k only when x = O. 

This result is proved in [3]; it guarantees the existence of anisotropic forms with 
property (**) over all fields of a certain type. In the special case where ko is assumed 
orderable the part of  theorem 2 ruling out isotropic vectors follows directly from 
Jacobi's diagonalization formula (for finite spaces). It is clear that after extending the 
base field 4 may admit isotropic vectors. The fact that k is a purely transcendental 
extension of some k o is not however crucial for the existence of an anisotropic 4 over 
k satisfying (**). We give an example of such a form over R by specifying a subspace of 
an infinite separable Hilbertspace (H, 4) over the reals: Note that the collection of all 
sets M of linearly independent vectors x, y, . . .  with {4  (x, y) [ x, y e M }  algebraically 
independent over Q is inductively ordered by inclusion. Let Mo be a maximal element 
by Zorn's lemma. If  card Mo > No, then the restriction of 4 to the span of Mo satisfies 
(**) as we have demonstrated above. Assume by way of contradiction that card Mo ~< tqo. 
Let (x~)~  be the elements of Mo in some ordering, and let A =  {4(xt, xj) [ i , j~J}.  
Introduce an orthonormal basis (e~)t~s in the span X of the x~ (i~J), e~=~ ~ljxj with 

(~qj) triangular. Then (cqj) -1 =(fit j) is triangular and 0q j, f l i j~Q(A) (real closure). 
Since cardA ~<No we can pick a family (h)~s,  the ti in R and algebraically indepen- 

dent over Q (A) with ~ j  t~ = t < oo. The closure Jt' of  X in H (in the normtopology of  
4 )  contains a vector x with 4 (x ,  e~)=21h for any choice of 2~ with, say, 0 < 2 t <  1. We 
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have # (x ,  x~ )=~  fl~;).itj. It follows that the set ( r  xj) [j~J} is algebraically inde- 
pendent over (QA) for 2~ rational. If we can arrange for ~(x,  x ) = ~  (2~t~) 2 to be 
outside Q(A u (t~)j) we have the desired contradiction: Mo u {x} contradicting the 
maximality of Mo. Now if J should be finite, then A'=X and we may, if necessary, 
pass from x to a vector x +y  with y e X  j- and ~ (y, y) = ~ -  �9 (x, x) and suitably chosen 
ct. If card J =  No, then by varying the rational 2~ in the open unit interval we can arrange 
for ~(x,  x) to be any real number of the open interval [0, t]. Clearly then, there is a 
choice with ~(x,  x) outside the denumerable Q(Au(t~)j) .  Q.E.D. We can do the 
same for hermitean forms over a complex Hilbert space. Thus 

THEOREM 3. There exist (infinite) positive definite symmetric (hermitean) forms 
over •(C) which satisfy (**) absolutely. 

Remark. We briefly indicate how to construct spaces which satisfy (**) but not 
absolutely so. Let k be nondenumerably infinite. Let (f ,) ,  ~ i, (g,), ~ I be bases of k-vec- 
torspaces F and G respectively, cardI=cardk.  Choose subsets X and Y of k with 
X• Y=0 and X w  Y algebraically independent over the primefield k 0 of k. Define a 
symmetric bilinear form ~ on E=FO)G as follows: ~ ( f , , f ~ ) = - # ( g , , g ~ ) = ~ , ~ .  
~( f , ,  g~) = ~(f~,  g,)=r/,~ with ~,~eX, ~l,~e Yand ~,~=~v~ and r/,~=r/v . if and only if 
{t, x} = { v,/~}. If k is assumed orderable, then the reader proves by the method illu- 

strated above that E = F ~ G  satisfies (**). However, over the extension k(x/~-I  ) E 

decomposes orthogonally, E=  HO)L with H spanned by all f, + x/----i .g, (z e l )  and L 

spanned by all f~ - x / - - l "  g, (t e I). 

w 2. The Orthogonal Group 

In this section we study the orthogonal group s associated with certain infinite 
dimensional spaces (E, ~) which satisfy (*). Here �9 will always be symmetric or 
anti-symmetric and tracevalued if it is symmetric. 

Consider an isometry T such that there is an orthogonal decomposition E =  E o ~ E 1 
with d imE t < oo and T=  + 1 on Eo. Any isometry T with Ker ( T - 1 )  or Ker (T+ 1) of 
finite codimension in E admits such an orthogonal decomposition of E. The set ~ of 
all such isometries T is an invariant subgroup of the orthogonal group s associated 
with the space E; it contains the subgroup ~o of index ~<2 of all T which are the 
identity on almost all of  E. For  symmetric # and chark 4:2 [2] gives a detailed ac- 
count of ~o; in that case ~0 is generated by all symmetries about semisimple hyper- 
planes. We shall show that for prescribed natural n>  1 there are infinite spaces (E, ~)  
withE)/~o isomorphic to a product ofn copies of Z2 (characteristic not 2). 

It is natural to expect, that spaces with few orthogonal splittings in the sense of 
(**) admit 'few' isometries. A confirmation of this expection is provided by the first 

two theorems. 
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T H E O R E M  1. I f  (E, ~) satisfies (*), then every isometry on E is determined modu- 
lo a factor from ~o by its action on any subspace of denumerably infinite dimension. 

T H E O R E M  2. I f  (E, ~) satisfies (*), and this absolutely so when the base field is 
not algebraically closed, then every locally algebraic isometry belongs to the group 
associated with ( E, qo ). 

Proof of Theorem 1. Assume first that E is semisimple. For 2 :# 0 an element of  the 
basefield k let X(2) be the eigenspace ker ( T - 2 1 )  of  the isometry T of E. X(2)• 
if 2/~# 1. Thus we cannot have d i m X ( 4 ) = d i m E  unless 42= 1 by (*). I m ( 4 T - 1 ) c  
c X(4) 1 and Ker ( 4 T -  1 ) = X(4-1)  so 

dim E/X (4-1) <~ dim X (4) • . (1) 

Assume that for some subspace U of E we have T Iv=l , dim U=No. Since T pre- 
serves # we conclude that Im ( T - 1 )  is contained in U • and thus of dimension smaller 
than dimE. Hence we must have dim X ( 1 ) = d i m E  and therefore d imX(1)•  
by (*). Hence dimE/X(1)< oo by (1) and therefore dimX(l)X<<.dimE/X(1) as E is 
semisimple. Together with (1) d i m X ( l ) •  oo. From this we conclude 
that there exists a subspace H c X ( 1 )  of  finite codimension in E with E=H@H z. 
Since T i s  the identity on H we have Te,~ o. I f  E is not semisimple, then radE is of 
finite dimension. Let E 0 be a linear complement of rad E in E. We can find T O in ,~o 
such that ToT(Eo))C Eo. Since radicals are mapped onto themselves under isometries 
we must have ToT(Eo)=E o. By what we have already proved it follows that the 
restriction of ToTto E o is determined modulo ,~o by its action on U c~ E o c~ Ker (T O - 1). 
Hence the same holds for T. Q.E.D. 

Proof of Theorem 2. Case 1 : there is a 4 with d imX(4)=d imE.  Hence 42 = 1 and 
T~ ~ by Theorem 1. 

Case 2: d i m X ( 4 - 1 ) < d i m E  for all 4~k\{0). Thus d i m X ( 4 ) •  by (1) and 
so d i m X ( 4 ) <  oo for all 4~k\{0} by (*). For every member x of a Basis g of E w e  let 
fx be the annihilating polynomial, fx splits into linear factors over the algebraic closure 
k '  o f k ,  f x =  I-I ( Z - 4 i ) .  Every linear factor provides an eigenvalue 41~k' of T':E' 
= k ' |  E'. Since E '  satisfies (*) by the assumptions of the theorem we see that 
the number l of different 4~ must be less than dimE. Hence there are o n l y / < d i m E  
different annihilating polynomials f x ( x ~ ) .  We conclude that there is at least one 
f~ annihilating a subspace G = E of dimension dim G = dim E. Let fx = I ]  ( Z -  4~) be 
the splitting of this very polynomial. I f  some of the 4~ equal ___ 1 we let Go be the image 
of G under the map I I ~ =  +t ( T - 4 f l ) .  We have d i m G o = d i m G  in the present case. 
Let g be the product of  the remaining linear factors ( Z -  4). Since dim Go = dim E and 
since g (T)  annihilates Go and hence also G~ = k ' |  Go, we conclude that the dimension 
of k e r ( T - 2 )  must equal d imE for at least one 4 5  4-1. This is a contradiction as 
Go satisfies property (*). 
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COROLLARY. / f  (E, ~) is as in Theorem 2, then the set of all locally algebraic 
isometries on E is a group. It coincides with the set of all algebraic isometrics on E and it 
is generated by all T~ ~ with E/Ker ( T -  1) or E/Ker ( T+ 1)finite dimensional," hence it 
is a normal subgroup of~). 

LEMMA. Assume that E 1 .... , E, all satisfy (*) and that dimEi>dimEi+l  (i 
= 1, ..., n -  1). I f  T is any endomorphism of the orthogonal sum E=EIG. . .~ )E ,  that 

preserves orthogonality then the Ei are left almost invariant under T: dim (El + T ( Ei) ) / Ei 
is finite for all i. 

Proof. Let F1 = E 2 0 " " ~ E , .  DimEa > dimF1 so that there is a subspace V x of E l 
with T(V1)=E 1 and dim Vt =dimE~. By the assumptions of the lemma d imT(Vl)=  
dimE 1. Call K1 the projection of T(FI) onto E~ (for the decomposition E=EI@F1). 
T (V1)ZK 1 hence K1 and (F 1 + T(F 1))/F 1 are finite dimensional. Setting F 2 = E35. . .  ~) 
E, we have dimEz >dimF2. As F 1 +T(F1))/F 1 is finite dimensional we conclude that 
there exists V2~E2 with T(V2)=E 2 and dim V2=dimE2 . It is now clear how the 
argument may be repeated in order to conclude that there exist spaces V~=E~ with 
T(V~)=E~ and dim V,=dimE~. Let then K,j be the projection of T(E,) on Ej. K~i_L Vj 
for all i C j. Since dim T(V~)= dim E~ by the choice of the V~ and by the assumptions of 
the lemma, we conclude that K~j is finite dimensional for all pairs i r  This is what the 
lemma asserts. 

We now consider the orthogonal sum of finitely many spaces (E~, q~t) of the kind con- 
structed in w For the sake of simplicity we choose ~ symmetric: For i=  1, 2 .... n 
let a basis of Ei, ~i (el, i i i e~)=~,~ where ~,~=~,~ if and only if{q v)={#,  ~} 
and where, for every fixed i, the set X ~ of all ~i~ {t, v~J(i)) is algebraically indepen- 
dent over the prime field ko of the basefield k. We shall not assume that the sets 
X ~, ..., X" are disjoint. For these symmetric spaces we prove 

THEOREM 3. Assume that dimEi>dimEi+l>No (i=1 ..... n - l ) .  Then every 
isometry of the orthogonal sum E = E10""  G E, is locally algebraic. 

Proof. For the sake of simplicity we omit the superscript 1 when mentioning 
1. furthermore let J (1 )=J .  Let us study the action of T on E 1 for T a n  iso- e~ t and x,v, 

metry of E: 

T e , = ~ , u e u + g , ,  where' g , ~ E 2 0 ) . . . ~ E ,  
J 

By the previous lemma, G=k(g,) , , s  is of finite dimension. Let Q = J  be such that 
(g,),~o is a basis of G. We introduce the finite sets M ( 0 =  {#eJ  I ~t,~#0}. Let M 
= U,~s [M(0\{z}].  We show that M is finite. Assume by way of contradiction that 
M is infinite. There is a denumerably infinite subset S = J  and a map ~ that assigns to 
every zeS a K(z)eJ with x(l)eM(z)\{z} and x ( 0 ~ K ( v )  for all ~r in S. There is a 
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subset A of X 1 U " "  U X n with cardA ~< No such that ~,~ek o (A) (the algebraic closure 

of  ko(A)  in k) for all x e M ( t ) ,  ~eS and ,l,(g,,g,~)eko(A ) for all t~S, xeO.  Let 
N =  U,~s  M(t) .  ca rdN=No.  There is a veJ  and for it a / z o e M  ~ such t ha t / zo~Nu  S 
and 

For Te, = ~u ~ u ~,) o~," e~, + ~ ~ e fl~g~ we have 

nit x e Q  

The first sum in (3) extends over the set [M(z) x M(v)]\{x(t),/~o}. There is a finite 

subset B of X 1 u . . .  u X" such that ~,uek o (B) for all # e M ( v )  and fl,,~ek o (B) for all 
xeQ.  Since S is infinite, there is a a e S  with r162  As t r 162  by the choice of  
the map x and s ince/~o~a we have ~ c ~ ) ~ o -  Let C = A u B u  {~,,~, ~,,, I (x, #)e  

[ M ( a )  x M(v)] \ (x  (a), Po)}. By (2) we have r <,)~oCA, hence r <,)~o~ C. All quan- 

tities in equation (3) equated for t=  a are contained in k o (C) with the exception of 

r The coefficient o f ~  ~,)uo in (3) is not zero. Hence we should have r <~)~o eko (C); 
so ~ <o)uo is algebraically dependent over C which is a contradiction. We have thus 
shown that M is finite. G being finite dimensional, there is a subspace F~ of E, spanned 

' ,eJ( i ) ,  i=1  ....  ,n  such that Te~ek(e~)+Fx for all r e  J(1). In the by finitely many e,, 
same manner we find for i=  2, ..., n finite dimensional spaces F~ such that Te~ ek(e~)+ 

. F i i +Fl.  Set F = ~ i = l  ~. We have T e u e k ( e , ) + F  for all I~eJ(i) and all i=l , . . . ,  n. In 
particular T ( F ) ~  F. Since F is finite dimensional we conclude that T is locally alge- 
braic on all basis vectors e~ and hence locally algebraic on each xeE.  Q.E.D. 

Let us look at the proof  for one more moment. We have shown that there is a 
subspace F of E, spanned by finitely many of the basisvectors e[ such that Tee k (e)+ F 
for all basis vectors e = e'~. Hence F is the orthogonal sum of its projections onto the 
summands E~ in the decomposition E = E  t + ... +E~. These projections, say G~, are 
semissimple (as are all spans of  collections of  basisvectors of  our particular bases 
(e~),~s<0, ( i=  1,..., n)). Therefore Ei=G~O(G~ n Ei). Since T ( F ) = F  it follows that 
the spaces G~ c~E~ are left invariant under T. I f  we extend T -~ Iv to an isometry To on 
E by letting T O act as the identity on F • we have Toe~o(E)  and TooT leaves each 
summand E~ of  E invariant. The restriction of T O o T to E~ is locally algebraic. Hence if 
c h a r k # 2  then we see by Theorem 2 that these restrictions are, up to a factor -t-1, a 
product of  finitely many symmetries. We have thus shown that we can find altogether 
finitely many symmetries S on E such that To o To I-I s acts on each E~ as 1E, or - l r , .  
Since Toe~o (E) we obtain the 

COROLLARY.  Let E = E I ~ ) . . . ~ E  n be as in Theorem 3 and cha rk#2 .  The 
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quotient group ~ / ~o of  the full  orthogonal group of  E modulo the invariant subgroup ~o 
is isomorphic to the direct product of  n copies of  Z 2. In particular, i f  n = 1, then ~) /~  is 
trivial. 
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