
436 

Corners and Arithmetic Groups 

by A. BOREL and J-P. SERRE 

TABLE OF CONTENTS 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  436 
w Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . .  439 

I. CARTAN INVOLUTIONS. GEODESIC ACTION. PARABOLIC S U B G R O U P S . . .  440 

w 1. The group ~ Cartan involutions . . . . . . . . . . . . . . . . . . . . . . . .  440 
w Homogeneous spaces of type S . . . . . . . . . . . . . . . . . . . . . . . . .  444 
w Geodesic action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  448 

II. CORNERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  453 

w Parabolic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  453 
w The corner X(P) associated to a parabolic subgroup . . . . . . . . . . . . . . . .  455 
w The topology of X(P) and Siegel sets . . . . . . . . . . . . . . . . . . . . . .  460 
w The manifold with corners .r . . . . . . . . . . . . . . . . . . . . . . . . . .  463 
w 8. The homotopy type of ~.~ . . . . . . . . . . . . . . . . . . . . . . . . . . .  466 

III. THE QUOTIENT OF .~ BY AN ARITHMETIC SUBGROUP . . . . . . . . . .  474 

w The quotient ~/F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  474 
w Strong separation properties . . . . . . . . . . . . . . . . . . . . . . . . . .  477 
w 11. Cohomology of arithmetic groups . . . . . . . . . . . . . . . . . . . . . . . .  481 

APPENDICE par A. DOUADY et L. HI~RAULT . . . . . . . . . . . . . . . . . . . . .  484 

Arrondissement des vari6t6s h coins . . . . . . . . . . . . . . . . . . . . . . . . .  484 

Bibliographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  490 

Introduction 

Let F be a torsion-free arithmetic subgroup of a semi-simple Q-group G. It oper- 

ates properly and freely on the symmetric space X of  maximal  compact  subgroups of  

the group G (R) of real points of G and  the quotient  X/F is a manifold. If  the Q-rank 

r o (G) of G is not zero, X/F is not compact  and the main  purpose of this paper is to 

provide a suitable compactification .~/F for it. Topologically 3~/F is a compact  mani-  

fold with interior X/F, whose boundary  has the homotopy type of the quotient  by F 

of  the Tits building of  parabolic Q-subgroups of G. However, from the differential- 

geometric point  of  view, 3~/F comes natural ly  equipped with a structure of (real ana- 

lytic) manifold  "with corners" (with boundary  if r o (G) = 1), which is of  interest in its 

own right, and  which we shall therefore not  smooth out  to a boundary  in the general 

case. As the nota t ion  suggests, we shall in fact first enlarge X to a space .~, whose 

construct ion involves the Q-structure of G, bu t  not F.  It  is a manifold with (countably 

many)  comers,  on which G (Q)  operates so that  the act ion is proper for any arithmetic 
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subgroup of G (Q). In the classical case where G = SL 2, F c SL 2 (Z) and X is the open 
unit disc, our )i" is the union of X with countably many lines, one for each cusp point 
on the unit circle, and ,(IF is a compact surface whose boundary consists of finitely 
many circles, one for each E-equivalence class of parabolic points. Thus, the cusp 
points, which are classically added to X, are here blown-up to lines, and this allows 
us to get a space on which F still acts properly. In this case, and more generally if 
G = S L , ,  our construction is equivalent to one of C. L. Siegel [27; w167 12]. 

The space .~' is set-theoretically the union of X and of euclidean spaces e(P), one 
for each proper parabolic Q-subgroup P of G (the codimension of e(P) being equal 
to the parabolic rank p a r k ( P )  of P). For a given P, the set of e(Q)'s  (QDP) is 
organized into a corner X(P), isomorphic to R* x R"-k, where R+ is the closed half- 
line of positive real numbers, n = d i m X  and k = p a r k ( P ) .  By definition, the X(P) ' s  

form an open cover of X. Now we wish to consider the closure e(P) of e ( P )  in a~as 
a space obtained from e (P)  by a similar construction, using the parabolic Q-subgroups 
of P. However e(P) is a homogeneous space under the group P(R),  which is not 
semi-simple and the isotropy groups of P(R)  are bigger than the maximal compact 
subgroups of P(R).  This led us to enlarge our framework, drop the assumption that 
G is semi-simple, or even reductive, and replace X by a suitable generalization of the 
above symmetric space, which we call a space of type S or S -  Q. Our construction 
has then a hereditary character well-suited for proofs by induction on dim G, besides 
allowing us to handle directly a general arithmetic group. The price to pay is the 
appearance of some technical complications, mainly in w167 1, 2, 3; in first approximation, 
it may be best for the reader not to dwell too much on them, and to keep in mind the 
case of a semi-simple G. 

The properties of �9 and .~'/F are applied to the cohomology of F. It is shown that 
Hi(F, Z [ F ] ) = 0  except in dimension m=dimX-ro(G ), where it is a free module / ,  
and that we have an isomorphism 

H'(F; A)= Hm_I(F; I | A), (ieZ), (1) 

for any F-module A. In particular, the cohomological dimension of f is m. If  X/F is 
compact, then I~-Z and (1) is just Poincar6 duality. I f  X/F is not compact, then the 
rank of I is infinite and I is in a natural way a G (Q)-module which is a direct analogue 
of the Steinberg module of  a finite Chevalley group. 

We now give some more details on the contents of the various paragraphs. Let G 
be an affine algebraic group over a subfield k of  R. w 1 is technical. It  introduces a 
normal k-subgroup ~ of G which is more or less a supplement to a maximal k-split 
torus of  the radical of  G, and discusses Cartan involutions of  reductive groups. In 
particular, it is shown that if G is semi-simple, K a maximal compact subgroup of G (R), 
andP a parabolic R-subgroup of G, then P (R) has a unique Levi subgroup stable under 
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the Cartan involution 0r associated to K (see 1.9 for a more general statement). 
w is devoted to spaces of type S - k ,  or more generally of type S, but in this intro- 

duction we limit ourselves to the former. The homogeneous space X of G (R) is of 
type S - k  if: (i) the isotropy groups Hx (xeX) are of the form K. S (R), where S is a 
maximal k-split torus of the radical R (G) of G and K a maximal compact subgroup of 
G(R) normalizing S(R); (ii) there is given a map x~--~L x of X to Levi subgroups of 
G(R) such that Lx.g=g-l.Lx.g and Lx~H~(x~X; g~G(R)). Condition (i) deter- 
mines completely the homogeneous space structure of X (see 2.1), but there is a choice 
involved in (ii) (unless G is reductive). If  P is a parabolic k-subgroup of G, then X is 
canonically of type S - k  under P(R), the choice of the Levi subgroups being given 
by Corollary 1.9 mentioned above. 

w introduces the notion of geodesic action on a space of type S. For simplicity, 
assume here G to be connected and semi-simple. Let P be a parabolic R-subgroup of 
G, and Z the center of the quotient P/R~P of P by its unipotent radical. For xEX, 
denote by Z(R)x the unique lifting of Z(R) in the Levi subgroup of P associated to x 
as above. There is then an action of Z(R) on X, which commutes with P(R), and is 
given by x o z=x.z~ (zEZ(R), xeX). The orbits of Z(R) are totally geodesic fiat 
submanifolds of X. If A is the identity component of the group of real points of the 
biggest R-split torus of Z, then X becomes a principal A-bundle under this action. 
For a simple example, see 3.5. 

w reviews some facts on parabolic k-subgroups. I f P  is such a group, let Ae be the 
identity component of the group of real points of the greatest k-split torus of the 
center of P/R~P. There is a canonical isomorphism Ap~ (R*) a, where d=dimAp, 
which is provided by a suitable set of simple k-roots. We let//p be the closure of Ap 
in R a. It is therefore isomorphic to the positive quadrant (R+) a. In w167 4.5 we dis- 
cuss various decompositions of Ar or ATp. 

w defines the corner X(P) associated to P. Take the simplest case, where k = R  
and P is minimal. We have then the familiar Iwasawa decomposition G (R) = K. A. N, 
where A is the identity component of the group of real points of a maximal R-split 
torus of G stable under the Cartan involution Or. Then R~P(R)=N, P(R)  is the nor- 
malizer of A .N in G(R), and the projection P~P/R~P maps A isomorphically onto 
Al,. There is then a canonical isomorphism X ~  A x N and X(P) is defined to be X x N. 
More intrinsically, in the general case, X(P) is the associated bundle Xx APSe with 
typical fibre Xp associated to X, viewed as a principal Ae-bundle under the geodesic 
action of At. The stratification of gl, in orbits of Ae yields a stratification of X(P) 
into locally dosed subspaces. In particular, X x A,, {o} =X lAp is the face e (P)  asso- 
ciated to P. If Q is a k-parabolic subgroup of G containing P, then X(Q) may be 
identified to an open submanifold of X(P). In w it is shown that if G is reductive 
and P minimal, the Siegel sets in X, with respect to P [3, w allow one to describe 
the topology of X(P) around e(P). More precisely any point yee(P) has a funda- 
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mental set of  neighborhoods which are the closures of a suitable family of  Siegel sets 
(6.2). The space X, and hence also X(P), is a trivial bundle, and to any xeX is asso- 
ciated a trivialization of X(P), whose cross-sections are orbits of the group ~ 

w defines X, and shows that it is a Hausdorff manifold with corners, which is 
paracompact if k is countable (7.8). The main point is the Hausdorff property, which 
is derived from 6.5, itself an immediate consequence of a known property of Siegel 
sets [3, Prop. 12.6]. It is also shown that the closure of e (P)  in .~" can be identified to 

the space e (P)  associated by this construction to e (P),  viewed as a space of type S - k  
under P (7.3). 

w 8 describes the homotopy type of ~Ji" and the cohomology with compact supports 
of ~'. 

In the last three paragraphs, k = Q, and F is an arithmetic subgroup of G. It  is 
shown that F acts properly on if' and that .~/F is compact (9.3). The proof is mainly 
an appeal to the main theorems of reduction theory [3, w167 13, 15]. In turn, the proper- 
ties of �9 and X/F yield various strengthenings and generalizations of some results of 
reduction theory, in particular with regard to the "Siegel property" and related facts, 
which are discussed in w 10. Finally w 11 gives the applications to the cohomology of F 
already mentioned. 

In what follows, the notion of "manifold with corners" is taken for granted. Al- 
though this notion has already occurred at various places, there was a lack of founda- 
tional material on it, and we are grateful to A. Douady and L. Hdrault, who have been 
willing to supply it; their paper is included here as an appendix. 

The main results of this work have been announced in a Comptes Rendus Note [7]. 
The first named author gave a set of  lectures on this topic at the University of 

Utrecht, in the Spring of  1971. We thank very much Mr. van der Hout, who wrote 
them up and whose Notes were helpful to us in the preparation of the present paper. 

w O. Notation and Conventions 

0.1. Let G be a group. I f  L is a subgroup of G, then.~(L)={geGlg.x.g -1 
=x(xEL)} is the centralizer of L in G and JVG(L)= (geG[g'L'g-l=L} the nor- 
realizer of L in G. The center - ~  (G) of  G is denoted cg (G). IfxeG and AcG, then 
XA = x. A. x -  1 and A x = x -  1. A.x. Let N, M be subgroups of G. Then N-~ G means 
that N is normal in G, and G = M~<N that N is normal in G and G is the semi-direct 

product of M and N. 

0.2. Algebraic groups will be affine and defined over fields of characteristic zero 
(mostly subfields of R); we follow the notation and conventions of  [4]. I f  G is an 
R-group, then G (R), endowed with the topology associated to the one of R, is a real 
Lie group. The symbol L ( ) will denote the Lie algebra both for algebraic groups and 
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real Lie groups, as the case may be. Similarly, G O will denote the connected component 
of  the identity in the Zariski topology if G is an algebraic group or in the ordinary 
topology if G is a real Lie group. 

By definition, a parabolic subgroup of an algebraic group G is one of G ~ i.e. a 
closed subgroup P of G O such that G~ is a projective variety [4]. If G is defined over 
R, and H is an open subgroup of G (R), then a parabolic subgroup of  H is by defini- 
tion the intersection of H with a parabolic subgroup of G defined over R. 

0.3. As usual, the radical (resp. unipotent radical) of a connected k-group G is 
denoted RG (resp. RoG). Then the greatest connected k-split subgroup ([4], w 15) of 
RG is normal in G (because G (k) is Zariski dense in G, [4], w 18) and is the semi-direct 
product of RuG by any maximal k-split subtorus of RG. It will be denoted RdG and 
called the split or k-split radical of G. 

If G is not connected, then, by definition, its radical, unipotent radical and split 
radical are those of G ~ they are also denoted RG, RuG and RaG respectively. 

0.4. Let k be a field of characteristic zero. A k-group H is said to be reductive if 
H ~ is so, i.e. if Roll= (e}. Let G be a k-group. Any reductive k-subgroup of G is 
contained in a maximal one. The maximal ones are called the Levi k-subgroups of G 
and are conjugate under RuG(k). If  L is one of them, then G=Lt,<R~ ([22], [6]). 

Sometimes, the set of k-points of  a Levi k-subgroup of G will be called a Levi 
subgroup of G (k). 

Recall that if k = R, every compact subgroup of G (R) is the group of real points 
of a reductive k-group; hence every compact subgroup is contained in a Levi R-sub- 
group. 

0.5. If  G is a Q-group, an arithmetic subgroup F of G is a subgroup of G(Q) which 
is commensurable with Q (G) c~ GLn (Z) for any injective Q-morphism Q: G --, GL,  ([3], 
w 

In this paper, k is a subfieM of R, G a k-group, U the unipotent radical of G and ~3 or 
~3 (G) the set of parabolic k-subgroups of G. From w on, we assume k= Q. 

I. CARTAN INVOLUTIONS. GEODESIC ACTION. 
PARABOLIC SUBGROUPS 

w 1. The Group ~ Cartan Involutions 

1.1. Assume G to be connected, defined over k. We put 

~ - N~ ~ x (~)~ kera  2 , (1) 
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where, as usual, X(G)k is the group of k-morphisms of G into GL1. The group ~ is 
normal in G, defined over k. If aeX(G)k, its restriction to ~ is of order ~<2, hence 
is trivial on (~176 therefore 

(~ ~ = ((-~. ~ x (~)~ ker a) ~ . (2) 

Any character is trivial on U, hence 

~ -- ~ ~'< U (3) 

for any Levi k-subgroup L of G. 

1.2. PROPOSITION. Assume G to be connected. Let S be a maximal k-split torus 
of RG and A = S(R) ~ Then G (R)= A~,<~ (R). The group ~ (R) contains every com- 
pact subgroup of G (R) and also, if k = Q, every arithmetic subgroup of G. 

Let aeX(G)k and let M be a compact subgroup of G(R). Then a(M) is a compact 
subgroup of R*, hence contained in {___ 1}. Similarly a ( M ) c  {+ 1} i f k = Q  and M is 
arithmetic. In both cases M c  kera 2, which yields the second assertion. 

To prove the first one we may assume, by 1.1 (3), that G is reductive. The group G 
is the almost direct product of S and of (~176 as follows from 1.1 (2) and ([3], Prop. 
10.7), hence G (R) ~ c A- ~ (R). Moreover A n ~ is finite, hence reduced to {e) 
since A is torsion-free. On the other hand, G(R) has finitely many connected compo- 
nents, hence is generated by G (R) ~ and a compact subgroup H [21]; since H c  ~ (R) 
by the above, this gives G(R)=,4-~  (R), whence the proposition. 

We shall on occasion use a slight variant of 1.2: 

1.2'. PROPOSITION. We keep the previous notation. Let S', S" be k-tori in RG 
such that S' is k-split, S "  S" is a torus and S' n S" is finite. There exists then a normal 
k-subgroup N of G containing S" and ~ such that G (R)= S '  (R)~ 

Dividing out by U reduces us to the case where G is reductive. The tori S '  and S" 
belong to the center of G. Using the decomposition of a torus T in anisotropic and 
split factors To and Td ([4], w we can write ~(G)~ = V.S' where V=~(G) ~ and 
Vn  S'  is finite. Let Y be the set of elements in X(G)k which are trivial on Is, and let 

N = ~'~,~r kera2. 

Let S=Cg(G) ~ It follows from ([3], 10.7) that the restriction map X(G)k ~ X ( S )  is 
injective, with finite cokernel, and that X(G) ~ X(S')  maps Y injectively onto a sub- 
group of finite index. From this we see that N~~ G=N.S '  and N n S '  is finite; 
therefore G (R) ~ = S '  (R)%,<N(R) ~ Since N(R) contains ~ it meets every con- 
nected component of G (R) by 1.2, hence G (R) = S '  (R)%,<N(R). 
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1.3. LEMMA. Let L, L' be two Levi k-subgroups of G, and N a normal k-subgroup 
of G containing U. Then L n N is a Levi k-subgroup of N. The groups L and L' are 
conjugate by an element of U(k)n &~G (L n L'). 

We have G=L~,<U, hence N=(NnL)~<U. Moreover UcRuN, and since N is 
normal, RuNe U, whence RuN= U, and the first assertion. 

Let ueU(k) be such that UL=L' (0.4) and let x ~ L n L ' .  Then u.x.u -1 =x.v for 
some veU. Since u.x.u -1 and x belong to L', we have v e L ' n  U= {e}, hence u cen- 
tralizes L n L'. 

1.4. We recall now a few standard facts about maximal compact subgroups or 
consequences thereof. 

Let H be a real Lie group with finitely many connected components. Then any 
compact subgroup of H is contained in a maximal one. If K is a maximal one, then 
H is diffeomorphic to the direct product of K with a euclidean space. Moreover 
K/K~ H/H ~ Any two maximal compact subgroups are conjugate by an element of 

H ~ [211. 
If N is a closed normal subgroup of  H, with finitely many connected components, 

then the maximal compact subgroups of  N are the intersections of N with the maximal 
compact subgroups of H. If  M is a closed subgroup of H with finitely many connected 
components such that all maximal compact subgroups of H are conjugate by elements 
of  M (e.g. if H =  K. M), then similarly the maximal compact subgroups of M are the 
intersections of M with the maximal compact subgroups of H. (In both cases, by 
taking a maximal compact subgroup K of H containing a maximal one of M, we see 
that M n K i s  compact maximal in M for at least one K. It is then so for all maximal 
compact subgroups of H by conjugacy.) 

Let H ~ H '  be a surjective morphism of Lie groups whose kernel N has finitely 
many connected components. Then the maximal compact subgroups of H '  are the 
images of  the maximal compact subgroups of H. (This is well-known if H and N are 
connected and the reduction to that case is immediate.) 

1.5. PROPOSITION. Let P be a parabolic k-subgroup of G, S a maximal k-split 
torus of RaG and A = S ( R )  ~ Let K be a maximal compact subgroup of G(R). Then 
K n P  is a maximal compact subgroup of P(R) and C ( R ) = K - P ( R ) = K . a . ~  I f  
K.a. ~  '. ~ (a, a' eA), then a=a'. The map which assigns to geG(R)  the 
element a=a(g)eA such that geK.a.  ~ is real analytic. 

The equality G (R)= K.P (R) is well-known and follows from the Iwasawa decom- 
position (see e.g. [8], 14.7). We have then G (R) = K" A. 0p (R) by 1.2 applied to P. The 
group K n P  is a maximal compact subgroup of  P(R)  by 1.4 and is contained in ~ 
by 1.2, hence we can identify (KnP) \P(R)  and A x (KnP)\~ Composing the 
obvious maps 
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G(R) ~ K\G(R) z~ (K n P)\P(R) ~ A x (K n p)\Op(R) ~ A, 

we get a real analytic map f :  G (R) ~ A. It is clear thatf(kap) = a (k ~K, a ~A, p ~Op (R)), 
which proves the uniqueness and analyticity of a. 

1.6. PROPOSITION. Let G be reductive and let K be a maximal compact subgroup 
of G (R). There exists one and only one involutive automorphism Or of G (R) whose fixed 
point set is K and which is "algebraic," i.e. the restriction to G(R) of an involutive 
automorphism of algebraic groups of the Zariski-closure of G (R) in G. Let p be the ( -  1)- 
eigenspace of Or in L(G(R)). Then L ( G ( R ) ) = L ( K ) ~ p  and (k, X)~--*K.expX is an 
isomorphism of analytic manifolds of K x  ]a onto G(R). Let N be a normal R-subgroup 
of G. Then Or(N(R))=N(R).  

By a result ofG.  D. Mostow [22] (see also [5], w we may arrange that GcGLn,  
K c O ( n ,  R), and G(R) is stable under O:g~--~g=tg -1, and then the latter automor- 
phism has all the properties required from Or. There remains to prove the uniqueness. 
Let then 0' be an involutive automorphism of G(R) whose fixed point set is K and 
which is algebraic in the above sense. Since K meets every connected component of 
G (R), it suffices to show that 0 and 0' coincide on G(R) ~ and hence that they define 
the same automorpkism of L(G(R)). For this, it is enough to prove that the ( -1) -  
eigenspaces p and p' of 0 and 0' are equal, and we may also assume G to be connected. 

The group G is then the almost direct product of its derived group G', which is 
semi-simple, and of the identity component S of its center, which is a torus. Both 
G' (R) and S (R) are stable under 0', 0 hence 

p ' = L ( G ' ) n p '  ff~ L(S) n p ' ,  p = L ( G ' ) n p  ~ L(S) n~o. 

The group G' n K is a maximal compact subgroup of G' (R) (1.4), hence L(G' )n  ]a' 
and L (G') n p are both equal to the orthogonal complement of L (Kn  G') in L (G' (R)) 
with respect to the Killing form. The group S is the almost direct product of its 
greatest R-anisotropic torus Sa and its greatest R-split torus Sd and Sa(R) ~ is the 
greatest connected compact subgroup of S(R) ([3], 10.8). We have then, using 1.4, 

L (S (R)) = L (K n S) @ L (Sd (R)). 

But 0, 0' are the restriction to G (R) of an R-automorphism of G, hence they must leave 
both So (R) and Sd (R) stable, whence 

L (S) p = L (S) O' = L (Sd (R)) .  

Let now N be a normal R-subgroup of G. It is then also reductive. By [22] (see also 
[5]) there exists a maximal compact subgroup K~ of G (R) such that the associated 
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involution 0~ leaves N(R) stable. There exists geG(R)  such that gK=K~. But then 
0'1 is conjugate to 0 r under Intg, whence the last assertion. 

1.7. DEFINITION. The automorphism OK in 1.6 will be called the Cartan involu- 
tion of G (R) with respect to K. 

If  G is semi-simple, then OK is the usual Cartan involution, and the uniqueness is 
obvious. 

1.8. PROPOSITION. Let H be a R-subgroup of G containing U. Assume that all 
maximal compact subgroups of G(R) are conjugate under H(R). Let K be a maximal 
compact subgroup of G(R) and L a Levi subgroup of G(R) containing K. Let OK be the 
Caftan involution of L with respect to K and Lx = ( H n L ) n  OK ( H c~ L ). Then L 1 is the 
unique Levi subgroup of H(R) contained in L and stable under OK. 

The group L 1 is stable under OK, hence is reductive ([5], 1.5), and contains every 
subgroup of H'=Hr~L stable under OK, whence the uniqueness assertion. Let now 
L' be a Levi subgroup of H' .  Since H ( R ) = H ' .  U(R), the group L' is a Levi subgroup 
of H(R). By a result of Mostow ([22], see also 1.9 in [5]), L admits a Cartan involution 
0' leaving L'  stable. Let K' be its fixed point set. In view of the assumption on H there 
exists h~H(R) such that K=hK '. Since h K ' c L n  hL, there exists by 1.3 an element 
u ~ H (R)n .o~en (K) such that U hL = L. We have therefore K = "hK' and, by the unique- 
ness of Cartan involutions (1.6), 

OK o Int uh = (Int uh ) o 0' .  

As a consequence uhL' is a Levi subgroup of H(R) stable under OK, hence contained 
in L1, hence equal to L1 since L1 is reductive, thus L1 has all the required properties. 

1.9. COROLLARY. Let P be a parabolic R-subgroup of G, K a maximal compact 
subgroup of G (R) and L a Levi subgroup of G (R) containing K. Then L c~ P contains one 
and only one Levi subgroup of P(R) stable under OK. 

Since G(R)=K.P(R)  by 1.5, this is a special case of 1.8. 

w 2. Homogeneous Spaces of Type S 

2.1. LEMMA. Let R be a solvable connected normal R-subgroup of G containing U. 
O) Let K be a maximal compact subgroup of G(R). Then R has a maximal R-torus 

normalized by K. 
(ii) I f  S is a maximal R-torus of R, then .A/'~(S) contains a maximal compact sub- 

group of O (R). 
(iii) The subgroups of G(R) of the form K.S(R),  where S is a maximal torus of R 
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defined over R and K a maximal compact subgroup of G (R) n , / ~  (S), form one con- 
jugacy class of subgroups of G (R). Let H= K. S (R) be one of them and/7 the Zariski 
closure of H. Then R is reductive, H=/7(R) ,  S = R n / 7  and S(R)=RnH. 

(iv) Let L be a Levi R-subgroup of G containing H, and O K the Caftan involution of 
L(R) with respect to K. Then L n R = S  and Or leaves H(R) and S(R) stable. 

(i) Let L be a Levi R-subgroup of G containing K. Then R=(RnL)~.<U, and 
R n L is a maximal torus of R which is normalized by L, hence by K. 

(ii) In view of (i) this assertion is true for at least one maximal R-torus of R. Since 
such tori are conjugate under R (R) ([8], 11.4), it is then true for all of them. 

(iii) The first assertion follows from the conjugacy of maximal R-tori of R and of 
maximal compact subgroups (1.4). 

The Zariski-closure R of K is reductive and normalizes S, hence/(o centralizes S. 
We h a v e / 7 = / ~ . S , / 7 0 =  gO.s,  hence/7 ~ and therefore/7, is reductive. Moreover, 
K.S(R) contains /7(R)~ but K is a maximal compact subgroup of G(R), hence a 
fortiori of/7(R),  and consequently intersects every connected component of /7(R) ;  
therefore/7(R) = K./7(R) ~ = H. We have S (R) = R n H, hence S = R c~/7. The group 
R n / 7  is normal in/7, hence reductive. Since S is maximal reductive in R, it follows 
that S=  R n/7,  whence also 

s (R) r R n = (R (R) = s (R),  

which ends the proof of (iii). 
(iv) Any subspace of the Lie algebra of L (R) which contains L (K) is stable under 

Or, hence L (H(R)) and H(R) ~ are stable under Or. Since H(R) is generated by K and 
H(R) ~ (1.4), it is also stable under OK. The group L c~ R is a normal R-subgroup of L, 
hence its group of real points is stable under 0 K by 1.6. It is reductive, contains 
R n / 7 =  S, hence is equal to S. 

2.2. Remark. Notation being as above, assume G to be connected. Then L is 
also connected, hence centralizes the torus L r~ R. It follows that, in 2.2(iii), K cen- 
tralizes S and K is the unique maximal compact subgroup of K. S(R). 

2.3. DEFINITION. A space of type S for G or G(R) is a pair consisting of a right 
homogeneous space X under G (R) and of a family (Lx)x ~ x of Levi subgroups of G (R) 
satisfying the two following conditions: 

SI. There exists a connected normal solvable R-subgroup Rx of G containing U, 
such that the isotropy groups Hx (xe X) of G (R) in X are of the form K. S (R), where 
S is a maximal R-torus of Rx and K is a maximal compact subgroup of G(R) nor- 
malizing S (cf. 2.1). 

SII. We have Hx=Lx and L~. g= (Lx) g for all x e X  and geG(R). 
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We shall often say simply that X is a homogeneous space of type S under G(R). 
Note that, by 2.1, R x is completely determined by the action of G(R) on X. From w 
on, we shall be concerned only with the case where R x = RaG is the k-split radical of  
G, in which case we shall say that X is of type S - k .  If moreover G =  ~ then the 
isotropy subgroups are just the maximal compact subgroups of G (R). As explained 
in the introduction, this is our main case of interest. 

2.4. Remarks. (1) The condition SI of 2.3 implies that X is diffeomorphic to 
a euclidean space, G (R) ~ is transitive on Xand the isotropy groups are conjugate under 
O(R) ~ 

(2) Let X be a homogeneous space under G(R) for which the isotropy groups 
Hx ( x e X )  are reductive. Then it is always possible to find a family {Lx}x~x satisfying 
SII. Indeed, choose y~X,  a Levi subgroup LDHy,  and put Ly.g=L g for g~G (R). 
Since L g = L  for geH,  the group L g depends only on y.g,  and SII is then satisfied. 

2.5. EXAMPLES. (1) Let G be semi-simple. Then Rx=  {e}, and the isotropy 
groups are the maximal compact subgroups of G (R). Since they are equal to their 
normalizers, X may be identified with the symmetric space of maximal compact sub- 
groups of  G (R). 

(2) Let G be reductive and let C=Cg(G~ ~ be its radical. The group R x is an R-sub- 
torus of G, normal in G. The isotropy groups are then the subgroups K. Rx (R), where 
K runs through the maximal compact subgroups of G (R). The group K n  RG is maxi- 
mal compact in RG (R). By standard facts on tori, there exists an R-split subtorus D 
of  RG normal in G, such that RG (R) = (K. R x (R) n RG) x A, with A = D (R) ~ The 
group A operates properly and freely on X. On X/A, the isotropy groups of G (R) are 
the groups K. RG (R), (K maximal compact), hence X/A may be identified with the 
space of maximal compact subgroups of ~ G  ~ (R). If  G is connected, then A is central. 
Note that when G is reductive, S II is vacuously fulfilled since we must have L x = G (R) 
for all x ~ X .  

2.6. LEMMA.  Let X be a homogeneous space of  type S under G(R) and 
�9 ~ = {Hx},,,x the set of  isotropy groups o f  G (R) on X. Let G' be an R-subgroup of  G 
containing U such that G' (R) is transitive on 3(. Then X satisfies S I under G', the cor- 
responding solvable group R'x being equal to ( G ' n  Rx) ~ 

Let K be a maximal compact subgroup of  G such that K n  G' is maximal compact 
in G'(R) and let x e X  be such that K=H~,; thus H~,=HxnG'  contains a maximal 
compact subgroup of  G'(R); by conjugacy, this is then true for all x~X.  The group 
R ' = ( G ' n R x ) ~  ' is a normal connected solvable R-subgroup of  G' and 
RuR'=RuG'. Let S be a maximal R-torus of R x. Then Rx=S~,<U, henceRxnG ' 
= (S n G')~< U, and R' = S'~<RuG', where S '  = (S c~ G') ~ is a maximal R-torus of R', 
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and we have S ' =  (S n R') ~ Choose x e X such that S ( R ) ~  H~. Then 

s (a) G'= S (a) S (R) n ' ,  

which shows that 

447 

S' (R) <a H ' ,  S' (R) c S (R) n H'x, S' (R) ~ = (S (R) n H ' )  ~ . (1) 

Let K'  be a maximal compact subgroup of H~. We have already seen that it is 
maximal compact in G'(R); by (1), it normalizes S ' (R) .  We wish to show that 
H" = K ' .  S '  (R), which will prove the lemma. For this, it is enough, by the last assertion 
of 1.4, to prove that H;/S' (R) is compact. 

Let/-7" be the Zariski-closure of H~ in G. The group S being normal in/7,  the set 
M =  ( /Tn G')-S is an R-subgroup of G. Since Hx =/7(R)  by 2.1, H ' . S ( R )  is an open 
subgroup of finite index in M(R). In particular, it is a closed subgroup of G(R). As 
a consequence, H i. S(R)/S(R) may be identified with a closed subgroup of Hx/S(R). 
Since the latter is compact, so is the former. But H'/(H" n S(R)) is isomorphic (as a 
Lie group) to H'.S(R)/S(R),  hence is compact, too. By (1), H~/(H~nS(R)) and 
H'/S '  (R) have a common finite covering, hence H'/S '  (R) is compact. 

2.7. Restriction to subgroups. Examples. Let Xand G' be as in 2.6. Then Xsatisfies 
SI with respect to G' (R), and, by 2.4(2), there is then at least one way to make X of 
type S under G'. We shall now indicate some cases in which this can be done in a 
canonical manner. In the sequel, it will always be understood that X will be viewed 
of type S under G' with the choice of the Levi subgroups of G' (R) given below. These 
will often be denoted Lx, ~, (x~X). 

(1) G' is normal in G. We define Lx, G, as G'c~Lx. This applies in particular to G ~ 
(2) G is connected. By 2.2, H~ has a unique maximal compact subgroup, say Kx. 

Since G' (R) operates transitively on X, it follows that all maximal compact subgroups 
of G(R) are conjugate under G' (R). We then define L~,a, as the unique Levi subgroup 
of G' n Lx which is stable under the Cartan involution of L~ with respect to K s (cf. 
Prop. 1.8). 

(3) G'=P is parabolic. We apply (1) to G O and (2) to P ~ G  ~ 
Remark. Assume G' to satisfy one of the above three conditions. Let ge  G (R) and 

G"= G 'g. Then G" satisfies the same condition, and we have 

Lx.g,~. = (L,,,w) ~ (x~X) .  (4) 

2.8. Let X be a space of type S under G. It is the total space of a principal fibration 
with structure group U(R), where U(R) operates as a subgroup of  G(R). Let V be a 
(necessarily connected) R-subgroup of U normal in G. Let n:G--, G '=  G/V and 
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t r : X ~  X ' =  X /V(R)  be the natural projections. Let x, y ~ X  be such that a (x )=  a (y). 
Then x e y .  V(R), hence L r = L  ~ for some t,~ V(R) and 7r(L~)=z(Lr). It is then im- 
mediate that X'  is of type S under G', with R x, = rc (Rx), and L,t~)= 7~ (L~) for all 
xEX. Assume V to be defined over k. Then 7r(RdG)=RdG', therefore X'  is of type 
S - k  if X is so. 

w Geodesic Action 

In this section, X is a space of  type S under G(R); for x eX ,  H~ is the isotropy sub- 
group of  x and L x the Levi subgroup of  G(R) associated to x. 

3.1. LEMMA. Let P be a parabolic R-subgroup of  G, Z the center of  P /R ,P  and 
7r : P--, R / R , P  the canonical projection. Let Y be the greatest compact subgroup of  Z (R). 
Then, for x~X,  Z o = Z n n (H~ n P)  is generated by 7r (Rx (R)) and by Y. In particular 
it is independent of  x~X.  

We have RxC~R,P= U, therefore n defines an injective homomorphism of Rx/U 
into P/R,P,  whose image is a torus which is normal, hence central; we have thus 
7r ( R x ) c  Z. We have n (Rx)= n (S) where S is any maximal torus of Rx, hence, by 2.1, 

7~ (Rx) (R) = 7r (H~ n Rx) for any x e X.  

On the other hand, H~ =K.  (H~ n Rx), where K is a suitable maximal compact sub- 
group of G (R), hence 

H,, n P = (K n P).  (H,  n Rx) 

Z o = Z c~ n ( H  x n P) = (n (K  n P) n Z) .n (Hx  n Rx).  

The group K n P  is maximal compact in P(R)  (1.5), hence 7~ ( K n P )  is maximal com- 
pact in (P]R,P)  (R) (1.4), and then n (KnP)c~  Z is maximal compact in Z(R)  (1.4). 
Therefore n ( K n P )  n Z =  Y, whence the lemma. 

Remark. Let S1 be the R-torus of Z which is generated by the greatest R-aniso- 
tropic torus of Z and by the image of Rx. We have then Sl (R) ~ = (Zo) ~ Let $2 be an 
R-torus in Z such that Z ~ is the almost direct product of S 1 and $2. Then $2 (R)~ 
c~ Z o = {e} and $2 (R) ~ maps isomorphically onto Z ( R ) / Z  o under the natural projec- 
tion. The torus $2 splits over R, and it follows from 1.2' that there exists a normal 
R-subgroup N of P containing R x and all compact subgroups of P (R) and such that 
P (R) = $2 (R)%,<N(R). 

3.2. Definition of  the geodesic action. Let P, Z, Z o be as before. We shall define 
here an action of Z (R) on X which commutes with P (R), is trivial for Z o and defines 
a proper and free action of  Z(R)/Zo.  
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By 2.7(3), Xis canonically of type S under P. For x~X,  let L'~ be the Levi subgroup 
of P(R)  associated to x; it is contained in L~. Let Z~=C~(L'x). It follows from 1.8 and 
the definition o f L '  x (2.7) that Z~ is the unique lifting of Z(R) in P(R)  which is stable 
under the Cartan involution of Lx with respect to a maximal compact subgroup of 
H~. Given z~Z(R),  let zx be its lifting in Z~. Fix x~X. Let y ~ X  and g~P(R)  be such 
that y = x.g. Let us put 

y o x z = x . z ~ . g .  (1) 

Let g ' e P ( R )  be such that x.g'  =y. Then g' =h.g  for some h e H x c ~ P c L ' ;  the element 
h then commutes with zx, hence x 'zx 'g '  =x.z~,.g. This shows that the right hand side 
of (1) depends only on x, y, z and justifies the notation of the left hand side. 

LEMMA. We have 

(i) y ' p o , , z = ( y o x z ) ' p ,  ( x , y ~ X ; p ~ P ( R ) ,  z~Z(R) ) .  

(ii) y o x z = y o ~ , . z ,  ( x , x ' , y ~ X ;  z~Z(R) ) .  

Let g~P(R)  be such that y = x . g .  For peP(R) ,  we have y.p =x .g .p ,  hence 

(y" p) ox z = x" zx'g" p = (y ox z). p, (2) 

which gives (i). 
Let now h e G (R) and set P ' = P  h. Then Int h induces an R-isomorphism of Z onto 

Z '  =c~ (P'/RuP').  Let us also denote by z h the image o f z ~ Z  under this map. It is clear, 
by "transport de structure," that we have 

( y o x z ) ' h = y ' h o x . h z  h ( x , y ~ X ; z ~ Z ( R ) ) .  (3) 

Let x'~X, and choose h~P(R) such that x .h=x ' .  By (3), applied to y .h  -1, we 
have, taking (i) into account: 

y ox z = (y 'h-X o~ z) 'h  = y o~, z h; 

but, since h EP (R), we have zh= z, whence (ii). 

In particular, this shows that the actions o r and ox, are the same. We may therefore 
omit the reference point, and get an action 

v(x, z) xoz (x x; 

of  Z(R)  on X. By (1), with g = e :  

x o z = x ' z , , ,  ( x ~ X ; z ~ Z ( R ) ) ,  (4) 
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which shows that 

(xoz)oz'=xo(z.z') (x x; z, 

We can now write (3) in the form 

(x o z ) .h  = x . h o  z h, ( x e X ,  z e Z ( R ) ,  h e G ( R ) ) ,  (5) 

where o refers to the geodesic action of Z(R)  on the left-hand side and of hZ(R) on 
the right-hand side. 

3.3. DEFINITION. The action ~ defined above is called the geodesic action of 
Z(R)  on X. 

The reader will note that this action depends only on the structure of type S of X 
under P. If  P is reductive, then Z is a subgroup of P, and the geodesic action is just 
the ordinary action. 

3.4. PROPOSITION. The geodesic action commutes with P(R). The group Z o op- 
erates trivially and Z(R) /Zo  operates freely. 

(In fact, the action of Z ( R ) / Z  o is a principal bundle action, see 3.6.) 
The first assertion follows from 3.2(i). If z ~ Z  o then, by 3.1, zx~H x for all x~X,  

hence z acts trivially by 3.2(4). 
It also follows from 3.1 that if z eZ(R) ,  z r  o, then zxCHx for any x~X,  hence 

Z ( R ) / Z  o acts freely on X. 
Remark. The group Zo contains the maximal compact subgroup of  Z(R).  We may 

therefore write Z ( R ) =  Zo x A, where A is the identity component of the group of real 
points of  an R-split torus of Z. By 3.4, and 3.2 (4), the orbit x o Z (R) of x~ X may be 
identified with x 'Ax ,  i.e. with the orbit of x under the ordinary action of the identity 
component of the group of real points of an R-split torus. If  G is reductive, and hence 
X is a symmetric space with negative curvature, then x. Ax is a totally geodesic fiat 
submanifold, isometric to a euclidean space, and the orbits of 1-dimensional subgroups 
of A~ are geodesics, whence the terminology. 

3.5. EXAMPLE. Let G = SL z and Xbe the upper half-plane. Let G (R) act on X by 

(a b) 
z. = (dz + b) (cz + a ) - ' .  

C 

Let P be the group of upper triangular matrices in G. The group Z o has two elements 
4-1. Let A = Z(R)/Zo.  The stability group of  i is SO (2, R) and the Cartan involution 
associated to it is g~-, tg-i .  For x =  i, L x = Zx is the group of  diagonal matrices in 
G(R). For aeA,  let ~(a) be the square of the upper left entry of  the lifting of  a in Ai. 
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Then, for z = x + iy, we have 

z o a  = x +  i~(a) .y .  

Hence the orbits of A are the vertical lines and on each such line, identified to R* 
by the y coordinate, z~-+z o a is the multiplication by ct (a). 

If we take as model of X the open unit disc, then the choice of a parabolic R-sub- 
group P of G corresponds to that of the fixed point Po of P(R) on the unit circle. 
The orbits of Z (R)/Zo under the geodesic action are then the geodesics abutting to P0. 

3.6. Bundles defined by the geodesic action. Let P, Z, Z 0 be as before. Let T be an 
R-split torus in c~ (P/RuP) whose intersection with Z o is finite and A be the image of 
T(R) ~ into Z ( R ) / Z  o. By 1.2', there exists a normal k-subgroup M of P containing 
R x and all maximal compact subgroups of P(R),  such that P ( R ) = T ( R ) ~  
Since P(R)  commutes with A, the latter operating by geodesic action, we have an 
action of A x M(R) onto X defined by 

x~--~(xoa).rn, (a~A, m E M ( R ) ; x ~ X ) .  

3.7. PROPOSITION. The above action of A x M(R) on X is transitive. For xeX ,  
H ~ n P ~ M ( R )  and the isotropy group of x in A x M(R) is {e} x (H~nP) .  

Let x~X. Then (x o A ) . M ( R ) = x . A ~ . M ( R ) = x . P ( R ) = X ,  which proves the first 
assertion. The space X is of type S under P(R) (2.7) and in particular the isotropy 
group Hx n P  of x under P(R)  is generated by a maximal compact subgroup K~ of 
P(R)  and a subgroup of Rx(R). Since both of these groups are contained in M(R), 
we have H ~ n P ~ M ( R )  for all x~X. Let now a~A and m~M(R)  be such that 
(x o a ) .m=x.  We then have a~ .meH~ne  hence ax 'm~M(R)  and ax=e, whence the 
proposition. 

3.8. COROLLARY. Let xeX.  The map (a.m)r--~(x o a).m (aeA;mEM(R) )  in- 
duces an isomorphism It x: A x (Hx n P )\ M (R) ~ X of (A x M (R))-homogeneous spaces. 
The space X is a trivial principal A-bundle, and the orbits of M (R ) are cross-sections of 
this fibration. 

By 3.7, ~t~ is an analytic bijective map of (A x M(R))-spaces. Since these are ho- 
mogeneous spaces, it is then an isomorphism. This proves the first assertion; the 
second one is an obvious consequence. 

Remark. Since Z 0 contains the greatest compact subgroup of Z(R),  we may in 
particular, in 3.6, choose T such that A =Z(R)/Zo;  hence 3.8 applies to the geodesic 

action of  Z(R)/Zo on X. 

3.9. Structure of type S for X/A. We keep the previous notation and let tr: X" 
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X' =X/A be the canonical projection. In view of 3.4, P(R) commutes with a, whence 
a transitive action of P(R) on X'. For xeX, the fibre F~=tr -~ (~r(x)) is x'A~ (3.2), 
hence the isotropy group of a (x) is (H~ c~P).A~. The condition S I is then fulfilled, 
with respect to P, if we let Rx, be the subgroup of P generated by Rx and the inverse 
image of T. In particular if Rx = RdG and T is the greatest k-split torus of cg (P/R,P), 
then Rx, = RnP. 

For x~X, let L~, e be the Levi subgroup of P assigned to x by the condition SII. If  
y~F~, then Ly is conjugate to L~ by an element a~A~. But A~,cLx, hence Lx=Lr and 
therefore, by construction (2.7), Ly, p = L~, p. Thus x~--~ Lx, p is constant along the fibres 
of a, and S II is clearly satisfied for the action of P (R) on X'  if we put L~, = L~, p for 
any x~ a -  1 (x'). This choice will be understood in the sequel. Therefore X'  is canonically 
of type S under P; by the end remark of the previous paragraph, it is also of type S - k  
if X is so under G. 

The group Z(R) is commutative, therefore the geodesic action of Z(R)  goes over 
to an action on X', trivial on A, and commuting with P(R). In view of the definition 
of Lx, (x'eX'), it is clearly the geodesic action of Z(R)  on X', for the structure of 
space of type S under P just defined. 

3.10. Assume G to be connected, and let G' be as in 2.6. Then, by 2.7(2), X is 
canonically of  type S under G' and for x ~ X the Levi subgroup L' x of G' (R) associated 
to x is contained in L~. The group r is reductive, therefore the canonical homo- 
morphism G'/U~G'/RuG' maps ~(G/U)n(G'/U) isomorphically onto an R-sub- 
group of Cg(G'/RuG'). Let x~X. Since L'xcL~, an element z~C~(G/U) (R)n(G'/U) 
and its image in ff (G']R,G') have the same lifting associated to x. Consequently, the 
geodesic actions of z on X, with respect to the structures of type S under G and G', are 
the same. 

I f  G' is parabolic, then G'/U is parabolic in G/U, hence contains C~(G/U), which 
is then identified to a subgroup of cg (G'/R,G'), and this identification is compatible 
with the geodesic actions on X under G and G'. Returning to the situation of 3.2, we 
may in particular apply this to two R-parabolic subgroups P c  Q of G, which play the 
role of G' and G in the preceding discussion, and get: 

3.11. PROPOSITION. Let P c  Q be two parabolic R-subgroups of G. Then 
( Q/ RuQ ) may be canonically identified with a subgroup of ~ ( P/ RuP ), and the geodesic 

action of ~ (Q/RuQ) (R) on X is the restriction of the geodesic action ofr ( P/RuP ) (R) 
on X. 
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II. CORNERS 

w Parabolic k-Subgroups 

4.1. In this section, we review some standard facts on parabolic subgroups and fix 
some notation. We recall that if H is a k-group, ~ (H) is the set of parabolic k-sub- 
groups of H. Let R be a connected normal solvable k-subgroup of G and rc: G --* G/R 
the canonical projection. Then e~-~ Tt(P) induces a bijection of ~ (G)onto ~ (G/R) 
whose inverse map is given by Q~--~n-I(Q). Assume now R to be k-split [4, w 
which is automatically the case if R is unipotent. Then rr (k): G (k) ~ (G/R) (k) is sur- 
jective, hence the bijection ~ ( G ) ~  ~ (G/R) preserves conjugacy classes over k. In 
particular the classification of parabolic k-subgroups up to conjugacy over k is "the 
same" in G, G/U or G/RaG; this reduces us to the case of reductive groups. Let S be 
a maximal k-split torus of G~ k ~ = ~ ( S ,  G/U) the set of k-roots of G~ with 
respect to S, and A a basis of k �9 ([8], w By [8, w the conjugacy classes in ~3(G) 
with respect to G o (k) are in 1 - 1 correspondence with the subsets of A. The class 
corresponding to J c A  is represented by the standard parabolic subgroup Ps: the 
image Ps/U of Pj in G/U is the semi-direct product of its unipotent radical Us by the 
centralizer Z(Ss) of Ss, where Ss = (("),~s ker~) ~ and its split radical is Ss" Us. Given 
P e  ~ ,  the only I such that P is conjugate to PI under G o (k) will be denoted I(P)  and 

called the type of P. 

4.2. Let P e  ~ (G). The quotient Se = R,~P/(RuP" RdG) is a k-split torus, and is also 
the greatest k-split torus in Cp=T(P/(R,,P. RdG)). We let At, be the identity compo- 
nent of Se(R). Let P ' e  ~ (G) be conjugate to P under G ~ and let xEG ~ be such that 
xp, =p. Then Intx induces an isomorphism of Ce, onto Cp. I f P  'y = P  withy~G ~ then, 
since P '  is its own normalizer in G ~ yex 'P ' .  Clearly, Intp' (p' eP ' )  induces the trivial 
automorphism of Ce., hence Inty induces the same isomorphism of Ce, onto Ce as 
Intx. Since we may take y~G ~ (k), this isomorphism is defined over k, hence defines 

a canonical isomorphism 

ffe',P: $1; 2~ Sp. (I) 

Let in particular P' =Pt be standard. Then Sp, = St/S,~. The elements of A - I  de- 
fine a basis of X* (S1/S,~)| where X*(  ) denotes the group of rational characters 
[4], which is carried over onto a basis of X* (Sp)| to be denoted in the same way. 
We thus have a canonical isomorphism: 

Ap -~ (R*)~--I. (2) 

4.3. Let Q be a parabolic k-subgroup containing P and let J=I(Q). The inclusion 
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RdQcReP  induces an injective morphism of SQ into Se which maps SQ onto 
( A  ~es_1 ker ~)o. Let Ae. Q = (["] ~ e a--s ker~) n Ap. Then the product decomposition 

A e = A p , Q x A Q  (3) 

corresponds to the factorization 

( R ' y - '  = (R*) ~ - '  • ( R * ) ~  ; (4) 

The group Ae associated to P, viewed as subgroup of Q, is Ae/AQ, i.e. is the isomorphic 
image of Ae,r z under the canonical projection. Thus, our Ae above can be written 
Ae,~o, and then (3) takes the form 

Ae, Go = A1, ' Q x AQ, Go. (5) 

For a subset L of A - / ,  let 

Ae(L) = ((-],~L ker~) ~ Ap, (6) 

where P(L)  is the parabolic subgroup of  type I u  L containing P. In particular 

Ae ~ = Ae, Ae (a--~) = AG~ = {e}. 

4.4. The isomorphism 4.2(2) yields an open embedding of  Ap into R a-r The 
closure of A e is R~+ - I  and will be denoted Are (or Arp, ~ if we wish to emphasize the 
ambient group). The elements of  A - I  are then coordinates on Are, taking all positive 
values (zero included), and they identify Are to the positive quadrant in R a-I.  The 
action of A1, on itself by means of  translations extends to one on Ar e, given by coor- 
dinate-wise multiplication. 

4 . 5 .  For every L c  A - I ,  let oL be the point with coordinates 

= L .  

In particular: 

o 8 -- (0 ,  0 . . . . .  0 ) ,  o a _ ,  = (1 ,  1 . . . . .  1)  = e .  

Then Ae" oL = Are (L) is the face of  Are given by 

Xe(L  ) = {x~.,~e l ~z(x) = O(aeL) ,  a (x )  # O(~eL)}.  (1) 

In particular: 

Ae'o8 = A'e (0) = {o~}, Are (A - I)  = A e'oa_" ~- Ae,  
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and we have the orbit space decomposition: 

/re = I J ~ - - ,  ~ ,  (L). (2) 

The isotropy group of oL is Ap(L); we have 

A,'OL = A , . , (L) 'oL  ~-- Ap.p(L) (L ~ A - - I ) ,  (3) 

and the orbit map aF--~a.o L extends to a diffeomorphism: 

-J,, P (L) z; Cl (.4, (L)) .  (4) 

In this formula, the right-hand side is the closure of.4e (L) in .4e and the left-hand side 
is defined as in 4.3, but with G replaced by P(L) .  

w The Corner X(P) associated to a Parabolic Subgroup 

5.0. From now on, X is a homogeneous space of type S - k  for G (2.3). Thus we 
have Rx = ReG. This latter condition determines uniquely the isotropy groups H x (xE X) 
of G(R) on X; it involves the k-structure of G, as the case of a torus already shows. 
Note that X is also of  type S -  k under G O or under the group ~176 of 1.1. If G O = ~176 
the isotropy groups in X are the maximal compact subgroups of G(R). By 2.1 and 
2.4(2), G always has a homogeneous space of type S - k .  

5.1. We keep the previous notation. By 3.8 and the definition of Ap (4.2), X is a 
principal Ae-bundle under the geodesic action. By definition, the corner X ( P )  asso- 
ciated to P is the total space of the associated bundle with typical fibre ATe: 

X (e)  = X • a , .4 , .  (1) 

Thus X ( P )  is the quotient of Xx  .4, under the equivalence relation: (x, z ) ~ ( x ' ,  z ')  
if and only if there exists aeA1, such that x = x '  o a and z ' = a . z .  The space X ( P )  is 
endowed with a natural (real analytic) structure of manifold with corners coming from 
that of the fibres (the components of the boundary being the e(Q) described below). 

In view of 4.5(2), we have 

X (P) = l_IL=a-t X (P, L ) ,  (2) 

where 

X (P, L )  = X x a~A e'oL. (3) 

By 4.5(3) 

X (e ,  L )  = X / A e  (L) x a,.. 1, (L~ Ap. e (L) ~- X / A  r (L), (4) 
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in particular 

X(P,  O) = X/Ae, X(P,  A - I) = X .  (5) 

Let us put 

ex (Q) = e (Q) = X/Ae, (Q ~ ~3), 

in particular e (G ~ = X. By 3.9, e (Q) is canonically of type S - k  under Q. The equality 
(2) can be written 

X (P) = I_IQ~ ~, Q=e e (Q). (6) 

We have a principal fibration 

X --* e (Q) with structural group AQ. (7) 

Let J be a subset of L. Then P(J )cP(L)=Q.  Replacing X, G, P by e(Q), Q, P(J), 
we then have also a principal fibration 

ve(j),Q:e(Q) ~ e(P(J)) with structural group Aptj),Q. (8) 

We have the factorization Avis)=Ae(j), Q x AQ. The group Ae(s) operates by geodesic 
action on the fibration (7), and the action induced on e (Q) is the geodesic action of 
Aets),Q which underlies (8). 

The group P (R) operates on X, and commutes with A e. The action o f P  (R) extends 
then to X(P),  leaving the faces e(Q) stable. Since Ae is commutative, its action on X 
also extends to X(P),  leaving each e(Q) stable, and it still commutes with P(R).  
Moreover, P(R) operates on the fibrations (7), (8). 

5.2. Let V be a normal unipotent k-subgroup of G, and n : G ~  G ' = G / V  the 
canonical projection. The group V(R) operates properly and freely on X, and 
X' =X/V(R) is canonically of  type S - k  under G' (2.8). Moreover, if tr: X ~  X' is the 
canonical projection, then Lot,o=rc(Lx) (xeX). If P e  ~ and P ' = z r ( P ) ,  then A e, is 
canonically identified with A e and one checks that the geodesic actions of A e on X 
and X' commute with o. As a consequence, X(P)  is a principal V(R)-bundle over 
X'(P') ,  and the projection z : X ( P ) ~ X ' ( P ' )  extends tr. For every Q~P, Q ~ 3  the 
restriction of x to ex (Q) is the projection of a principal V(R)-fibration with base 

ex,(Q). 

5.3. PROPOSITION. Let P c  Q be two parabolic k-subgroups of G and1 o = I ( Q ) -  
- I(P). The inclusion X(Q) ~ X(P) is an isomorphism of manifolds with corners of X(a)  
onto an open subset of X(P).  We have Clx(1,)e(a)=LIe=R=p,R~ e(R)=e(Q) (P), 
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where e(Q) is viewed as a space of type S - k  under Q (5.1), and e(Q) ( e ) is the corner 
of e (Q) associated to the parabolic k-subgroup P of Q. 

The canonical factorization (4.3(3)) 

Ae = Ae, e • Ae 

yields an embedding 

• A" e A-, 0 )  

which, for every L = A- I (Q) ,  induces a homeomorphism 

Aeo x A-o.(L) ~ ,4e(Lwlo), (L c A - I(Q)). (2) 

We have clearly 

X xa~ e = X x aP~215176 x A-e), (3) 

X xA~ e ( L ) = X  XA'O• A t ee • A-e(L))" (4) 

In view of (1), (2), this yields 

x ( 0 )  = x • (A e • A-e) ' (5) 

e ( Q ( L ) ) = X ( Q , L ) = X  •  ( L c A - I ( Q ) ) .  (6) 

The inclusion X(Q)~ X(P)  is then defined by the inclusion (1) of the typical fibres in 
the right-hand sides of (5) and 5.1 (1). By (2) and (6), its restriction to X(Q, L) is an 
isomorphism of X(Q,L)  onto X(P, L UIo). Taking 5.1(4) into account, we get 
canonical isomorphisms 

e (Q (L)) = X/Ae(L) _~ X (Q, L) ~ e (P (L w I (Q)) ~- X/A e(L~,o) 
(L c A - I(Q)), (7) 

Thus X(Q, L) is endowed with structures of space of type S under both Q and P (5.1). 
It is immediate from the definitions that the latter structure can also be associated to P 
viewed as a subgroup of Q, hence the inclusion commutes with the geodesic action 

of Ae. 
Let J , - -A-I (P) .  The closure of A-e(J) is the set of points of -'/e on which the 

elements of A - I ( P ) - J  are zero. Therefore 

CI (AT e (J)) = Lit=s zfp (L). (8) 

But 

Cl (e (P (J))) = X x a .  Cl (A-l, (J)) (9) 
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whence 

CI(e(P( J)) = L[L=J X (P, L) = I_[r(J~ =R=P,R~ e(R). (10) 

Let now J =  I o, i.e. P (J) = Q. We have A e = Aeo x AQ and AQ acts trivially on CI (Xp (J)) 
whence 

Cl(e (Q)) = (XIAQ) x a,,Q Cl(~p (Io)). (11) 

In view of 4.5(4), this can be written 

Cl (e (Q)) = (X/AQ) x apQ ~ (12) 

or, taking 4.3 into account 

Cl (e (Q)) = e (Q) (P). (13) 

Together with (10) and 4.3, this proves the second assertion of 5.3. 

5.4. Canonical cross-sections. Let J c L  be subsets of A-I (P) .  Put Q=P(J), 
R = P  (L) and consider the fibration 5.1 (8) with structural group A Q, R 

re, R : X (e, L) -+ X (P, J)  (1) 

which can also be written 

re, R: e (R) -+ e (Q). (2) 

The space X(P, L) is of type S under Q, associated to RdR, hence it is of type S under 
OQ (R), and the isotropy groups in OQ (R) are its maximal compact subgroups. 

Let yeX(P, L) and M its isotropy group in ~ By 3.6, the map Aq, R x 
x ~ L) defined by (a, q)r-.+(y o a).q induces an isomorphism 

~,: Aa, R x X (n, J) ~ X (P, L) ,  (3) 

which commutes with OQ (R) acting in the usual way on X(P, L) and X(P, J). The 
images of the sets {a} x X(P, J) are the orbits of OQ (R) and will be called the canonical 
or standard cross-sections of the fibration (1). 

Let now xeX. For Q~P, denote xQ its projection on e(Q). The trivialization 

#x: a p  x e ( P )  z~ X (4)  

induces one of the associated bundle X(P) 

x e(P) x (P) (5) 
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which commutes with Ae and ~ It is immediate from the definitions that, on the 
face e (Q), this trivialization coincides with the trivialization given by (3) with y = xQ, 
and J =  0. If  we replace G by Q, we get similarly an isomorphism 

#~: Are, o x e (P) --* CI x (e) e (Q) ~- e (Q) (P) (6) 

(cf. 5.3). We have then X(P)~-Are,q x Aro x e(e), whence also an isomorphism 

#,:Arq x e(Q) (P) ~ X ( P )  (7) 

which commutes with A o and ~ acting in the obvious way. It is immediate from 
the definitions that the diagram 

Are, o x e (P) ~LQ, e (Q) (P) 
(6) 

Arexe(P)  ~ ,  X(P) ,  

where the vertical arrows are the canonical injections, is commutative, and that all 
maps commute with the natural actions of ~ and Ae. 

Together with 5.3, this shows the commutativity of the following diagram, where 
the vertical arrows are inclusions: 

/Zx 

~R • e (R) (Q) :~ X (Q) 

ArR • e (R) (e) ~ X (P) 
(7) 

5.5. PROPOSITION. Let Q, RE 9~ be such that Q c~ RE ~J. Then the geodesic ac- 
tion of Aq on X extends to a geodesic action on e(R). 

Let P =  Q c~ R. Then e(Q) and e (R) may be canonically identified to faces of X ( P )  
(5.3) and AQ, AR to subgroups of Ae. The action of AQ is then defined by the extended 
geodesic action of A e on X(P) .  

Remark. Let P '  E ~ ,  P '  c P. The canonical inclusions X ( P )  ~ X (P ' )  and AQ ~ A e 
being compatible with the extended geodesic actions, it is clear that the above action 
of AQ on e(R) can also be defined using the corner X(P' ) .  

5.6. Let gEG(k), P E ~ ,  P '=Pg and I = I ( P ) = I ( P ' ) .  Then Intg -1 induces an 
isomorphism ~:Ae ~ Ae, compatible with the identifications of both groups with 
(R*) n - t  (4.2), hence it extends to an isomorphism of Xe onto Are' also denoted a~-~a g. 
We have 
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cf. 3.2(5); therefore x~-*x.g extends to an isomorphism of X ( P )  onto X(P ' ) ,  also 
denoted x~--rx ~, which also satisfies (1)with xeX(P) .  Let Qe~3, Q=P and Q'=Qg. 
Then x~-~x ~ induces an isomorphism e ( Q ) ~  e (Q~) which is induced by passage to 
the quotient from the translation x~-,x.g. Translation by g also gives rise to a com- 
mutative diagram of trivializations: 

AQ x e (Q) (P) ---, AQ, x e (Q') (P ')  

x ( e )  - ,  x ( e ' )  
(2) 

The map/~x (resp. #,,s) commutes with AQ x ~ (resp. AQ, x Op, (R)) (5.4). In par- 
ticular, if geQ, then Q=Q', a~=a (aeAQ), and all maps in (2) commute with A e. 

w 6. Topology of X(P) and Siegel Sets 

6.1. Let Pe~3, and I=I (P ) .  For t>0,  we put 

Ae, , = { a e A  e I s ( a )  <= t ,  (o:eA - I ) }  

ATe,, = ( a e ~  I ~(a ) ~ t ,  ( ~ e A  - I)}. 

Let xeX. A Siegel set in X, with respect to P, x, is a set 

= ~, ,  o, = (x o A~,,).co 

(1) 

(2) 

where co is a relatively compact subset of ~ 
Let xe be the canonical projection of x on e (P).  Then, if p~: Ae x e (P) ~ X is the 

canonical isomorphism of 5.5, we have 

~2 ~ (~, , ,o)  = Ap.,  x x~,- co. (3) 

In particular, every point y e X  has a neighborhood of this form. If P = G  ~ then 
Ae = {e}, and the Siegel sets with respect to P are just relatively compact subsets. 

Let S'  be a maximal torus of RdP stable under the Cartan involution of L x with 
respect to a maximal compact subgroup of Hx. Let A' = S'  (R) ~ ThenP (R) = A'~,<~ (R) 
and there is a canonical projection o:A'  --, Ae. Let y eX. There exists p e P  (R) such that 
y=x .p .  Write p=a' .q  with a'eA' and qe~ Then y = ( x o  a (a')).q, and 

(y o Ae, t)'co = (x o a (a')" Ae, t)" q'e9. 

From this it is clear that any Siegel set with respect to x, P is contained into one with 
respect to y, P and conversely. Thus the choice of the origin matters little. 

6.2. PROPOSITION. For Q~P,  Q e ~ ,  let J c d  - I such  that Q=P(J )  andxQ be 
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the canonical projection of  x onto X(P,  J). Let y e e ( P )  and pe~  be such that 
y=x~,'p. Let ~=~t ,~ ,  be a Siegel set with respect to P, x. 

(i) The closure ~ of  ~ in X ( P )  is compact. We have 

n X ( P , J )  = (xQoAp, Q,,)'N, 

where Ap.Q. t = A e. Q n A~,,p In particular, the left-hand side is a Siegel set in X(P,  J), 
with respect to P and xQ, and any such Siegel set can be obtained in this way. 

(ii) Let t ~  0 and oJ i be a fundamental decreasing sequence of relatively compact 
neighborhoods of  e in ~ (i= 1, 2, ...). The closures in X ( P ) of  the sets (x o Ae,,,)" 
.p.~oiform a fundamental system of neighborhoods of  y. 

The canonical isomorphism #x extends to A" e x e ( P ) ~  X ( P )  and 6.1(3) implies 

,u~-' ( 6 )  = A'v,t x x , .  ~ ,  (1) 

which proves (ii) and the first part of (i). The second part of (i) follows from (1) and 
5.4(6). 

6.3. It is clear from the definitions and the equalities 

G(R) = K . G~  G~ -- (G O n Hx).~ ~ (R) 

(1.2, 1.4) that Siegel sets do not change if we replace G by G o or ~176 Similarly, let 
V be a normal k-subgroup of RaG and let X'--  X~ V(R), viewed as usual as a space 
of type S - k  for G' = G/V(2.8). Then the image of a Siegel set in Xunder the canonical 
projection is a Siegel set in X', and any such set can be obtained in this way. In 
particular, in discussing properties of Siegel sets in X, we may always assume G to 
be connected, reductive and even to have no non-trivial central k-split torus. The 
most important ones will be deduced from reduction theory. For this, we have to 
relate the present Siegel sets to those considered in [3], which are subsets of reductive 
groups. 

6.4. Assume then G to be reductive. Let P be a minimal parabolic k-subgroup of  
G and K a maximal compact subgroup of G (R). Let Lv be the Levi subgroup of P (R) 
stable under the Cartan involution 0K (1.9), S~, = Lp ra R, (P)  and A; = (S;) ~ The ele- 
ments of A define a surjective homomorphism A; ~ (R*)4 which goes over to the 
canonical isomorphism Ap :~ (11") 4 under the natural projection A~,--, Av and whose 
kernel is A~ n ~' (G). 

We now want to prove: 

(Hx c~ R a G )  ~ = (Hx n A~) ~ , (x e X fixed under K) .  (1) 

The group Hx n RaG is contained in P, stable under Or (2.1 (iv)), hence contained in 
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Le (1.9), and we have 

(H x n RaG) ~ c (Hx n L e n RaP) ~ = (Hx n A'e) ~ = (Hx n RaP) ~ . (2) 

The group Hx n RaG is contained in RaP , and H .  = K. (H.  n RdG), hence 

Hx n RaP = (K n RAP)" (Hx n RAG), 

(Hx n RaP) ~ = (K n RaP (R)~ ~ (H.  n RdG) ~ . 

But RaP(R) ~ is the semi-direct product of A~, and RuP(R ), hence is contractible, and 
has no compact subgroup ~ {e}. Therefore 

(H.  n RaP) ~ = (H.  n RaG) ~ 

which, together with (2), proves (1). 
Define A~,,t in the same way as Ae,r A Siegel set of G(R) (with respect to K, P, S')  

is then a set of the form 

! 

~ '  = ~ , ~  = K .Ap , , . co ,  (3) 

where co is a relatively compact subset of Op (R). This is the definition of a standard 
normal Siegel set in [3, w except that we do not require S'  to be defined over k, 
and to to be a neighborhood ofe. The maximal tori defined over R of  RnP are conjugate 
under P(R).  Therefore, given P, we may always choose x so that S '  is defined and split 
over k. 

Let x ~ X  be such that K=Hx.  Then 

x . ~ ,  ,~ = (x o a/,.,).co = ~t. ~, (4) 

is a Siegel set of  X, with respect to P, x, as defined in 6.1. By definition (see 2.3 and (1)), 
H,, = K. (H,~ n RaG) ~ = K" (Hx n A~,) ~ Since H~ n A j, is the intersection of the kernels 
of  the elements of  A, we have 

H x ' ~ '  = ~ ' ,  ~ ,  = n~-I ( x ' ~ ' ) ,  (5) 

where n~ , :G(R)~X is the orbital map g~-..~x'g. Thus the Siegel sets in G(R), with 
respect to K, P are the inverse images of  the Siegel sets in Xwith respect to P, x, where 
x is fixed under K. 

6.5. PROPOSITION. Let G be reductive. Let P be a parabolic k-subgroup o f  G, 
Po be a minimal parabolic k-subgroup o f  G contained in P, and ge  G o (k ). Let xEe  ( e ), 
{xn} ( n = l ,  2 ....  ) a sequence o f  points o f  X which tends to x in X(Po)  and such that 
{x.'g},~_l is relatively compact in X(Po).  Then g~P(k) .  
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Fix a point xoeX. By 6.2, there exists a Siegel set ~ = ~ t , , o  in X, with respect to 
Xo, Po, which contains x,  and x , .g  for all n's. Let then a, eAl,, and pneo~ be such that 
x,  = (x o o a,) 'pn, (n = I, 2 .... ). Let I be such that P=Pot .  Then e (P)  = Z(Po, 1). The 
isomorphism 

# = #xo:3"eo x e(Po) ~ X(Po) 

of 5.4 maps Apo,p x e(Po) onto e(P). Thus, if we write #-1 (x)=(a ,  b) with aeA'ro, 
bee(Po), we have ct(a)=0 for s e a - I .  As a consequence 

lira ~t (a~ = 0 (ct~A - I) .  (1) 

We now fix a maximal compact subgroup K of the stability group of Xo, let rr: 
G (R ) - +Xbe  the orbital map g~-+xo'g and ~ , = n - i  (~).  Then ~ '  is a Siegel set in 
G(R), with respect to K, Po (6.4), and we have ~ '  =K.A~, t. 09, in the notation of 6.4. 
Let then a', be an element of A'e., which maps onto a, under the natural projection. 
Our assumptions and (1) imply 

a'n'Pn, a'n'p.'ge~' (n = 1, 2 .... ), 

lira ct (a'n) = 0 (~eA - I ) .  

We have then g~P by Prop. 12.6 of [3]. 

w 7. The Manifold with Corners X 

7.1. We shall denote by ~t' or X(G) the disjoint union of the sets e(P) ( P e ~ )  
(where, by definition, e(G~ For e e  ~ ,  we identify X(P) with l..)Q~e e(Q) (see 
5.1 (6)). We have then 

X (P) c~ X (Q) = X (R),  (P, Q e ~ ) ,  (I) 

where R is the smallest parabolic k-subgroup of G containing P and Q. By 5.3, the 
inclusion map X ( P ' ) ~  X(P) ( P c P ' e  ~3) is an isomorphism, of manifolds with cor- 
ners, of X(P') onto an open submanifold of X(P). There exists therefore one and 
only one structure of manifold with corners on �9 such that the X(P) ' s  are open sub- 
manifolds with corners of X. The space X will always be endowed with that structure. 

For every P e  ~ ,  the subspace e (P)  has an open neighborhood which meets only 
finitely many e(Q)'s (Qe ~) ,  namely x ( e ). Consequently the e ( P )'s (Pc ~J ), or their 
closures in ~, form a locally finite cover of .~. 

By definition, we have 

= l i e  ~ ~ e (P) -- I,.Jj,, ~ X (P) ,  (2) 
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and the X(P) (Pe ~3) form an open cover of A'. For Qe ~ ,  we let 

Y (Q) = [..JeE, ,Q) X (P).  

We have then also 

r (Q) = I_[,~ , .  a ~ Q ~ ,  e (R) .  

(3) 

(4) 

7.2. (i) The space X is canonically of type S under G ~ and ~ ( G ) = ~ ( G  ~ by 
definition. Therefore X(G)=X(G~ 

(ii) Assume G to be reductive. Then RaG (R) operates trivially on X, and Xis of type 
S under G/RdG, and also under G~ Since ~ (G) = ~ (G/RdG) = ~ (G~ we 
also have natural identifications 

a ' (G) = a'(G/R~G) = a'(G~ 

(iii) Let V be a connected unipotent normal k-subgroup of G and zc: G ~ G' = G/V, 
a : X ~  X'=X/V(R) the canonical projections; the latter is the projection map of a 
principal fibration with structural group V(R). By 5.2, for every P~ ~ (G), this fibra- 
tion extends to a principal fibration 

X(P) --. X' (P/V) with structural group V(R) 

commuting with Av, which is therefore also compatible with the inclusions 
X(Q)~X(P)  (Q~P; Q~ ~3). It follows that these principal fibrations match to give 
one for X over X'. 

7.3. PROPOSITION. (i) The embedding e ( P ) ~  Sg (Pe ~3) extends to an isomor- 

phism of manifolds with corners of e(P) onto the closure of e(e) in :?. 

(ii) For Q~3,  the space Y(Q)= [,.JeEr(Q) X(P) is an open neighborhood of e(Q). 
For x~X, the isomorphism I~x:AQ x e ( Q ) ~ X  (see 5.4) extends to an isomorphism of 
.~Q x e(Q) onto Y(Q), which commutes with AQ, acting on "ffa x e(Q) via its natural 
action on gQ, and on each e (a'), (Q'E ~3 (a)), by geodesic action (5.5). 

(In (i), e(P) means the manifold with corners extending e(P), where e(P) is 
endowed with its canonical structure of space of type S - k  under P (5.1).) 

(i) Let Z be the closure of e (Q) in v.  Let PE ~ .  Since X(P) is open, Z meets e ( e )  
only if X(P ) c~ e (Q) ~ O, i.e. if P c Q. Therefore Z is the union of the spaces X(P) c~ Z 
for Pe~3, PcQ.  By 5.3, Zc~X(P) may be canonically identified with e(Q)(P), 
whence (i). 

(ii) Since the X(P) ' s  are open in X, the space Y(Q) is an open neighborhood of 

e (Q). For P e  ~ (Q), we have, by the above and (6), (7) of 5.4, an isomorphism 

#x:AY~ • e(Q)(P) ~ X(P)  (1) 
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which commutes with A o, ~ and with the inclusions 

e ( Q ) ( P ) ~ e ( Q ) ( P ' )  and X ( P ) ~  X(P')  ( P ' ~ P ; P , P ' ~ ( Q ) ) .  

This proves that the maps Px, for Pc~3(Q), match and define an isomorphism 

#x:.~Q x e (Q)~  Y(Q) commuting with At2, whence (ii). From now on, we identify 

e(P) with the closure of e(P) in X(P~?~). 

7.4. COROLLARY. Let P, Q~3.  Then e (P)ne(Q)  is equal to e ( P n Q )  if  

P n Q ~ ~3 and is empty otherwise. In particular e (P) = e (Q) if and only i f e  = Q. 
This follows from 7.30) and the definition. 

7.5. COROLLARY. Let P, Qe?~. Then e(P)ne(Q)#Oc~e(P)ce(Q)c~.PcQ.  

This follows again from the fact that, by 7.3(i), e(Q) is the union of the e(Q') 
with Q'6  ~3 (Q). 

7.6. PROPOSITION. The action of G ( k ).R.G (R) on X extends to one on 3~, which 
preserves the structure of manifold with corners of J?, and in particular permutes the 
faces e (e )  (e~ ~). For g~G(k).R,G(R) a n d e s , ,  we have e(e) .g=e(e*) .  

This is clear from 5.6, in particular 5.6(1) and 7.2, or by "transport de structure." 

7.7. COROLLARY. Let P, Q~3.  

(1) {g~G(k)[e"=Q)= {g~G(k) l e (P) 'gne(O)r  
= {geG(k) [e(e).g=e(a)}. 

(2) {g~G(k) I P g n Q ~ } =  {g~G(k) ] e (P ) ' gne (a )~o} .  

(3) Q(k ) =  {g~G~ I e(a). gne(a)v~O}. 
(I) and (2) follow from 7.4, 7.6. By (2) the right-hand side of (3) is {gEG~ I 

Qgn Qe ~) ,  which is known to be Q(k). 

7.8. THEOREM. The manifoM with corners ,~ is Hausdorff l f  k & countable, then 
3~ is countable at infinity. 

To prove the first assertion, we proceed by induction on dim G. If  dim G = 0, then 
is reduced to a point, so we assume our assertion to be true for every k-group G' 

of dimension < dim G. 
Let y, y ' ~ a  ~ and let {V,} (resp. {V'}) (n= 1, 2, ...) be a fundamental sequence of 

neighborhoods of y (resp. y') such that II, n Is' S 0  for all n. We have to prove that 
y=y' .  Since a corner X ( P ) ( P e  ~3) is open, by definition, and Hausdorff, it suffices 
to show that y and y '  belong to one. Assume first U=R~G#{e}. Let X'=X]U(R).  
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By 7.2, the projection X-o X '  extends to one tr of ,~ onto X',  and we have 

tr(X (P)) = X'(P/U),  tr- '(X'(P/U)) = X(P) ,  (Pe~3). 

Since ~ '  is Hausdorff by induction, we have tr ( y ) =  tr (y ' ) r  X'(P/U) for some P e ~3, 
whence y, y' ~X(P). 

This reduces us to the case where G is reductive. Let P, P ' ~  ~ be the parabolic 
k-subgroups such that yee(P)  and y'ee(P') .  By 7.1 (1), X ( P ) n X ( P ' )  is the union 
of the e (Q), with Q e ~3, Q ~ P, P ' .  Since these are finite in number, there exists Q e 
such that e (Q) n V, n V" # 0  for all n's. The points y and y '  then belong to the closure 

ofe  (Q), which may be identified with e (Q) by 7.3. If  Q # G ~ the induction assumption, 

applied to Q and e(Q), shows that y=y' .  So assume Q=G ~ i.e. Vnn V ~ n X # 0  for 
all n's, and let x~e V~ n V" n X (n = 1, 2,...). Thus both y and y '  are limit points of the 
sequence {x~}. Let Po be a minimal parabolic k-subgroup of G contained in P, and 
geG ~ (k) be such that PocP  'g. We have then 

x, ~ y~e(P) ~ X(Po), x, 'g ~ y ' .g~e(P '~) ~ X(Po). 

We may assume x,, Xn'geX(Po) for all n's. The x~ .g then form a relatively compact 
subset of  X(Po), and we have geP by 6.5. The relation P ' g n P ~ P  o then yields 

P' n P = (P'g n p)~-I ~ p~-i 

whence e (P'), e (P )~  X(P~-i); this shows that y and y'  are contained in one corner, 
and finally that y=y '  since, as remarked above, each corner is Hausdorff. 

Assume now k to be countable. Then so is G (k), and also ~ ,  since the latter is the 
union of  finitely many orbits of  G O (k). Since each e (P)  is a countable union of  com- 
pact subsets, the second assertion follows. 

7.9. COROLLARY. Let P ~ 3  and xeX. Then the closure in �9 of a Siegel set 
with respect to x, P is contained in X ( P ) and is compact. 

The closure A = Clxo,)(6) of ~ in X(P)  is compact by 6.2. Since Ji" is Hausdorff, 
this implies that A is compact and closed in A', hence A=CI~(~). 

w 8. Homotopy Type of c~X 

8.1. Retracts 
We recall some basic facts about absolute retracts (AR) and absolute neighborhood 

retracts (ANR) in the category of  metric spaces. Proofs can be found in [24], [16], [17] 
and [19], App. II. 
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A metric space X is an AR if and only if the following equivalent conditions are 
satisfied: 

(AR1) X is a retract of  any metric space which contains it as a closed subspace. 
(AR2) For any continuous map f :  A ~ X, where A is a closed subspace of a metric 

space Y, there exists a continuous map F: Y ~  X which extendsfl 
Similarly, the fact that X is an ANR cart be characterized by the equivalent condi- 

tions: 
(ANR1) For any embedding of X as a closed subspace of a metric space Z, there 

is a neighborhood of X in Z of which X is a retract. 
(ANR2) For any continuous map f : A  ~ X, where A is a closed subspace of a 

metric space Y, there is a neighborhood U of A in Y, and a continuous map F: U ~  X, 
such that F extends fi  

The property of  being ANR is local ([24], p. 8); every metrizable manifold (with 
boundary) is an A N R  ([24], p. 3). 

I f  X and Y are ANR's ,  every weak homotopy equivalence f :  X ~  Y is a homotopy 
equivalence ([24], th. 15). 

I f  X is an ANR,  then (cf. [24], p. 5): 
X is an A R c > X  is contractible r all rrt(X ) are 0. 

8.1.1. LEMMA. Let Y be a metric space, X a closed subspace of Y and f : X ~  Z a 
continuous map of  X into a topological space Z. Assume X is an AN R and Z is contractible. 

Then f can be extended to a continuous map F: Y--* Z. 
By (ANR~) we can choose a neighborhood U of X in Y of which X is a retract. 

The m a p f c a n  be extended to a continuous m a p f ' :  U--. Z;  since Z is contractible, 
f '  is homotopic to a constant map. Since a constant map can be extended to Y, the 
same is true for f i  by the "homotopy extension theorem," cf. [12], p. 1-05. 

8.2. Nerves 
We need a variant of Weil's theorem ([30], p. 141) comparing a space with the 

nerve of  one of its covers. 
Let Y be a space, and (Y~)t~ i a locally finite cover of Y by closed non-empty sub- 

sets. Let T be the nerve of that cover; it is a simplicial complex, whose set of  vertices 
is I ;  a simplex s of  T is a finite subset of  I such that Y~= ~ ,  Y~ is non-empty. We 
denote by S the set of  simplices of T, and by I Zl (resp. by isl, for se S)  the geometrical 
realization of T (resp. s); we put on I T[ the weak topology: a subset U of [ TI is open 
if and only if U n  Isl is open in Isl for any s e S  ([19], p. 41). We make the following 

assumptions: 
(1) T hasfinite dimension, i.e. there exists an integer N such that C a r d ( s ) < N  for 

all s~S. 
(2) All the Y~, seS,  are absolute retracts, cf. 8.1. 
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8.2.1. THEOREM. The spaces Y and [ TI have the same homotopy type. 
We prove a more precise statement. Identify 1 T[ as usual with the subspace of R (~) 

made of those (x,),~, with 0~<x,~< 1, ~ x ,=  1, and {i1 x,>O}eS. If iE1, call IT el the 
subspace of  IT[ made of those (xl) such that x~>~xj for all j e L  If seS,  we put 
]Zsl = O i~ �9 I Z~l; it is the star of the barycenter of s in the first barycentric subdivision 
I T~I of ITI, see below; it is contractible. The refined form of th. 8.2.1. is 

8.2.2. THEOREM. (i) There exist continuous maps f:  Y ~ I TI and g: [ TI --* Y such 
that f ( Y ~ ) c  I Z~l and g(I Ti[) C Y~for every isI; they are unique, up to homotopy. 

(ii) l f  f and g are chosen as in (i), fog and go f a r e  homotopic to the identity. 
Proof of(i). 
(is) Construction off:  Y ~ I T[. 
If n> 0, call S(n) the set o f s~Swi th  Card(s)/> n, and put Y, = Uses(,) Y~. We have 

We use decreasing induction on n to construct a continuous map 

A:Y~ ~ ITI 

such that f .  (Ys) c [ Ts[ for all seS(n).  To ge t f ,  from f,_1, we have to define f. ,  ~: Y~--. 
--' ITs[ for every s with Card(s)=n,  andf . ,  ~ is known on all Yt with t=s, t#s .  Using 
assumption (2) together with Lemma 3.2 of [24], one sees that the union of those Yt 
is an ANR, which is closed in YA the existence off , ,  ~ then follows from Lemma 8.1.1 
since [T~I is contractible. This completes the induction process, hence the construction 

of  A =f. 
The uniqueness o f f ( u p  to homotopy) is proved in a similar way; one uses the fact 

that, if Z is an AR (resp. an ANR), the same is true for Z x [0, 1]. 
02) Construction of g:l TI ~ Y. 
Let T 1 be the first barycentric subdivision of T. The set of vertices of T 1 is S. A 

subset a of  S is a simplex of T ~ if and only if it is totally ordered by inclusion; we then 
denote by s (a) (resp. t (a)) its smallest (resp. biggest) element. We identify the topolog- 
ical spaces I T~I and I TI in the usual way; a vertex s of I Tal corresponds to the bary- 
center of the simplex Isl of I TI; moreover, Isl is the union of the simplices lal with 

t (a)=s.  The star o f s  in IZal is IZsl= Ni~s  IZil= Us<o)=, lal. 
If a is a simplex of T 1, put Y,= Y,(o). One checks easily that the condition 

g(I Ti l )c  Yi for all i e l  is equivalent to g 0 a l ) =  Y, for all a's. Since the Yo's are con- 
tractible, the existence of g follows from the "aspherical carrier theorem" ([19], 
p. 75-76); the same argument proves the uniqueness of g, up to homotopy. 

Proof of (ii). 
(iil) The maps g of, I d r : Y ~  Y are homotopic. 
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The proof is analogous to (ia). Using decreasing induction on n, one constructs 
homotopies 

e.:r.• [0,13 - ~ r  

between g o f  and Idr, such that F.(Y~x [0, 1])= Ys for all seS(n). To get F. from 
F,+I, we have to define F,,,: Y~ x [0, 1] ~ Y~ for every s with Card(s) =n,  and F,, s is 
known on the union of Y,• {0}, Y,• {1} and all Ytx [0, 1] with t=s, tCs; since Ys 
is an AR, the corresponding extension problem is solvable by (AR2). 

(ii2) The maps fog, Idlrl: I TI ~ IT[ are homotopic. 
Both maps send each simplex ]tr I of JTll = I TI into I T,(,)I, which is contractible. 

We then apply the aspherical carrier theorem, as above. 

8.3. The e(P)'s. 
We go back to the hypotheses and notation of w we assume moreover that the 

ground field k is countable. The manifold with corners ~ is Hausdorff and countable 

at infinity (th. 7.8), hence metrizable ([24], th. 1); the e(P) 's ,  for P e ~ ,  make up a 
locally finite closed cover of X (7.1, 7.3). 

8.3.1. LEMMA. For every Pe ~3, e(P) is an absolute retract. 
Note first that, from the topological point of view, "corners" and "boundaries" 

are the same thing, hence e(P) is a metrizable manifold with boundary; by 8.1, it is 
an ANR. Moreover, it is known that a metrizable manifold with boundary has the 
same homotopy type as its "interior" (this follows for instance from the collar theo- 
rem of M. Brown [10] - in the present case, we may also use the differentiable struc- 

ture of e(P) to get a differentiable collar, cf. the Appendix to the present paper). 

By 3.9, the interior e(P) of e(P) is a homogeneous space of type S - k  under P(R), 
hence is homeomorphic to some euclidean space. This shows that e (P)  is contractible; 

by 8.1, it is an AR. 

8.3.2. Remark. Instead of the (global) collar theorem, one may use a local defor- 

mation argument to prove that 

nl (e (P)) ~ re, (e (P)) 

is surjective for all i, hence that all n~(e(P)) are 0. The fact that e(P) is an AR then 

follows from 8.1. 

8.4. Comparison between da ~ and the Tits building of G. 
Recall that G O is the biggest element of ~ ,  and that X=e(G~ all other e (P) ' s  

are contained in the boundary da ~ of X. We denote by I the set of maximal elements 
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of ~3 -- {G ~ ; by abuse of language, an element o f / i s  called a maximalparabolie sub- 
group of G. 

8.4.1. THEOREM. The e(P)'s, for PeL  make up a locally finite closed cover 
of a3~. This cover has properties (1) and (2) of 8.2. lts nerve is the Tits building T of G. 

(Recall cf. [29], that the Tits building of G is the simplicial complex whose set of 
vertices i s / ,  and whose simplices are the non-empty subsets s of I such tha tP ,=  
= Or~s P is a parabolic subgroup of G. It is canonically isomorphic to the building 
attached to the Tits system of G O (k)/RG (k) constructed in [8], cf. Bourbaki, LIE IV, 
w exerc. 10.) 

The cover of 0~ given by the e (P)  is locally finite (7.1). If  s is a finite non-empty 

subset o f / ,  we know (cf. 7.4) that Oe~ s e (P)  is non-empty if and only if P~ = ["Jr ~ �9 P 
is parabolic, i.e. if and only if s is a simplex of the Tits building T. If  this is the case, 
we have Card (s) ~< l, where I is the rank of the corresponding BN-pair (i.e. the k-rank 
of  the semi-simple group G~ or equivalently the semi-simple k-rank of G~ 

cf. [8], def. 4.23); moreover, by 7.4, the intersection of the e(P), for P~s, is e(P~), 
which is an AR by 8.3.1. All the assertions of 8.4.1 are now obvious. 

8.4.2. COROLLARY. The spaces O~ and I T[ have the same homotopy type. 
This follows from 8.2. More precisely, 8.2.2 gives homotopy equivalences 

f : O X ~  IT[ and g:lT[ ~ 0X 

which are canonical and inverse to each other, up to homotop3, and allow us to iden- 
tify the homology groups 

H , ( 0 ~ , Z )  and H , ( T , Z )  ( i = 0 , 1 , . . . )  

of  0X and T. By transport de structure, this identification is compatible with the action 
of  G (k) on both groups. 

8.4.3. Remark. For each xeX,  the geodesic action (3.2) allows one to construct 
an explicit homotopy equivalence g~:l TI ~ aXof the  type required in 8.2.2. We sketch 
the construction: 

Let T 1 be the first barycentric subdivision of T and a a simplex of T 1, let t be a 
point of Icrl. I f s  is a vertex of a (hence a simplex of T), we denote by t, the s-coordinate 
of t. Choose now a maximal simplex So of  T containing all the sea ,  so that P =P,o is 
a minimal parabolic subgroup of G, contained in all P~ for se a. If  A is the correspond- 
ing basis of the k-roots (cf. 4.1), the elements s of ~r may be identified with subsets of  
d. For every ~eA, put 

a.(t)  = E . . t . ,  
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where the sum extends to those s e a  which do not contain ct. We have a , ( t ) e [0 ,  1], 
and one of them at least is 0. Let a(t) be the element of A'e whose coordinates are 
a, (t), cf. 4.3. Using the natural map X x ASe ~ ~, we get a point x.a (t) of A', which 
belongs to Oa ~ and does not depend on the choice o f s  0. We now define gx.~ on ]a[ by 
the formula 

gx, ~ (t) = x 'a  (t). 

One checks that the gx, ~ are compatible with each other, and define a continuous map 
gx: I TI -~ aX having the required property (there is also a natural extension of gx to a 
map gx:C(IT[)~3~, where C(]T[) is the cone on [T]). 

It would be interesting to have a similar explicit construction for one of the maps 

f : ~ X ~ I T i .  

8.5. Homotopy type of l TI. 
We keep the notations of 8.3 and 8.4. In particular, l denotes the k-rank of the 

semi-simple group G~ the dimension of the Tits building T is l -  1. The following 
result is known (cf. [28], [14]): 

8.5.1. THEOREM. The space [T] has the homotopy type of a bouquet o f ( l - l ) -  
dimensional spheres with the weak topology. 

(When 1=0, this means that T is empty.) 
We just outline the proof. 
Assume l~> 1, and choose an ( l -  1)-dimensional simplex s of T. Let 27 be the set of  

"apartments" of T containing s (see, e.g., Bourbaki LIE IV, w exerc. 10). It is known 
that any apartment A is isomorphic to the Coxeter complex of the Weyl group W of 
G, hence is a subdivision of an (l-1)-sphere. This allows us to identify IA[ with the 

sphere S~_ 1. Now, form the bouquet 

Box = VA+zlAI, 

of the spheres IAI, with Ae27, choosing for base-point a point of Isl. The inclusion 

maps ]AI ---' IT] define a continuous map 

i: Bo~ -"+ tT] 

and the refined form of  th. 8.5.1 is: 

8.5.2. THEOREM. The map i: Bor-*l Tl is a homotopy equivalence. 
This is proved by remarking first that each apartment A contains a unique ( l -  1)- 

simplex SA which is opposite to s (the corresponding notion for parabolic subgroups 
being the one defined in [8], n o 4.8). Moreover, the (l-l)-simplices which are not 
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opposite to s make up a contractible subcomplex T '  of T, and T '  contains all the faces 
of the sa's. Pinching I T'I to a point, one thus gets a map 

j :  ITI --' Boz 

which is a homotopy inverse of i (for more details, see [14]). 

8.5.3. Remark. Note that Boz, i and j all depend on the choice of s, i.e. of  the 
choice of a minimal parabolic subgroup P of G. Hence, one can only assert that the 
homotopy equivalences i a n d j  between [ T[ and Bo z are compatible (up to homotopy) 
with the action of P(k)  on both spaces. Note also that 2: can be identified with the set 
of maximal k-split tori in P/R,G; in particular, P(k) acts transitively on Z. When 
moreover G is reductive, Z may be identified with P (k)/Z(S) (k), where S is a maxi- 
mal k-split torus of P, and Z(S)  its centralizer in G~ in particular, writing P as a 
semi-direct product Z (S).R,P, one sees that R u (P)  (k) acts transitively and freely on 
2;; if 1>t 1, this implies that Card(Z)=No.  

8.6. Homology and cohomology of H and OA ~. 
Putting 8.4 and 8.5 together we get: 

8.6.1. THEOREM. The boundary OX of ~ is empty t f l=0 .  Ifl>~ 1, it has the homo- 
topy type of a bouquet of an infinite number of (l-1)-spheres. 

For 1 = 1, this means that 0~' has an infinite number of components, and that each 
component is contractible. 

8.6.2. COROLLARY. The space OH is (1- 2)-connected, i.e. 7 h (OH) = O for i < I -  2. 
In particular, 0H is connected if l>~ 2 and simply connected if l~> 3. When l=  2, 

7 h (OH) is a free (non-abelian) group with an infinite basis. 

Denote by/Ti(0X ) the reduced homology groups of 0.(, defined by: 
/7 i ( 0 H ) = H , ( 0 ~ , Z )  if i1>1 
I-7o(Oe ) = Ker:Ho (0)[', Z) ~ Z. 

Th. 8.6.1 implies: 

8.6.3. COROLLARY. I f  1>~ 1, the only non-zero H,(0H) is It1_ 1 (OH); it is free 
abelian of infinite rank. 

On the other hand, Lemma 8.3.1, applied to P =  G ~ gives: 

8.6.4. LEMMA. The space H is contractible. We have 

H o ( H ) = H  ~  and H i ( H ) = H  i(H)=O for i ~ O .  
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Denote now by H~(a ~  the i-th cohomology group of ~ with compact carriers [13], 
the coefficient group being Z. 

8.6.5. THEOREM. The groups H~(A ~  are 0 for i # d - l ,  where d=dimX. The 
group H~-Z (a ~) is free abelian; its rank is 1 i l l = 0  and No if l>~ 1. 

Let f~x=H~ (X)  be the orientation group of X; it is a free abelian group of rank 1 
whose bases correspond to the two orientations of X. If l=0,  .~' is equal to X, hence 
is an orientable manifold, and Poincar6 duality gives a canonical isomorphism 

H'r (~) = Hd-, (~) | f2x, 

whence the required result since Hi(av)=0 for j > 0  and Ho(,~)=Z. 
Assume now l f> 1. Since X ~ is contractible, the homology exact sequence yields an 

isomorphism between/qo (8)F) and the relative homology group Hj +1 (X', axe). On the 
other hand, Poincar6 duality for manifolds with boundary (see below) gives isomor- 
phisms 

.'~ (:e) = H~_~ (:r, 8:e) | 0 X . 

By 8.6.3, this gives H/ (~ ' )=0  for i # d - l ,  and 

Hec -t (~) =/7t -1  (~3X) | f2 x = /q ,_ l  (T) | 12 x , (8.6.6) 

which is free abelian of infinite rank, see above. 

8.6.7. Remark. Poincar6 duality for non-compact manifolds with boundary is 
well-known, but not easy to find in the literature. One can for instance prove it by 
the sheaf-theoretic method of Cartan's seminar ([13], p. 20-04 and 20-05). Another 
possibility is to apply Poincar6 duality to the manifolds (with empty boundary) X and 
OX and to use the exact sequence 

�9 .. ~ H~(X) --* H~(X) --* H~(OX)--* Hic+' (X)~ "" 

The details may be left to the reader. 

8.6.8. Remark. The isomorphism 

H ~ - ' ( X ) = R t _ I ( T ) |  valid for l~>l ,  (8.6.6) 

is canonical, hence compatible with the natural action of G(k) on both groups. Using 
8.5.3, this gives information on the action of P(k) on Hi-Z(/ ' ) ,  where P is a minimal 
parabolic subgroup of G. Let us assume for simplicity tlaat G is reductive, and put 
B=P(k ) ,  H = Z ( S )  (k), where S is a maximal k-split torus of P. One then finds that 
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the Z [B]-module H~-'  (~ )  is isomorphic to the induced module Z [B]| x. In 
particular, if we write B as a semi-direct product B=Ht,<U, we see that the Z [-U]- 
module Ha~-l(3~) is free of  rank 1 ; this is analogous to what happens in the Steinberg 
representation of a finite group endowed with a BN-pair, cf. [28]. 

HI. THE QUOTIENT OF X BY AN ARITHMETIC SUBGROUP 

From now on k = Q and F is an arithmetic subgroup of  G (Q) (0.5). 

w 9. The quotient X/F 

9.1. LEMMA. Let Y be a locally compact space, Z a closed subspace with empty 
interior, L a discrete group which operates continuously on Y and leaves Z stable. As- 
sume the following condition to be fulfilled: 

(*) For any compact subsets C, D of  Y 

{geL I C.g n D n ( Y -  Z) ~ O} isfinite. 

Then L operates properly on Y. 
Let C',  D '  be compact subsets of Y and C, D compact neighborhoods in Y of C'  

and D '  respectively. Let g e l  be such that C '  "g n D '  50.  Then C.g n D is a neighbor- 
hood of some point in Y, hence it meets Y - Z ,  and we have 

E = { ge L  l C'.g n D" ~ O} = {geL t C.g n n n ( Y  - Z) ~ 0}. 

Therefore E is finite by (,), which proves the lemma. 

9.2. In this section, we consider the following situation: V is a real Lie group, T 
a locally compact principal V-bundle, L a discrete group operating continuously on T. 
Let H be the group of homeomorphisms of T, (r: L ~ H the natural homomorphism 
and identify V with a subgroup of  H. Assume that a (L) normalizes V and that a is 
injective on N =  tr- 1 (a (L) n V). We identify N with a subgroup of  V. Let 7r: T ~ T '  = 
= T / V  be the natural projection. It follows from our assumptions that L commutes 
with rr and that the action of L on Tinduces one of L'  = L/N on T '  by passage to the 
quotient. 

LEMMA. We keep the previous notation and assumptions. 
(i) Assume L ' to act properly on T '  and N to be discrete in V. Then L acts properly 

on T. 
(fi) Assume moreover V/N and T ' /L '  to be compact. Then T/L is compact. 
(i) Let C, D be compact subsets of  T, and E =  {geL  ] C ' g n D ~ ) ) .  Then It(E) is 
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finite, hence E consists of finitely many subsets of the form N.g n E, with geE. But, 
for geL: 

N ' g ~ E = { n ' g l n ~ N  and C.nnD.g- l~O} ,  

and the latter set is finite since V acts properly on T and N is discrete in V. 
(ii) Our assumptions imply the existence of compact subsets C c T and D c N such 

that T'=n(C).L' and V=D.N. We have then 

T=C.V .L=(C.D) .L  

with C.D= Ua~, (C.d) compact since both C and D are. 

We now prove one of the main results of this paper: 

9.3. THEOREM. The group F operatesproperly on .~. The quotient ~/F is compact. 
Let F '  be a subgroup of finite index of F. If our assertions are true for F ' ,  then they 

are true for F. We may therefore replace F by F c~ G ~ Moreover, X is canonically of 
type S - Q  under G ~ and ~(G)=-~'(G ~ (7.2). Thus we may (and do) assume G to be 
connected. 

We prove the theorem by induction on dim G. Assume first that V= RuP ~ (e}. Let 
e:G~G'=G/V and zc:X~X'=X/V(R) be the canonical projections. The group 
F '  = a ( F )  is arithmetic in G' [2], Fca Vis arithmetic in V, V(R)/(Fn V(R)) is compact 
[3; 8.4], X '  is canonically of type S - Q  under G' (2.8). The space .[' is a principal 
V(R)-bundle and X/V(R)= ~t" (7.2 (iii)). By induction assumption F '  operates proper- 
ly on X '  and .~'/F' is compact. Our conclusion then follows from 9.2. This reduces us 
to the case where G is connected and reductive. 

We now prove that F acts properly. In view of 9.1, applied to Y=)t', Z=OX and 
L = F, it suffices to show that if C, D are compact subsets of ~', then 

E = ( y E F [ C . T n D n X r  isfinite. (1) 

Fix xEX and let PE ~.  The closure Clrr (~)  in X of a Siegel set ~ with respect to P, x 
is compact (7.9) and every point in the corner X(P) has a neighborhood of this form 
(6.2). Since the corners X(P), where P runs through the set ~e  of  minimal parabolic 
k-subgroups of G, form an open cover of ~i' (7.1), it suffices to consider the case where 
C=CI~(~), D=Cl~(~'), where ~ (resp. ~ ' )  is a Siegel set with respect to x and a 
minimal parabolic k-subgroup P (resp. P ' ) .  There exists gEG(k) such that P'=Pg 
(4.1). Then G ' . g  -1 is a Siegel set with respect to P, x. Since any two Siegel sets are 
contained in a bigger one (see 6.1), we may assume that ~ ' = ~ ' g .  We may also as- 
sume the set co occurring in the definition of ~ in 6.1 to be compact. Then ~ is closed 
in X, hence equal to Clx (~)c~ X. Under those conditions, (1) may therefore be written 

E = {yEF I ~ 'Y n ~ ' g  :~ 0} isfinite. (2) 
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Let n: G (R) --* X be the map g ~ x. g, and let ~ '  = rc-x (~).  By 6.4, ~ = rc (~ ' )  and ~ '  
is a Siegel set in G (R), with respect to a maximal compact subgroup K of Hx, P and 
a suitable maximal torus S' of RdP. We have then E = {7eF I ~'~ n ~ ' - g  r 0}. 
It follows from the end remark in 6.1 that we may change at will the origin x used to 
define the Siegel sets. In particular (6.4), we may assume x to be such that S '  is defined 
and split over k. Then ~ '  is a Siegel set in the sense of [3, w 12], and the finiteness of E 
follows from Theorem 15.4 in [3]. 

In view of the relation between Siegel sets in X and in G (R) (6.3). and of Theorem 
13.1 in [3], there exists a Siegel set ~ in X (with respect to some minimal parabolic 
Q-subgroup P)  and a finite subset C of G (Q), such that X =  ~ -  C. F. By 7.9, the closure 
M of ~ .  C in X is compact. Since F acts properly on a e, the family of sets M. 7 (~ eF)  
is locally finite in ~, hence is closed in )i'. On the other hand, it contains X, which is 
dense in ~. Therefore M. F = X and M is mapped onto ae/F under the natural projec- 
tion. Hence X/F is compact. 

9.4. PROPOSITION. Let n:X--*X/F be the natural projection. For Pe~3, let 
Fp = ,/fie ( P ) n  F and e' ( P ) =  rc (e (P)).  Let D be a set of representatives for ~3/F. 

(i) We have e' (P )=e(e)/rp and, for a t  ~3, 

e'(P) n e ' ( Q ) r  suchthat P~=Q.  (1) 

The set D is finite and ~/F= LIP~o e' ( P ). 

(ii) Clr~/r(e' (P))=rc(e(P)). (2) 

I f  F o G  O , then Fe= F n P  and 

n (e(P)) ~- e (P)/F1, = LIQ~ ~ ~e)/rp e' ( a ) ;  (3) 

in particular e' (Q) is in the closure of e' (P) if and only if Q is conjugate under F to a 
subgroup of P. 

(i) The first equality and (1) follow from 7.7 and imply the last equality of (i). 
Since the e (P) 's  (Pc  ~3) are permuted by F and form a locally finite family in X (7.1), 
it follows that the e' (P )  form a locally finite family in X/F, parametrized by D. Since 
X/F is compact, this shows that D is finite. (The finiteness of ~/F  also follows from 

[3; 15.61.) 

(ii) We have e(P).~=e(y -1.e.r) (r~r), therefore (7.1) the e (P) . r ( r~r )  form 

a locally finite family in ~, and e (P) .  F is closed in A ~. It is the inverse image of n (e (P)) ,  
hence the latter is closed, and contains the closure of e' (P) .  On the other hand, e (P)  

is dense in e (P),  hence e' (P)  is dense in n (e ( e ) ) ,  which proves (2). The first equal- 

ity in (3) follows from 7.7, and the second one from (i), applied to e(P) and F e. 
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9.5. Clearly, any compact subgroup of G(R) has a fixed point in X. Since F acts 
properly (9.3), it acts freely if and only if it is torsion-free. Assume this to be the case. 
Then re:X--. X/F is a local homeomorphism and X/F inherits the structure of  mani- 
fold with corners of.t'. Let y e e (P),  y '  = zt (y) and U'  a sufficiently small neighborhood 
of y ' .  Then U' is isomorphic under ~, as a manifold with corners, with a suitable 
neighborhood U of y e X ( P ) .  In particular the faces of the corner are the e'(Q)c~ 
n U ' ( Q e ~ ;  Q=P) .  

w 10. Strong Separation Properties 

10.1. Distinguished neighborhoods of e (P). We keep the notation of w 9. For x e X, 
P ~  and t>0 ,  we put 

Vx, e,t = (x o Ap,,)" Op (R). (1) 

Since x is fixed under a maximal compact subgroup of Op (R), we also have 

vx, p,, = (x o A , , , , ) . (~  (R)) ~ (2) 

In the notation of 5.4, (1) may be written 

Vx, e,t = It~ (Ap, t x e (P)) (3) 

and Ux,r,t is closed in X; in view of 7.3, we have therefore 

(/x,P,, = Px(]P,t x e(P)), U~,p,, = ~fx, P,t  t"3 X ,  (4) 

and Ux,p,t is a neighborhood of e(P)  in A ~. Any neighborhood of e (P)  containing 
some (.7~, P,t will be called distinguished. 

10.2. LEMMA. The neighborhood (]x,p,t is stable under Al,,1 x op(Q), where the 
semi-group Ap, 1 acts by geodesic action and Op (Q) by ordinary action, and p~ commutes 

with Ap, 1 x Op(Q). I f  V is a neighborhood of e (P)  stable under F c~P, then V is dis- 
tinguished. 

We have clearly Ae, t" Ap, 1 = Ap, t hence also ~p, t" Ap, t = Xp, f. Together with 7.3 
and 7.6 this implies the first assertion. 

Let V be a neighborhood of e (P). Let C be a compact subset of e (P).  As t varies, 
the sets #x (~P,, x C) form a family of compact sets whose intersection is C. Therefore 

V contains one of them. By 9.3, we may choose C so that e ( P ) = C . ( F n P ) .  I f  
V. ( F n P ) =  V, we have then for a suitable t, taking 7.3 into account: 

V = V. (F c~ P) = it, (.~e,t x C). (F c~ P) = It, (,~p,, x C. (F c~ P)) = (Ix, r,t. 
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10.3. PROPOSITION. I'Ve keep the previous notation. Let 7~: 3~--, .~/F be the natu- 
ral projection and assume G to be connected. There exists t> 0 such that the equivalence 
relations defined on fl#, e, t by F and F n P  are the same. For any such t, the isomorphism 
p~ induces an isomorphism 

#'~:Xe., x e(P)/(F n P) z~ n (fl~,p,t), (1) 

such that the following diagram 

,~P, t x e(P) ~ flx, P,t 
,~ .  • ~ $ $ ~ ( 2 )  

Xp,, x e (P)/(F n P) ~ ~r ( G ,  e,,) 

is commutative. The geodesic action of Av,1 on fl~,v, t commutes with 7z and induces an 
action on 7z(fl~,j,.t ). All the maps in (2) commute with Ap,1. 

By 9.4, the equivalence relations defined on e (P)  by F and F n P  are the same, and 

n(e(t'))=e(l")/(rnt'). By 9.3, there exists a compact subset C of e(e) such that 

e ( P ) =  C. (F n P) .  Since F operates properly (9.3), there is a neighborhood U of C in 
.~' such that, for any ~ ~ F, U- y n U ~  0 implies C. y c~ C ~ 0, and hence y e F  n P. Since 
C is compact, there exists t > 0 such that #~ (AZp, t x C ) ~  U. We wish to show that any 
such t satisfies our conditions. 

Let a, b E fl~, p, t and ~ e F be such that a '  ? = b. Since F n P commutes with #, (10.2), 
there exist a', b' el~x(Xp, tX C) and a, ~eF n P  such that a=a' .a ,  b=b' .z .  We have 
then b '  = a '  . a . y .  z -x, hence a. ),.z -1 ~ F n P  and ~ F  riP. 

This proves the first assertion. The other assertions then follow immediately from 
7.3 and 10.2. 

10.4. PROPOSITION. Let P, Qe  ~ ,  x, y ~ X a n d g e  G (Q). Then the following four 
conditions are equivalent: 

(i) Ux,p,, .gn Uy, q,t#O for all t>0 .  
(ii) f lx ,e , , .gnOy,  e, ,~O for all t>O. 

(iii) e ( P ) . g n e ( Q ) # O .  
(iv) P g n Q = R is parabolic. 

l f  they are fulfilled, the sets Ox,e, , . g n  fly, e,, (t>O) form a basis of~ 

neighborhoods of e ( R ). 
It follows from 10.2 that we may assume x =y.  Moreover, replacing P by pz,  we 

may take g = e. 
The equivalence of  (iii) and (iv) follows from 7.7. Clearly, (iii)=~ (ii). By 9.3, there 

exist compact subsets C =  e ( P )  and C '  = e (Q) such that 

C . ( F c ~ P ) = e ( P )  and C " ( F c ~ Q ) = e ( Q ) .  



For t>0 ,  let 

O, = ~x (:r~,, • c ) ,  

we  have then 

O,,,e,, = D,.(F n P),  
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D~ = / t ,  (A'0. , x C'). (1) 

= O; . (r  n Q).  (2) 

The Dt (resp. D~) are compact and their intersection is C (resp. C'). Since F acts 
properly on X (9.3), there exists t>  0 such that 

{v~F [Dt'v n D; = 0) = {y6F[ C.), n C' :~ 0} (3) 

and the set of such ~,'s is finite. Let in particular {~}~ __z f~,, be those ~eF which satisfy 
(3) and are contained in (F n P ) . ( F n  Q); for each of them choose a decomposition 

71=ai '~7  1 ( a i ~ F n P ; ~ i ~ F c ~ Q ; i = l  ..... m). (4) 

If now a~Fc~P and z ~ F n Q  are such that Dr'ac~D't'z~O, then, for some i~_m, we 
have a. z -  x = ai. ~- ~ and hence 

0 " / - 1 " 0  " = ' ~ / - l . l : e F  c~  P n Q. 

This implies readily 

Ux, e,, n Ox, e. , = Ux~_,<,,,(ot'a, n O;.z,).(F n P n O). (5) 

Assume now (ii). Then there exists i(1 < i~_m) such that D t. at n D~.~ r for all t>0 ,  
hence such that C. cr I n C'-  r~ 50. This proves that (iii) holds. Clearly, (i) =~ (ii). Assume 
again (ii) to hold. Then, (iii) holds and/7~, e, t' g n 0"y, e. t is a neighborhood in a ~ of 

any point in e ( P ) ' g n e ( Q ) .  Therefore 

x n (O, , , , , , .g  :, O,,.e.,) 0; 

by 10.1 (4) this is condition (i). 

Assume R to be parabolic. Then e ( P ) n  e (Q)= e (R) by 7.4, and the left-hand side 

of (5) is a closed neighborhood of e (R), whichis stable under OR (Q)," op (Q) n OQ (Q), 
hence distinguished (10.2). For each i(1 < i < m )  we have 

t t 
Ut>o Dt'a~ n Ot'~ ~ = C 'a  i n C ~,  

hence, given s > 0, there exists t > 0 such that 

D t ' , , , n O ; ' ~ , =  O~,,,,,, 0 - < i - < m ) ;  

(5) then shows that the left-hand side of (5) is contained in 0~. R.s, whence the last 

assertion. 
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10.5. COROLLARY. There exists t > 0  such that for any P, Qe ~3, we have 

O~,j,,,n O,,Q.,r if  andonly i f  e ( e )  n e ( a ) # 0 .  

This follows from 10.4 and the finiteness of ~3/F. 

10.6. PROPOSITION. Let P, Q ~ 3 ,  x, y~X. For t>O, let 

E, = ox Q , : o )  

(i) Et is the union of finitely many double cosets modulo ( F n P )  and (rn a).  
(ii) For t small enough, 

E, = { rer  l e ( e ) ' r n e ( Q )  ~ O) = ( r e r  l e~ n Q  is parabolic). 

(i) Let D, and D; be as in 10.4(1). Then E,=  ( r  n P) .F t .  (r n Q), where 

F, = (r rl O,'r D; O), 

and Ft is finite since Dt and D' t are compact and F acts properly on X (9.3). 
(ii) Since Ft is finite and decreasing as t ~ 0, it is independent of t  for t small enough. 

Our assertion then follows from 10.4. 

10.7. Let Pc  ~3. Let S '  be a maximal split torus of RdP and A' the identity com- 
ponent of S '  (R). Then P (R)= A'~<~ and there is a natural projection tr:A' ~ A p. 
We let for t > 0 

P(t)  = tr -1 (Ae . , ) '~  (1) 

In the notation of 6.1, we can also write this P( t )=A~, , .~  and (1) shows that 
P( t )  does not depend on the choice of A'. 

10.8. PROPOSITION. Let P, Qe ~3 and K, K '  be maximal compact subgroups of 
G(R). 

(i) Let g~G(Q) and assume that K . P ( t ) . g n K ' . a ( t ) ~ O  for all t>0.  Then 
Pg n Q is parabolic. 

(ii) Given t>0 ,  the set of  ~eF for which K . P ( t ) . y n K ' . Q ( t ) v ~ O  is the union of  
finitely many double cosets modulo (F n P )  and (F n Q). 

(iii) There exists t > 0 such that K. e ( t ) . F n K ' . Q (t) = 0 unless P ~ n Q is parabolic 
for some veF. 

Let x (resp. y) be a point of X fixed under K(resp. K'). Then K. P (t) (resp. K ' .  Q (t)) 
is the inverse image of Ux,t,,t (resp. Uy, Q,,) under the orbital map g~--~x.g (resp. 
g~-~y.g). Therefore (i) follows from 10.4, (ii) from 10.6 and (iii) from 10.4, 10.6. 

10.9. COROLLARY. Assume G to be connected and K .P  (t) .g n K ' . P  (t) ~ 0 for 
all t>0.  Then geP(Q).  
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Indeed, Pg n P  is parabolic by 10.8. But in a connected algebraic group, two con- 
jugate parabolic subgroups whose intersection is parabolic are identical. Hence g nor- 
malizes P, and then geP. 

10.10. Remark. In w 10, the ground field k is the field of rational numbers. How- 
ever, the definitions in 10.1, 10.7 and the statements 10.4, 10.5, 10.8(i), (ii) and 10.9 
make sense in the context of w167 7 where k is any subfield of R. For P, Q minimal 
these assertions can be proved using representative functions as in [3, w167 14, 15], but 
we do not know whether they are true in general. 

w Cohomology of Arithmetic Groups 

We keep the hypotheses and notations ofw k = Q and F is an arithmetic subgroup 
of G(Q). Moreover, we assume that F is torsion-free. 

11.1. Qualitative results 
By 9.3 and 9.5, X/F is a compact C~ with corners, hence is homeomor- 

phic to a compact C~ with boundary (cf. Appendix), and can be triangu- 
lated ([23], w 10). Moreover, X is contractible (8.3.1), hence is a universal covering of 

X/F. These properties imply: 
a) The group F is isomorphic to the fundamental group of X/F, hence is finitely 

presented. 
b) The space X/F is a K(F, 1)-space. Its cohomology (or homology) is isomorphic 

to the one of F. More precisely, if A is a F-module, and X the corresponding local 
system on X/F, there are canonical isomorphisms 

Hq ( r ,  A) ~ Hq (X m,  A) and n q (F, A) ~ n q (X/F, :~) 

for any q. 
c) The group F is of type (FL) in the sense of [26], p. 84. Indeed, a triangulation 

of X/F lifts to a F-invariant triangulation of X and the corresponding complex of 

simplicial chains 

0 ~ Cd ~ Cd-1 ~ " "  ~ Co ~ Z ~ 0 (d = d imX)  

gives a Z [F-I-free resolution of finite type of the Z [FJ-module Z. 
Remark. The above results depend only on the existence of a compactification of 

X/F as a manifold with boundary (or even as a finite complex), and not on the struc- 
ture of the compactification; in the semi-simple case, they are due to Raghunathan 

[25]. 

11.2. Comparison between X/F and its boundary aX/F 
Let I be the Q-rank of G/RG. 
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PROPOSITION. The inclusion map ~X/F -~ X/F is an ( l -  2 )-homotopy equivalence. 
(This means that the natural maps ~ (&~/F)--* ~z~ (X/F) are bijective for i~< l - 2 . )  
Since ~q (X/F)= F and xi (X/F)= 0 for i # l ,  we have to prove that nl (aX/F)~ F 

is an isomorphism if l~> 3, and that ni (aX/F) = 0 for i~< l -  2, i #  1. This in turn follows 
from the fact that aX has the homotopy type of a bouquet of (l-1)-spheres (8.5.0, 
hence is simply connected if l~>3, and ~zi(aX)--0 for i<~l-2. 

11.3. Euler-Poincard characteristics 
If Y is a finite complex, we denote by z(Y)  its Euler-Poincar6 characteristic; we 

put z(r)=z(X/r) ,  cf. [261, p. 91, prop. 9. 

PROPOSITION. (a) z ( aX/ r )=o .  
(b) I f  d=dimX is odd, or if R , a #  {e}, we have z(F)=0 .  
Assume first F to be "net" [3, w hence contained in G ~ let V=RuG(R). The 

space X has a natural structure of principal V-bundle, cf. 7.2, (iii). By [3, 17.3], 
F/(Fc~ V) is torsion-free, hence acts freely on X/V. This implies that X/F has a 
fibering with typical fiber N =  V/(Fn V). If dim V~> 1, it is well-known that )~(N)=0, 
hence X (F) = X (X/F) = 0 which proves the second assertion of (b). 

Now, i fP~ ~ is distinct from G ~ its unipotent radical is non-trivial. Hence, by the 

above, applied to P, we see that the image e'(P)=e(P)/Fp of e(P) in X/F (cf. 9.4) 

is such that z(e ' (P))=0.  But the e'(P) make up a finite cover of OX/F, and their 

intersections are either empty or of the form e'(Q) for some Q#G ~ hence have 
zero Euler-Poincar6 characteristic. By an easy combinatorial argument, this implies 
that Z (~gX/F) = 0. 

If dimX is odd, the duality of manifolds with boundary implies that X(X/F) 
= �89 (dX/F), which is 0 by (a). This concludes the proof when F is net; the general 
case follows by a covering argument, using [3, 17.4]. 

Remark. The fact that X (F) = 0 when d is odd can also be proved by the method 
of Harder [18]. 

11.4. Duality theorem 
We keep the above notation. In particular d = d i m X  and l is the Q-rank of G/RG. 

11.4.1. THEOREM. We have H~(F,Z[F])=O for i # d - l  and the group 
1= nd- '  (F, Z [F])  is free abelian of rank 1 / f  1=0 and of infinite rank if I>>, 1. 

This follows from theorem 8.6.5 together with the elementary fact that H ~ (F, Z IF])  
=H~(X, Z) for all i (cf. for instance [1], n ~ 6.3). 

Note that the right action o f F  on Z [F] defines on Ha-Z(F, Z [F]) a structure of 
F-module. This F-module is the dualizing module of F: 

11,4.2. THEOREM. There is a homology class e~Hd-l(F, I) such that, for every 
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F-module A, and for every integer q, the cap-product by e defines an isomorphism 

H"(r, A) --. H~_,_,(F, I |  

This follows from theorem 4.5 of [1], combined with theorem 11.4.1 and 11.1. 
Remark. In the language of [1], F is a duality group. It is a "Poincar6 duality 

group" if I is isomorphic to Z, i.e. if l=  0, or, equivalently, if Oa~ 0. 

11.4.3. COROLLARY. We have cd(F)=d-l .  
(Recall that cd(F) is the cohomologicat dimension of F, cf. [26], p. 84.) 
This is clear from theorem 11.4.2. 

11.4.4. THEOREM. Let A be any arithmetic subgroup of G(Q) (which may have 
torsion). Then A is of type (WFL), vcd(A)=d-l,  Ht(A, Z [ A ] ) = 0  for i # d - I  and 
Ha-I(A, Z I-A]) is isomorphic to L 

(For the definitions of "type (WFL)" and "vcd," see [26], n ~ 1.8.) 
This follows from 11.1, 11.4.1, 11.4.3 applied to the torsion-free subgroups of finite 

index of A. (Notice that H ~ (A, Z [A]) is isomorphic to Ht(F, Z IF]) if F is of finite 
index in A, cf. [1], prop. 3.1.) 

EXAMPLES. vcd(SL3 (Z)) = 5 - 2 = 3; vcd(Sp4 (Z)) = 6 -  2 = 4. 

11.5. Duality in cohomology 
Let R be a commutative ring and s'2 an injective R-module. If V is any R-module, 

we define V' as HomR(V, f2). We also define I '  as Homz(/ ,  12). 

11.5.1. THEOREM. For every R[F]-module V and every integer q, H~(F, V)' is 
naturally isomorphic to Ha-l-q(F, HomR(V, I ')) .  

This follows from the isomorphisms 

Hq(F, V)' ~ Ha_t_q(F, V | I)' (theorem 11.4.2) 

H,_,_~(F, V | I)' ~- Hd-'-q(r, (V | I)') (elementary) 

(V | I) '  --~ HOmk (V, I ' )  (linear algebra). 

EXAMPLES. a) R is a field, f2 = R, and V' is the dual vector space of V. 

b) R = Z and f2 = Q/Z. 

11.6. Remark. If K is a number field, L an affine K-group, and A an arithmetic 
subgroup of L(K), the above results can be applied to A, viewed as an arithmetic 
subgroup of the Q-group G = Rx/QL, cf. [3], n ~ 7.16. We leave the details to the reader; 
he will notice, in particular, that the Q-rank l of G/RG is equal to the K-rank of L/RL 
[8; 6.21]. 
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Appendice 

Arrondissement des vari~t~s ~ coins 

par A. DOUADY et L. HI~RAULT 

1. Secteurs 

On pose S~, = Rk+ x R"-k. C'est le secteur type d'indice k dans R". Soient U un 
ouvert de St, F un espace vectoriel r6el de dimension finie,fune application de U dans 
F et xoeU.  On dit que f admet 2 e ~ ( R " ,  F )  pour d6riv6e en Xo si f ( x ) = f ( x o )  
+2 (X-Xo)+~ l ( x )  pour x e U ,  off q(x)  est o ( x - x o ) .  La d6riv6e, si elle existe, est 
unique. On d6finit comme d'ordinaire les applications de classe C ~, C r, C ~ de U 
dans F. 

On dit que f est analytique ou de classe Co" en un point x e  U si f est induite au 
voisinage de x par une application analytique d'un ouvert de R" dans F. 

PROPOSITION.  1.1. Si U= S~ c~ V, oft Ves t  un ouvert de R", toute application de 
classe C o de U dans R se prolonge en une application de classe C o de V dans R. 

C'est un cas particulier du th6or6me de prolongement de Whitney ([31 ], [20]). On 
pourrait trouver pour ce cas particulier une d6monstration plus simple que celle du 
cas g6n~ral. 

Soient U et U' des ouverts de S~ et S~,; respectivement, et f une application de U 
dans U'.  On dit q u e f e s t  de classe C ~ (resp. Co') si elle est de classe C ~ (resp. Co') 
de U dans R"'. On dit q u e f e s t  un diff6omorphisme si etle est bijective et s i f e t f - 1  
sont C ~  on a alors n = n '  si U~0 .  

2. Vari~t~s/t coins 

En prenant pour modules les ouverts des S~,, k<<,neN, et pour changements de 
cartes les diff60morphismes C oo (resp. Co'), on obtient une cat6gorie locale qui est celle 
des varidtds d coins C oO (resp. C~ (On peut aussi d6finir une vari6t6 ~t coins comme 
un espace annel~ localement isomorphe h u n  module muni du faisceau des fonctions 
C ~ (resp. Co').) 

Soient X u n e  vari&6 ~t coins et x e X .  II existe une carte q~ de Xcentr6e en x i.e. telle 
que q~ (x)=O. Si cette carte est ~ valeurs dans un ouvert de S~, on dit que n e s t  la 
dimension de X au voisinage de x et k est l'indice de x. On d6finit comme d'ordinaire 
l 'espace vectoriel tangent T,X. L'image r6ciproque de S~ dans T~X par T~9 est le 
secteur rentrant STxX (il ne d6pend pas du choix de la carte); son int6rieur est not6 
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S~x X. On dit que t~TxX est rentrant (resp. strictement rentrant, resp. sortant, resp. 
strictement sortant) si t~ STyX (resp. S L X ,  resp. -STYX, resp. - S L X ) .  

On note X (k~ l 'ensemble des points de X d'indice ~>k. C'est  le k-bord de X. L 'en-  
semble X = X - X  (~ est l'intdrieur de X, X ~ est le bord de X. On dit que X est une 
vari~td ~t bord lisse si X C2~ =0.  

Soit V une vari6t6 (sans bord) et soit X un ferm6 de V. On dit que X est une pidce 
coins de Vsi, pour  tout Xo~X, il existe un voisinage U de Xo dans Vet  des fonctions 

u~ ....  , Uk de classe C ~ (resp. C ~) sur U telles que dxou~ .... , dxou k soient lin6airement 
ind6pendants et que X n  U soit l 'ensemble des x e U  tels que ut (x)~>0 ....  , Uk(X)>>-O. 

On dit qu ' un  champ de vecteurs 0 sur une vari6t6 ~t coins X est strictement rentrant  
(resp. strictement sortant) si 0 (x) ~ S L X  (resp. 0 (x) e -  S L X )  pour tout x e X  (ii suffit 
de le v6rifier pour  x~X~ Sur toute vari6t6 ~t coins paracompacte,  il existe un champ 
de vecteurs de classe C ~  strictement rentrant (resp. sortant), comme on le voit avec 
une part i t ion C ~ de l'unit6. 

Soient X une vari6t6 ~ coins s6par6e, 0 un champ de vecteurs de classe C | sur At, 
strictement rentrant. Pour  x~X,  soit Vx: I~-* X la courbe int6grale maximale de 0 
d 'origine x. L'intervalle Ix contient l 'origine et est ouvert ~t droite; si x e J ' ,  l 'intervalle 
1 x est un voisinage de 0. Soit e0 (x) la borne sup6rieure de I x. La fonction o o : X ~  i~+ 
est strictement positive et semi-continue inf6rieurement. 

3. Plongement d'une vari~t~ h coins comme piece h coins d'une vari~t~ 

P R O P O S I T I O N  3. I. Toute varidtd d coins paracompacte peut ~tre plong~e dans 

une varidtd sans bord comme pidce d coins C ~ 
Ddmonstration. Soit X une vari6t6 ~t coins paracompacte ,  et choisissons sur X un 

champ de vecteurs 01 de classe C ~ strictement rentrant. On construit, au moyen  d 'une 
part i t ion de l'unit6, une fonction r / : X ~  R+, de classe C ~ strictement inf6rieure 
Q01, et strictement positive sur X ~ Posons 0=r/01. Le champ de vecteurs 0 est de 

classe C ~ strictement rentrant, et ~0> 1. 
On voit  alors que l 'application exp O : X ~  X, qui, h x e X associe )'x (1), o/l 7x est la 

courbe int6grale de 0 d'origine x, est un diff6omorphisme de X sur une piece ~t coins 

de X, cqfd. 

P R O P O S I T I O N  3.2. Toute varidtd ~t coins R-analytique paracompacte peut ~tre 
plongde dans une varidtd R-analytique sans bord comme piece ?t coins de classe C ~. 

La d6monstrat ion est analogue ~ celle donn6e par  Whitney et Bruhat  ([32]) pour  
prouver  que toute vari6t6 R-analytique paracompacte  admet  une complexification. 

C O R O L L A I R E .  Soient X une vari~td d coins R-analytique paracompacte et 5 un 

faisceau analytique cohdrent sur X. On a H~(X; ~ - ) = 0  pour tout q>0 .  
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Ddmonstration. Plongeons X comme pi6ce h coins dans une vari6t6 R-analytique 
Vet  soit W une complexification de V. D'aprbs un r6sultat de Grauert  ([15], p. 470, 
1.11), tout voisinage ouvert U de X dans V admet un syst~me fondamental de voisina- 
ges de Stein dans W, donc X admet dans W un syst6me fondamental de voisinages 
de Stein. On obtient alors le corollaire en appliquant un rdsultat de Cartan ([1], 
prop. 6), cqfd. 

PROPOSITION 3.3. Sur toute varidt~ R-analytique d eoins paracompacte, il existe 
un champ de vecteurs strictement rentrant de classe Co'. 

Ddmonstration. Soit X une piece ~ coins d'une varidtd R-analytique paracompacte 
V. D'apr~s ([15], Th. 3), on peut plonger Vdans R ~ pour k assez grand. Le fibrd T v 
admet dans le fibrd trivial V• R k un suppldmentaire analytique, par  exemple l 'ortho- 
gonal. I1 r~sulte alors de ([15], Prop. 8) que tout champ de vecteurs C ~ sur V peut 
~tre approch6 par un champ de vecteurs analytique au sens suivant: si 0 est un champ 
de vecteurs C ~ et e: V-- ,R une fonction continue strictement positive, il existe un 
champ de vecteurs 0' de classe C o" sur V tel que pour tout xe  V on ait [10' ( x ) -  0 (x)][ 
< e (x). Alors, si 0 est strictement rentrant sur X, on peut choisir e de fa9on que ceci 
entraine que 0'  est strictement rentrant sur X, cqfd. 

4. Champs de vecteurs strictement sortants 

Soient X une piece ~ coins d'une varidt6 V, et 0 un champ de vecteurs de classe C o 
(resp. C ~ sur V, strictement sortant de X. Pour x e  V, soit 7~ :] - a '  (x), a (x)[  --, V la 
courbe intdgrale maximale de 0 d'origine x dans V. S'il existe un t o e ] - a '  (x), a ( x ) [  
tel que ~x ( to )eX  (1), on voit en prenant des coordonndes locales que la courbe yx sort 

de X e n  to, i.e. qu'il existe ~>0  tel que 7~( ] to -e ,  t o ] ) ~ X  et 7~(]to, to+eDr  v - x .  
I I e n  r6sulte que ?~ ( ] -  a '  (x), t o ] )=  x et ~, (]to, a (x)D = v - x ,  et il existe au plus un 

tel to. 

PROPOSITION 4.1. Avec ees notations, il existe un voisinage M de X (1) dans V 

tel que : 
(a) pour tout x e M ,  il existe un b ( x ) e ] - a ' ( x ) ,  a (x ) [  et un seul tel que vx(b(x))  

~X(1); 
(b) l'application b : M ~  R ainsi ddfinie est continue. 
D~monstration. Soit x o e X  (1). I1 existe un voisinage U de Xo dans V, des fonctions 

ul ... . .  Uk de elasse C ~~ sur U et un nombre m > 0  tels que X n  U= {xeU:  u~(x)>1 
>.0 ... .  , Uk(X)>-O}, U~(Xo)=0 et (O(x), dxui)<<.-m pour x e U ,  i = I  ... . .  k. II existe 
alors un voisinage U '  de Xo dans Uet  un nombre r > 0  tels que, pour tout x e  U' ,  on ait 
[ - r ,  + r ]  = ] - a '  (x), a (x ) [  et V~( [ - r ,  + r ] ) =  U. Soit U" rensemble des xe  U'  tels 
que ut ( x ) < m r  pour i= 1,..., k. Pour x e  U", on a y~, ( -  r ) e  U n  k et Vx ( r ) e  U -  X, donc 
il existe un b (x)e]  - r, + r [ tel que ~x (b ( x ) ) e X  (1). 
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Pour  x~  U", t e ] - r ,  + r [  et i =  1 ... .  , k, posons h~(x, t )=u~(?~(t)) .  On a dht/dt<O 
et h, (x, t )  tend vers ul ( ~  ( r ) )  < 0 (resp. u, (~,x ( -  r ) )  > 0) quand t tend vers r (resp. - r), 
done l 'ensemble des couples (x, t)  tels que h~(x, t ) = 0  est le graphe d 'une fonction 
b~: U " ~  ] -  r, r [ de classe C ~ et b = inf~ (b~) est continue. La proposit ion en r6sulte. 

P R O P O S I T I O N  4.2. Avec les m~mes notations, soit M comme dans la Prop. 4.1; 
l' application q~ : x ~-~ ( y ~ ( b ( x ) ), b ( x ) ) est un homdomorphisme de M sur un voisinage W de 
X (1) x {0} dans X (1) x R. 

Ddmonstration. I1 est clair que tp est continue. Son image est l 'ensemble des 
(xl, t)  ~ X (1) x R tels que - t e ] - a '  (xl), a (xl) [ et q ~  ( - t) ~ M. Cet ensemble est un 
voisinage de X (1) x {0} et l 'application (xl, t)v--~?~, ( - t )  de W dans M est continue. 
Or  cette application est t#-1, d 'ofi  la proposition. 

P R O P O S I T I O N  4.3. Avec les m~mes notations, supposons V sdparde et M ouvert. 
La relation R {x, y} : 3t tel que y = ~ (t ) est une relation d'dquivalence entre dldments de 
M e t  le quotient M / R  admet une structure de varidtd C ~ (resp. C ~) et une seule telle 
que l'application canonique z :M--*  M / R  soit une submersion. Cette application induit 
un homdornorphisme de X (1) sur M/R.  

D~monstration. I1 est clair que R e s t  une relation d'6quivalence. L'ensemble 
f 2 c M x  R des couples (x, t )  tels que t e ] - a ' ( x ) ,  a ( x ) [  et y ~ ( t ) ~ M  est ouvert dans 
M x R et r  (x, t)v--, (x, ~ (t))  de t2 dans M x M est une immersion dont  l ' image est 
le graphe de R. I1 suffit de voir que r est un hom6omorphisme de 12 sur un ferm6 de 
M x M ,  la premiere assertion r6sultera alors de ([9], 5.9.5). Le graphe de R e s t  
tp - I  (f2 x x ( ,O) ,  donc est ferm6, et l ' inverse de �9 est 

((/2-1 (Xl, t), (~-1 (Xl, tt))k-"~(f#-l(Xl, t), t - -  t'), 

qui est continue, d 'ofi  la premiere assertion. 
L 'appl icat ion x / X  (1) est continue, et son inverse est l 'application d6duite de 

xv--~ yx(b (x)), done est continue. 

5. Fonctions tapissantes 

D]~FINITION.  Soient U un voisinage de 0 dans S~ et h une fonction U--, R. On 
dit que h est tapissante en 0 si h se met  au voisinage de 0 sous la forme h (x) 

= f ( x ) ' x l  ... xk, o f i f e s t  C ~ et >0 .  
Remarque. Dans cette d6finition, si h est analytique, il en est de m6me de f .  

P R O P O S I T I O N  5.1. Soient U et U '  deux ouverts de S~ contenant 0 et q~ un dif- 
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fdomorphisme de U sur U'  tel que q~(0)=0. Si h est une fonction sur U tapissante en O, 
la fonction ~o.(h)=hoq~ -1 sur U' est tapissante en O. 

Ddmonstration. Soit u~ la fonction x~--~x,. L'application q9 permute les faces de S~ 
au voisinage de 0 suivant une permutation t r e ~  k. La fonction q~. (ul) est nulle sur la 
tr (i)&me face au voisinage de 0, e t a  une d6riv6e normale >0 ,  donc est au voisinage 

de 0 de la forme giu~ r oil gi est C o~ et > 0. Alors q~. (h) = qg. ( f ) . g l . . .  gk" l'll"" Uk au 
voisinage de 0. 

DI~FINITION.  Soient X une vari6t6 h coins, et h une fonction sur X. On dit que 
h est tapissante en un point x de X s'il existe une carte centr6e en x telle que l'expres- 
sion de h dans cette carte soit tapissante en 0. 

Remarques 
5.2. Si h est tapissante en x pour  une carte, elle l 'est pour toutes d'apr6s la prop. 5.1. 

5.3. Si h est tapissante en x, elle l 'est au voisinage de x. 

5.4. Si xEX, h est tapissante en x ~ h  est C ~ au voisinage de x et h ( x ) > 0 .  S i x  
est d'indice k i> 1, et si h est tapissante en x, on peut trouver une carte centr6e en x telle 
que l 'expression de h soit ul . . .  Uk. 

5.5. U n  barycentre de fonctions tapissantes est tapissante. Sur toute vari6t6 ~t coins 
paracompacte,  il existe une fonction tapissante de classe CO~ 

P R O P O S I T I O N  5.6. Sur toute varidtd ~t coins R-analytique paracompacte, il existe 

une fonction tapissante de classe C ~ 
Ddmonstration. Soient X une vari6t~ ~ coins R-analytique paracompacte,  (Ui) un 

recouvrement de X par des domaines de cartes, et pour  tout  i, h i une fonction tapis- 
sante analytique sur U~. La fonction gl, j = L o g ( h j / h i )  se prolonge en une fonction 

analytique sur U i n  Uj, et on  a gi ,k=g~, j+gi ,  k sur U~c~ Ujc~ Uk. D'apr~s le Cor. de 
la Prop. 3.2, il existe des fonctions analytiques c~: U ~ R  telles que g ~ , j = c j - c  i. 
Les fonctions e-c'h~ se recollent alors en une fonct ion analytique tapissante sur X, 

cqfd. 

P R O P O S I T I O N  5.7. Soient X une varidtd d coins, h une fonction tapissante sur X 
et 0 un champ de vecteurs strictement sortant sur X. 11 existe un voisinage N de X cl ) dans 
X tel que on ait <O(x), dxh> < 0  pour tout x e N - X  ~2). 

Ddmonstration. Soit Xo un point de X ~1) et soit (ul, ..., u,) un syst~me de coordon-  
n6es centr6 en Xo tel que h = u l  ...uk. Soient 01 .. . .  , 0 ,  les coordonn6es de 0 dans ce 
syst~me, i.e. Oi=<O, dui). On a 01 . . . . .  0k<0  au voisinage de Xo, d'o/l <O, dh> 
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= ~  ul ... fq... UkO~<<.O, et (0, dh)<O en tout point o/l un au plus des u~ s'annule, car 
alors la somme possbde un terme non nul. 

6. Arrondissement des coins 

P R O P O S I T I O N  6.1. Soient X une varidtd d coins paracompacte et h une fonction 
tapissante sur X. Supposons que X soit une piece ?~ coins d'une varidtd V e t  soit 0 un 
champ de vecteurs C ~ sur V strictement sortant de X. Soit M un voisinage ouvert de 

X (j) dans V rdpondant aux conditions de la Prop. 4.1. Alors, il existe un voisinage N 
de X (~) dans M c ~ X  tel que l'application ~O:x~--~(Z(x), h ( x ) )  soit un homdomorphisme 
de N sur un voisinage de M / R x  {0} clans M / R x R + .  

Ddmonstration. Avec les notations de la proposition 4.2, so i t fune  fonction continue 
strictement positive sur X ~) telle que l'ensemble N~ = ((x, t ) : 0  <~t<~f(x)} soit contenu 
dans W. Posons N =  q~- ~ (N 1). L'ensemble N est un voisinage de X ~1) dans M n X, et, 
quitte h diminuerf ,  on peut supposer qu'il r6pond h la condition de la Prop. 5.7. On 
a alors le diagramme commutat i f  

N 1 ~ N h~ M / R  X R+ 

X(a) xl > M/ R  

off 7~ est propre, Z1 est un hom6omorphisme et, pour tout  x e X  ~ la fonction 
t~---~h(q~ -1 (x, t))  est strictement croissante sur [-0,f(x)] car sa d6riv6e est > 0  pour  

t >0.  La proposit ion en r6sulte. 

THI~OR]3ME ET DI~FINITION 6.2. Soient X une varidtd d coins paracompacte 
de classe C ~ (resp. C'~ h une fonction tapissante de classe C ~ (resp. Co') et 0 un 

champ de vecteurs strictement sortant de classe C ~ (resp. C ~ sur X. Soit N u n  voisinage 
ouvert de X (1) dans X rdpondant aux conditions de la Prop. 6.1. II existe alors une varidtd 

d bord lisse .~ de classe C ~ (resp. C ~') et une seule, ayant m~me espace topologique 
sous-jacent que X, telle que les structures de X et X coYncident sur X - X  (2), et que 
soit un diffdomorphisme (resp. un diff~omorphisme Co') de N muni de la structure induite 
par 9, sur un ouvert de M / R  • R+. On dit que f (  est la varidtd obtenue en arrondissant 

X au moyen de h et O. 

Ddmonstration. I1 reste ~t voir que ff induit un diff6omorphisme (resp. un diff6- 
omorphisme R-analytique) de N - X  (2) sur un ouvert de M / R  x R+, mais cela r6sulte 

du th6or~me d'inversion locale, cqfd. 
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