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Remarks  on the closest  packing of  convex  discs 

L. FEJES TOTn 

To Professor H. Hadwiger on his seventieth birthday 

In the Euclidean plane let P be a packing of congruent replicas of a convex 
disc c. Let  r = r(P) be the supremum of the radii of those circles which have no 
common point with any disc of P. The smaller r is the "closer"  is the packing. 
Thus 1/r can be considered as a measure of the closeness. If r for a certain 
packing P = P(c) attains its infimum F, then we speak of a closest packing or, in 
short, a close packing. A simple example for a close packing is given by a packing 
of unit circles in which each circle is touched by six others. Here  we have 

2 
~ = ~ - ~ -  1. 

The above definitions can be extended to more general spaces. In Euclidean 
3-space the closest packing of equal balls was determined by BSr6czky [1]: the 
centres of the balls form a body-centred cubic lattice. The paper [2] deals with 
the same problem in spherical 2-space. 

For the density of a packing of convex discs various results are known. In this 
paper we want to discuss similar problems for the closeness. Let  us recall some 
theorems concerning the density [3, 4]. We shall denote a domain and its area by 
the same symbol. 

T H E O R E M  1. If d is the density of a packing of congruent replicas of a convex 
disc c and H is the hexagon of least area circumscribed about c then d <--c/H. 

Theorem 1 implies 

T H E O R E M  2. The density of an arbitrary packing of congruent centro- 
symmetric convex discs cannot exceed the density of the densest lattice-packing of 
the discs. 

Theorem 2 implies 
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T H E O R E M  3. The density o[ an arbitrary packing of translates o[ a convex 
disc cannot exceed the density of the densest lattice-packing of the discs. 

We start with the following 

Remark 1. In a packing of congruent convex discs let r be the supremum of 
the radii of those circles which have no points in common with any of the discs. 
Let H be the hexagon of least area circumscribed about a disc. Let h(x) be a 
hexagon of greatest area inscribed in the parallel domain of distance x of a disc. 
Then h(r) -> H. 

Since h(x) is a strictly increasing function, the above inequality gives a lower 
bound for r, i.e. an upper bound for the closeness 1/r. 

The proof rests on Theorem 1 and an analogous theorem for the covering 
[3, 5]: If D is the density of a covering of the plane with non-crossing congruent 
replicas of a convex disc c and h is a hexagon of maximal area inscribed in c then 
D>-c/h. 

The term that two discs cross means that removing their intersection causes 
both discs to fall into disjoint pieces. 

If d is the density of the packing considered in Remark 1 then we have 
d <-c/H. On the other hand, let us observe that the parallel-domains of the discs 
at distance r cover the plane. The density of the parallel-domains is equal to 
(c,/c)d, where c, is the area of a parallel-domain. Since the parallel-domains of 
the same distance of two arbitrary non-overlapping convex domains do not cross, 
we can apply the above inequality for the covering density: 

d >- c,/h(r). 
c 

Thus we have c/h(r)<--d<-c/H which implies the inequality to be proved. 
If for a certain disc c H is a plane-filler and for a certain value r0 the hexagon 

h(ro) is identical with H then ~= r0. There is a great variety of discs with this 
property. The simplest example is the circle. The closest packing of such discs 
arises by tiling the plane with congruent replicas of H and inscribing in each 
hexagon a disc. 

Remark 2. The statement arising from Theorem 2 by replacing the words 
"densi ty" and "densest" by "closeness" and "closest" is false. 

We shall show this by a special packing of directly and oppositely congruent 
discs. The question whether the statement under consideration becomes true by 
replacing the word "congruent"  by "directly congruent" is still open. 

Let u = A B C D E F  be a centro-symmetric hexagon such that A B  > BC = CD 
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and 9 : A B C =  9zBCD=135  ~ Let v = A ' A " B C ' C " D ' D " E F ' F "  be a centro- 
symmetric decagon arising from u by cutting off at the corners A, C, D and F 
small triangles such that A ' A  = A A " =  CC" and 

where p is the radius of the incircle of the triangle A ' A A " .  We claim that in any 
lattice-packing of translates of v there is a gap into which a circle of radius greater 
than p can be inserted. 

Obviously, we can restrict ourselves to gaps bounded by three mutually 
touching translates of v. Again, we can restrict ourselves to such positions of the 
decagons in which the whole side A ' A "  (or, which is the same, the whole side 
D'D") belongs to the boundary of the gap, because otherwise the gap is "bigger" 
than the triangle A ' A A "  (Fig. 1). Now we have only to check that in such a 
position the whole triangle A ' A A "  belongs to the gap and that from among the 
two points at which the incircle of A ' A A "  touches the sides A ' A  and A A "  one is 
always in the interior of the gap (Fig. 2). 

We continue to construct a packing of congruent replicas of v with a closeness 
equal to 1/p. 

Besides the tiling with translates of the hexagon u there is another regular 
tiling consisting of alternate rows of translates of u and of translates of oppositely 
congruent replicas of u.This tiling generates a packing of congruent replicas of v 
in which there are equal gaps consisting of two triangles congruent with A ' A A "  
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Figure 1 
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Figure 2 
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and C'CC" put side by side so that A and C coincide and C'  lies on a side of 

A ' A A "  (Fig. 3). Consequently C'  lies on the incircle of A'AA".  Thus the biggest 
circle contained in a gap is identical with the incircle of A'AA".  

This completes  the proof  of R em ark  2. 
In constrast with Theorem 2, there is an analogue of Theorem 3 for the 

closeness which we phrase as 

E D '~ 

D" D' 

Figure 3 
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Figure 4 

Remark 3. The closeness of an arbitrary packing of translates of a convex disc 
cannot exceed the closeness of the closest lattice-packing of the discs. 

Let  cl, c 2 , . . ,  be translates of a convex disc c forming a packing P. We may 
assume that in P there are two discs, say, cl and c2 sufficiently near to one 
another  in the following sense. There  are two non-overlapping translates c' and c" 
of c both touching simultaneously cl and c2 (Fig. 4). Otherwise we could dilate 
the discs in the same ratio until the desired situation ensues. By a subsequent 
contraction we obtain a closer packing of translates of c than the original one. 

If c is not strictly convex it may occur that the positions of c' and c" are not 
uniquely determined.  In this case let c" be the image of cl under the trnslation 

Ct---~ C2. 

Obviously, none of the discs c3, c4 . . . .  can reach into the domain q enclosed 
by cl, c', c2 and c ' .  (In general, q is a curvilinear quadrangle which can 
degenerate into two curvilinear triangles.) Thus r-- r(P) is at least as great as the 
radius ro of the biggest circle contained in q. On the other  hand, we have for the 
lattice-packing L generated by any three of Cl, c', c2 and c" r(L)= r o. Thus we 
have, in accordance with Remark 3, r(P)>-r(L). 

The above considerations show that Remark 3 remains valid if we measure the 
closeness of a packing instead of circles by means of an arbitrary figure, say by the 
supremum of the area of the ellipses contained in the gaps of the packing. 
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