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A characterisation of the ellipsoid in terms 
of concurrent sections 

G. R. BURTON AND P. MANI 

Dedicated to Hugo Hadwiger on his seventieth birthday 

1. Introduction 

The ellipsoid has the property that parallel pairs of its sections are directly 
homothetic. It has been known for some time that this property characterises the 
ellipsoid among finite-dimensional convex bodies; some early proofs of this are 
referred to in Bonneson and Fenchel [4], page 142. Recently, Aitchison, [1] and 
[2], has proved some stronger converse results involving only sections close to the 
boundary. Our main result characterises the ellipsoid in terms of the property that 
its parallel sections through a pair of fixed points are directly homothetic; this 
answers affirmatively a conjecture proposed by P. Gruber at Oberwolfach in 
1974. 

T H E O R E M  1. Let 2 <- k < d, let K be a convex body in E a, and let al and az 
be distinct points of E ~. Suppose that for every k-flat A through the origin in E a, 
(al+ A ) A K  is directly homothetic to (a2+ A)NK.  Then K is an ellipsoid. 

We must, of course, regard the empty set as being directly homothetic to itself. 
Rogers [8] and Burton [5] have shown that a convex body is determined up to 
direct homothety when its sections through a fixed point p are known up to direct 
homothety. However, the body may not be determined up to a homothety which 
preserves p; Burton conjectured that this indeterminacy could only occur for the 
ellipsoid. Our second result proves this conjecture, and is deduced from Theorem 
1. 

T H E O R E M  2. Let 2 <- k < d, let K and K' be convex bodies in E d, and let p 
and p' be points of E a. Suppose that for every k-flat A through the origin in E d, 
(p + A)N K is directly homothetic to (p' + A) f )K ' .  Then there is a directly homothe- 
tic map F of E d such that F(K) = K'. If F(p) ~ p', then K and K' are ellipsoids. 
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A special case of Theorem 2, which assumed K was centrally symmetric and 
that p~K,  was given by Burton [5]. Using Theorem 1, we are also able to 
re-prove the False Cenire Theorem of Aitchison, Petty, Rogers [3] and Larman 
[7]: 

FALSE CENTRE T H E O R E M .  Let 2 <- k < d, let K be a convex body in E d 
and let p be a point of E n. Suppose that A n K is centrally symmetric whenever A is 
a k-flat of E n containing p. Then K is centrally symmetric. If  p is not the centre of 
K, then K is an ellipsoid. 

2. Proof of Theorem 2 and the False Centre Theorem 

In this section, we show how Theorem 2 and the False Centre Theorem follow 
from Theorem 1. 

L E M M A  2.1. Let 2 <- k < d and let K and K' be convex bodies in E a. Suppose 
that ~r(K) is directly homothetic to ~r(K') whenever 1r is an orthogonal projection on 
a k-flat. Then K is directly homothetic to K'. 

Proof. If ~r is an orthogonal projection on a linear 2-flat, then there is an 
orthogonal projection to on a linear k-flat such that 1r = 7r o tO. Thus It(K) is 
directly homothetic to ~(K').  It therefore suffices to consider the case k = 2, 
which Rogers [8] has done. 

L E M M A  2.2. Let 2 <- k < d, let K and K' be convex bodies in E d and let p and 
p' be points of E a. Suppose that (p + A) n K is directly homothetic to (p' + A) n K' 
whenever A is a k-flat through the origin in E n. Then K is directly homothetic to K'. 

Proof. The case k = 2 has been considered by Rogers [8] and Burton [5]. 
Suppose k > 2, and let ~r be an orthogonal projection on a linear ( d -  k + 2)-flat 
4.  If A is a linear 2-flat in 4 ,  then A = or(p)+ A + 4 • and A ' =  7r(p')+ A + 4 • are 
parallel k-flats which contain p and p' respectively. So A O K is directly homothe- 
tic to A ' A K ' ,  a n d ( ' t r ( p ) + l t ) O c r ( K ) = z r ( A n K )  is directly homothetic to 
(r  ~-(K'). Thus or(K) is directly homothetic to ~r(K'). It follows from 
Lemma 2.1 that K is directly homothetic to K'. 

Proof of Theorem 2. By Lemma 2.2 there is a direct homothety F such that 
F(K)= K'. Suppose that F ( p ) # p ' .  Let A be any linear k-flat in E n. Then 
( p + A ) A K  is directly homothetic to ( p ' + A ) A K ' ,  so ( F ( p ) + A ) A K '  is directly 
homothetic to (p '+ A ) n  K'. It now follows from Theorem 1 that K '  is an ellipsoid. 
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L E M M A  2.3. Let 2 <- k < d, let K be a convex body in E d and let p ~ E a. If  
A n K is centrally symmetric for every k-flat A which contains p, then K is centrally 
symmetric. 

Proof. If A is a k-flat which contains p, then A n K is centrally symmetric, so 
( -A)  n ( - K )  is a translate of A O K, and - p  e - A .  By Lemma 2.2, - K  is directly 
homothetic to K. Comparing diameters, - K  is a translate of K, so K is centrally 
symmetric. 

Proo[ of the False Centre Theorem. By Lemma 2.3, K has a centre of 
symmetry a, say. Suppose a # p. Consider a linear k-flat A. Then ( 2 a - p  + A ) n  K 
is a central reflection of ( p + A ) A K  which is centrally symmetric, so 
(2a - p + A) O K is a translate of (p + A) O K. It now follows from Theorem 1 that 
K is an ellipsoid. 

3. Reduction of Theorem 1 to 3 dimensions 

In this section we shall suppose that Theorem 1 holds for k = 2, d = 3, and we 
shall deduce the result for general k and d. 

First assume that K, a~ and a 2 satisfy the hypothesis of Theorem 1 with k -- 2, 
d-> 3. Let q~ be any 2-flat which contains a~ and intersects int K. Then q~ is 
contained in a 3-flat �9 which contains a 2. Let A1 and A2 be parallel 2-flats in q~ 
which contain al  and a2 respectively. Then A I A K  is directly homothetic to 
A 2 n K ;  since A1 n (qB o K) = A10  K and A 2 n (tlb n K) = A 2 n K, we can apply the 
3-dimensional case of Theorem 1 to show that qb n K is an ellipsoid. Thus q~ n K 
is an ellipse, for every 2-flat q~ which contains a~ and intersects the interior of K. 
It now follows that K is an ellipsoid; an elementary proof of this is given by 
Burton [5], generalising a result in Busemann [6], page 91, which referred only to 
sections through an interior point. 

Now consider the case 2 <  k < d. Let 7r be the orthogonal projection on a 
linear (d - k + 2)-flat ~ of E ~, and suppose initially that 7r(al) # ~r(a2). Consider a 
linear 2-flat A in ~.  By considering (al + A + q~• n K and (a2 + A + ~.L) n K we 
find that ( 1 r ( a l )+A)n  It(K) is directly homothetic to (r ~r(K). It now 
follows from the cases already considered that 7r(K) is an ellipsoid. By continuity, 
this holds for all (d - k + 2)-dimensional orthogonal projections 7r. Hence K is an 
ellipsoid; this may be deduced by dualizing the above-mentioned result about 
sections in Busemann's book. 
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4. Theorem 1 in 3 dimensions 

Throughout the rest of the paper, K will be a fixed convex body in E 3, and al 
and a2 will be distinct points of E 3 such that for every plane A containing 0, 
(a~ + A) O K is directly homothetic to (a2+ A) O K. 

The purpose of Lemmas 4.1 to 4.8 will be to show that aft{a1, a2} intersects 
the boundary of K in two smooth exposed points, and that when K has been 
projectively transformed so that its support planes at these points are parallel, its 
sections parallel to these planes are directly homothetic and have collinear centres 
of symmetry. The approach during some of these Lemmas resembles that of 
Aitchison, Petty, Rogers [3] and Larman [7]. 

LEMMA 4.1. The line-segment [ a ,  a2] contains inner points of K. 

Proof. First consider the possibility that [al, a2] n K = $. We could then choose a 
support plane A of K which contained a~ say, but which separated a2 from K. 
Thus a l e A O K  while ( a 2 - a l + A ) O K  =~b which is impossible. So 
[al, az]OK# d#. If [al, a2 ]nK={a l} ,  then a2 would lie in a plane a2+A which 
was disjoint from K, and yet a l~  (al + A ) n  K, which is impossible. So K contains 
relatively interior points of [al, a2]. 

Let us suppose that [a~, a2]nint  K= ~b, so that a~ and a 2 lie in a support plane H 
of K. If a l~  K, then there would be a plane A containing al, and having direction 
close to that of H, such that A n K = tk but (a 2- al+ A)A K #  ~k. Thus [al, a2]c 
H A K .  

Consider the possibility that H A  K is a facet of K. Choose a line l through 0 
which is parallel to H, and so that (al + l )n  K and (a2 + l )n  K are disjoint, the 
former being a line-segment. We can suppose that oo >I cr/> 1, where o" is the ratio 
of the length of (al + l) n K to that of (a2 + l) n K. Let cl and c2 be corresponding 
end-points of (a l+  l )n  K and (a2+ l ) n  K respectively. For each plane A which 
contains l but is not parallel to H, we have 

A n ( - c l  + K) = cr(A n ( -c2+  K)). 

In particular this shows that cr#oo. Let b be a point of H A K  for which 
b .  ( c l -  c2) is maximal, and let (b,) be a sequence in K \ H  which converges to b. 
Let A, be a plane which contains l and satisfies b, e a2 + An. Then 

o'(bn - c2) + cl E (a 1 + An) N K, 
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so taking the limit 

or(b-CE)+ Cl e H O K. 

This is impossible since 

[or(b - c2) + c,]"  [c, - c2] = b" (C 1 - -  r "4" I lc ,  - c21l 2 

+ (or -  1 ) ( b -  c2)" ( c , -  c2) > b" ( c l -  c2). 

Hence H A K  is a line-segment. Let  I be a line through 0 such that a l +  l 
contains inner points of K. Consideration of parallel sections of K which contain 
( a l + / ) n K  and (a2+l)nK respectively shows that ( a 2 + / ) O K  is a proper  
line-segment. We shall suppose or t> 1, where or is the ratio of the length of 
(a~+ l ) n  K to that of (a2+ l)O K. Then for every plane A containing l but  not 
parallel to H O K, we have 

A n ( - a ~ +  K ) =  o-[A n ( - a 2 +  K)]. 

Let  b be the point of H A K  for which b - ( a ~ - a 2 )  is maximal and let (bn) be a 

sequence in K\[l + aft ( H  n K)] which converges to b. Let  A, be the plane which 
contains l and satisfies bn e a2+ An. Arguing as for the case above, we find 

or(b - a2) + a l e  H n K 

and 

[or (b-  a2) + al]"  ( a l -  a2) > b .  ( a l -  a2). 

We conclude that [a~, a2] contains inner points of K, completing the proof. 

We shall work with Cartesian coordinates, and write e~ = (1, 0, 0), e 2 = (0, 1, 0) 
and e3 = (0, 0, 1). Whenever  S c {1, 2, 3}, we write Ls = lin {e~ : i e S} and denote 
by ~rs the orthogonal projection on Ls. In view of Lemma 4.1, we may assume 
after an atiine transformation that K O att {al, a2} = [0, e~] and that L23 supports K 
at 0. Let  Z be a support  plane of K at el. We can also assume that a~'e~< 

a2 �9 el. 
From Lemma 4.1 and the observation that is impossible for exactly one of al 

and a2 to lie in K, we have: 

Remark. Either al  �9 el < 0 < 1 < a 2 �9 el or 0-< al �9 e~ < a2 �9 e~ --- 1. 
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L E M M A  4.2. The point �89 + a2) is interior to K. 

Proof. Suppose this is false, so a~ and a 2 are not in K. We may suppose 
�89 + a2) e [0, al]. Since (al + L23) f'l K = ~b, we have (a2 + L23) f3 K = ft. Let  l be a 
line through 0 in L23, and let g be a non-zero vector in L23 whose direction is 
perpendicular to I. Consider a plane A~L23 which contains l, and points x~e 
a~+A with O<-x~ �9 e~<-a2 �9 e~ for i =  1,2. Then Ix2" g l < - I x l  �9 gl, and equality can 
only occur if x~ and x2 lie in �89 + a2) + L23 in which case �89 + a2) = 0. Consider 
now the case when A and x2 are chosen so that x2 is a point of K for which x2" g 
is maximal. Let xl be any point of (al + A)N K, which must be non-empty, so that 
Ix1" gl---Ix2" gl. The above argument shows that Ix1" gl = Ix2" gl, �89 = 0 
and xl and x2 are both in L23. Then (al + A) f"l K c L23 , SO ( a  2 + A) < K c L23 also. 
This shows that the two support lines of F = L23 fq K parallel to l are distinct and 
at equal distances from 0. Varying l, we find that F is a facet of K and F = - F .  
Notice that every support plane of K through a2 intersects K in a subset of L23. 
Return to a fixed l and g. Let 0 < ot < 1, and let x2* be a point of (ael + L 2 3 ) f ' ) K  

for which Ix*. g[ is maximal. Then the plane /-/2 which contains a2 and x*+l 
intersects the relative interior of F. Comparing intersections with F, the section 
G = (al - a2 +/-/2) tq K is a translate of/-/2 n K by a vector in L23, so G contains a 
point x~* of (ae~ + L23)f)K. The considerations of the first paragraph show that 
Ix*" gl > Ix*" gl which is a contradiction. 

Consider a unit vector u E L 2 3  , write P(u)=lin{u, e~} and write v(r u )=  
cos r  sin q~u for real q~. The section P(u)  N K has two one-sided tangent rays at 
e~; let the one which lies in the half-plane {x ~ P(u) :x .  u >-0} be parallel to the 
vector w~(u), having Wl(U)'U = 1. The other ray will then be parallel to the 
vector Wl(-U). In the same way define the vector Wo(U) corresponding to a 
tangent ray at 0. 

For small positive ~0 let a~ +lin{v(~,  u)} intersect K in the line-segment 
[b~(q~, u), c~(q~, u)] where (bi(r u)-c~(q~, u)) . e~ > 0 ,  for i= 1, 2. 

We find that 

le~+(at.e~-l)~ow~(-u)+O(~o) if a i ' e l > l  

bi(~o, u ) =  t e l + ( 1 - a ,  �9 e0~owl(u)+0(r if ai �9 e ~ < l  

~(a,. el)q~Wo(-u)+O(q~) if a , .  el~>0 

c,(q~, u)=((_ai  . el)~pWo(U)+O(q~) if a , .  e l < 0 .  

As {p --* 0 +, ~0-1(b2(~0, u) - bl(q~, u)) approaches a limit 

= ~(a2" e l -  1)wl(-u)-(1-al" el)wx(u) if 

zx(u) [((al-a2)" el)wt(u) if 

a~ �9 e x < O <  1 < a 2 "  e~ 

O ~ a l " e l < a 2 " e l < l ,  
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and q~-~(c2(~, u)-c~(q~, u)) approaches a limit 
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~(a2"e0wo( -U)+(a l "e l )wo(u )  if a l " e l < 0 < l < a 2 " e l  
Zo(U) = 

(((a2-al)" eOwo(-U) if O<--al . el <a2 �9 el--<l. 

L E M M A  4.3. The vectors Zl(U) and Zo(U) are nowhere zero continuous func- 
tions of u. For i = O, 1, if zi(u) is a multiple of z i ( -u )  then wi(u) = - w i ( - u ) .  

Proof. Continuity follows from the continuity of w~ and Wo. Since a2"e~ > 
a~.el ,  Zl and Zo are non-vanishing. Suppose that z~(u)= Azl(-u).  In the case 
O<-a~.el<a2 �9 e l -<l  it is immediate that Wl(U) is a multiple of w~(-u) and 
comparing the scalar products with u we obtain w~(u)=-Wl( -U) .  If al �9 e~ < 0 < 
l < a 2 "  el and wl(u) is not a multiple of wl( -u ) ,  we find 

t = 
a2" e l -  1 = al �9 e l - 1  
a ~ . e ~ - I  a 2 " e ~ - I  

Then )t = - 1  and a2 �9 el - 1 = 1 - al �9 el. This contradicts Lemma 4.2, so wa(u) is a 
multiple of wx(-u) ,  and it follows that w~(u) = - w ~ ( - u ) .  The case i = 0 is similar. 

When l and m are distinct coplanar lines, let ~[l ,  m] be the pencil of lines 
determined by l and m; that is, if I tq m g tk, ~[l ,  m] is the family of all lines which 
contain I f3 m, while if l is parallel to m, then ~[l ,  m] is the family of all lines 
parallel to l and m. Write 

too(U) = lin {Zo(U)}, and ml(u) = e l+ l in  {zl(u)}. 

L E M M A  4.4. For each unit vector u ~ L23 there is a plane II(u) which contains 
Lx, and such that every point o f / / ( u ) N b d  K belongs to a line of ~[mo(U), ml(u)] 
which supports K. 

Proof. Fix u and define 

lo(~) = all {c~(~, u), c2(~, u)} 

l~(q~) = aft {bl(q~, u), b2(q~, u)} 

for small positive q~. As q~ ~ 0 § the lines lo(q~) and ll(q~) tend to mo(u) and m~(u) 
respectively. Let O,p be the orthogonal projection on lin {v(~, u)} • 

For small positive ~, O~(a~) and O~(a2) are distinct relatively interior points of 
O~,(K). We can therefore choose distinct parallel chords I1(q~) and I2(q~) of Or(K) 
which contain O,(aO and O~(a2) respectively, and which are divided in the same 
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ratio by these points. Write 

H~(q~) - @~*(aff lj(q~)), 

which contains ai, and let A,p be the direct homothety such that 

&[H=(,p) n K] = HI(,~) n ~, 

Then ~9~A~(a2) must divide Ii(q~) in the same ratio in which ~9~0(a2) divides I2(q~), 
so O~A,(a2)= O~,(al). Thus A,p preserves P(u). In particular, 

A,p(be(ff, u ) ) =  bl(q~, u) 

Aq~(c2(~, u)) = el(q) , u). 

(1) 

(2) 

Choose a sequence (q~(n)) of positive numbers tending to zero so that H2(q~(n)) 
converges to a plane H(u) which contains L1. 

Consider x e II(u) O bd K, and choose x(n) e H2(q~(n)) O bd K so that x(n) ~ x 
as n ---, oo. Let 

y(n) = A~)(x(n)) e Hl(q~(n)) O bd K 

and write k(n) = aft {x(n), y(n)}. Then A,,., preserves k(n), and in view of (1) and 
(2), k(n)e~3[lo(~(n)),/l(q~(n))]. As n---~% x(n) and y(n) tend to x, and since 
k(n)OintK lies between Hl(q~(n)) and H2(q~(n)), k(n) tends to a support line k 
of K at x, with k e ~[mo(u),  rex(u)]. 

Let F be the set of unit vectors u in L23 for which P(u) is parallel to two edges 
of ~r23(K), or P(u) contains a point collinear with each of two edges of ~'23(K). 
Clearly F is countable and - F  = F. When u~ F, there is exactly one plane II(u) as 
described in Lemma 4.4. 

L E M M A  4.5. If u is a unit vector in L23\/" , then II(u)= H(-u). 

Proof. Let h and k be support lines of 7r23(K ) at points p and q respectively in 
II(u), such that h and ~k are images under 7'/'23 of lines in ~[mo(U), ml(u)] which 
support K. Suppose l l ( -u )#I I (u) ,  and that II(-u) intersects relbd 7T23(K ) at  
points p' and q' which lie on the same sides of P(u) as p and q respectively. 
Define support lines h' and k' of r at p' and q' in the same manner as above, 
with u replaced by - u .  

Since u e F, we can suppose that h n r {p}. Choose a projective trans- 
formation T of L23 , which preserves all lines through the origin, such that T(h) 
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and T(k) are parallel to lin {u}. Then T(h') is not parallel to T(h), so T(h') 
intersects lin {u}. But T(k') is either equal to T(k) or intersects lin {u} on the 
opposite side of 0 from T(h'), since T(p') and T(q') are on opposite sides of II(u). 
This shows that h' and k' are neither both parallel to lin {u} nor concurrent at a 
point of lin {u}, which is inconsistent with Lemma 4.4. We conclude that H(u)= 
rt(-u). 

LEMMA 4.6. The points 0 and el are smooth on K. 

Proof. Suppose this fails, and let b e {0, el} be non-smooth. Then for all unit 
vectors u in L23, apart possibly from those in a certain two element set A, b, is a 
non-smooth point of P(u)NK. For such u, wl(u)~-wl(-u)  if b=el or 
Wo(U) ~ -Wo(-U) if b = 0, so that by Lemma 4.3 zl(u) is not a multiple of Zx(-U) 
or zo(u) is not a multiple of zo(-u); in either case, ~[mo(u), 
ml(u)]~[mo(-u),ml(-U)]. Write ~(u) for the family of lines in ~[mo(u), 
m~(u)] which support K. We show that it is possible to define a continuously 
varying plane ~(u) for unit vectors u e L23\A, such that ~(u) = II(u) when u~ F. 
Suppose this is impossible, so there are sequences (u,), (u*) of unit vectors in 
L23\I" which converge to a vector u~ A, and so that H(un) and II(u*) converge to 
distinct planes / / a n d  //* respectively. By continuity, and since H(u,)= II(-u,), 
we find that each relative boundary point of H f'l K belongs to a line in ~(u) and 
to a line in ~ ( -u ) .  Similarly each relative boundary point o f / / *  N K belongs to a 
line in ~(u) and to a line in ~ ( -u ) .  Since ~ ( u ) g  ~ ( - u )  this is impossible, for the 
conical or cylindrical surfaces whose families of edges are ~(u) and ~ ( - u )  are 
completely determined by their intersections with the planes H and //*. We 
deduce the existence of ~(u) as claimed; note that each relative boundary point 
of ~(u)NK belongs to a line in ~(u) and to a line in ~ ( -u ) .  It is clear that if u* 
is a unit vector in L23\ A and u is sufficiently close to ~(u*), then ~(u) ~ ~(u*). 
Hence we can choose an arc ,~ of unit vectors in L23\A so that ~(u) attains more 
than one value for u e 2L Choose by continuity an interior point u' of ,~ such that 
qb(u) is non-constant on every neighbourhood of u' in ~. 

By continuity we can choose a neighbourhood U of b in b d K  and a 
neighbourhood S of u' in ~ such that for every x e U and u e S, x lies on distinct 
lines from ~[m0(u), ml(u)] and from ~[mo(-U), ml(-u)]  that define a plane 
which intersects the interior of K. If u e S and x e U f3 ~(u)  then x lies on distinct 
lines from ~(u) and from ~ ( - u )  that define a plane which intersects the interior 
of K, so x is non-smooth. By choice of u', it follows that the non-smooth points of 
K contain a non-empty open subset of the boundary of K. This is impossible since 
almost all boundary points of K are smooth. We conclude that 0 and e~ are 
smooth points of K. 
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Recall the support plane Z which was defined before Lemma 4.2. Observe 
now that ml(u)= Z O P(u) and too(U)= L23 n P(u) for all unit vectors u ~ Lz3. We 
may assume that Z O L23 is either empty or is parallel to L2. Then there is a 
projective transformation T having the form 

T(x) = (1 + 8(x" e3))-lx 

such that T(Z) is parallel to L23. 

LEMMA 4.7. T(K) is bounded, and the sections o[ T(K) parallel to L23 a r e  

directly homothetic and have centres of symmetry o[ L1. 

Proof. To prove that T(K) is bounded, it will be sufficient to suppose that 
Z n L23 # ~b and to prove that Z n L23 n K = ft. Let us assume this is false. First 
consider the possibility that Z AL23nK is a line-segment /, and choose a 
relatively interior point x of L By Lemma 4.4 there is a plane A which contains 
L1, such that every point of A O bd K lies on a support line of K containing x. If 

is a plane containing I which also contains an inner point of K, then at most 
one end point of q~ n A O K lies on a support line of qb n K through x, which is a 
contradiction. We may therefore assume that Z n L23 n K is a single point y. Let 

be the plane lin {el, y}. Then by Lemma 4.4 every point of q~nbd K lies on 
support lines of K through each point x of Z n L23\{y}; if we let x approach y, we 
find that ~ is a support plane of K, contradicting the fact that L1 contains inner 
points of K. Hence T(K) is bounded. 

Consider any unit vector u e L23 , and let ~(u) be the family of all support lines 
of T(K) which are parallel to lin {u}. The family 

~o(U) = {T-l(k) : k e ~(u)} 

consists of those support lines of K which belong to ~[mo(U), ml(u)], and by 
Lemma 4.4 there is a plane lI(u) which contains L1, such that every point of 
H ( u ) n b d  K belongs to a member of Zo(U). Then every point o f / / ( u ) n b d  T(K) 
belongs to a line in Z(u), since TII(u)= II(u), modulo missing points at infinity. 

Choose 0 < ~ < 6' < 1 and let 

P = relbd (-~el + T(K)) n L23 

P'= relbd (-~'el  + T(K)) n L23 

t ( O )  = cos 0e2 + sin Oe3 
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and suppose the curves P and P' are described by the points p(O)t(O) and 
p'(O)t(O) respectively, where p and p' are positive, for real 0. 

If u is a unit vector in L23 and p(O)t(O) is the unique point of contact of a 
support line of P parallel to lin {u}, then p(O)t(O), p(O + 7r)t(O + It) and p'(O)t(O) 
all belong to II(u). So p(0 + w)t(O + ~) and p'(O)t(O) lie in support lines of P and 
P'  respectively parallel to lin {u}. So if p(O)t(O) is an exposed point of P, then the 
set of tangent lines to P at p(O)t(O), the set of tangent lines to P at p(0 + r + 
r and the set of tangent lines to P' at p'(O)t(O) are just translates of one another. 
By approximation, it follows also that if p(O)t(O) and p(q~)t(tp) are the end points 
of an edge I of P, then p(0 + w)t(O + ~) and p(,p + r + It) lie in a support line 
of P parallel to /, and that p'(O)t(O) and p'(q~)t(q~) lie in a support line of P' 
parallel to L Hence for every 0, the sets of tangent lines to P at p(O)t(O), to P at 
p(O+~r)t(O+cr) and to P'  at p'(O)t(O) are just translates of one another. We 
deduce that 

1 1 
~ D + p ( O ) = - -  
p(O) p(O+~) 

1 1 
- - D _ p ( O ) = - -  
p(0) p(0+~) 

1 
D+p( 8 + rr) = p - ~  D+p'( 8) 

,1 
D-p( O + Tr) = p-7~ D-p'( e) 

where D§ and D_ denote differentiation on the right and left respectively with 
respect to 0. Hence 

d-'O (p(0)/p(0 + 'n')) = 0 = (p(O)/p'(O)), 

whence p(O)/p'(O) and p(O)/p(O + it) are constants. So P is directly homothetic to 
P' and - P - - c P  for some positive c; comparing diameters we find c = 1. This 
proves the Lemma. 

L E M M A  4.8. 0 and el are exposed points of K. 

Proof. We suppose the Lemma is false, and assume without loss of generality 
that 0 is not an exposed point of K. In view of Lemma 4.7, 0 must be a relatively 
interior point of a facet F of K, with F c  L23 , and 0 is the centre of symmetry of 
T(F). Let {b, c}={al ,  a2} rearranged so that Ilblt--Ilcll. Consider a line l c L23 
which intersects F in a single point. Let H be aff ({b} U l), H '  = c - b + H and let 
l '= H'A  L23. Then H ' A  K is directly homothetic to H n K, and l' is parallel to l, 
so if l' intersects K, l ' n K  must be a single point; in any case, it follows that l' 
does not intersect the relative interior of F. Since l' is distinct from l, and has no 
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greater distance from 0 than l has, it follows that l' is on the opposite side of 0 
from I. This shows that a2 �9 e~ > 1 > 0 > a~ �9 e~, and that the other support line of F 
parallel to l has no greater distance from 0 than l has. Varying l and taking limits, 
we find that the support function h of F satisfies h(u)>~ h ( - u )  for all u e L23, so 
that h ( u ) =  h( -u ) .  Hence F has 0 as centre of symmetry. Returning to the 
consideration of the line l, we now find that l' supports F, so l = - l '  and therefore 
a2 = -a~ .  This is impossible by Lemma 4.2. 

L E M M A  4.9. If  a~ �9 el < 0 < 1 < a2 " e~ then Z is parallel to L23. 

Proof. Let MI and N~ be the two support planes of K which contain a~ + L2, 

and write 

M2 = a2-al+M1, N2 = a2-al+N1 

so that M2 and N2 are also support planes of K;  for if say M2 did not support K, a 
suitable slight alteration in the directions of M2 and M1 would yield parallel 
planes containing a2 and a~ respectively, with exactly one of these planes 
intersecting K, which is impossible. Suppose that Z is not parallel to L23 , so that T 
maps the plane at infinity onto a translate A of L12. Then 

(T(MI)) lq (T(M2)) = f+  L2, (T(NO) N (T(N2)) = g + L2 

where f and g are points of A 1"3 L~3, and the bars indicate closure. The planes 
T(MO and T(N1) support T(K) and are symmetrically placed about L~2 by 
Lemma 4.7.Hence the triangle cony {f, g, al} is isosceles with base [f, g]. Similarly 
conv~,  g, a2} is isosceles with base [J, g]. This is impossible since [al,  a2] is 
parallel to [f, g]. Thus Z is parallel to L23. 

We now abandon all the notation which has accumulated so far, with the 
exception of aj, K introduced at the beginning of section 4, Ls, ~rs, ei, Z 
introduced after Lemma 4.1 and T introduced before Lemma 4.6. Write P =  
"/r23T(K), so that 

(~e I -k L23 ) ("1 T(K) = '~el + k(~)P 

for 0---6-<1, where k is a continuous concave non-negative function, k(0)= 
k ( 1 )  = 0, 6 -1k(0  ~ oo as 6 ~ 0 + and (1 - 0-1k(6)  ~ oo as 6 ~ 1-. Whenever x is a 
compact convex set, let h[X, .] denote the support function of X. Our aim in 
Lemmas 4.10 to 4.14 will he to show that P is an ellipse. 

Choose a non-zero vector y eL2a such that lin{y} intersects the relative 
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boundary of P at smooth points. Let v be a vector in L23 such that v �9 y = 0 and 
hiP, v]=lloll 2. Choose /3 with 0<1/31<1 which will be fixed for some time. Let 
R(~), for 0 <  ~ < 1, be the line such that 

T(R(~)) = ~el +/3k(~)v + lin {y}, 

equality being modulo missing points at infinity. Write 

H2(~) = aft ({a2} U R(~)) 

HI(~) = a l -  a2+ n2(~). 

Let ~ t  be the unique direct homothety of E 3 which satisfies 

q~[H2(~) f3 K] = n , (~)  f3 K. 

Every support plane of T(K) at a point of lin {el, y} f3 bd T(K) is parallel to a 
certain line lin {d} in L23 , by reason of the smoothness ensured by the choice of y. 
So there is a solid cylinder or pointed cone C which contains K, such that every 
plane which supports K at a point of lin {el, y} is also a support plane of C. Then 
since 0 is an exposed point of K, 

C f3 L23 c l i n  {d}. 

Let  ~ be the unique direct homothety which satisfies 

�9 ~[n2(~) n C]=  n l (~)  n C 

which exists for all small positive ~. We find that 

al,'~(x) = M~x + Ar 

for some real numbers Me > 0 and )t~; we shall suppose that ( d - v )  �9 v = 0. 
Write 

q , ~ l ( x )  = (1 + r(O)x + s(O. 

L E M M A  4.10. As ~ ~ 0 +, r(~) = 0(k(~)) and s(~) = 0(k(~)). 

Proof. Let p be the Hausdortt metric on compact subsets of E 3, and write 

K~(~) = Hj(~) f3 K, Cj(~) = Hj(~) f3 C, A = lin {e~, y} 
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for ] = 1, 2. We first show that 

p[Kj(~), Cj(~)] = 0(k(~)) (3) 

as ~---> 0 § Suppose this fails, so there exists e > 0 and a sequence (~.) of positive 
numbers tending to zero with 

o[KM.), q(~.)]> ek(~.) (4) 

for each n. Let l be a line which contains a relatively interior point of A n K, and 
which belongs to the pencil determined by the edges of C. For each n, we can by 
(4) choose a plane H~ containing l so that 

p[n,, n Kj(~.), n .  n c~(e.)] < ek(~.). 

Then we can choose corresponding end-points x., z. of H.  n Kj(~.), H.  O Cj(~.) 
respectively such that 

IIx. - z.II > e/r (~ . )  (5) 

for each n. Let w~ be the corresponding end-point of / / .  A A N K, and let 
p. = aft {x., w.}, q. = aft {z., w.}. Then q. contains an edge of C, and 

inf {angle between q~ and A : n = 1, 2 . . . .  } > 0 

IIz. - w.II = 0 (k(~ . ) ) .  

(6) 

(7) 

The angle between x . -  z. and t~ tends to lr/2 as n--* oo, so using (5), (6) and (7), 
the angle between p. and q. is bounded away from 0 for large n. 

Replace (~.) by a subsequence so that x~ tends to a point x and H.  tends to a 
plane H containing {x} O l as n ~ ~. Then p. and q. tend to support lines p and q 
respectively of H n K at x, using (6), and p r q. This is impossible since H n C has 
a unique support line at x. Hence (3) is established. 

We have 

K , ( ~ )  = 4'~(K2(6)) 

q ( 6 )  = % ( C ~ ( r  

SO 

�9 ~(C2(~)) = ~ g t ~ ( C t ( ~ ) )  = (1 + r(~))C~(~)+ s(~). (8) 
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Now 

p[~dC~(~)),  G(~) ]  <~ O[~dC~(~)), ~K~(~))]  + o[K~(~), G(~) ]  

= t(~)p[C2(l~), K2(~)] + p[KI(~), C,(~)] 

where t(~) is the ratio of @~, and t(~)-~ 1 as ~--~ 0 +, so 

p[O~(C2(~)), C1(~)] = 0(k(~)) 

by (3). Combining this with (8) and writing it in terms of support  functions, we 
obtain 

r(~)h[Cx(~), g]+ s(~)- g = 0(k(~)) 

as ~---~0 +. By considering g = + e l  we obtain r(~)=0(k(~)) ,  and taking g =  
el, e2, e3 we then find that s (~)= 0(k(~)). 

Let tr = (a2" el ) - l (a l  �9 el), so by Lemma 4.2 [tr I < 1, and define 

R1(r = ~t(R(~))  

R2(r = gC~(R(~)) 

/~(~) = R(~)N K 

/~1(~) = ~( /~(~) )  = RI(~) Cl K 

lq(~) = ~( /~(~) )  c R2(~). 

L E M M A  4.11. As  Ii ~ 0 +, k(~)-l/~(~) ~ R* where R* = P (7 (~d + lin {y}), 
k(~)-1/~2(~) ---* R*2 where R* = R * + ( t r -  1)/3d, and k(~)-l/~(~)---~ R2*. 

Proof. Since 

T(/~(~)) = ~el + k((;)(P N (go + lin {y})) = ~e~ + k(!~)(P ~ ([3d + lin {y})) 

and ~ = 0(k(~)), we have 

k(~) -~ T(/~(~)) --* R* -- P ~ (/~d + lin {y}) 

as ~ -*  0% The map T -1 is differentiable, DT-~(0) is the identity map and the 
maximum distance of points of T(/~(~)) from 0 is 0(k(~)), so k(~)-~/~(0 and 
k(~)-~T(lq(~)) approach the same limit as ~--* 0 § hence k(~)-~/~(~)--* R*.  
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Since T(H2(~)) contains the point (a2" el)(a2" el-~)-l[~k(6)d we find that 
H2(~) contains the point (1 + t(~))I~k(~)d where t(~)---~ 0 as ~--~ 0 § For small 
positive ~, 

(H2(~) O C) n L23 = {(1 + t(~))[3k(~)d} 
(H~(,~) fl C) fl L23 = {0.(1 + t(~))[3k(~)d}, 

so ~r(1 + t((;))[3k((;)d = M~(1 + t((;))13k(~,)d + A~d and since M~ ~ 1 we have A~ 
( t r -1) /3k(~)  as 6--~ 0 +. Then,  since 

we have 

k(~)-1/~2(~) --~ R* + (tr - 1)/3d = R2* 

as 6 ~ 0 § Finally, 

/~1(~) = ~ 1 ( / ~ 2 ( ~ ) )  = (1 + r(~))/~2(~) + s(~) 

so that k(~)-1/~1(6) ---~ R*  by Lemma 4.10. 

L E M M A  4.12. Let K(~) be the distance of 0 from R1(~)AL23, or +oo if  this 
intersection is empty. Then 

lim inf~_.o+ r(~) > 0. 

Proof. If lin {y} is parallel t o b o t h  L 2 3  and Z then K(~) = +00 for 0 < 6 < 1. We 
therefore need only consider the case when z n L 2 3 n l i n { y } #  0 ,  and we can 
assume that y e Z fl L23. 

Suppose the result fails, so there exists a sequence (6(n)) converging to 0 § and 
m, ~ Rl(~(n)) f'l L23 such that m, ~ 0 as n ~ oo. Write q~, = ~ , )  and let T(p,) be 
the midpoint of T(R(6(n))), so that all the points p, lie in a certain p l a n e / / w h i c h  
contains L~, since 

k(/~(n))-l(T(p.)- f~(n)el) = k((;(q))-~( T(pq)- f~(q)e~) 

for all n and q. For  some a .  we have 

ra. = a.q~.(p.) + (1 - a.)q~.(y). 
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Since p.  �9 el > y �9 el = 0, we have an < 1, and since q~. tends to the identity map  as 
n---~oo, we have a.--->l,  so we may assume a . > 0  for all n. Le t  the ray from a2 

through p.  intersect the boundary  of K at a point b. and intersect L23 at a point 

f~. 

Write 

Un = a.q~.(p.)  + (1 - a.)q~.(f.).  

Then [u.,  ran] is parallel to [ y , f . ] c  L23 , so u. eL23.  Since u . ~ i n t  K, q~.(p~)e K, 
q ~ . ( b . ) e K  and b . e [ f . , p . ]  we have 

u. e [~ . (b . ) ,  q~.(L)]- 

Then 

IIm.--~n(Y)lt _ Ilu.- ~o.(f.)ll <lk0.(b. ) -  ~.(f .) l l< 1. 
II'P.(P.)- q~.(Y)ll II'P.(P.)- 'P.(f.)ll-Ilq~.(p.)- q~.(/n)ll- 

As n ~ 0% m.  and q~.(p.) both tend to 0 and ~ . (y)  tends to y, so 

I I r  ~.(f~)ll___. 1. 

I I~ (p . ) -  ~.(f.)ll 

Hence  as n ~ 0% 

l ib . -  f.II ~ 1. 

lip. -f.H 
(9) 

Write /~. = T(b . ) ,  fn = T( f . ) ,  (~,~ = T(pn),  and observe that for each n,/~n, fn,/~n 
and a2 are collinear points o f / / .  Let  w be the end o f / / r l  P with/~. �9 w > 0 for all 

n, so that X = 11o l l -2w �9 o satisfies 1 >X-1/3 > 0 .  Let  K * =  I I N  T(k ) .  Then 

~,, = ~(n)e l  + X- l [3k (~(n) )w  

and the relative boundary of K* contains the point 

q. = ~ (n )e l+  k (~(n) )w.  

Let  [0, q.]  intersect [b., a2] at r. = Onqn where 

On = ( x a 2  " el + 13(;(n)- X!~(n))-l~a2 �9 el. 
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We have 

r..  (lO) 
I1~.-/.11 ~" I1~.-/.11--~. . e l - f n . e  I ~(n~----- 

as n --, ~. 
Using the projective invariancc of the cross-ratio [b., p.;  f., a2] we find that as 

n - ->  o0, 

l i b . -  f.II l i b . -  f.II --*1 
I Ip . - f . l l  

by (9). This contradicts (10), which proves the Lemma. 

LEMMA 4.13. There are sequences (~,), ((;') of positive numbers tending to 
zero such that k(~',)/~l(~,) converges to a chord R* of P, such that R* = i~R*2 for 
some Iz > O. 

Proof. For 0 < ~ < 1 let the end-points of T(/~I(O) lie in the planes ~'el + L23 
and ~"el+ L23 with ~"~> g'. By Lemma 4.12 there is an ~i > 0 such that T(RI(~)) 
contains no point of L23 within distance 71 of 0 when ~ is small. Then for small 
positive ~ the angle between T(RI(~)) and its orthogonal projection on L23 is less 
than tan-l(2~'/r;), so 

0 <- ~"- ~'< (2~'/n)k(~")W 

Where W is the diameter of P. Since k is concave and k(O)= 0 we have 

1 < k(~") < ~"< 1 -~ 2 Wk(~") 
- k ( ~ ' ) -  ~' ~l 

so that 

k(~") 
- - - - ) .  1 (11) 
k(~') 

as ~ 0  +. 
Since the ends of T(/~(O) belong to the relative boundaries of g'el + k(~')P 

and of r + k(C)P, we can choose a sequence (~.) tending to 0 from above, such 
that k({'.)-lT(/~l(~.)) tends to a line-segment R* whose ends will, by (11), be in 
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k(~,) RI(~,) tends to R~*. relbd P. The differentiability of T -1 now ensures that , -1 - 
By Lemma 4.11, k(~,)-1/~1(~,)---~ R2*, so we conclude that R1 *=  gR2* for some 
t ,>O.  

L E M M A  4.14. P is an ellipse. 

Proof. We now allow /3 to vary, and introduce /3 as an argument for R*, R* 
and R2*. Then 

R*(/3) = P O (/3d + lin {y}) 

R*(/3) = R*(/3) + /3 ( t r -  1)d c o'/3d +lin {y} 

R*(/3) = tz(/3)R*(/3) = P O (g (/3)tr/3d + lin {y}). 

If g ( / 3 ) < l ,  then R1"(/3) is closer to 0 than R*(/3) and has shorter length; 
since R1"(/3) is a chord of P, we must therefore have t~(/3) > - 1. If/z(/3) > 1, then the 
length of R*(/3) is greater than that of R*(/3), so while if g(/3) = 1 

then 1/31. 
Fix /30, and let /31 be the number with least absolute value which satisfies 

R*(/30 = aR*(/3o) + Ad 

for real numbers a, A; interpret R*(0) as P n l i n  {y}. Suppose that /31 # 0. Write 

/32 = g(//31)o'/31, so that I/3=1<1/311. Then 

R*(/32) = R~*(/31)= g(/30R2*(/31)=/.t(/31)(R*(/31) + (/3,(or- 1)d) 

=/z(/31)otR*(/3o) +/3,(/31)(/31(O"-- 1)+/~)d. 

This is impossible by choice of/31, so we conclude that /31 = 0. Thus the midpoint 
of R*(/3o) lies on lin {d}. Since/330 was chosen arbitrarily, it follows that the chords 
of P parallel to lin {y} have collinear midpoints. Varying y over the smooth points 
of P and taking limits, we find that the chords of P parallel to any given line have 
collinear midpoints. Then P is an ellipse, by a standard result given in Busemann 
[6], page 92. 

After an attine transformation, we can suppose that P is the unit circle, and 
then 

bd T (K)  = {(x, y, z): y2+ z 2 = (k(x))2, 0 -< x -< 1}. 

The remaining Lemmas prove that K is an ellipsoid. 
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L E M M A  4.15. Suppose L23 is not parallel to Z. Then K is an ellipsoid. 

Proof. In view of Lemma 4.9 and the Remark,  we have 

O<_a~ �9 e~ < a  2 �9 e~ <_ l. 

If a~e bdK, then the support  plane H of K at a I would satisfy H N  K = {a l}  , 

while a 2 - a l  + H would intersect K in a proper section. So 

0 < a ~  �9 ca<a2 �9 e l < l .  

We also find that T is the projective transformation 

T(x, y, z )=( l+Sz)-~(x ,  y, z), for some 8 # 0 .  

Notice that by rotational symmetry, T(K) is preserved by the reflection R in L12. 

Consider a plane H which contains a~ + L2, and form the sequence of sections 

H o N T ( K )  where Ho=H,  H I N T ( K )  where H I = R ( H o )  , 

/'/2 tq K where /-/2 = T-I(H1), H3 f3 K where Ha = a 2 -  a~ +/42, 
H4 f) T(K) where /-/4 = T(H3), /-/5 N T(K) where /-/5 = R(Ha),  
H 6 N K  where H 6 = T - I ( H s ) , H 7 N K  where H T = a l - a 2 + H 6 ,  
Hsf3 T(K) where Hs  = T(HT); 

all of these sections are projectively equivalent. Write al  �9 el =/3, a2" el = or, and 
consider a point (/3 +x,  y, z ) e H ,  with z #  +1/8. Then 

Ho contains 
/-/2 contains 
Ha contains 
/-/4 contains 
/-/5 contains 
H6 contains 
/-/7 contains 
H8 contains 

(/3 + x, y, z), HI  contains (/3 + x, y , -  z), 
(1 + 8z)-1(/3 + x, y , -  z), 
( l + S z ) - l ( a + x + S z ( a - / 3 ) ,  y , -  z), 
( a + x + S z ( a - / 3 ) ,  y , -  z), 
(a + x + S z ( a -  /3), y, z), 
(1-7 8z)-l(a + x + 8z(a -/3), y, z), 
(1 - ~z)-~(/3 + x + 28z(a -/3), y, z), 
(/3+x+28z(a-/3), y, z); 

in particular, a l + L 2 c  H s.  If we repeatedly apply this process to the plane 
al + L23, which contains the point (/3, 0, 28), we find that the sections 

T(K) tq (al + lin {e2, 28e3 + 4n82(a -/3)el}) 
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are ellipses for n = 0, 1, 2 . . . . .  Taking limits, we find that L12 CI T(K) is an ellipse 
whose perimeter has equation 

4 ( x - � 8 9  1 

for some A ~ 0 by, symmetry in L1. We can now determine the function k, and we 
find that T(K) is the ellipsoid whose surface has equation 

4(x -�89 + A 2y: + A 2z 2= 1, 

so K is then an ellipsoid as claimed. 

L E M M A  4.16. Suppose that Z is parallel to L23. Then K is an ellipsoid. 

Proof. In this case, T is the identity map. Write a:  el = a, al �9 el =/3, and for 
small positive A let 

H I ( A  ) = {(x, y, z ) :  y = A(x - / 3 ) }  

n 2 ( x )  = {(x, y, z) :  y = X ( x -  a)} 

which contain al and a2 respectively. The relative boundaries of "n'13(nl(A)CI K) 
and w13(H2()t) f3 K) have equations 

)t2(x _/3)2+ z 2 = R(x) (12) 

A2(x - a)2+ z 2 = R(x) (13) 

respectively, where R(x) = (k(x)) 2. There are numbers ~x > 0, tx such that 

7/'13(n1()t ) N K) = r ) i"1K + (tx, 0, 0), 

since these regions are symmetric about L1. For i = 1, 2 let Ji(A) = [~i(A), rh()t)] be 
the interval 

Jl(A) = {x. e~ :x ~ H,(A) f3 K} 

so that r t x = JI(A).  

Using (12) the equation of the relative boundary of w13(H2(A)tq K) can also be 
written 

A2(tibxg + tx _ f l ) 2 +  tib2Z2 = R(c~xx + tx). (14) 
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F r o m  (13) and  (14) we deduce  

q~2a2(x - a )  2 -  A2(q~xx + tx - / 3 )  2 = ~2R(x)- R(~xx + tx) (15) 

for  all x ~ J2(Ot). Not ice  tha t  ~x ~ 1, tx ~ 0 as )t ~ 0. 

W e  next  show that  R is twice di t terent iable  on (0, 1). First  let us show that  
x > q~xx + tx for  all x ~ J2(Ot) when  )t is small  and  posit ive.  

W e  have  

~r12(n,(x) n K) = [b,(X), c,(X)] 

where  ( c~ (A) -b i ( a ) ) "  e i > 0  for  i = 1 , 2 .  Sincelr12(K) is s m o o t h  at 0 and  el,  we 
have  

ci(A),  e2 = A ( 1 -  a i"  e 0 + 0 ( A )  

hi(A) �9 e2 = - A ( a ~  �9 e 0 + 0 ( A )  

as A ~ 0 +. F r o m  L e m m a  4.2 it fol lows tha t  l a l>  1/31 and I 1 - a l  < 11-/31, so 

Ic2(x) �9 e21 < Ic~(x) �9 e21 

Ib2(X)" e2[>lbl(X)" e21 

for  all small  posi t ive )t. Since 1r~2(K) is s y m m e t r i c  in L1, has no edges  paral le l  to 
L2, but  has  suppor t  lines paral le l  to /-.2 at 0 and  e~, we find that  

c2()t) �9 e~ > Cl()t) �9 el 

b2(,~) �9 el > bl(Ot) �9 el 

for  all small  posi t ive X. T h a t  is, 

n2(x)> ,h(x),  ~2(x)> ~(x)  

w h e n e v e r  X ~ I = (0, Ix), say. W e  can also suppose  tha t  ~2 and "02 are  m o n o t o n i c  on 

I. 
Def in ing  

~(a)  = min  {n2(X)-  ~h(A), ~2(A)-  ~l(X)}, 

we  find x-(~xx+t~)>~(Ot) for  x ~J2(Ot), and  s is a pos i t ive  con t inuous  funct ion 
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on /. Let  x e (0, 1), choose  A ' e  I so that x e int J2(A') and choose,  by the concavi ty  

of  k,y ~ ( x -  ~(A'), x) N int J2(A') such that  R is twice differentiable at y. Choose  

A e ( 0 ,  A') such that  y = ~ x x + t x .  F rom (15) it now follows that  R is twice 

differentiable at x. 

Differentiat ing (15) twice with respect to x, we obtain 

R " ( x )  = R " ( ~ x x  + tx) (16) 

for  x e int J2(A). If A ' e  I and  x, y e int J2(A') satisfy x - ~(A') < y < x, we can, as 

above,  choose  A e (0, A') such that  

y = ~ / '~x+t ,  

By  (16) we then have R " ( x ) =  R"(y) .  It  follows that  R"  is constant  on  int J2(A'), 

and so R "  is constant  on (0, 1). There fo re  R is a quadrat ic  form. Since R ( 0 ) =  

R(1)  = 0 and R is positive on  (0, 1), we have 

R ( x )  = A 2 ( x  - x 2) 

for  some A ~  0, and the surface of K is the ellipsoid with equa t ion  

A (x - + y :  + z = �88 

L e m m a s  4.15 and 4.16 now show that  K is an ellipsoid. This comple tes  the 

p roo f  of T h e o r e m  1. 
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