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Quadruple  points  of  3 -mani fo lds  in S 4 

MICHAEL H. FREEDMAN* 

A folk theorem (see Banchoff [B]) says that the number of normally triple 
points of a closed surface normally immersed in 3-space is congruent modulo two 
to its Euler  characteristic. In general, a normal immersion of a compact n-manifold 
in an n + 1-manifold will have a finite number, 0, of (n + 1)-tuple points. 0, taken 

mod 2, is well defined under bordism of both the immersion and ambient 
manifold. An attractive place to try to evaluate 0 is on the abelian group, 
"(oriented bordism of immersed n-manifolds in S "+x, connected sum)" = B,, since 
B ,  is naturally isomorphic to the stable homotopy group 7r n. Counting (n + 1)- 

tuple points determines a homomorphism, On : 7r, ~ Z2. The figure eight immer- 
sion of a circle shows that 01 is an isomorphism; Banchoff 's proof shows that 0z is 
the zero map; the main result of this paper is that 03 is the unique epimorphism 
7r3- Z24 ~ Z2. Thus, we show that a (actually any) oriented 3-manifold may be 
generically immersed in S 4 with an odd number of quadruple points. Like Smale's 
inversion of S 2, our  proof is abstract and does not yield an example. 

A pleasing conjecture is that On is the stable Hopf  invariant for all n. 

w B. is the n 'h Stable Stem 

All terminology will be smooth; the spheres, S i, are given a standard orienta- 
tion. Let  X be a compact oriented n + 1-manifold with boundary components 

divided into O-X and O+X. (X;O-X,O+X)9 ,,~ > ( S n + l x [ - 1 , + l ] ;  S'~+Ix-1, 
S"+lxl) is  called an immersed bordism between f/a-X and f/O+X if f is a relative 
immersion. Let  B,  be the set of immersions, g, of compact oriented n-manifolds, 
M, modulo the equivalence relation of immersed bordism. B,  is a group under 
connected sum of ambient spheres away from the immersions. 

* The author is partially supported by an NSF grant. 
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Since v M  9 g ~ S "+1 is trivialized by the orientations, g determines a triviali- 

zation of z ( X ) ~ e  ~. According to Smale-Hirsh theory immersions exist (and are 
unique up to regular homotopy)  which induce arbi trary trivializations of ~'(M)~) 
e 1 and ~'(X) ~ e 1. Consequently B ,  ~ {trivializations of ~'(M) �9 e 1}/ 

{trivializations which extend to trivializations of r ( X ) O e  ~, where a X =  M}. The  
Pont ryagin-Thom construction determines a homomorph i sm i, : B ,  ---> ~r,. 

Since 7ri(SO, S O ( n + l ) ) ~ - O  i<-n,  a stable trivialization of v~ determines a 
trivialization of r ( M ) ~  el ;  so i, is epic. Since ~ri(S0, SO(n  + 2)) ~ 0 i -< n + 1, a 

stable trivialization of v• determines a trivialization of l - (X)Oe~;  so i is monic. 

i n 

T H E O R E M  1. B ,  ~ 7r, 

w Generic immersions 

Let  G : M  --> S "+1 be an immersion of a compact  manifold, g determines 

maps gi :~(Mx . {. i x M , _  big diagonal) ---> (S"+ lx  . .  �9 x S " + b ,  gT, ~ (small diagonal) = 
i-copies 

M~ is the i- tuple set of g-1. It is easy to see that the Mi are compact .  An 
argument  using the Thom-transversal i ty  theorem shows that g may be C = 
approximated by an immersion ~ with g~ transverse to the small diagonal for all i; 
such immersions will be called normal.  Mi = g~-i (small diagonal) is an orientable 

M x - . .  x M  
submanifold of .... . ~. but does not have a prefered orientat ion since either 

I-copies 
M x  �9 �9 �9 x M  S " + I x . .  �9 x S  "+~ 

o r '  �9 will not inherit an orientation f rom its factors. 
/-copies i-co*pies 

Since an immersion is locally 1 - 1 the symmetr ic  group S( i )  acts freely on Mi ; let 
N i be the quotient  manifold. When i = n + 1 these considerations applied to 
f :  X---> S " + l x [ - 1 ,  1] show that  the number  of n + 1-tuple points of g determine a 

well defined homomorph i sm 0, : B ,  ~ Z2. 
The  condition that g is a normal  immersion has this equivalent form: every 

point  in S "+~ should have a chart  which intersects g ( M )  in the l hyperplanes 

x h = 0, Xj~ = 0 . . . . .  xj, = 0, 1 -< h ,  < . . . .  < Jl -< n + 1. (For an open dense set of 
points 1 will be zero.) 

w The computation of 03 

Here  is the program for computing 03. Starting with a generic immersion of an 
oriented 3-manifold, g : M  --* S 4 we find N 2 naturally immersed in S 4 with a 
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normal bundle having twisted (if N2 is nonorientable) Euler  class zero. Lemma 2 
shows that the Hopf  invariant of [g ]e  B 3 ~  7r3, H[g], is congruent to the Euler  
characteristic x(N2). In lemma 4 we replace N2 by a surface N2 with the same 
Euler  characteristic (mod 2) and also immersed in S4 with twisted Euler  class 
zero. When g has an even number  of quadruple points, we show that the above 
immersion is regularly homotopic to a generic immersion with an even number of 
double points. It follows from a theorem of Whitney's [W] that a generically 
immersed surface in S 4 with an even number of double points and with twisted 
Euler  class zero must have even Euler  characteristic. So when 03[g]=0,  ](r 2 
admits an immersion with the above properties. Hence x(N2) - x(N2) --- 0 (mod 2). 
Now by Lemma 2 03[g]=0 implies H [ g ] = 0 ,  i.e. ker (H)~ker(03) .  Since 
H:Tr3 ~ Z2 is an epimorphism, so is 03: r r3 ~ Z2. Knowing "n- 3 ~ Z24 now com- 
pletely determines 03. 

Let  ~ r : M x . . .  xM---~M be the projection from the /-fold product  of an 
oriented n-manifold to the first factor. The following commutative diagram shows 
that the restriction of 7r to M~ is an immersion. 

0 ,r(M,) ,~(a) 

I~'M,'. 1 ~ 

0 , ~'(M) g , "r(S "+1) 

,:1 is the small diagonal of (S"+1) i. gi is an immersion so (gil),: ~'(M~)~ (A) is an 
injection, a is the restriction of projection to the first factor; ~ ,  is an isomorph- 
ism and therefore (Tr/M~), is an injection as desired. 

Let  h be the map making the diagram: 

//h 
s, 

commute,  g0zr is an immersion, so h is an immersion. 

L E M M A  1. The normal 2-plane bundle vN~e "~ s . . . .  vh~ has a section. 

Proof. The normal bundle VN2~M is trivialized by (say) the normal vector, v. 
g , (v)  determines a linearly independent  pair of vectors vl and v2 in vh,. vl + v2 
defines the desired section. 
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C O R O L L A R Y  1. I f  n = 3  then X(vh~)=OeH2(N2;Ztwi~t~d) where the 
coefficients are twisted by wa(T(N2)) when N 2 is nonorientable. 

We need to ask the question: When is there an imbedding i:M2--> N z x  R ~-~ 
making the diagram 

f lN2x  R " -1  

i/ / ~proj 
/ proj '/r 9 M: ..... N2 commute. 

I f  ~ is the line bundle associated to (M2 proi> N2), i will exist if ~-1 has geometric 

dimension <-n -2 .  Since dim (N2)= n -  1 this will happen if the Stie[el-Whitney 
class Wn_a(U 1) = 0 

From now on we consider the case n = 3. Here  M2 proj ?42 is a two fold 

covering of a possibly non-orientable surface by an orientable surface. If 

w l ( rN2)#0 ,  M2 Pro!~ N2 is the orientation covering so wl(() = Wl(rN2). In this 

case ~ ) z N 2  is trivial since wa(~rN2)=Wl(~)+wl('rN2)=O and w 2 ( ~ + ' r N 2 )  = 

Wl(ff) �9 wl(TN2) + Wz(~'N2) = wl(~) " wl(~'Nz)+(wl('cN2)) 2=0. As a result i f - l=  1-N2. 

If Wl(-rN2)=0, w l ( ~ O f f ~ ' N 2 )  = Wl(s163 Wz(ff~O~'N2)  = wt(() 2+ 
Wz(-rN2) = wl(~)Z+wx(.rN2)2=O+O=O. So ~-~ = ff+~'N2. In both cases w2(ff-~) = 
w2(~'Nz) , but W2('t'Nz)[N2] is congruent  modulo 2 to the Euler  characteristic x(N2) 
so w3(U1)[Nz]=-x(N2)(mod 2). We now prove: 

CLAIM. If i' is a generic immersion making the preceeding diagram com- 

mute,  then # (doub le  points ( i ' ) )--x(N2) (mod 2). 

Proof. If the Euler  characteristic of every-componen t  of N2 is even then 
w,_l(~ "-a) = 0 and, as stated above, i' may be chosen to be an imbedding. Any two 
choices for i' are regularly homotopic  so #(doublepoints  (i')) =- 0 (mod 2) for any 
generic i'. For the general case we must consider the following example: 

, ~ ( [ x ,  y, z], (x, y)) 
R p 2 •  2 

/ ~ _ ~ p 2  

1 (x, y, z)  , [x, y, z] 

Note that ([0, 0, 1], (0, 0)) is the only multiple value for i' and that i' is normal. 
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To remove a generic double point of an arbitrary i' one forms the connected sum 

N 2 # R P  2 at [0,0,  1]e RP 2 and (the projection of the double point of i') e N 2. 
Thus a generic double point of i' over a component  of N 2 may be removed at the 
expense of lowering the Euler  characteristic of that component  by 1. This reduces 
the claim to the case first considered. 

L E M M A  2. The Hop[ invariant H [ g ] ~  x(N2) (mod 2). 

Proof. We use the following definition of the Hopf  invariant of ct ~ 7r~. By the 
Freudenthal  suspension theorem there is an a ' ~  7r2,+ 1 (S "+1) which stablizes to a. 
Let  a : S 2"+1 --~ S "+~ represent a '  and be transverse to * ~ S "+1. a-~(*) is a framed 
submanifold of dimension n in S 2"+~. Any frame vector determines a self-linking 
number  L(a- l (* ) ,  a-~(*')) which, modulo 2, is the Hopf  invariant. 

g 

The composition g ' : M  q ; S "§ > S "+~xR "-~ is a framed immersion. 
S~ ; S X 0  

The number of double points of a generic immersion, ~, approximating g' is 
easily seen to be congruent modulo 2 to the self-linking number of a generic 

framed imbedding approximating g " : M  9 g ; S "+1": > S "+1 x R". By our defini- 
S' > S •  

tion this self-linking number  modulo 2 is H[g]. We will show #(doub le  
points ~)-= x(N2) (mod 2). 

can be chosen so that the diagram 

S a N  R 2 

.... 4 

commutes.  The douple points of ~ are the double points of ~/:rr(M2)'---~ 
gorr(M2) x R 2. There  is a generic immersion j : M2 ~ N2 x R 2 making 

~r(M~) ,, , ~  , goTr(M~) x R ~ 

~r/[ lh2• ~ct 
M 2 > N 2 •  2 
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commute.  Our  characterization of g being generic implies that h2 only identifies 0 
and 1-simplexes of N2. So the number of double points of j is equal to the 
number  of double points of ~. Lemma 2 now follows by setting /" = i' in the 
discussion immediately preceding its statement. | 

If g : M ~ S 4 is a generic immersion of an oriented 3-manifold, h2 : N2 9--> S 4 
though not usually generic does have singularities of a special kind. As an analogy 
it is helpful to imagine the singularities of the double point set of a generically 
immersed surface in 3-space. The next lemma considers the case: q has no 
quadruple points. We analyse the singularities of h 2 to show that h2 is regularly 
homotopic to a normal immersion with an even number  of double points. 

L E M M A  3. If  g has no quadruple points then h2:N2 9-> S 4 is regularly 
homotopic to a generic immersion with an even number of double points. 

Proof. Let T be the subset of S 4 in the image of three distinct points under g. 
T is a finite family of circles, h2/:N-h21(1)- -~S 4 is an imbedding since 
gord:M2--~M is 2 - 1  on M2N(g•215  From our  characterization of 
generic maps, we see that some normal open 3 - d i s k  (=  d 3) to T in S 4 may be 
parametrized to meet  h2(N2) in a {xl-axis t_J x3-axis } c R 3. Consider the distortion 
depicted below as a standard model for separating the sheets of h2(N2) in a 
neighborhood of a point on T. h2 is moved slightly in the normal directions to T. 

Specifically if the Xl, x2 and xa-axes are generated by the vectors xl = (1, 0, 0), 

xl-axis 

/ 

x2"axJs x 3-axis 

/ 
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x2 = (0, 1, 0) and x3 = (0, 0, 1) the curves in diagram 1 are geodesic arcs xl, x2, x 3, 
on the unit sphere determined by the condition that their midpoints be (0, -~/2/2, 
x/2/2), (~/2/2, 0 , -~ /2 /2 )  and (-~/2/2, ~/2/2, 0) respectively. Let  0 be the 3 • 3 
matrix with these vectors as its rows. 

If the model on the left for h2(N2) n d 3 is transported around a circle, c, of T 
the resulting monodromy of the axes may be represented by a 3 x 3 - o r t h o g o n a l  
matrix, M, with the property that two entries in each row are zero and the 
remaining entry is +1. The i-th row indicates to which axis (and with which 
orientation) the i-th axis is transported. (We note that vv~,s, is orientable so 
Det  (M) = +1). If the model on the right is invariant under the linear transforma- 
tion (also denoted by M) defined by right multiplication by M, then our  model 
may be used to separate the sheets of hz(N2) along all of C. In general, though, 
separating these sheets along C will result in a finite number  of generic double 
points; our  present purpose is to calculate this number in terms of M. Put 
x~M= ;1, ~2, or ~3 as xiM = +xl, +x2, or +x3. The model on the right is invariant 
under M iff ~iM = x~M for i = 1, 2, and 3; if the above equality fails to hold we 
will see that D(M)=Y.3= 1 ( 1 - ( x f l M ) .  (x~MO))(mod 2) ( -denotes  vector dot pro- 
duct) measures the failure. Note that xfl_Lx~ and xiMO• x iM. Since M is 
orthogonal x~OM• x~M, as a result x~OM and x~MO both lie in the plane P~ 
perpendicular to' x~M and must have one of four possible coordinates (restricting 
our  coordinate system to this plane) in that plane: (+x/2/2, +~/2/2). The number, 
( 1 - ( x f l M ) .  (xiMO)), is equal (mod 2) to the number  of times a transverse arc, 3~i, 
in Pi from x~OM to x~MO must cross the coordinate axes. The arc 3'~ determines a 
homotopy  from ~ M  to x~M through geodesic arcs. Using the model on the right 
for most of C and then "splicing in" this homotopy at the end we may separate 
the sheets of h2(N2) along all of C with generic double points resulting from 
transverse crossings of the coordinates axes by 3'~. It follows that h 2 is regularly 
homotopic  to a general immersion with ~D(M) double points, where the sum is 
taken over each circle component  to T. 

We complete the proof of Lemma 3 by showing that for every admissible 
M, D(M)= 0 (mod 2). D(M)= 1 -~3=~(x, OM) . (x~MO)=- 1 -~3i=l(OM)i i (mod 2). 
Put (_M)~i = I(M),jl. All the non-zero terms in the last sum are +1/2,  replacing M 
by M reverses an even number  of these signs so we have D(M)=- 
1-Y~i.i=l(OIVI)~i(l~O)ii (mod2) .  If /~r is a simple transposition 01VI=(Ot~,I) T= 

+ 3  - 2  + 3  2 /~rrOr = - / ~ O  so D ( M ) = I  Y~.LVl(0M)~i= 1 ~i.j=l(O),i= 1+3==-0. I f / Q  is a cycle 

of order  3, one checks that OM=M8 so again D(M)=-O (mod 2). The  lemma 
follows. | 

When g has an even # 0 number of quadruple points, we perform some 

oriented 0-surgeries to enlarge our  ambient manifold S 4 to # ( S ~ x  $3). We note 
k -copies 
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that if one chose to, this freedom could be built in from the start; our bordism 
group, B,, is isomorphic to "bordism of immersions of oriented 3-manifolds in 
stably framed 4-manifolds". An oriented 0-surgery is the operation of removing 
an imbedded S~  D"  from an oriented n-manifold and gluing back D 1 x S "-1 in a 
standard manner so as to obtain a new oriented manifold. The notion is often 
generalized to an operation on a pair, (oriented n-manifold, oriented (n- l )  
dimensional submanifold). Below we will perform oriented 0-surgery with S~  0 
imbedded on a pair of generic quadruple points of a immersed 3-manifold in $4; 
for this an additional but obvious extension of the notion is required. Rather than 
give an abstract definition, we have written out the results of our 0-surgery on 
(S 4, g(M)). 

Let q, q', . . . .  qk, q~ be the quadruple points of g arbitrarily paired. For each 
pair (q~, q~) we perform an oriented 0-surgery on S4 and a corresponding modifi- 
cation of g. In terms of the image of g the result of a single surgery is: (S 4, 
image(g)-  (S ~  D4, S ~  (LJ  hyperpl . . . .  X 1 = 0 ,  X 2 ~--- 0 ,  X 3 ---~ 0 ,  X 4 m_ 0 )  

U(D1xS3, D1x(S3f ") ~_J X1--'--O, x2--'--O, x3=O, x4-~'O) 
hyperplane 

Call the new immersion g, :/xT/ ~ #kS 1 • S 3. 

If within each chart, D 4, about a quadruple point of g the positive direction 
along the 4 axes is consistently determined by the difference of the orientations on 
S a and M, the new manifold /~r will be oriented, and in fact diffeomorphic to 
M ~i4~4k= 1 ( S1 X S2)j. Let /~t  2 and/~2 correspond to M 2 and N2. As proved for N2, ]~2 
is immersed (by /~2) in #k (S ~• S 3) with X(ur,2)= 0. N2 abstractly is the result of 

( 2 ) k = 6 k  0-surgeries on N2. Since a 0-surgery does not change the Euler 

characteristic modulo 2, X(/V2)--x(N2) (mod 2). We are ready to prove: 

L E M M A  4. I f  g has an even number of quadruple points, there is a surface 1V 2 
satisfying: 

1) x(N2) = x(N2) (mod 2) 
m 

2) 3/2 is generically immersed in S 4 with an even number of double points; call 
its normal bundle v. 

3) X(v) = 0e/-/2(/(r2; Ztwisted). 

Proof. The /V2 constructed above is immersed in Vk (S ix  S 3) with the above 
normal bundle condition. The proof of I.~mma 3 shows how to regularly homotop 
this immersion to satisfy condition 2. N2---~ Vk S 1 x S 3. Framed surgery on k 
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circles in (V k ( S ' x  S3) - image  (N2)) returns the ambient manifold to S 4 without 
affecting the normal bundle of N2- | 

A theorem of Whitney's [W] says that if a compact surface, Q, is imbedded in 
S 4 with normal bundle v and X(v)= r e . g e n e r a t o r  e H2(Q;  Ztwi~ted) then m ~  
2x(Q)  (mod 4). The introduction of a double point changes the twisted Euler  class 
X(v) by •  �9 generator.  As a result, Whitney's theorem stated for immersions of Q 
in S 4 becomes: m=-2x (Q) •  points of Q) (mod 4). If g has an even 
number  of quadruple points Whitney's theorem for immersions and Lemma 4 
show that x(N2) and therefore x(N2) is even. Lemma 2 now says that H[g]  = 0. 
Thus we have 03[g ] = 0 implies H[g] = 0, i.e. ker(H) = ker(03). Since ! i  : % ~ Z2 
is well known to be an epimorphism, 03:~'3 ~ Z2 is also epic. Since % -  Z24, 03 is 
completely determined, we have proved: 

T H E O R E M .  03 : 7]'3 ~ Z 2  is the unique epimorphism. 

w Remarks and problems 

Remark 1. Since the J3-homomorphism : %(S0)--~ % is onto, every element 
of B 3 is realized by an immersed 3-sphere. In particular there is a generic 
immersion of S3 in S 4 with an odd number  of quadruple points. 

Remark 2. There  is no local argument for converting quadruple points of 
M 9-~ S 4 to double points of M 9-~ S 4 x R  2 as inspection of the immersion 
4 (T  3) ~ r 4 obtained by omitting successive circle factors will show. It seems to 
be necessary to work down through the strata to prove our  theorem, so analogous 
computations for n > 3 are likely to be more difficult. 

Remark 3. In this paper  we have gone to great trouble to express the Hopf  
invariant in terms of the lowest dimensional strata of a generic immersion 
g : M  3----~ S 4, and our arguments have been special to the dimensions involved. 
There  is, however, a simple way in every dimension of reading off the Hopf  
invariant from the highest dimensional strata, the double point set. If s is the line 

bundle associated to M2 at% N2, H(g)= 0 iff wn_l(e -1) = 0 on all but an even 
number  of path components  of N 2. This is easily seen by comparing our  definition 
of Hopf  invariant with our  solution to the "quest ion" preceding corollary 2. 

P R O B L E M  1. Is there a generic immersion of S 3 in S 4 with a single 

quadruple point? 
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P R O B L E M  2. Explici t ly const ruct  a gener ic  immers ion  of S 3 in S 4 with an 

odd  n u m b e r  of quadrup le  points .  

P R O B L E M  3. C o m p u t e  0. for n > 3. 

Conjecture. O. is the s table  Hopf  invar iant .  
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