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Harmonic cohomology classes of symplectic manifolds 
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Introduction 

First recall some definitions and some results of  Hodge theory. Let X be an 
oriented riemannian manifold and let d*:Ak(X)--*Ak_~(X) be the associated 
operator which is dual to the de Rham operator d (where A . ( X )  denotes the space 
of smooth complex valued forms). A form ~ is called harmonic if it satisfies 

d~ = d*~ = 0. One of the main results of Hodge theory states that when X is 
compact any cohomology class contains exactly one harmonic form. 

The aim of this paper is to investigate similar questions for symplectic manifolds 

(as opposed to riemannian on6s). 
Let us assume that we are given a symplectic manifold (X, oJ) of  dimension 2rn. 

According to J. L. Kozsul [11] and J. L. Brylinski [4], one can similarily define the 
operator d* and the notion of harmonic form (however d* is denoted A or 6 in loc. 
cit.). Define the harmonic cohomology H*,r(X) to be the space of all cohomology 
classes which contain at least one harmonic form. Our result is the following 
characterization of H*ar(X ) a s  a subspace of H*(X). Let G = SL(2) and let B be the 

subgroup of all upper triangular matrices. For a rational B-module M, there exists 
a unique maximal subrfiodule ~ M  which is a quotient of  a rational G-module (an 
explicit construction of it will be given in section 2). In fact H*(X) has a canonical 
structure of B-module. The corresponding infinitesimal action is generated by the 
cup-product by [co] and the operator deg - m, where deg is the degree operator. We 
then prove. 

T H E O R E M  i. We have H*~,(X) = ~H*(X).  

Roughly speaking, theorem 1 means that we can characterize the harmonic 
cohomology classes in terms of [ro]-divisibility. The proof  of  the result is an easy 

consequence of a classification result for representations of the Lie super-algebra 
sl(2) x C 2. As corollary of the theorem we get. 
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COROLLARY 2. Assume that X is compact. Then the following two assertions 

are equivalent. 

(2.1) Any cohomology class contains at least one harmonic form. 
(2.2) For any k < m the cup-product [o9ff : H m - k ( X ) ~  nm+k(X)  is an isomor 

phism. 

Actually assertion 2.2 is often satisfied. When X is a projective algebraic variety 
assertion 2.2 is nothing but the strong Lefschetz theorem. Assertion 2.1 has been 
proved for compact Kaehler manifolds and conjectured for general compact 
symplectic manifolds by J. L. Brylinski in [4] (see introduction and section 2.2 of 
[4]). Therefore in order to disprove Brylinski conjecture it suffices to give an 
example of a compact symplectic manifold which does not satisfy the strong 
Lefschetz theorem. Then we check that a some four-dimensional symplectic nilman- 
ifolds X do not satisfy the statement of the strong Lefschetz theorem (see example~ 
I0, 12). This example has been kindly communicated to us by Y. Benoist. Actually 
nilmanifolds have been already extensively used by various authors to give exam- 
ples of symplectic manifolds not satisfying various properties of algebraic or 
complex varieties (see [1], [3], [5], [6], [7], [9], [10], [13], [14], [16] and [18]). 

Remark. In [17] Dong Yan found a simpler proof of Corollary 7. 

1. lndecomposable representations of the Lie super-algebra sl(2) x K 2 

Set K = R or C. In order to describe the indecomposable representations of the 
Lie super-algebra sl(2, K) x K 2, we will first describe the representation theory of a 
certain quiver Q. The vertices of Q will be indexed by symbols n+ and n , where 
n runs over the set of all non-negative integers. Any vertex n§ with n > 0 is the 
origin of exactly two arrows, with targets (n - 1)_ and (n + 1) . The vertex 0+ is 
the origin of  an arrow with target 1_. The quiver has two infinite connected 
components and its picture is as follows. 

O 0 +  ~ O 1 -- ~ 0 2 +  ~ 0 3 -  �9 . . 

O 0 -  ('----- O l  + ~ 0 2 _  ~-'---" O 3 +  �9 , . 

By definition the support of  a representation E = �9 ~ ~ eEr of the quiver Q is the 
set {~, ~ Q [E~ # 0}. 

For  any non-negative integers a -< b of the same parity we set [a+, b+] = {a§ 
( a + l ) _ , ( a + 2 ) +  . . . . .  b+} and [a , b _ ] = { a _ , ( a + l ) + , ( a + 2 ) _ , . . . , b _ } .  
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Similarily when a < b  have different parities we set [ a + , b  ] = { a + , ( a +  1)_, 
( a + 2 ) +  . . . . .  b } and [a , b §  , ( a + l ) + , ( a + 2 )  . . . . . .  b+}. These sets 
[a_+, b§ are called the finite intervals of  Q (where we have assumed that  the parities 
and the signs of  a+ and b_+ are simultaneously equal or different). Clearly the finite 
intervals are exactly all the finite connected subsets o f  the quiver Q. For  any finite 
interval I of  Q, let E = E(I) be the representation of  Q defined as follows. As a vector 
space we have E~ = K if ~ ~ I and E~ = 0 if not. Moreover  any arrow ~ : n+ ~ m  
between two vertices i n / a c t s  from E,,+ to E,, as 1 and the other arrows act (neces- 
sarily) as zero. Let cg be the category of  all representations of  Q with finite support .  

L E M M A  3. (3.1) Any representation E E cg is a direct sum of indecomposable 
representations. 

(3.2) Any indecomposable representation E ~ cg is one of the E(I). 

Proof The first s tatement is a general non-sense statement. Let E he any 
indecomposable  representation in cg and let I be its support .  Then I is connected 
and E can be seen as an indecomposable  representation of the subquiver L As I is 
a quiver of  Dynkin type, the staement follows from Gabriel  theorem [8]. Q.E.D. 

Let n = g G V be the Lie super-algebra over K defined as follows. Its degree 0 
part  is the subspace g with basis {e,f, h} and Lie brackets [h, e] = 2e, [h,f] =- -2 f ,  
[e, f ]  = h. As Lie algebra it is isomorphic  with sl(2). The degree one par t  V has 
basis {d,d*} and is an abelian Lie super-algebra.  The remaining brackets 
[e, d] = 0, [h, d] = d, [f,  d] = d*, [e, d*] = d, [h, d*] = - d * ,  [f,  d*] = 0 correspond 
with the natural  action of  s1(2) over the two-dimensional  space. Thus n is the Lie 
super-algebra sl(2) x K 2. 

Let ~V" be the category of  all a-modules M on which h acts diagonally with only 
finitely many  different eigenvalues (the multiplicity of  each eigenvalue could be 
infinite). In order to simplify the statements,  we do not require that  the a-modules 
are Z/2Z-graded.  We will now define two families of  a-modules.  

Definition of the a-modules I(n). For  any non-negative integer n, let L(n) be the 
unique simple g-module of  dimension n + 1. Let I(n) = Ind(g, a)L(n) be the induced 
module (actually I(n) is also coinduced f rom L(n)). As a vector space, we have 
I(n) = L(n) | A V. Let M be any n-module in the category ~V'. The hypothesis on 
the eigenvalues of  h implies that as g-module M is a direct sum of  finite dimensional 
simple representations. ( In  particular M is a rational representation of  the corre- 
sponding group G = SL(2).) Thus the module  I(n) is projective in the category ~/r. 
As I(n) is self dual, I(n) is injective as well. 

Definition of the a-modules V(I). Recall that  L(n) | V = L(n - 1) O L(n + 1) for 
any n > 0 .  So there is an arrow in Q from n+ to m_  exactly when there is an 
intertwining opera tor  f rom V|  to L(m). Moreover  such an intertwining 
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operator  is unique up to scalar. Thus for any arrow e : n+ ~ m_ we will denote by 
O, : V |  L(n) ~ L(m) the corresponding operator.  

For  any interval I o f  Q we define a representation V(I) of  a as follows. As 

g-module, we have V ( I ) =  where for any n+ ~ a we set In_ l = n .  In 
order to define the action I~ : V | V(I)  -~ II(1) of  V on V(I) one only needs to 
define its components  #~,~, : V |  ) -~ L(I~/'I), for 7, ~ 'E  L It is given by #7,~" = O~ 
if e : ~ - 7 '  is an arrow and by #~r = 0 otherwise. 

Note  that the representations V(I) and I(n) are indecomposable and non-iso- 
morphic  up to the case V([a+, a+]) ~- V([a , a ] ) ,  i.e. when V acts trivially. This 
representation will be simply denoted by L(a). 

P R O P O S I T I O N  4. (4.1) Any a-module in ~ e~ is a direct sum o f  indecomposable 
representations. 

(4.2) Any indecomposable a-module in ~r is isomorphic to some V(I) or to some 
I(n). 

Proo f  As previously the first statement is an obvious categorical statement. We 
will now prove the second statement. Let M be an indecomposable representation 
in ~ .  Set C = d.d*. 

(1) First assume that C . M # O .  Choose a simple ,q-submodule L c M  with 
A.L # 0 and set n + 1 = dim(L). Let M '  be the a-submodule generated by L. Clearly 
we have M '  ~- l(n). As I(n) is an injective module, we have M = M '  ~- I(n). 

(2) Assume now that we have C . M  = 0. Let L be the space of  V-invariant 
vectors in M and let L '  be some g-invariant complement.  For  any integer n > 0, let 
L"  and L '~ be the isotypical component  of  type L(n) in L and L ' .  Note  that 
V . L ' c  L. Then define a representation E o f  the quiver Q as follows. As vector 
space set En+ = H o m g ( L ( n ) , L ' )  and E m  =Homg(L(n ) ,L ) .  For  any arrow 
e :n+  ~ m _  of  F, let ~u : L ' n ~ L  ,. be the corresponding component  of  the action 
k v : V | L '  ~ L o f  V on M. Identify L ~ ~ En + | L(n) and L "  ~- Em_ | L(m). Then 
define the action o f  e as the map p(e) : En + ~ E,, _ by the formula ~u = p(e) @ OK. 
Note  that  we call recover the a-module M from the quiver representation E. Hence 
E is an indecomposable representation o f  F. By Lemma 3, E is isomorphic to E(I)  
for some finite interval L Hence M is isomorphic to V(I). Q.E.D. 

Let us introduce some notations. We will denote by G the group SL(2) and by 
B its subgroup of  upper triangular matrices. Let g and b be the corresponding Lie 

algebras. We can choose a basis {e, f ,  h} o f  g in a such way that 

(1) it satisfies [h, e] = 2e, [h, f]  = - 2 f ,  [e , f ]  = h. 
(2) {e, h} is a basis o f  b. 
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By G-module (or B-module) we mean rational G (or B-module). Any B-module 
M admits a weightspace decomposition M = ~ ) , ~ z M , ,  where M, = {me  M lh. 
m = n.m }. The weights of M are the integers n such that M, ~ 0. Denote by ~e'n 
(respectively "V'6) be the category of all B-modules (respectively G-modules) with 
finitely many weights. Note that a G-module M belongs to ~G if its decomposition 
into isotypical components is finite (however the dimension of each isotypical 
component could be infinite). 

Let M be a G-module, and let p : g ~ End(M)  be the corresponding infinitesimal 
representation. For any interger n denote by M[n] the B-module with the same 
underlying space and whose infinitesimal action is given by e.x = p(e).x and 
h.x = (p(h) + n).x for any x ~ M[n] (in other words we get this new representation 
of B by twisting by the character nco where 09 is the fundamental character of B). 
For any B-module M let ~ M  be the maximal submodule which is a quotient of a 
rational G-module. 

LEMMA 5. Let M ~ ~Un. 

(5.1) There are some M(n)  e ~U~ such that M ~- O,~zM(n)[n] .  Moreover we 

have M(n)  = 0 for  almost all n ~ Z. 

(5.2) Set ~-nM = O)m~,M(m)[m]. This gives rise to a f i l trat ion. . .  ~ , M  

c f ' ,  ~ M . . .  o f M .  Thisfiltration is independant o f  the decomposition (5.1). 
(5.3) We have @M = ~ o M .  In particular we have ~M[n] = M[n] i f  n ~ 0 and 

~M[n] = 0 when n > 0 for  any M e ze~. 

(5.4) We have M = ~ o M  if  and only i f  for  any integer k > 0 the map 

e k : M _ k  -~ Mk is onto. 

Proof  A B-module isomorphic to L[n] where L is a simple G-module is called 
a string module. It is easy to show that any M e C s  is a direct sum of string 
modules. Thus the existence of the decomposition (5.1) follows easily. 

A one dimensional B-modules is isomorphic to C[n], for some integer n. Clearly 
C[n] is a B-factor of a G-module if and only if n < 0. As we have ~L[n] = 

L | ~(C[n]) for any L e Cs ,  the formula (5.3) follows. Then we deduce the asser- 
tion (5.2) from the formula ~ , M = ( ~ L [ n ] ) [ - n ] .  Assertion (5.4) is easy. 

Q.E.D. 

For any a-module M e  ~v', set h(M)  = ( K e r d l m ) / ( I m d [ M )  and Mhar = 
Ker d[m c~ Ker d* lu .Moreover  let hhar(M) be the image of Mh~r in h(M). By def- 
inition the spaces h(M)  and hh~r(M) are called (respectively) the cohomology of M 
and the harmonic cohomology of M. As B normalizes Cd, these spaces are actually 
B-modules. 

PROPOSITION 6. For any M ~ ~v', we have hha,(M) = ~ h ( M ) .  
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Proof. First note that Mhar is already a G-module. So we have 

hh,r(M) c ~ h ( M ) .  It suffices to check the proposit ion when M is indecomposable.  

We will check the proposit ion by a case-by-case analysis by using the classification 

o f  indecomposable modules given in Proposit ion 4. Note  that when ~ h ( M )  = 0 the 
assertion is obvious. 

First case: M--- I (n) .  In that  case we have h(M) = O. 

Second case: M = L(a). In that case we have h(M) = hhar(M) = L(a). 

Third case: M = V([a+, b ]). In this case Ker d = Mhar, and h ( M ) =  hha r 

(M)  ~- L((b - a - 1)/2)[ - ( a  + b + 1)/2]. 

Four th  case: M =  V[a_,b_]) .  In that case K e r d = M h , r ,  and h(M) .= 

hh,r(M) ~- L((a + b)/2)[(a - b)/2]. 

Fifth case: M = V([a , b+]). In that case h(M) ~- L((b - a - l)/2)[(a + b + 1)/ 
2]. In particular ~ h ( M )  = O. 

Sixth case: M = V([a§ b+]). In that case h ( M ) ' ~ L ( ( a  + b) /2)[ (b-a) /2] .  In 
particular ~ h ( M )  = O. 

In the last four cases a < b are non-negative integers with the correct parity. The 

p roof  in the first two cases are obvious. The third and fourth cases can be easily 

proved by induction. We then deduce the p roof  for the last two cases by duality. 

2. A characterization "of harmonic cohomology classes 

Set K = R  or C. For  a manifold X, denote by A . ( X )  the space o f  K-valued 
forms. By symplectic form we mean a K-valued closed 2-form to such that tom never 

vanishes, where m = 1/2 dim X (usually one requires that to is R-valued). 

Proof  o f  Theorem 1. Let (X, to) be a symplectic manifold o f  dimension 2m. Let 
v be the corresponding 2-vector. Let h be the endomorphism of  A .  (X) which acts 

over Ak(X)  as k - m .  Set e = e(og), f =  i(v). Then following operators [2], [15], e, f 
and h spans a Lie algebra isomorphic to sl(2). Moreover  the operators d and d* 
spans a two-dimensional sl(2)-module. As we have d 2 = d .2 = d.d* + d*.d = 0, the 

span of  e, f ,  h, d, d* is precisely the Lie super-algebra a. The space o f  forms, viewed 

as a-module belongs to class ~tr. Moreover  the cohomology  and the harmonic coho-  
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mology of  M as defined in section 1 coincides with the cohomology and the 
harmonic cohomology of  X. Thus Theorem 1 follows from Proposition 6. 

C O R O L L A R Y  7. Let X be a (not necessarily compact) symplectic manifold of 
dimension 2m. Then we have H*(X) = H*ar(X ) i f  and only if  for any k < m the 
cup-product [co]k: H m k(X ) ~ Hm+k(X) is onto. 

Proof Corollary 7 is an easy consequence of  the theorem together with Lemma 
5.4. 

Proof of Corollary 2. Corollary 2 follows from Corollary 7 and Poincar6 duality. 

C O R O L L A R Y  8. (Assume K = R) Let X be a symplectic manifold of dimension 
2m. Any cohomology class of degree 2 contains a harmonic form. 

Proof of Corollary 8. Let E be the kernel of  the map [co] '~ - 1 : Hz(x)  ~ Hzm(x), 
[ct] ~ [~].[co]m - I. We claim that the following equality: H2(X) = E + K.[co] holds. 
Actually when X is non-compact  we already have: H2(X) = E. In the compact  case 
we have [com] # 0. So we have H2(X) = E �9 K.  [co]. Clearly we have K c ~H*(X)  
and [co] is a harmonic form. Thus Corollary 8 comes from the theorem. 

Remarks. (1) By Corollary 7, we have H * ( X ) =  H*r(X)  whenever H i ( X ) = 0  
for i > m (compare with Proposit ion 2.2.12 and Corollary 2.2.13 of  [4]). 

(2) Any  closed form or degree 1 is harmonic (see Brylinski [4]; actually its 
p roof  works also for K = C). However some cohomology classes of  degree 3 are not 
harmonic (see section 3). 

3. Counter-examples to Brylinski conjecture 

Let n be the real nilpotent Lie algebra with basis e,, e2, e3, e4 and with Lie 

brackets [el, e2] = e3, [el ,  e3] = e4 and [el, ej] = 0 for i + j  > 5. Let (ei)l ~ i~ 4 be the 
dual basis. Set 09~ = e~ ^ e4, co2 = e2 ^ e3 and co = col + co2. Note  that col and co2 are 
cocycles. 

L E M M A  9. The cohomology groups Hi(n)  and H 3 ( n )  have dimension two. 
However the multiplication map [~] ~ HI (n )  ~ [~].[co] E (n) is zero. 

Proof. Note that  Hi (n)  -~ n/([n, n])* has dimension two and is generated by [eli 
and [e2]. Hence by Poincar6 duality, H3(n) also has dimension two. 

We have wl ^ e2 = d(e3 A g4), (D2 A ~2 = d(e2 A e4) and col ^ el = co2 ^ e2 = 0. 
Hence we have [co]. Hi(n) = 0. Q.E.D. 
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Let N be the connected simply connected real Lie group with Lie algebra rt. 
Actually N is a semi-product R x R 3. Thus N contains some cocompact discrete 
subgroup F (the natural structure constant are rational). Set X = N/F and identify 
rt with the space of all right invariant vector fields on N. In particular ~ is F 
right-invariant. Thus it defines a symplectic form over X. We will still denote this 
form by ~o. 

EXAMPLE 10. For the compact symplectic nilmanifold (X,~o) we have 
H*(X)  ~ H*~r(X), i.e. it does not satisfy Brylinski conjecture. 

Proof There is a canonical isomorphism H*(X)~-H*(r t )  (Nomizu, see e.g. 
[12]). Following Lemma 9, we get [co].Hl(X) = 0 and H3(X) ~ 0. Using Corollary 
2, we get H*ar ~ H*(X).  Q.E.D. 

Actually there is another way to give counter-examples to Brylinski conjecture. 
For a manifold X, set bi = dim Hi(X). 

LEMMA 11. Let (X, o9) be a compact symplectic manifold of dimension 2m. I f  X 
satisfy Brylinski conjecture, then its odd degree Betti numbers b2i + ~ are even. 

Proof. Let i be an integer, 0 < i < m. Assume that X satisfy Brylinsky conjecture. 
By Corollary 2.2 and by Poincar6 duality the bilinear map [~], [/~] ~ Hi(X) 
([~].[fl].[og]"-it X )  is non-degenerated. When i is odd, this bilinear map is skew- 
symmetric. It follows easily that all odd degree Betti numbers are even. 

EXAMPLE 12. Any four-dimensional nilmanifold whose first Betti number bl 
is 3 does not satisfy Brylinski conjecture (see e.g. [7] for such an example of 
nilmanifolds). 

Remark. As the referee kindly pointed out, one can prove that the manifold X 
of example 10 does not satisfy Brylinski conjecture without using Theorem 1. 
Actually if a cohomology class is harmonic, then it contains an harmonic and 
N-invariant cocycle. Thus one can disprove Brylinski conjecture by easy computa- 
tions in the (finite dimensional) complex Ar t , .  
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