Slowly Growing Integral and Subharmonic Funections

by W. K. Hayman, London

1. G. Piraniaw [3] recently proved the following

Theorem A. There exists a sequence {t,,r,} such that the integral function

LA

has the property that each half-line contains infinitely many disjoint segments
of length 1, on which | f(z)| < 1. Corresponding to each real-valued function
h{r) satisfying the condition
h(r)
1.1
(log )? o (1.1)

the sequence {t,,r,} can be so chosen that the inequality
log | f(re®) | <h(r)

holds for r>r, and all real 6.
ERrDOs conjectured that if on the other hand

log | f(re®) | < A (log r)?

as r — oo, uniformlyin 6, then | f(z) | > K outside a set of bounded regions
subtending angles at the origin whose sum is finite. It would follow that for
almost every fixed 6, | f(re®®) | — oo as r— oo.

In this paper the above conjecture will be proved and a little more.

We shall call an &'set any countable set of circles not containing the origin,
and subtending angles at the origin whose sum s is finite. The number s will
be called the (angular) extent of the <set.

We make the following remarks

(i) For almost all fized 6 and r > r,(6), =z = re®® lies outside the C-set.

In fact this is the case unless the ray z = re®®, 0 <r < co meets infinitely
many circles of the &set. We can write &= &' v ", where &’ contains
only a finite number of circles and &” has extent less than . If the ray
z = rei® meets infinitely many circles of &, then this ray meets &” and the
set of such 6 has measure at most ¢, i. e. measure zero.

(i) The set E, of r for which the circle |z | = r meels the circles of an &-set
has finite logarithmic measure and & fortiort, zero density.

Let a circle C, of an &-set have radius 7, and centre distant d, from the
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origin. Then the logarithmic measure I, of the set of r corresponding to

circles | z| = r which C, meets is given by
dn+fnd d +
r w7 Ty .
f l *‘7—__7"<3E;, lf T"<‘%d".
dnrn
The extent ¢, of C, is 2 sin“‘é-”; > —Zﬁ Thus for all but a finite number

of values of n, I, < §c¢,, and so X, < + oco. If ¢() is the characteristic
function of the set  and di

IC(t)

converges then .

r T
Jep)dt <[f G(t)d—: ftdtld < ebr
if r>ry(e), so that F has zero linear density, but the converse is false.
Let u(z) be subharmonic and not constant in the plane and write

B(r) = B(r, u) = sup u(z) .
|z|=r
Then B(r) is a convex increasing function of logr and so tends to infinity
with 7. In the applications we may think of u(z) = log | f(2)| where f(2)
is an integral function, but the more general case has some interest. We then
have the following

Theorem 1. With the above hypotheses suppose that

B(r,u)=0(ogr)? as r-—> oo; (1.2)

then u(ret®) ~ B(r) (1.3)

uniformly as re*® — oo outside an &-sef.

Corollary. The relation (1.3) holds as r — oo for almost every fixed 0. It
holds uniformly in 0 as r—> co oulside a set of finite logarithmic measure.

The special case u(z) = log| f(z) | where f(2) is regular yields ERDOS’ con-
jecture and rather more, since ERDOs only conjectured that w(z) > 0 outside
an C&-set. In this case VALIRON [4, p. 134] showed that (1.3) holds outside
a set of linear density 0. As we have just noted an &-set has linear density 0,
but the converse is false, so that our result is stronger than that of VArIrON.

We prove a further result generalizing the case u(z) = log|f(z)|, when
f(z) is a polynomial.
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Theorem 2. Suppose that w(z) 8 subharmonic and not constant in the plane
and that B(r,u) =0(logr), as r— oo.
Then wu(re®®) = B(r,u) + o(l), uniformly as re*® - oo outside an C-sel.

Finally we note that if e*? is continuous it is not difficult to prove by
means of the HEINE-BoOREL theorem that we may select a subsystem <&
from our &-set such that only a finite number of the circles of & meet any
bounded set. In the general case this is not possible since #(z) = — co may
take place for a set of z which is dense in the plane.

2. Let u(z) be a subharmonic function satisfying «(0) = 0. If this con-
dition is not satisfied we replace u(z) inside | 2| < 1 by the Poisson integral
of its values on |z | =1 and leave (2) unchanged for {2z | > 1. The modi-
fied function is still subharmonic and is harmonic near z = 0, so that «(0)
is finite. By subtracting a constant we may suppose that «(0) = 0.

It now follows (Heins [2]) that if the order

o —Tm 2Bl
>w logrT
then u can be represented as
u(z) = flog |1 —% duey (2.1)

where du is a positive measure in the plane for which compact sets have
finite measure, and the integral extends over the { plane. In our applications
o = 0, so that the above conditions are satisfied. The formula (2.1) reduces
to the WEIERSTRASS product expansion

log | /(&) | = £'log

2
o7

n

(2.1')

when u(2) = log | f(z) | and f(z) is an integral function of order less than 1.
Further let n(t) = pu[| 2| < t],
T

n{t)dt
N(r) =f~T~.

0

Then JEnsEN’s formula gives ([1], Lemma 1, p. 473 and (1.7) p. 474).

1 2= )
—2;(‘!“(” 9)df = N(r)

so that in particular
N(r) < B(r). (2.2)
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It follows from (2.1) that

<jlog(l —}—‘%') dpe, =Flog(1+~|~j~l) dn(2) . (2.3)
/ (1]
We suppose in all cases that

B(ry<C(logr):, r>r,. (2.4)
Using (2.2) we deduce

2
n(r) log r g}n(t) —Edti KN@E)<4C(logr)2, r>nr,

ie.

n(ry<<4Clogr, r>r,. (2.5)
Let limn(¢) =n . (2.6)
>0

If n=0, u(z) =0 which is contrary to our hypotheses. If 0 < n < oo

N(r)~nlogr, as r—> -+ oo. (2.7)
If n=+ o

N(r)

logr->+oo, as r—> + oo. (2.8)

In the case (2.1'), (2.7) corresponds to the case when f(z) is a polynomial
and (2.8) to the case when f(z) is transcendental. In this case VALIRON
[4, p. 132] noted that if (2.4) is satisfied then

B(r) ~ N(r) (2.9)

as r — oo, and his argument extends at once to subharmonic functions. In
fact from (2.3) we obtain

-] o d
° 0

Suppose now first that » is finite in (2.6). Let 7 be a fixed small positive
number and choose r so large that n(t) >n — 5 for t = nr. Then

nrdt r -+ pr
<f e f<t+> Nor) +nlog =

— N(nr) +nlog( )+nlog<1 + )

< NG) +f(n<a> +0) % 4 nlog (14 )

1
=N(r)+n10g7+ nlog (1 + 7).
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Since # may be chosen as small as we please, we deduce in this case that
B@r) < N({r)+o(l), as r— oco.
In the case (2.8), when (2.4) holds we deduce from (2.5)

B() < N(r) + rfo—(lt‘;i‘ldt < N(r) + Oogr) ~ N(r).

Since (2.2) holds in all cases we deduce (2.9) and in the case (2.7) the stronger
result

B{r)=N({r)4o0o(1}), as r— oo. {2.10)

3. In order to prove our results we note that (2.1) and (2.3) give

wle) = B) > flog (-t dpeg = L Lt L (3.)

say, where I, is taken over the range |(|<<%]|z2|, I, over the range
llz|<|¢|<2|2]|, and I; over the range | (| > 2]z].

We note that log iti < 3x, for 0 <z <}, sothat for [z| =7
¢
Lo § toge o g = 3 1t due, = 2 tan).
- = O € —_— F—
P 0 glﬂi HC= T2 1 2 HeT
z
Similarly w

— 13<3rf—;—dn(t) .

2r

In case » is finite in (2.6), suppose that =(t) >n —e, t>t,. Then if
r > 2¢,, we have

to

ir
Jtdn(t) < [tdn(t) + j tdn(t) <ton + yre,
0 0

so that

I;,—~0, as 7r—>co.
Similarly we have for > ¢,
L<3 Tang) < e
8 2r or ’

Thus in this case
I,>0, I;»>0, as r—>o0. (3.2)
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Consider next the case when (2.4) and hence (2.5) holds. In this case we
have for r > r,,

3-ir
L <7

fdn(t) <6Clogr,

oo

1 n(27r) mn(t)dt wlog tdt
1, < 37‘[7 dn(t) = 3r[* o +f P < 12Cr P
2r

2r 2r

= 6C[log(2r) + 1].
Thus in case (2.4) holds we have, uniformly as z - oo,
I,=0(og|z]), Iy=0(og|z]). (3.3)

4. It remains to estimate I, and this estimation is the erux of the paper.
We need a form (Lemma 2) of the BouTroUX-CARTAN Lemma applicable to
subharmonie functions.

In order to prove this we use the following result ([1], Lemma 4, p. 482).

Lemma 1. Suppose that ullz| <h]=mn =0, and that 0 <d < 3h. Then
there exists a set of circles S the sum of whose radii i3 at most d and such that
for |z{<<3h, and z outside S we have

164
7

h
1 — 1 d <nl
.z_;fky,‘)g’ 2(z—<:)| peg < log

We deduce

Lemma 2. Suppose that p is a positive measure in the plane vanishing out-
side a compact set), and such that the measure n of the whole plane satisfies
0<n < oo. Then we have

Jloglz — ¢ | due, > nloge
outside a set of circles the sum of whose radii is at most 32¢.
Suppose that wu[] Z|> R]= 0. In this case we have for |z| >R+ ¢
Jlog|z — | due, > flog (| 2| — R)due, = nlog (2| — R) =nlogp.

Thus we may confine ourselves to points in the circle |[z| <R +p. In
Lemma 1 choose h == 4(R -+ o). Then we have for |z| <}k and z lying
outside the set 8 of circles, the sum of whose radii is at most ¢

16h
lo lo due, < n log —— ,
]Z-—C‘{‘<%’l g 9 + g l ! /,L 4 g d

1) This condition is not essential but simplifies the proof.
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provided d < }h. The result holds also if d > 4% since we can choose for
8 the single circle |z| < }A. Since the circle |z — (| < }h includes the
circle | (| < R, the integral on the left-hand side may be taken over the
whole plane. We deduce

f log

for |z| << R + p, outside the set of circles § the sum of whose radii is at
most d, and setting d = 32¢ Lemma 2 follows.

1 32
— Id,uec < nlogT

Lemma 3. Suppose that u is a positive measure in the plane such that the
measure of the whole plane outside the origin is n, where 0 < n < co. Suppose
also that K > 7. Then we have

£ —2]
«}[z|<f£l<2{z| i Cl + fz!
when z # 0 and z lies outside an E-set 8 of angular extent at most 4000e~%

Set R, =2", v= — oo to ocandlet u, = ul¢| R,_,<| | <R,.]

I,{z) = due, > — nK

Then X 4, = 3n. Also we have by Lemma 2 for R, < |z ]| <

v+1
log | { — z | dueg > p, log o,
Ry _3<|tli<B, 2
outside a set §, of circles the sum of whose radii is at most 32¢,. We assume
3290, < $R,. In this case each circle either lies entirely in |z | < R,, in
which case we ignore it, or in |z | > }R,, in which case if A is its radius, the

. C ., 2h _ 2nh

angle it subtends at the origin is at most 2 sin™! B <—17;-—. Hence the
v v

extent of all the circles of S, which meet the range R, <|z| < R,,, is at

64 7p,

most 6, = i provided g, < R . Since also |z| + | ¢ | < 6R, in the

range we have outside these cu‘cles

1c—zl 4 [ 1
= due, > u,|log o, + log —+-1.
Ryr<lti<ry,y O C]+ 2] FETH 6F,

Hence A fortiori

REEELTE L
%Izl<f£i<2§zg [ 2]+ 2] ey >ty 108 =5 6R n

say. We have supposed ¢, < which is certainly satisfied if

&,

128 °
K >1log 768 = 6.64, since u, < n. In this case
nkK

v

0, = 64xn 19%"

v

= 384xn exp(— ) < 384n—%"— e—K |

6 Commentarii Mathematici Helvetici
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1 .
since for *>1, and y > 1, e* <{—e-*. Thus we have in the whole
plane y
| & — 2]

log 2"t _due., > — nK
pt<t <o B TET T 2T %4

outside an &-set of extent at most

T 0, < 3.384ne ¥ < 4000e~F |

y=-—00

This proves Lemma 3.

5. Proot of Theorem 2. We can now prove our results. We start with
the simpler Theorem 2. Suppose then that » is finite in (2.6) and that

n(t) >n — % for r>r,. Then it follows from Lemma 3 that for p > 7

and |z|> 2r,, we have

{—z| 1 1

I, = lo —l——de>—-_=___.

’ %l=I<|‘gl<2IZI ETCT+T=1 % p p P

outside an Cset &, of extent at most 4000e~?. For in Lemma 3 we set
duey = 0 for | (] <r,, and the total measure of the remainder of the plane

is then at most p~2. Thus we may take n = p~2, K = p in Lemma 3.

If &= Gc?,, then we have if z is outside Cand |z | > 27,
P=7
1

Iz>——p—.

In view of (2.10), (3.1) and (3.2) we deduce that
u(z) = B(r) + o(1) = N(r) + o(1)

as z—> co outside &, and this proves Theorem 2, since the extent of £ is at
most
oo -8
¥ 4000¢-» = 200067
Pp=7 e —1
6. Proof of Theorem 1. In view of Theorem 2, we may assume without loss
of generality that n(r) - oo, as r — oo.
Let r, be the upper bound of all numbers ¢ such that = (tf) <p. Then 7,
is nondecreasing with increasing p and 7,— oo as p— oco. In Lemma 3
take for du the mass distribution due, of (2.1) for || < 27} and set

P+1s
du = 0 otherwise. By (2.5), the total measure of the plane is then at most

4C log (275 ;) = 8C log r,,; + O(1)
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when p is large. Hence it follows from Lemma 3 that for large p, we have
for |z| <1}y,
z —
Iy(z) = log ———L————de>—80V log » 6.1
2( ) §|Z|<l‘!|<2|l| | Cl + I ] fad 4 p1og Ty ( )
outside an &-set of extent e—1V7.
We now distinguish two cases
(i) Suppose that r,,, < 2r}.
In this case we have for rf, <r<r,,,

r2

r ¥4
N(r):fﬁgldt>fL?dt—>plogr > plog( )* L llog ryyy + O(1)]
0 rp

Thus in this case we have for r; <|z|<r3,,, when p is large,

17C
Iz(z)>——i/:-N([ [, (6.2)
outside an &-set of extent at most e~3».
(ii) Suppose next that r,,, > 275.
Then

p{ll 3 <l <ru} <1
if $r3>r,, ie. r,> 2 and so by Lemma 3 we have

lt—z|
log >~ '
si<h<et ETE T 2]

for ry <|z|<ir,,, outside an Cset of extent at most 4000e- Vv, Also
in this range

I(2) = due, > — Vp, (6.3)

2

£
N(z) = [0 > ptogr,).
Thus (6.3) implies ”
L) > = g Nz (6.4
Also for }r,,; < iz{<'r§,+1, we have

rjf

Hence in view of (6.1) we deduce that for large p and }r,,, < |z| <7h,,

z = p log o= “’“ = p log (‘;‘)i—~{logm1+0(l)}-
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we have
—17C

Vp
outside an &-set of extent at most e-3/7. In view of (6.2) and (6.4) we see
that in all cases we have for p > p, and 7} < |z| <71},

1,(2) > N(z])

I,2)> ——=N{(l=
2(2) Vo (lz1)
provided z lies outside an C-set &, of extent at most 2e-3l». If &= U &,-
then the extent of £ is finite and as z— oo outside & P=Po

I(z) = o{N(l2 D)} = o{B(| 2 )}

in view of (2.9). Using (2.8), (3.1) and (3.3) we deduce Theorem 1.
I am greatly indebted to Professor PIRANIAN for letting me see the M. S.
of his paper and to Dr. Erpos for suggesting the problem to me.
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