
Slowly Growing Integral and Subharmonic Functions 
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1. G. PmANIA~ [3] recen t ly  proved  the  following 

Theorem A. There exists a sequence {t,, r ,  } such that the integral ]unction 

](z) = ~ = t ( i  - - ( z  ]"]tn\~] ] 

has the property that each hall-line contains infinitely many disjoint segments 
o/ length 1, on which 1 ] (z) ] < 1. Corresponding to each real-valued ]unction 
h (r) satis/ying the condition 

h(r) 
§ oo , (1. I) 

(log r) 2 

the sequence (t , ,  r ,}  can be so chosen that the inequality 

log I l(re+o) I < h(r) 

holds/or r > r o and all real O. 
ERDSS conjectured t ha t  i f  on the  other  hand  

log I ](rei~ ] < A (log r) ~ 

as r -* co, un i formly  in 0, t hen  I Jc(z) I > K outside a set of bounded regions 
subtending angles a t  the  origin whose sum is finite. I t  would follow t h a t  for  
almost  eve ry  fixed 0, I / ( re t~  I -* co as r -* co. 

In  this paper  the  above conjecture  will be proved and a li t t le more. 
We shall call an E-set any  countable  set of circles not  containing the  origin, 

and subtending angles a t  t he  origin whose sum s is finite. The number  s will 
be called the  (angular) ex t en t  of the  6"-set. 

We make  the  following remarks  
(i) For almost all fixed 0 and r ~ ro(O ), z --- re ~~ lies outside the 6"-set. 
In  fac t  this is the  case unless the  r ay  z = r e ~~ 0 < r < co meets  infinitely 

m a n y  circles of  the  6"-set. We can write ~' = ~ '  ~ 6"", where 6" contains 
on ly  a finite num ber  of  circles and  ~ "  has ex ten t  less t han  e. I f  the  r ay  
z = re ~o meets infinitely m a n y  circles of  ~ ,  then  this r ay  meets  ~"  and  the  
set of  such 0 has measure a t  most  e, i. e. measure zero. 

(it) The set E ,  o[ r for which the circle [ z I -~ r meets the circles of an 6"-set 
has finite logarithmic measure and ~ ]ortiori, zero density. 

Let  a circle C,  of  an 6"-set have  radius r,, and centre dis tant  d ,  f rom the  
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origin. Then  the  logari thmic measure l= of  the  set of r corresponding to  
circles ] z I ----- r which C.  meets  is given by  

d,a+rn 

= f -r---dr _ log d.d* +_ r~r* --.r" < 3 ~ - ,  if  r n <  �89 . 
fl~S - -  l"n  

rn :> 2 r~ 
The ex ten t  c~ of  C~ is 2 s i n - l ~  -_,, dn . Thus for all bu t  a finite number  

of  values of  n ,  l .  < { c , ,  and so 271~ < + oo. I f  c (t) is the  character is t ic  
funct ion of the  set E and 

f c(t) dt 
1 t 

converges then  T dt r 
i e ( t )  dt ~ [S c ( t ) T  ~ tdt]�89 < s�89 

rO FO t' 0 

if  r > to(e), so t h a t  E has zero l inear densi ty,  bu t  the  converse is false. 
Let  u(z)  be subharmonic  and no t  constant  in the  plane and write 

B(r)  = B ( r ,  u) : sup u(z)  . 
Izl=, 

Then  B (r) is a convex increasing funct ion of log r and so tends  to infinity 
with r .  In  the  applicat ions we m a y  th ink  of u(z)  : log ] / (z)  I where f(z) 
is an  integral  funct ion,  bu t  the more  general  case has some interest .  We then  
have  the following 

Theorem 1. With the above hypotheses suppose that 

then 

B ( r , u ) = O ( l o g r )  * as r--> c~; (1.2) 

u ( r #  ~ --, B(r )  (1.3) 

uniformly as re i~ -~ oo outside an E-set. 

Corollary. The relation (1.3) holds as r--> oo for almost every fixed O. I t  
holds uniformly in 0 as r--> c~ outside a set of finite logarithmic measure. 

The  special case u(z)  = log I f(z) I where f(z) is regular  yields ERDSS' con- 
jee ture  and ra the r  more,  since ERDSS only  conjec tured  t h a t  u (z) > 0 outside 
an E-set. In  this case Vx~xao~ [4, p. 134] showed t h a t  (1.3) holds outside 
a set  of  linear dens i ty  0. As we have  just  noted  an  E-set has l inear dens i ty  0, 
bu t  the  converse is false, so t ha t  our  result  is s t ronger  t h an  t h a t  of  VmzRON. 

We prove a fu r the r  result  generalizing the  case u(z)  = log I f ( z )  I, when 
/(z) is a polynomial .  
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Theorem 2. Suppose that u (z) is subharmonic and not constant in the plane 
and that 

B ( r , u ) :  0 ( l og r ) ,  as r - >  ~ .  

Then u(re i~ ~ B(r ,  u ) ~  o(1),  uniformly as re~~ oo outside an E-set. 
Final ly  we note t ha t  if e u(~) is continuous it is not  difficult to prove by 

means of the H~rNE-BOREL theorem tha t  we m a y  select a subsystem 
from our E-set such t h a t  only a finite number of the circles of ~ meet any  
bounded set. In  the  general case this is not  possible since u (z) ~-- -- oo may  
take place for a set of z which is dense in the plane. 

2. Let  u(z) be a subharmonic function satisfying u(0) ---- 0. I f  this con- 
dition is not satisfied we replace u(z) inside I z I < 1 by the POISSON integral 
of its values on Iz l - -~  1 and leave u(z) unchanged for I z l  ~ 1. The modi- 
fied function is still subharmonic and is harmonic near z --~ 0, so t ha t  u(0) 
is finite. By  subtract ing a constant  we m a y  suppose tha t  u(0) ~ 0. 

I t  now follows (HEIRS [2]) t ha t  if the order 

Q----lim l o g B ( r , u )  < l  
~__~ log r 

then u can be represented as 

u ( z ) =  I log  1 - ~  d#e~ (2.1) 

where d# is a positive measure in the plane for which compact sets have 
finite measure, and the integral extends over the r plane. In  our applications 

= 0, so t ha t  the above conditions are satisfied. The formula (2.1) reduces 
to the W~IERSTRASS product  expansion 

log ]/(z) [ : 1 ~ l ~  I 1 - -  ~ z  ] (2.1') 

when u (z) = log I/(z) [ and /(z) is an integral function of order less t han  1. 
Fur the r  let n(t) = #[1 z I < t], 

N (r) = / 
n(t)dt 

t 
0 

Then J E N S ~ ' s  formula gives ([1], Lemma 1, p. 473 and (1.7) p. 474). 

1 2n 
[ u(reiO)dO -~ N(r) 

2 ~  
so t h a t  in part icular  

N(r) <~ B(r) .  (2.2) 
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I t  fol lows f r o m  (2 .1 )  t h a t  

u(~)~<Ilog 1 +  y d ~ = I l o g  

W e  s u p p o s e  in all  cases  t h a t  

B(r) < C( log  r) ~, r > r 0 . 
Us ing  (2 .2)  we d e d u c e  

rt dt 
n(r) log r ~ ~ n(t) ~ ~ N(r  2) ~ 4C( log  r) 2 , 

$. 

i.e. 
n(r) ~ 4Clog r ,  r > r 0 . 

L e t  l ira n (t) : n . 
t - - ~  

1 + ~ - ) d n ( t ) .  (2 .3)  

(2 .4)  

r ~  r o 

(2.5) 

(2.6) 

I f  n =  0, u ( z ) ~ 0  wh ich  is c o n t r a r y  to  ou r  h y p o t h e s e s .  I f  0 ~ n < c o  

N ( r )  ~ n l o g  r ,  as  r - +  + c~ . (2 .7)  

I f  n =  + oo N (r) 
- - - ~  + ~ as r - ~  + ~ .  (2 .8)  
log r 

I n  t h e  ease  (2 .1 ' ) ,  (2 .7)  c o r r e s p o n d s  to  t h e  case  w h e n  /(z)  is a p o l y n o m i a l  
a n d  (2 .8)  to  t h e  case w h e n  /(z)  is t r a n s c e n d e n t a l .  I n  th is  case VXLIRON 
[4, p. 132] n o t e d  t h a t  i f  (2 .4)  is sa t i s f ied  t h e n  

B(r) ,~ N(r) (2 .9 )  

as  r - +  oo, a n d  his a r g u m e n t  e x t e n d s  a t  once  to  s u b h a r m o n i c  func t ions .  I n  

f ac t  f r o m  (2 .3)  w e  o b t a i n  
Oo oo 

B(r) <~ log 1 + dn(t) = r J - t ~ - ~ r  ) . 
O 0 

S u p p o s e  now f i rs t  t h a t  n is f ini te  in (2 .6) .  L e t  z / b e  a f ixed sma l l  pos i t i ve  
n u m b e r  a n d  choose  r so la rge  t h a t  n(t) > n - - y  for  t > / ~ r .  T h e n  

oO 

B(r) ~ t(t + r) + t(t + r~ ~ N (~r) + n log r +~r~r 
0 ~r  

= N ( ~ r )  -t- n log ~ + n log (1 -I- ~/) 

F 

tl;" 

= N ( r )  -t- ~ log --I  -t- n log (1 -t- ~) �9 
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Since ~ m a y  be chosen as small as we please, we deduce in this case t h a t  

B(r)  ~< N ( r )  -[- o(1) , as r - +  oo.  

In  the case (2.8), when (2.4) holds we deduce f rom (2.5) 

0 (log t) 
B (r) <~ N (r) + r t~ dt ~ 37 (r) + 0 (log r) ~-~ N (r) .  

9* 

Since (2.2) holds in all cases we deduce (2.9) and in the  case (2.7) the s tronger 
result  

B(r)  = 2V(r) + o(1) ,  as r -+ ~ . (2.10) 

3. In  order  to prove our  results we note tha t  (2.1) and (2.3) give 

I ~ - -  z l dk~e c = 11 -}- 12 -~- I a (3.1) u ( z ) - -  B(r)  ~>j ' log I ~l ~ - i z [  

say, where 11 is t aken  over  the range I ~ l  ~ �89 I, 12 over the range 
� 8 9  and Is over  the  range [~ t  ~ 2 [ z [ .  

l ~ - - - x  < 3 x ,  for O < x < � 8 9  s o t h a t f o r  [ z l = - r  We note  tha t  log 1 --  x 

I1 I.  - - -  d#eg < 1~l~�89 I ~ [ d#eg = - -  t d n ( t ) .  
~1r l~ 1 I z] r o 

I 

Similarly 

_ 

2r 

In  ease n is finite in (2.6), suppose t ha t  n ( t ) > n - - e ,  t > t  o . Then  if 

r > 2 t 0 ,  we have 

~, t0 �89 
tdn(t)  <~ I tdn(t)  + I tdn(t)  <~ ton + �89  

0 0 to 

so t ha t  
I t - - ~ 0  , as r---~ cx~. 

Similarly we have  for r > t o 

3r  ~ ,  
I a < ~  J an(t)  ,< ~ e .  

2r 

Thus in this case 
11-+ 0, Ia-+ 0 ,  as r - +  0o.  (3.2) 
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Consider next  the  case when (2.4) and hence (2.5) holds. I n  this case we 
have for r ~ r  o, 

�89 

fe.(,) ~ 6 C l o g r ,  11 " ~  

0 

I a ~ 3r T dn(t) 
2r  

~-- 3 r [  n(2r)  f n ( t )d t ]  f tog tdt 
2r + J t 2 ] ~ 12Cr j g 

2r 2r 

--~ 6C[log(2r) + 1]. 

Thus in case (2.4) holds we have, uniformly as z -~ co, 

11 • O(l~ I z [), /3 --~ O(log [ z ]). (3.3) 

4. I t  remains to est imate I~ and this es t imat ion is the crux of the paper. 
We need a form (Lemma 2) of the BOUTROUX-CARTAN Lemma applicable to 
subharmonic functions. 

In  order to prove this we use the  following result ([1], Lemma 4, p. 482). 

L e m m a l .  Suppose that ~[I z l < h] = n ~ O, and that O < d < �89 Then 
there exists a set o[ circles S the sum o[ whose radii is at most d and such that 
/or I zl  < �89 and z outside S we have 

h d#eg < n log 
1~_(l<�89 l ~  2(z -- $) d 

We deduce 

Lemma 2. Suppose that /~ is a positive measure in the plane vanishing out- 
side a compact set x), and such that the measure n of the whole plane satis/ies 
0 < n < c<). Then we have 

S l ~  ~ldtte~ > l n l ~  

outside a set o[ circles the sum o/whose radii is at most 32~. 
Suppose tha t  #[I ~ I > R ] ~  0. In  this case we have for [ z ] > R +  

l o g l z - - ( l d / ~ e g ~ l o g ( [ z ] - - R ) d ~ e g = n l o g ( t z l - - R ) ~ n l o g ~ .  

Thus we m a y  confine ourselves to points in the circle I z I < R + Q. In  
L e m m a l  choose h = 4 ( R + p ) .  Then we have for [ z [ < � 8 8  and z l y i n g  
outside the  set S of circles, the sum of whose radii is a t  most  d 

I z -  ~ < �89 log ~-  -t- log [ z - -  ~ - d -  ' 

1) This condition is not essential but simplifies the proof. 
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provided d < �89 The result holds also if d / >  �89 since we can choose for 
S the single circle ] z I < �89 Since the circle I z --  ~[ < �89 includes the 
circle I ~ ] < R,  the integral on the left-hand side may be taken over the 
whole plane. We deduce 

32 
f ] ~  ~l d/~e~ ~ n l o g  d 

for I z I < R §  outside the set of circles S the sum of whose radii is at  
most d, and setting d = 32~ Lemma 2 follows. 

Lemma 3. Suppose  that /e is a positive measure in  the plane such that the 
measure o] the whole plane outside the origin is n ,  where 0 < n < c~. Suppose  
also that K >1 7. Then  we have 

I s ( z  ) = ~ log I ~ - -  z I d/ze~ > - -  n K  
�89 [ r I + ~ z I 

when z =/: 0 and z lies outside an E-set S o [  angular extent at most 4000e -K . 
Set R~----2 ~, v =  -- oo to o o a n d l e t  / ~ = / z [ ~ [ R ~ _ l < ]  ~l ~<R~+~]. 

Then ~ # ~ =  3n. Also we have b y L e m m a 2 f o r  R ~ < l z [  ~<R~+I 

] log I $ - -  z ] d/~e~ >~ i~ log e~ 

outside a set S v of circles the sum of whose radii is at most 320~. We assume 
32e~ < tRy.  In this case each circle either lies entirely in I z l <  R~, in 
which case we ignore it, or in I z I > �89 in which case if h is its radius, the 

2h 2~h 
angle it subtends at the origin is at  most 2 sin-X-R~..__ < Rv Hence the 

extent of all the circles of S~ which meet the range R~ ~< [ z I ~< R~+I is at  

R~ Since also ]z[ § [ ~ l < 6 R ~  in the most 0 ~ -  64~v  provided Q~<: 128 
R~ 

range we have outside these circles 

I log ] r  d # e ~ > # ~  l o g o ~ + l o g  . 

Hence h fortiori 

log I r  dl~e~>/z~/og e~ _ n K  

BY which is certainly satisfied if say. We have supposed Qv < 12---8 ' 

K > log 768 ~ 6.64, since /z~ ~< n. In this case 

0v : 64 :~_~ v~v . :  384~ exp(_-- n~vK )_ ~ 384~ #Vn e-~r ' 

6 Commentaril Mathematlcl Helvetlcl 
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since for x ~ 1, and y ~  1, e -x~ ~ - - l e - x .  Thus we have in the whole 
plane Y 

log I ~ - -  z l dtte r > - n K 
�89 I<~l,I I r + I z I 

outside an E-set of ex ten t  a t  most  

~ 0 v ~ 3.384ze -K ~ 4000e - g  . 

This proves Le mm a  3. 

5. Proof  of Theorem 2. We can now prove our  results. We s ta r t  wi th  
the simpler Theorem 2. Suppose then  t ha t  n is finite in (2.6) and t h a t  

1 
n ( t ) > n  ~ for r > r ~ .  Then  it  follows fl'om L e m m a 3  th a t  for p ~ 7  

and [ z [  :> 2r~, we have 

1 1 

_ Sl<21~llOg [ ~ - - z [  d / a e r  p-~. G - � 8 9  I ~1 + I z l p = - P 

outside an E-set g~ of ex ten t  a t  most  4000e -~. For  in Lem m a  3 we set 
d#e~ = 0 for I $ I ~ r~, and the  to ta l  measure of the  remainder  of the  plane 
is t hen  at  most  p-2.  Thus  we m a y  take  n = p - 2 ,  K = p  in L e m m a 3 .  

I f  g =  Ugh,  t hen  we have if  z is outside g and l z l > 2 r ~ ,  

1 
1 2  ~ - -  _ _  

P 

In  view of  (2.10), (3.1) and (3.2) we deduce t h a t  

u(z)  -~ B( r )  ~- o(1) = N ( r )  + o(1) 

as z -~ c~ outside g ,  and this proves Theorem 2, since the  ex ten t  of g is a t  
most  

oo  

27 4000e -~ = 4000e -e 

6. Proof  of Theorem 1. In  view of  Theorem 2, we m a y  assume wi thout  loss 
of general i ty  t ha t  n (r) --> oo, as r -~ r 

Le t  r~ be the  upper  bound  of  all numbers  t such t h a t  n (t) < p.  Then  r~ 
is nondecreasing with increasing p and r~-+ c~ as p--> ~ .  In  L e m m a  3 

2 t ake  for d# the mass dis t r ibut ion d, uer of (2.1) for I ~ I < 2r~+1, and set 
d# -= 0 otherwise. B y  (2.5), the  to ta l  measure of the  plane is t hen  at  most  

4C log (2r~+1) = 8C log f~+ 1 + 0(1) 
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when p is large. Hence it follows from Lemma 3 tha t  for large p,  we have 
for I z l < r  2 p + l  

= j" log I ~ - - z l  d/ue~> -- 8CVplog r~+~  (6.1) 
I~(z) �89162 I ~1 + I zl 

outside an L-set of ex tent  e-�89 
We now distinguish two cases 
(i) Suppose that rj,+l < 2r~. 

2 ~ r <  ~ In  this case we have for r~ rp+~, 

fn(t) t p l o g ' r ~  +--~-~ �89 . 7 ~/plogr ,~  t ~ )~-[ logr,+,- l -O(1)] .  

2 2 when p is large, Thus in this case we have for r~ ~ l z l < r ~ + l ,  

17C 
G(z) > - - -  N(I z I), (6.2) 

outside an L-set of ex ten t  at  most  e-�89 
(ii) Suppose next that r~+ 1 ~ 2r~. 
Then 

{r I �89 < I r I < r~+~} <~ 1,  

if � 89  i.e. r ~ > 2  and so by  Lemma 3 we have 

log I r  d~,e~>--r (6.a) s~(z) 
=�89 f I ~1 + I zt 

2 for r v <~ i z I < �89 outside an L-set of  extent  at  most  4000e-  liv. Also 
in this range 

4 
N(i z ]) ~ ] n ( t ) d t "  t ~> p (log r~). 

rlp 

Thus (6.3) implies 
1 

Is(z) >/ N(I z I). (0.4) 
l /p  log r ,  

$ 
Also for �89 <~ i z I < rp+l, we have 

N(r )>~,~  n(t) j > p l o g  r~+l~ ~>p log  ~ { l o g r ~ + 1 + O ( 1 ) } .  

l t tenee  in view of (6.1) we deduce tha t  for large p and �89 ~< I z [ < r~+ 1 



84 W. K. HAYMA~ - Slowly Growing Integral  and Subharmonic Functions 

we have  
- -  17C 

outside an ~'-set of  ex ten t  a t  most  e-�89 
2 2 tha t  in all cases we have for p > p 0  and  r v ~ [ z l < r ~ + l  

17C 
I (z) > - N ( I  I) 

provided z lies outside an ~-set ~ of ex t en t  a t  most  2e-�89 
then  the  ex ten t  of  ~ is finite and  as z--> oo outside ~' 

N(I z I) 

In  view of (6.2) and (6.4) we see 

Q0 

I f  a=ua . 
~ = P O  

I2(z ) -~ o { N  (] z ])} --~ o{B(I  z ])} 

in view of (2.9).  Using (2.8), (3. l) and (3.3) we deduce Theorem 1. 
I am grea t ly  indebted  to  Professor PmASlA~ for le t t ing me see the M. S. 

of his paper  and  to Dr. ElCDSS for suggesting the  problem to me. 
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