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Let W be an open RIEMANN surface. Let F denote the space consisting of 
those harmonic functions u on W for which * du is semi-exact, tha t  is to say, 
has no periods around dividing cycles. As usual, we let F B  and F D  denote 
those subclasses of functions which are bounded or which have a finite DI- 
RICHLET integral, respectively. We say that  W belongs to the class OFD if 
every function on W of class F D  is constant. In the preceeding paper it was 
shown that  an analogue of the RIEMAm~-Roc~ theolem holds for surfaces 
of class 0FD and tha t  in some respects this is the natural class of surfaces for 
this generalization of the RIEMA2cN-ROeH theorem. 

Since every analytic function belongs to F ,  we have trivially 0RD C O~D 
C OaD. I t  is the purpose of the present paper to investigate some of the pro- 
perties of the class 0FD, and to show the relationship of 0FD to OBD and 
0sD and to A D nullsets on compact surfaces. On occasion we mention pro- 
perties of 0pB when these are similar to those of 0FD. 

Functions of class F have been considered by SARIO [17] (who denotes 
them by K). SARIO uses an "extremal method" and proves that  O~D = O~B D 
and that  these surfaces are characterized by the vanishing of the Q-span of 
W. Our present investigation of the class OFD is based upon "DIRIC~L~.T 
principle" methods, and neither needs nor is able to derive the results of 
SARIO. Thus the present investigation may be regarded as complementary to 
that  of SARIO. 

Let M denote the space of function f on W such that  dJ vanishes identically 
outside a compact set. Then we show tha t  W e OFD if and only if W has the 
property tha t  for each function ] on W with a finite DIRICHLET integral there 
is a function g in M such tha t  D (] -- g) < e. Using this characterization we 
easily prove that  the class OFD is preserved under quasiconformal mappings. 

For surfaces of finite genus we show that  the classes 0FD and 0a~ coincide 
and that  W is of class 0~w if and only if it is the complement in a compact 
surface of an A D nullset. Similarly, 0FB and 0~B coincide for surfaces of 
finite genus with those regions which are the complements on a compact 
surface of an A B nullset. In  view of the invariance of 0F~ with respect to 
quasiconformal mapping we obtain the corollary that  for surfaces of finite 
genus the class OaD is preserved under quasiconformal mapping. This is 

1) The research for this paper was performed under the sponsorship of the Office of Ordnance 
Research, U. S. Army. 
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somewhat  suprising, since MORI [7] has given an example of  two surfaces 
(of infinite genus, of  course) which are quasiconformally equivalent  and such 
tha t  one belongs to OaD and the  o ther  does not.  Moreover,  the  results of 
AtrLFORS and  BEURLING enable one to construct  two quasiconformally equi- 
valent  plane domains such t h a t  one is of class Oas while the  o ther  is not .  
This shows t h a t  the  class OeB is not  preserved under  quasiconformal equi- 
valence. 

In  section 2 I have included some results on the  classes 0rid and 0 a which 
I believe give be t t e r  insight into the  methods used for the  class OFD in the 
first section. 

I t  will be convenient  to  assume t h a t  the funct ions wi th  which we deal are 
complex valued.  Consequently,  we mus t  define the  mixed DIRICn-LET integral  
D(/, g) as 5Sd/A *dg. We set D(/)  ~-- D( / ,  /) .  Two functions / and g are 
said to  be or thogonal  if D (/, g) ---- 0, and a sequence /~  will be said to con- 
verge to / in the sense of the  DmICn~ET integral  if D (/~ - - / )  ~ 0. 

1. The class OFD and property P .  As before we say t h a t  a differentiable 
funct ion / on W is of  class M if d /van i shes  identical ly outside some compact  
set. Equiva len t ly ,  f belongs to  M if there  is a compact  region Q such t h a t  [ 
is cons tant  on each component  of the  complement  of  ~ .  At  one point  in 
section 3 we shall find it convenient  to assume th a t  M contains in addi t ion 
to the  differentiable funct ions also functions which have generalized square 
integrable der ivat ives  in the  sense of FRIEDRICHS. This ex t ra  general i ty  poses 
no essential difficulties, and in general we shall ignore it where it  is not  re levant .  

L e t  M denote  those functions on W which have a finite DIRIC~LET integral  
and are such tha t  for  each e > 0 there  is a funct ion g in M such t h a t  

D( 1 - -  g) < e. Note  t h a t  the  harmonic  funct ions in M form the  space HM 
of harmonic  measures in the  sense of  Az~ORS [3]. We begin with the  following 
lemma, which is contained implici t ly in [3]: 

Lemma  1. On an a rb i t r a ry  R I ~ . M ~  surface the spaces M and FD are 
the or thogonal  complements  of each o ther  in the  space D of  all funct ions on 
W with  a finite DIRICttLET integral.  

ProoL Le t  u c D ,  and  suppose D ( u ,  1) ~ 0 for all I ~ M .  Since M con- 
tains all smooth  funct ions which vanish outside a compact  set, u mus t  be 
harmonic by  the  WEYL lemma. We must  show th a t  * du is semi-exact.  Le t  
C be a dividing cycle on W. Then  there  is a domain  R consisting of a finite 
number  of  annuli  such t h a t  the  sum of  the inner boundaries  is homologous 
to C. Le t  / be a smooth  funct ion  which is identical ly constant  in the  comple- 
ment  of R and  increases f rom zero to  one in each annulus as we go f rom the  
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inner boundary to the outer. Then [ ~ M, and 0 :  D ([, u) ~-- J'j'df A * d ~ :  S* d~. 
c 

Thus * du is semi-exact. But this implies that  * du is semi-exact, proving 
that  the orthogonal complement of M is contained in F D .  

On the other hand, suppose tha t  /E M and u ~ F .  Let D be a compact 
region bounded by smooth JORDAN curves such that  / is constant in each 
component of the complement of ~ .  Let P be the boundary of D, and/ '~ the 
boundaries of the components of the complement of D. Then F : (9 P~, 
and / is constant on each F~. Thus 

D([, u) : SSd/ A *d~ : ~ /*d~  : ~c,S *d~ : O, 
F Fi  

since each F~ is a dividing cycle and * du is semi-exact. Thus M is orthogonal 
to F D ,  and the orthogonal complement of M contains F D .  

Thus F D  is the orthogonal complement of M.  Since M is the closure of 

M with respect to the ])I~IC~LET integral, we see tha t  M and F D  are ortho- 
gonal complements of one another, proving the lemma. 

We say tha t  a R I E ~  surface has property P if M : D, i .e.  if every 
function with a finite Dn~ICn~ET integral can be approximated arbitrarily 
well in the sense of the DIRmm~.T integral by functions in M.  The following 
proposition is an immediate consequence of our lemma: 

Proposition 1. A R X E ~  surface W is of class 0F~ if and only if it has 
property P .  

By a semi-exact differential we mean a closed differential whose periods 
around each dividing cycle is zero. Proposition 2 expresses a useful integration 
formula for semi-exact differentials on a surface of class O~D. For the proof 
we shall need the following lemma, whose elementary proof we omit : 

Lemma 2. On the RIEMANN surface W let ~ be a compact region (i. e. 
connected open set with compact closure) whose boundary F consists of a 
finite number of smooth JORDA~ curves, and let a be a closed differential 
defined in a neighborhood o f / '  and satisfying j'a ~ 0. Then we can extend 

to be a closed differential in all of ~ .  r 

Proposition 2. Let 0 be an open set with a compact closure on a RIEMAN~ 
surface W of class 0FD. Let the boundary F of O consist of a finite number 
of smooth JORDA~ curves. Let / be a smooth function with a finite DmICm~ET 

integral in the complement (~ of 0 and a a semi-exact differential which is 

continuous and square integrable in (~. Then 

r 
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P r o o f .  S i n c e  a is  semi-exact,  its integral  a round the  boundary  of  each 

component  of (~ vanishes, and so we may  ex tend  a by  lemma 2 to be a closed 
square integrable differential on all of W. Le t  us also ex tend  / to be a smooth  
funct ion on all of  W. Then  ~ /a  = ~ d f  A a by  STOKES' theorem,  and our  

/~ o 
proposit ion is equivalent  to  proving t ha t  SSd/h  ~ = 0. 

w 
Let  g be a funct ion in M ,  and let  f2 be a compact  region containing 0 - an d  

bounded by  a finite number  of  smooth  J O R D ~  curves such tha t  g is cons tan t  

on each component  of  ~ .  Then  g is a cons tant  c~ on the  boundary  C~ of  a 

component  of ~ ,  and 

Sydg ^ = Sydg ^ = r e ,  = 0 ,  
w D Ci 

since ~ is semi-exact  in O. 
Thus S ~ d g A a : O  for  each g e M .  Since WcOFD,  there  is a 9 ~ M  

w 
such t h a t  D (] --  g) < e ~, and we have 

[ S.~d/ A ~ l = ] S S d ( /  - g) A ~ l "< e ll c~ l] 
w 

where II II = Since is arbi t rary ,  we have y y d / A  = 0, p rov ing  
w 

the proposit ion.  

2. T h e  c l a s s e s  OH9 a n d  0 a . We establish in this section some analogues for 
0Up and 0 a surfaces of the  two proposit ions in the  last section. The  results 
derived here  are fair ly well known, bu t  we include them for comparison. Le t  
K be the  class of funct ions which vanish outside a compact  set, and  denote  2) 

by  K those funct ions  / such t h a t  for  each e > 0, there  is a g e K such t h a t  
D ( / - -  g) < t .  An immedia te  consequence of  the  WEYL lemma is the  follow- 
ing lemma : 

Lemma 3. On an a rb i t r a ry  RIEMANN surface the  space K and the  space 
H D  of  harmonic  funct ions with a finite DmmHL~T integral  are the or thogonal  
complements of one another  in the  space D .  

We say t h a t  a RIEMA~N surface has p rope r ty  Po if / (  =- D ,  i . e .  if  eve ry  
funct ion wi th  a finite DmmttLET integral  can be approx imated  in the  sense 
of the  DIRm~rLET integral  by  a funct ion in K .  We say t h a t  W c OHD if  the  
space H D  contains only  constants .  L e m m a  3 implies the  following proposi t ion 
which is analogous to  Proposi t ion 1 : 

s) This space K differs slightly from the one introduced in [14], since we make no provision 
here for the exclusion of the constants. The space K as defined here always includes the constants. 
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Proposition 8. A RI~.~A_~N surface W is of class OuD if and only if it has 
property Po- 

We denote by 0 G the class of parabolic RIEMAN~ surfaces. There are various 
equivalent definitions of parabolic surfaces (cf. [10] or [13]). Parabolic sur- 
faces are characterized by the following property which we may use here as 
a definition: The RI~LANN surface W is parabolic if and only if there is a 
compact region O c W such that  every function which is harmonic and has 

a finite DIRICHLET integral in the complement of ~ and which vanishes on 
the boundary of O vanishes identically. Let K (I2) denote the class of functions 
which vanish outside some compact set and which also vanish on ~ .  Let 

K(O) denote the closure of K(O) in the sense of the DIRICHLET integral. 
Then we have easily the following lemma: 

Lemma 4. The space K (~) and the space of functions in O which are har- 
monic and have a finite DmlCHL~T integral and which vanish on the boundary 
of Q are the orthogonal complements of one another in the space of all func- 

tions in ~ which have a finite DmICHL~T integral and vanish on the boundary 
of L~. 

We say that  W has the property Poo (Q) if all functions in the complement 
of L~ which have a finite DIRIeHLET integral and which vanish on the boundary 

of L~ belong to K (L2). I f  W has the property Poo (L~) for some compact 
region L~, then clearly it has the property Poo (L)I) for each compact region 
L~ I which either contains cr is contained in Q. Hence the property Poo does 
not depend on the region L~ chosen, and we indicate it simply by  Poo. Lemma 4 
implies the following proposition: 

Proposition 4. A RIEM~-I~ surface is parabolic if and only if it has the pro- 
per ty  Poo. 

Proposition 5. Let  W be a parabolic RrEMA~ surface, and 0 an open set 
whose closure is compact and whose boundary F consists of a finite number 
of smooth JORDAN curves. Let ] be a smooth function defined on the comple- 

ment (~ of 0 and having a finite DmICHL~.T integral. Let a be a closed 

differential which is continuous and square integrable over (~. Then 

= - S S d !  ^ 
r 

Proof. Let L~ be a compact region containing O, and let the boundary of 
s he C. Then 

Sls + SSdl ^ = + SSd! ^ , 

r ~ c 
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by STOKES' theorem, and so it suffices to prove that  

Since this equality holds for functions which vanish outside some compact 
set, and every / differs from one which vanishes on C by a function which 
vanishes outside a compact set, we see that  it suffices to consider the case in 
which ] is identically zero on C. Since W is parabolic, it has property Poo (ffJ), 
and each / which vanishes on C and has a finite DHUCr~ET integral can be 
approximated by functions g which also vanish outside compact sets. For 
these g we have SSdg A ~ ~ 0 by STOKES' theorem, whence SSd/A a ~ o, 
proving the proposition. 

I t  should also be noted that  the proposition also holds under the hypothesis 
that  W ~ OHD if we require a to satisfy Sa ----- 0. 

r 

3. Properties of the ideal boundary and behavior under quasiconformal 
mapping. We say tha t  two RIEM~N surfaces W and W' are quasiconformally 
equivalent if there is a one-to-one quasiconformal mapping ~ of W onto W'. 
We use here only the following propeIty of quasiconformal mappings: 

Lemma 5. Let ~ be a quasiconformai mapping of W onto W'. Then the 
adjoint mapping takes the space of functions with a finit~ DrRIcn~ET integral 
on W t onto the space of functions with a finite Dmm~LET integral on W, 
and we have 1 

-~ n ( u )  ~ n ( u o ~ )  ~ K n ( u )  . 

For differentiable mappings this lcmma follows directly from the definition 
of quasiconformality. For general quasiconformal mappings it is easily estab- 
lished using generalized derivatives (cf. [6] and [8]). 

Using this lemma we see tha t  the adjoint mapping ~* defined by ~* (u) 
u o r maps the space M ( W  ~) onto M ( W )  and that  if every function on W t 
with a finite DrRmHLET integral can be approximated in the sense of the 
DrRmHLET integral on W I by a function in M ( W ' )  then every function W 
with a finite DmICHLET integral can be approximated in the sense of the 
DmmHLET integral on W by a function in M ( W ) .  Thus if W r has property 
P ,  so does W. This implies by Proposition 1 that  if W ~ ~ OFD then W E OFD. 
Using a similar argument involving the properties Po and Poo, we have the 
following theorem : 

Theorem l .  The classes OFD , OHD , and 0 a are preserved under quasicon- 
/ormal equivalence. 

This property for 0 a is due to P~UGER [11]. For OBD see [15]. MORI [7] 
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has given an example which shows that  the classes O~s and O~D are not pre- 
served under quasieonforma] equivalence. The behavior of OHS under quasi- 
conformal mapping remains open. 

Following AHLFORS [1], we say that  two RIE~NN surfaces W and W' 
have the same ideal boundary if there are open sets 0 c W and O' c W' 

with compact closures such that  W ~-~ 0 and W'~-~ O' are eonformally 
equivalent. A property of RIE~N~r surfaces is said to be a property of the 
ideal boundary if whenever two surfaces have the same ideal boundary either 
both possess the property or else neither possesses it. We shall show tha t  the 
property of belonging to the class OFD is a property of the ideal boundary. 
Let 0 be an open set on W with a compact closure and bounded by a finite 
number of smooth JORDAN curves. We shall say that  property I holds for 0 
if the conclusion of Proposition 2 holds for every / and a satisfying the hypo- 
thesis of the proposition. Thus Proposition 2 says that  property I holds for 
every 0 on W if W is of class 0 ~ .  Suppose, on the other hand, tha t  property 
I holds for some 0 on W. Then if u ~ F D ,  we have ~du semi-exact, and so 

SSd * = - -  S u *  

= - -  S S  
o 

Thus D(u) = O, and u is a constant, whence W e OFD. Suppose now tha t  

W and W' are such tha t  W ~ O and W' ~ ~t are conformally equivalent. 
Then if W c OFD, property I must hold on W for O. Since this is in reality 

a property of W ~ O ,  it must hold on W ' f o r O ' .  Thus W tcOFD, and we 
have shown tha t  the property of belonging to the class OFD is a property of 
the ideal boundary. A similar argument shows tha t  the properties of belonging 
to 0 a and OuD are properties of the ideal boundary (cf. [13]). Thus we have 
the following proposition: 

Proposition 6. The properties of belonging to the classes OFD , OHD and 
0 a are all properties of the ideal boundary. 

4. Planar surfaces and funct ion- theoret ic  nullsets .  We shall refer to sur- 
faces of genus zero (i. e. surfaces on which every cycle is a dividing cycle) as 
planar surfaces. According to the KO]~BE uniformization theorem, each planar 
surface is conformally equivalent to a domain in the complex plane, and we 
shall often find it convenient to speak of properties of the complementary 
set of the plane domain. Throughout this section we shah use E to denote a 
compact set in the plane whose complement is connected. We shall call E 
an A D (or A B) nullset ff some open set 0 containing E has the property 
that  each function / which is analytic in 0 ~ E and has a finite DIRICHLET 
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integral in 0 ~ E (or which is hounded  in 0 ~ E) m ay  be ex tended  to  E 
in such a manner  t ha t  it  is analyt ic  in O. Note  t h a t  if this p rope r ty  holds for 
some open set containing E then  it  holds for each larger open set containing 
E ,  and as a consequence of Proposi t ion 7 it  holds for  eve ry  open set containing 
E if  i t  holds for the  complex sphere. Thus  the  p rope r ty  of  being an  A D or 
A B nullset does not  depend on the  open set 0 used in its definition. 

These nullsets have been extensively  s tudied b y  AHLFORS and BEu~Lr~G 
[4] and by  Sx~Io [16] and [17]. We give here a few e lementa ry  propert ies  
which will be useful in the  sequel. The following lemma plays  a fundamenta l  
role in our t r e a t m e n t :  

L emma  6. Le t  E be a compact  set in the  complex sphere S,  and let 0 be 
an open set containing E .  Then  each analyt ic  funct ion ] in 0 --, E can be 
expressed as [ = [ 1 -  [2, where [1 is analyt ic  in 0 and [2 is analyt ic  in 
S ~-~E. 

Proof. Le t  01 be an open set containing E ,  whose closure is conta ined  in 
0 ,  and whose boundary  F consists of a finite number  of  smooth  JORDA~ 
curves. Define 

1 f  (c)z d e z ol 
- 2 % V  - - -  

h ( z )  = r 

1 f / ( e )  
and r 

/~(z) = 

~ 7  - - -  d e  z E S t 6 1 .  

1" 

We see tha t  the  functions ]1 and [~ are independent  of the  choice of F in v i r tue  
of the  CAUCHY integral  theorem.  Thus  /1 a n d / ~  can be defined on P so t h a t  
they  are analyt ic  across F ,  and we see t ha t  [1 is analyt ic  in 0 an d /2  is analyt ic  
in S ~ E .  Since / - - / 1  - -  [~, the  lemma is established. 

I f  [ has a finite DIRICHLET integral  in 0 ~ E ,  we see t h a t  [1 has a finite 
DIRmHL~.T integral  in 0 and ]~ has a finite DmICKLET integral  in S ~-~ E .  
Similarly, if / is bounded,  t hen  so are [1 a n d / 2 -  

I f  E is such t ha t  the  complement  of  E in S is of class OXD, and ff / has a 
finite DIRIC~L~T integral  in 0 --~ E ,  t hen  [~ has a finite DmmHLET integral  
over S --~ E ,  and so must  be constant .  Hence  / differs f r o m / 1  b y  a cons tan t  
and therefore  admits  of an analy t ic  extension to  all of  O. Consequent ly  E is 
an A D nullset. Bu t  if  E is an A D nullset and / an analyt ic  funct ion in S ~-~ E 
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with a finite DmIC~LET integral, then ] can be extended to be analytic in all 
of S and so must be constant. Thus we have shown tha t  E is an A D nullset 
if and only if its complement is of class O~D. Since a similar consideration 
apphes to bounded functions, we have the following proposition [4]: 

Proposition 7. A compact set E in the complex sphere is an .4 D (or A B) 
nullset if and only if its complement is of class O~D (or O ~ ) .  

Let E be a compact set on the sphere. A point p of E is said to belong to 
the A D kernel of E if there is an analytic function defined in the complement 
of E in some neighborhood of p which has a finite DXRICH~ET integral and 
which is singular at  p, i. e. admits of no extension which is analytic at p. 
One sees tha t  the A D kernel of E is a perfect set contained in E and is empty 
if and only if E is an A D nullsct. Moreover, the intersection of each open disk 
with E is either empty or else is not an A D nullset. Thus if E is not an A D 
nullset, we can express E as the union of N disjoint closed sets none of which 
is an A D nullset. Since similar considerations apply for the class of A B 
functions, we have the following lemma: 

Lemma 7. Let E be a compact set in the plane which is not an AD (or A B) 
nullset. Then for each integer N,  we may express E as the union of N disjoint 
closed sets none of which is an AD (or AB) nullset. 

5. RIEMANN surfaces of finite genus. We say tha t  a RIEMA~r surface W 
has finite genus if there are a finite number of cycles C 1 , . . . ,  Cg such that  
each cycle on W which does not intersect any of the C~ is a dividing cycle. 

Let D be a compact region containing the Ck. Then ~ is a planar surface and 
so is conformally equivalent to a plane domain G. The boundary contours 
of ~ correspond to a finite number of boundary continua /'1 . . . .  , F~ of G, 
and we may choose G (by performing an auxiliary conformal mapping, if 
necessary) so that  these continua are simple analytic curves. Call the union of 
these continua F.  Then W can be constructed by means of a suitable identi- 
fication between the points of F and the boundary of ~ .  Let Go be tha t  com- 
ponent of the complement of F which contains G. Then Go is a domain bounded 
by a finite number of JORDA~r curves, and if we make our previous identifica- 
tion of these curves with the boundary of D, we obtain a compact RI~.MA~r 
surface Wo which contains W as a subdomain. I f  we at tach to G the components 
of the complement of F which do not contain (7, we obtain a planar surface 
which has the same ideal boundary as W in the sense of AKLrORS. We have 
thus estabhshed the following lemma: 
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L e m m a  8. E v e r y  R : E ~ N ~  surface of finite genus is conformally equivalent  
to a subregion of a compact  R I E M ~ N  surface. For  every  RIV.MANN surface  

of finite genus there  is a planar  surface with the same ideal boundary .  

Since a plane domain  is of  class O G or OHD if  and only  if its complement  
has capaci ty  zero [9], and the  propert ies  of belonging to  the class 0 a or OHD 
are propert ies  of the  ideal boundary ,  we have the  following corollary, where 
we make use of the  inclusion 0 G c OHB C OHD: 

Corollary.  For  a RIEM~I~ surface of finite genus the classes 0G, OHB, 
and OHD coincide and are character ized as those surfaces which are ob ta ined  
from compact  surfaces by  the  removal  of a set of capaci ty  zero. 

The principal goal of this section is to show tha t  a similar s i tuat ion holds 
for RIEMAI~N surfaces of finite genus of class 04 D and OAB , namely  tha t  these 
suifaces are obta ined  f rom compact  surfaces by  the  removal  of an A D or 
A B nullset. This result,  and lemma 7 as well, seems to be a pa r t  of the  folk- 
lore of open RIEMA~N surfaces, bu t  since I have not  seen a proof, I include 
one here for completeness.  

Unfor tuna te ly ,  lcmma 6 becomes false if we replace S by  a compact  surface 
of posit ive genus. Hence we begin by  construct ing an analogue of lemma 6. 
Let  W be a compact  R I ~ A ~  surface and ~2 a region on W. Le t  [ be a func- 

a/ 
t ion on f2, and define the  differential  a/ to  be ~ dz in te rms of  a local 

uniformizer z. We say t ha t  the funct ion [ is semi-analytic i f  a[ is equal  in 
to the conjugate  of an everywhere  analyt ic  differential  on W. Since the  

analyt ic  funct ions on ~ are character ized by  a / ~  0 ,  we see tha t  the  ana- 
lytic functions are semi-analytic.  Since the LAPLACE opera tor  can be expressed 

a2 
as 4 0z a---~ ' we see t ha t  the  semi-analyt ic  functions are harmonic in ~ .  

On the  compact  surface W, let G (p, P0; q, %) be the fundamenta l  potent ial ,  
i. e. t h a t  funct ion of p which is harmonic  except  a t  q and q0 where it  has the  
singularities -- log lz (p)  - -  z(q)] and  log lz (p)  - -  z(q0) I , respectively,  and 
which is normalized by  G(po, p0;q ,q0)  ---- 0. Then  G(p ,  p0 ;q ,  q0) ---- 
G(q, %; p ,  P0), and, in its dependence  on q, aqG is an analyt ic  differential  
except  a t  p and P0, where it  has simple poles wi th  residues + �89 and  --  �89 

Moreover, a~a~G is, in its dependence  on p ,  the conjugate  of an everywhere  
analyt ic  differential  on W. Wi th  these  preliminaries we are able to prove  the  
following lemma:  

L e m m a  9. Le t  W be a compac t  RIEMAN~ surface and E a closed subset  of  
W. Le t  0 be an open set conta ining E and ] an analyt ic  funct ion in O ~-~ E .  
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Then we may express [ as [ ~-/1 -- [~, where [1 is semi-analytic in O and ]3 
semi-analytic in W ~-~ E.  

Proof. Let 01 be on open set containing E whose closure is contained in 0 
and whose boundary F consists of a finite number of smooth J o R n ~  curves. 

Let Po be a point in W --, O, and write (7 (p, q) for G (p, Po; q, q0). Define 

h ( P )  = 

12(P)  = 

1/ 
~r--i / (q) aq G (p, q) p �9 01 

P 

I f  - ~  l (q)O,O(p ,  q) --}-/(p) p c O  , ~ 6 ~  
F 

/ (q )O,O(p ,  q) --  l (p)  p ~ 01 ,'~ E 
,r, 

~r---( /(q)O~G(p, q) p E W ,~ 01 �9 
1" 

I t  follows from the CAUCHY theorem that  the definitions o f /1  and [~ are 
independent of the choice o f / ' ,  (i. e. of 01) and so they can be defined on F 

so tha t  they  are smooth in O and W ~ E,  respectively. Since 3/----- 0, we 

have a/1 = ~r~/ (q)a~0~G.  But a~a~O is, in its dependence on p, the con- 

jugate of an everywhere analytic differential on W. Thus ~/1 is also the con- 
jugate of an everywhere analytic differential on W, and so/1 is semi-analytic 
in O. Similarly,/~ is semi-analytic in W ~ E .  

Corollary. The functions [1 and ]2 in lemma 9 can be taken to be analytic 
if and only if for some (and hence for every) curve P which separates E from 
the complement of 0 ,  we have S/a ~ 0 for every differential a which is 
everywhere analytic on W. r 

Proof. I f  j'/a -- 0 for every analytic a, then the functions fl and [~ con- 

structed in the proof of lemma 9 are actually analytic, since a~,aqG is an 
analytic differential in q. I f  on the other hand we can choose/1 and f~ to be 
analytic, then j ' / la  ---- 0 by applying the CAucHY theorem to the open set 

r 
0 ,  while ~/2a----0 by applying the CAUCHY theorem to W ~--E. Thus 

r 
~fa  ~- 0, proving the corollary. 

r 
Since the definition we gave in the last section for E to be an A D or A B 
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nullset depends only  on the  relat ion of  E to a neighborhood of  E ,  it  carries 
over  unchanged  to sets E on a compact  R I E M A ~  surface. We formula te  the  
following theo rem : 

Theorem 2. For RIRMAiViv sur]aces o[ [inite genus the classes OAD and OFD 
coincide and consist of those surfaces which are obtained by deleting an A D 
nullset ]rom a compact surface. Similarly, the classes OaB and OFD coincide ]or 
surfaces o] finite genus and consist o/precisely those sur]aces which are obtained 
by deleting an A B nullset ]rom a compact sur]ace. 

Proof.  I t  is trivial t ha t  surfaces obta ined  by  deleting an A D (or A B) null- 
set f rom a compact  surface are of class OaD (or Oa~ ). Suppose t h a t  E is an 
A D nullset, and t ha t  h is a funct ion of  class F D  in W ~ E .  Le t  u be the  
real pa r t  of h and let Q be a region which contains E and  has the  p ro p e r ty  
tha t  each cycle in Q divides on W ~-~ E .  The  existence of such a domain  
follows from the  fact  t h a t  we can find a compact  set in W ~-~ E which carries 
a basis for the  non-dividing cycles of  W ~-~ E .  The fact  t ha t  * du is semi- 
exact  implies t ha t  u is the real pa r t  of an analyt ic  funct ion ] in Y2 ~-~ E .  
Since the  DIRICHLET integral  of ] is twice t ha t  of u ,  [ has a finite DIRICHLET 
integral  and hence is regular  on E .  Thus u is regular  on E and  so mus t  be 
constant ,  since it  is harmonic  on all of  W. Similarly, the  imaginary  pa r t  of  
h is constant ,  and W ~-~ E is of  class OFD. 

Let  E be an  A B nullset on W and ~9 as before. Let  h be of class F B in 
W ~ E ,  and  let u be the  real  pa r t  of  h. Then  as before u is the  real pa r t  
of a funct ion f which is ana ly t ic  in fJ ~ E .  I f  m is a bound for u,  t hen  the  
funct ion (f - -  2m) -~ is a bounded  analy t ic  funct ion in Q ~ E and so must  
be regular  on  E .  Thus  u is regular  on E and therefore  constant ,  since i t  is 
everywhere  harmonic.  Similarly, the  imaginary  par t  of h is constant ,  and 
W ~-~ E is of  class O~B. 

This shows t ha t  surfaces obta ined  by  removing an A D (or A B) nullset  
f rom a compact  surface are of  class O~o (or OFB ). Since OFB c OaB and 
OFD C O~W, our theorem will be proved if  we show t h a t  eve ry  surface of  
finite genus of  class OaD (or Oa~ ) is obta ined b y  removing an A D (or A B) 
null set f rom a compact  surface. 

Suppose t h a t  we have  a surface of  finite genus of class OaD. Then  b y  
lemma 8 it  can be obta ined  f rom a compact  surface W b y  the  delet ion of a 
closed set E .  Le t  W have genus g, and  suppose t h a t  E is not  an  A D nullset. 
Then  by  lemma 7 we can find g + 1 disjoint  closed subsets E 1 . . . .  , Eg+l 
of E ,  none of  which is an A D nullset. Le t  ]k be a funct ion which is ana ly t ic  
and has a finite DIRICHLET integral  in some neighborhood ~ of Ek bu t  
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which is not  regular  on E~. By  lemma 9 we can find a funct ion h k which is 
semi-analyt ic  in W ~ Ek and which differes f rom /k b y  a funct ion which 
is semi-analyt ic  in a neighborhood of E~. Thus h k has a finite DIRICHLET 
integral  in W ~ E k and can no t  be ex tended  to  a harmonic  funct ion in all 
of  ~ ,  since such an  extension would give us a harmonic extension o f / ~  to 
all of  /2~, and this  harmonic  funct ion would be analyt ic  in ~k,  since it  is 
analyt ic  in Q~ ~ E .  

The  num be r  of  everywhere  analy t ic  differentials on W is g. Hence  there  
are constants  c 1 . . . . .  cg+l, not  all zero, such tha t ,  i f  we set h-----Zckh ~, 
t hen  ~h----0, i . e .  h i s  analyt ic .  I f  c k T e 0 ,  then  h does not  admi t  a har- 
monic extension to  E k, since h~ does not  and the  funct ions hj, j ~= k, are 
harmonic  on E k. Thus h is a non-cons tan t  ana ly t ic  funct ion with a finite 
DmmHLET integral  in W ~-~ E ,  and  so W ~ E is not  of class O~D. This 
shows t h a t  if  W e 0AD, then  E is an A D nullset. A similar proof  applies 
to  the  A B case, proving the  theorem.  

Since the  class OFD is preserved under  quasiconformal  mappings,  we obtain 
as an immedia te  corollary the  following theorem:  

Theorem 3. F o r  R I E ~  sur/aces o/ /inite genus the clazs O~D is preserved 
under quasicon/ormal equivalence. 

MORI [7] has given an example  which shows t h a t  the above theorem is 
false i f  one omits the  hypothesis  t ha t  the  surfaces are of  finite genus. Since 
OpD is always preserved under  quasiconformal  equivalence, and one of the  
two surfaces of MORI is no t  of class 0~D, it  iollows t h a t  the  other  surface 
belongs to O~D bu t  not  to  OFD. In  the  nex t  section we show th a t  even for  
planar  surfaces the  class OyB ~ O~B is not  preserved under  quasiconformal  
equivalence. 

6. A eounterexample. AttLFORS and BEURLING [5] have const ructed  an 
example of a mapping  ~ of  the uni t  disk onto itself which is quasiconforma] 
and which is not  absolute ly  cont inuous on the  circumference. Consequently,  

mus t  take  a closed set E 1 of zero l inear measure on the  circumference into 
a closed set Es of  posi t ive l inear measure.  E x t e n d  ~ by  reflection to  be a 
mapping of the  full RI~MA~N sphere S onto  i t se l f  As a result  of An~PORS [2], 
this ex tended  ~ is again quasieonformal.  Thus  the  planar  R I ~ . M ~  surfaces 
S ~ E 1 and S ~ E2 are quasiconformally  equivalent .  Bu t  the  first is of  
class O ~  while the  second is not ,  since a necessary and sufficient condit ion 
t h a t  a closed subset  of the  uni t  circumference be an A B nullset is t h a t  it  
have  l inear measure  zero [4]. 
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7. A criterion of the SAIUO-PFLUGEH type for the class OFD. Le t  W be an 
open RI~MA~lg surface and da =/~  (z) ] dz] a conformal metr ic  on W whose 
curvature  is non-posit ive as in [10] section 10.106, and let ~(p) denote  the 
distance to  a point  p f rom a fixed point  P0. We assume fur ther  t h a t  ql ~< oo 
has the  p rope r ty  t ha t  for ~0 < QI, the  set of p such t h a t  ~ (p) ~< Q0 is compact .  

Then  the  "circles" ~ (p) ---- ~ consist in general of  a finite number  of  closed 
curves. Le t  these curves be grouped into sets /'~ such t h a t  each set  F i is the 
relative boundary  of  a component  of {p : ~ (p) > ~}. Set A (e) = max  ~ da. 

Since each /'~ is a dividing cycle on W, and consequent ly  ~* du = 0 for 

each u e F ,  an immedia te  modification of  PFLUOER'S proof  [12] of  the  
SARIO-PFLUGER criterion for 0~o gives us the  following proposi t ion (cf. also 
[16] and [10]): 

Proposition 8. A sufficient condit ion t ha t  W E OFD 
the integral  o~ 

f A(e) " 

is the divergence of 
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Added in proof (October 26, 1959): After the submission of this paper I 
have been informed that K. 0IKAWA has previously demonstrated the in- 
variance under quasiconformal mappings of planar surfaces of class OAD. 
This proof occurs in an article in Japanese entitled "Some properties of quasi- 
conformal mappings" Sugaku, 9 (1957), 13-14. The proof of OIKAWA depends 
on several deep results including: STR~,BEL'S result on the extension of quasi- 
conformal mappings to A D nullsets; the Am~FORS-B~URLI]qG [4] characteriza- 
tion of a A D nullset as a closed set such that  every conformal image its com- 
plement has complementary area zero; the theorem of BERS [6] that  a quasi- 
conformal mapping carries sets of zero area into sets of zero area. 
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