On a Class of Null-Bounded RiEMANN Surfaces’)

by H. L. Roypzn, Stanford (Calif., U.S.A.)

Let W be an open RiemanN surface. Let F' denote the space consisting of
those harmonic functions « on W for which *du is semi-exact, that is to say,
has no periods around dividing cycles. As usual, we let ¥ B and F.D denote
those subclasses of functions which are bounded or which have a finite Di-
RICHLET integral, respectively. We say that W belongs to the class Oy if
every function on W of class F D is constant. In the preceeding paper it was
shown that an analogue of the RremManN-Rocu theorem holds for surfaces
of class Op; and that in some respects this is the natural class of surfaces for
this generalization of the RiEMan~N-RocH theorem.

Since every analytic function belongs to ¥, we have trivially Og, c Op,
c O,p. It is the purpose of the present paper to investigate some of the pro-
perties of the class Op,, and to show the relationship of Og, to Oy, and
O,p and to 4D nullsets on compact surfaces. On occasion we mention pro-
perties of Oy when these are similar to those of Oy .

Functions of class F have been considered by Sario [17] (who denotes
them by K). SARIO uses an ‘“‘extremal method’” and proves that Opj, = Ogp,,
and that these surfaces are characterized by the vanishing of the @-span of
W. Qur present investigation of the class O, is based upon “DIRICHLET
principle” methods, and neither needs nor is able to derive the results of
Sarro. Thus the present investigation may be regarded as complementary to
that of SarIO.

Let M denote the space of function f on W such that df vanishes identically
outside a compact set. Then we show that W e Opp if and only if W has the
property that for each function f on W with a finite DIRICHLET integral there
is a function g in M such that D(f — g) < e. Using this characterization we
easily prove that the class O, is preserved under quasiconformal mappings.

For surfaces of finite genus we show that the classes Oy and O, coincide
and that W is of class O, if and only if it is the complement in a compact
surface of an 4D nullset. Similarly, Oy and O, coincide for surfaces of
finite genus with those regions which are the complements on a compact
surface of an A4 B nullset. In view of the invariance of Oy, with respect to
quasiconformal mapping we obtain the corollary that for surfaces of finite
genus the class O,; is preserved under quasiconformal mapping. This is

1) The research for this paper was performed under the sponsorship of the Office of Ordnance
Research, U. 8. Army.
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somewhat suprising, since MorI [7] has given an example of two surfaces
(of infinite genus, of course) which are quasiconformally equivalent and such
that one belongs to O,; and the other does not. Moreover, the results of
AHLFORs and BEURLING enable one to construct two quasiconformally equi-
valent plane domains such that one is of class O, while the other is not.
This shows that the class Ozp is not preserved under quasiconformal equi-
valence.

In section 2 I have included some results on the classes Oy;, and O, which
I believe give better insight into the methods used for the class O in the
first section.

It will be convenient to assume that the functions with which we deal are
complex valued. Consequently, we must define the mixed DIricHLET integral
D(f,g) as [fdf A *dg. We set D(f) = D(f,f). Two functions f and g are
said to be orthogonal if D(f, g) = 0, and a sequence f, will be said to con-
verge to f in the sense of the DiricHLET integral if D(f, — f) - 0.

1. The class Op, and property P. As before we say that a differentiable
function f on W is of class M if df vanishes identically outside some compact
set. Equivalently, f belongs to M if there is a compact region £ such that f
is constant on each component of the complement of 2. At one point in
section 3 we shall find it convenient to assume that M contains in addition
to the differentiable functions also functions which have generalized square
integrable derivatives in the sense of Frigpricas. This extra generality poses
no essential difficulties, and in general we shall ignore it where it is not relevant.

Let M denote those functions on W which have a finite DIRICHLET integral
and are such that for each &> 0 there is a function ¢ in M such that

D(f — g) < e. Note that the harmonic functions in M form the space HM
of harmonic measures in the sense of AHLFORS [3]. We begin with the following
lemma, which is contained implicitly in [3]:

Lemma 1. On an arbitrary RieMANN surface the spaces M and FD are
the orthogonal complements of each other in the space D of all functions on
W with a finite DIRICHLET integral.

Proof. Let ueD, and suppose D(u,f)==0 forall feM. Since M con-
tains all smooth functions which vanish outside a compact set, « must be
harmonic by the WeYL lemma. We must show that *du is semi-exact. Let
C be a dividing cycle on W. Then there is & domain R consisting of a finite
number of annuli such that the sum of the inner boundaries is homologous
to C. Let f be a smooth function which is identically constant in the comple-
ment of R and increases from zero to one in each annulus as we go from the
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inner boundary to the outer. Then fe M, and 0=D(f, u)=f[df A *du=[*du.
¢

Thus *du is semi-exact. But this implies that *du is semi-exact, proving
that the orthogonal complement of M is contained in FD.

On the other hand, suppose that fe M and we F. Let 2 be a compact
region bounded by smooth JORDAN curves such that f is constant in each
component of the complement of £2. Let I" be the boundary of 2, and I’ the
boundaries of the components of the complement of £. Then I'= ylrl},
and f is constant on each I';. Thus

D(f, w) = ffdf A *du-j‘f*du-ch*dﬁ:O,

since each I is a dividing cycle and *du is semi-exact. Thus M is orthogonal
to F.D, and the orthogonal complement of M contains FD.
Thus F.D is the orthogonal complement of M. Since M is the closure of

M with respect to the DIRICHLET integral, we see that M and FD are ortho-
gonal complements of one another, proving the lemma.

We say that a Rieman~ surface has property P if M=D, ieif every
function with a finite DIRICHLET integral can be approximated arbitrarily
well in the sense of the DIrICHLET integral by functions in M. The following
proposition is an immediate consequence of our lemma:

Proposition 1. A Riemann surface W is of class Opp if and only if it has
property P.

By a semi-exact differential we mean a closed differential whose periods
around each dividing cycle is zero. Proposition 2 expresses a useful integration
formula for semi-exact differentials on a surface of class Opp. For the proof
we shall need the following lemma, whose elementary proof we omit:

Lemma 2. On the RiEMANN surface W let 2 be a compact region (i.e.
connected open set with compact closure) whose boundary I' consists of a
finite number of smooth JoRDAN curves, and let a be a closed differential
defined in a neighborhood of I" and satisfying j' a = 0. Then we can extend
« to be a closed differential in all of 2.

Proposition 2. Let O be an open set with a compact closure on a RIEMANN
surface W of class Op,. Let the boundary I' of O consist of a finite number
of smooth JorpaN curves. Let f be a smooth function with a finite DIrIcHLET

integral in the complement O of 0 and « a semi-exact differential which is
continuous and square integrable in O. Then

def/\a=—r§fa-
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Proof. Since o is semi-exact, its integral around the boundary of each
component of 0 vanishes, and so we may extend « by lemma 2 to be a closed
square integrable differential on all of W. Let us also extend f to be a smooth
function on all of W. Then [fa = {fdf A « by STORES’ theorem, and our

I 0

proposition is equivalent to proving that f{fdf A « = 0.
W

Let g be a function in M, and let 2 be a compact region containing 0 and
bounded by a finite number of smooth JorRDAN curves such that g is constant
on each component of £2. Then ¢ is a constant ¢; on the boundary C; of a
component of 2, and

[{dg No=ffdg o= Ze,fa=0,
2

Ci
gince o is semi-exact in O.

Thus (fdgAoa=0 for each ge M. Since W eOpp, there is a geM
w
such that D(f — g) < ¢?, and we have

H;gdeal =|{fdf —gne|<e|l ||
where || «||2 = ffaxa. Since ¢ is arbitrary, we have [f{df A « = 0, proving
4
the proposition.

2. The classes Oy, and O,. We establish in this section some analogues for
Oyp and O, surfaces of the two propositions in the last section. The results
derived here are fairly well known, but we include them for comparison. Let
K be the class of functions which vanish outside & compact set, and denote?)

by K those functions f such that for each ¢ > 0, there is & g e K such that
D(f — g) <e. An immediate consequence of the WEYL lemma is the follow-
ing lemma:

Lemma 3. On an arbitrary RIEmMANN surface the space K and the space
H D of harmonic functions with a finite DIRICHLET integral are the orthogonal
complements of one another in the space D.

We say that a RIEMANN surface has property P, if K = D, i.e. if every
function with a finite DIRICHLET integral can be approximated in the sense
of the DIrIcHLET integral by a function in K. We say that W e O, if the
space H D contains only constants. Lemma 3 implies the following proposition
which is analogous to Proposition 1:

%) This space K differs slightly from the one introduced in [14], since we make no provision
here for the exclusion of the constants. The space K as defined here always includes the constants.
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Proposition 3. A Riemann surface W is of class Oy if and only if it has
property P,.

We denote by O the class of parabolic RIEMANN surfaces. There are various
equivalent definitions of parabolic surfaces (cf.[10] or [13]). Parabolic sur-
faces are characterized by the following property which we may use here as
a definition: The RiemaNN surface W is parabolic if and only if there is a
compact region 2 c W such that every function which is harmonic and has
a finite DIRICHLET integral in the complement of Q and which vanishes on
the boundary of © vanishes identically. Let K (£2) denote the class of functions
which vanish outside some compact set and which also vanish on 2. Let

K () denote the closure of K(2) in the sense of the DiricHLET integral.
Then we have easily the following lemma :

Lemma 4. The space K (2) and the space of functions in Q which are har-
monic and have a finite DIRICHLET integral and which vanish on the boundary
of 2 are the orthogonal complements of one another in the space of all func-
tions in £ which have a finite DIRICHLET integral and vanish on the boundary
of 2.

We say that W has the property P, () if all functions in the complement
of 2 which have a finite DIRICHLET integral and which vanish on the boundary

of 2 belong to K(£2). If W has the property P, (f2) for some compact
region £2, then clearly it has the property P, ({2,) for each compact region
£2, which either contains cr is contained in Q. Hence the property P,, does
not depend on the region £2 chosen, and we indicate it simply by P,,. Lemma 4
implies the following proposition:

Proposition 4. A RIEMANN surface is parabolic if and only if it has the pro-
perty P,,.

Proposition 6. Let W be a parabolic RIEMANN surface, and O an open set
whose closure is compact and whose boundary [I" consists of a finite number
of smooth JORDAN curves. Let f be a smooth function defined on the comple-

ment O of O and having a finite DirICHLET integral. Let o be a closed
differential which is continuous and square integrable over O. Then

ffo=—[fdf Ao
r 0
Proof. Let 2 be a compact region containing 0, and let the boundary of

£ be C. Then
[to =+ 053 o= o+ (fdf n
] g
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by Stokrs’ theorem, and so it suffices to prove that
Jfo= —ffdf A .
4 o

Since this equality holds for functions which vanish outside some compact
set, and every f differs from one which vanishes on C by a function which
vanishes outside a compact set, we see that it suffices to consider the case in
which f is identically zero on C. Since W is parabolic, it has property P,,(£2),
and each f which vanishes on C and has a finite DIRICHLET integral can be
approximated by functions g which also vanish outside compact sets. For
these ¢ we have [{dg A a =0 by StokEs’ theorem, whence [[df A a =0,
proving the proposition.

It should also be noted that the proposition also holds under the hypothesis
that W e Og, if we require o to satisfy fa = 0.

r

3. Properties of the ideal boundary and behavior under gquasiconformal
mapping. We say that two RiEManN surfaces W and W' are quasiconformally
equivalent if there is a one-to-one quasiconformal mapping ¢ of W onto W'.
We use here only the following property of quasiconformal mappings:

Lemma 5. Let ¢ be a quasiconformal mapping of W onto W’. Then the
adjoint mapping takes the space of functions with a finit> DIRICHLET integral
on W' onto the space of functions with a finite DIRICHLET integral on W,
and we have 1

7 PW) < D(uog) < KD(u).

For differentiable mappings this lemma follows directly from the definition
of quasiconformality. For general quasiconformal mappings it is easily estab-
lished using generalized derivatives (cf. [6] and [8]).

Using this lemma we see that the adjoint mapping ¢* defined by ¢*(u) =
% o@ maps the space M(W') onto M (W) and that if every function on W’
with a finite DIRICHLET integral can be approximated in the sense of the
DiricHLET integral on W’ by a function in M (W’) then every function W
with a finite DIRICHLET integral can be approximated in the sense of the
DiricHLET integral on W by a function in M (W). Thus if W' has property
P, 50 does W. This implies by Proposition 1 that if W' eOp, then W e Opp.
Using a similar argument involving the properties P, and P,,, we have the
following theorem:

Theorem 1. The classes Ogp, Ogp, and Oy are preserved under quasicon-
formal equivalence.
This property for Oy is due to PrLUGER [11]. For Ogjp see [15]. Mori [7]
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has given an example which shows that the classes 0,5 and 0,;, are not pre-
served under quasiconformal equivalence. The behavior of Opp under quasi-
conformal mapping remains open.

Following Anrrors [1], we say that two RIEMANN surfaces W and W’
have the same ideal boundary if there are open sets O ¢ W and O' ¢ W'

with compact closures such that W~ 0O and W' ~ O are conformally
equivalent. A property of RIEMANN surfaces is said to be a property of the
ideal boundary if whenever two surfaces have the same ideal boundary either
both possess the property or else neither possesses it. We shall show that the
property of belonging to the class Opgj, is a property of the ideal boundary.
Let O be an open set on W with a compact closure and bounded by a finite
number of smooth JorRDAN curves. We shall say that property I holds for O
if the conclusion of Proposition 2 holds for every f and « satisfying the hypo-
thesis of the proposition. Thus Proposition 2 says that property I holds for
every O on W if W is of class Oy . Suppose, on the other hand, that property
I holds for some O on W. Then if u e FD, we have xdu semi-exact, and so

ffdu*du = — fu*xdu
0
= — [fduxdu .
0

Thus D(u) = 0, and % is a constant, whence W e Og,. Suppose now that

W and W' are such that W ~ 0 and W' ~0' are conformally equivalent.
Then if W e Ogp,, property I must hold on W for O. Since this is in reality

a property of W ~ O, it must hold on W’ for O'. Thus W' eOgp, and we
have shown that the property of belonging to the class Opp is a property of
the ideal boundary. A similar argument shows that the properties of belonging
to Og and Og;, are properties of the ideal boundary (cf. [13]). Thus we have
the following proposition:

Proposition 6. The properties of belonging to the classes Opy, Ogp and
Oy are all properties of the ideal boundary.

4. Planar surfaces and function-theoretic nullsets. We shall refer to sur-
faces of genus zero (i. e. surfaces on which every cycle is a dividing cycle) as
planar surfaces. According to the KoEBz uniformization theorem, each planar
surface is conformally equivalent to a domain in the complex plane, and we
shall often find it convenient to speak of properties of the complementary
set of the plane domain. Throughout this section we shall use £ to denote a
compact set in the plane whose complement is connected. We shall call £
an AD {(or A B) nullset if some open set O containing E has the property
that each function f which is analytic in O ~ E and has a finite DIRICHLET
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integral in O ~ E (or which is bounded in O ~ E) may be extended to E
in such a manner that it is analytic in O. Note that if this property holds for
some open set containing E then it holds for each larger open set containing
E, and as a consequence of Proposition 7 it holds for every open set containing
E if it holds for the complex sphere. Thus the property of being an A D or
A B nullset does not depend on the open set O used in its definition.

These nullsets have been extensively studied by AnvLrors and BEURLING
(4] and by Sario [16] and [17]. We give here a few elementary properties
which will be useful in the sequel. The following lemma plays a fundamental
role in our treatment:

Lemma 6. Let Z be a compact set in the complex sphere S, and let O be
an open set containing E. Then each analytic function f in O ~ E can be

expressed as f=f, — f,, where f, is analytic in O and f{, is analytic in
S~E.

Proof. Let O, be an open set containing E, whose closure is contained in
0, and whose boundary I' consists of a finite number of smooth JorpaN
curves. Define

1 10
"2-757 —c__z dé. ZEOl
fi(z) = 1 T £(0)
27l7: C—ch+f(z) ZGONOIs
and r
1 (&)
9723 ‘/‘f-:bzdc—ﬂf(z) ZGOINE
fa(2) = . r £
2mfc__zd¢ 2eS~0,.
r

We see that the functions f, and f, are independent of the choice of I"in virtue
of the CAvcHY integral theorem. Thus f, and f, can be defined on I' so that
they are analytic across I', and we see that f, is analytic in O and f, is analytic
in S~ K. Since f = f; — f,, the lemma is established.

If f has a finite DIrRICHLET integral in O ~ E, we see that f, has a finite
DiricHLET integral in O and f, has a finite DIRICHLET integral in § ~ K.
Similarly, if f is bounded, then so are f; and f,.

If E is such that the complement of E in S is of class O,;, and if f has a
finite DIRICHLET integral in O ~ E, then f, has a finite DIRICHLET integral
over 8§ ~ E, and so must be constant. Hence f differs from f, by a constant
and therefore admits of an analytic extension to all of O. Consequently £ is
an 4 D nullset. But if E is an 4 D nullset and f an analytic functionin § ~ &
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with a finite DIRICHLET integral, then f can be extended to be analytic in all
of § and so must be constant. Thus we have shown that £ is an 4 D nullset
if and only if its complement is of class O,;. Since a similar consideration
applies to bounded functions, we have the following proposition [4]:

Proposition 7. A compact set £ in the complex sphere is an 4D (or 4 B)
nullset if and only if its complement is of class O, (or O,z).

Let E be a compact set on the sphere. A point p of E is said to belong to
the A D kernel of E if there is an analytic function defined in the complement
of E in some neighborhood of p which has a finite DIrRICHLET integral and
which is singular at p, i. e. admits of no extension which is analytic at p.
One sees that the A D kernel of E is a perfect set contained in £ and is empty
if and only if E is an 4 D nullset. Moreover, the intersection of each open disk
with K is either empty or else is not an 4.D nullset. Thus if ¥ is not an AD
nullset, we can express K as the union of N disjoint closed sets none of which
is an AD nullset. Since similar considerations apply for the class of A B
functions, we have the following lemma:

Lemma 7. Let E be a compact set in the plane which is not an 4 D (or A B)
nullset. Then for each integer N, we may express K as the union of N disjoint
closed sets none of which is an A D (or 4 B) nullset.

b. RIEMANN surfaces of finite genus. We say that a Riemanwy surface W
has finite genus if there are a finite number of cycles C,,..., C, such that
each cycle on W which does not intersect any of the C, is a dividing cycle.

Let 2 be a compact region containing the C,. Then Qisa planar surface and
8o is conformally equivalent to a plane domain G. The boundary contours
of 2 correspond to a finite number of boundary continua I7,...,I, of @,
and we may choose G (by performing an auxiliary conformal mapping, if
necessary) so that these continua are simple analytic curves. Call the union of
these continua I'. Then W can be constructed by means of a suitable identi-
fication between the points of I" and the boundary of 2. Let G, be that com-
ponent; of the complement of I" which contains @. Then G, is a domain bounded
by a finite number of JORDAN curves, and if we make our previous identifica-
tion of these curves with the boundary of £2, we obtain a compact RIEMANN
surface W, which contains W as a subdomain. If we attach to G the components
of the complement of I which do not contain @, we obtain a planar surface
which has the same ideal boundary as W in the sense of AmLFoRs. We have
thus established the following lemma:
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Lemma 8. Every Riemanx surface of finite genus is conformally equivalent
to a subregion of a compact RIEMANN surface. For every RIEMaNN surface
of finite genus there is a planar surface with the same ideal boundary.

Since a plane domain is of class O, or Oy if and only if its complement
has capacity zero [9], and the properties of belonging to the class O, or Oy,
are properties of the ideal boundary, we have the following corollary, where
we make use of the inclusion Oy c Ogzp c Opp:

Corollary. For a Riemany surface of finite genus the classes Oy, Opgg,
and Oy, coincide and are characterized as those surfaces which are obtained
from compact surfaces by the removal of a set of capacity zero.

The principal goal of this section is to show that a similar situation holds
for RiemaNN surfaces of finite genus of class O, and O, namely that these
surfaces are obtained from compact surfaces by the removal of an 4D or
A B nullset. This result, and lemma 7 as well, seems to be a part of the folk-
lore of open RiEMANN surfaces, but since I have not seen a proof, I include
one here for completeness.

Unfortunately, lemma 6 becomes false if we replace S by a compact surface
of positive genus. Hence we begin by constructing an analogue of lemma 6.
Let W be a compact RIEMANN surface and £ a region on W. Let f be a func-
tion on £, and define the differential 5f to be —Zri: dz in terms of a local
uniformizer z. We say that the function f is semi-analytic if of is equal in
2 to the conjugate of an everywhere analytic differential on W. Since the

analytic functions on Q are characterized by df = O, we see that the ana-
lytic functions are semi-analytic. Since the LAPLACE operator can be expressed

as , we see that the semi-analytic functions are harmonic in .

2

‘owm
On the compact surface W, let G(p, py; ¢, ¢,) be the fundamental potential,
i. e. that function of p which is harmonic except at ¢ and g, where it has the
singularities — log | z(p) — z(g)| and log | z(p) — 2(g,) |, respectively, and
which is normalized by G(p,, Po; 2,9) = 0. Then G(p, 9,9, =
G(q, qy; P, Py}, and, in its dependence on ¢, @,G is an analytic differential
except at p and p,, where it has simple poles with residues -+ 4 and — §.
Moreover, 5,, 9,@ 1is, in its dependence on p, the conjugate of an everywhere
analytic differential on W. With these preliminaries we are able to prove the
following lemma:

Lemma 9. Let W be a compact RIEMANN surface and E a closed subset of
W. Let O be an open set containing ¥ and f an analytic function in O ~ E.
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Then we may express f as f = f, — f,, where }, is semi-analytic in O and f,

semi-analytic in W ~ K.

Proof. Let O, be on open set containing E whose closure is contained in O
and whose boundary I" consists of a finite number of smooth JorRDAN curves.

Let p, be a point in W ~ O, and write G(p, q) for G(p, py; ¢, q,). Define

_y%{ff(q)aqa(p’ Q) peOl
filp) = . r
— [ 1@)3.G(p.9) + f(p) PO ~O,
;lfff(fﬁaaG(p,q) —fp) PO, ~E
f2(p) = . r
= [1@266.9 peW D,
r

It follows from the CavucHY theorem that the definitions of f, and f, are
independent of the choice of I', (i. e. of 0,) and 8o they can be defined on I'

so that they are smooth in O and W ~ E, respectively. Since 5]‘ =0, we
have 5f1 == %ji(q) 5,, 9,G. But 5,aqG' is, in its dependence on p, the con-
r

jugate of an everywhere analytic differential on W. Thus 5,‘1 is also the con-
jugate of an everywhere analytic differential on W, and so f, is semi-analytic
in Q. Similarly, f, is semi-analyticin W ~ E.

Corollary. The functions f, and f, in lemma 9 can be taken to be analytic
if and only if for some (and hence for every) curve I" which separates £ from
the complement of O, we have [fa =0 for every differential a which is
everywhere analytic on W. r

Proof. If [fo = 0 for every analytic «, then the functions f, and f, con-
r

structed in the proof of lemma 9 are actually analytic, since 5,, 9,G is an

analytic differential in ¢. If on the other hand we can choose f, and f, to be

analytic, then [f o = 0 by applying the CaucHY theorem to the open set
r

O, while ff,a = 0 by applying the CavcHY theorem to W ~ E. Thus
r
ffa = 0, proving the corollary.

r
Since the definition we gave in the last section for £ to be an 4D or AB
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nullset depends only on the relation of E to a neighborhood of E, it carries
over unchanged to sets £ on a compact RIEMANN surface. We formulate the
following theorem :

Theorem 2. For Rremany surfaces of finite genus the classes O,y and Opy
cotncide and consist of those surfaces which are obtained by deleting an AD
nullset from a compact surface. Similarly, the classes O,z and Og;, coincide for
surfaces of finite genus and consist of precisely those surfaces which are obtained
by deleting an A B nullset from a compact surface.

Prool. Tt is trivial that surfaces obtained by deleting an 4 D (or 4 B) null-
set from a compact surface are of class O, {or O,g). Suppose that £ is an
A D nullset, and that A is a function of class FD in W ~ E. Let u be the
real part of 2 and let £2 be a region which contains £ and has the property
that each cycle in £ divides on W ~ E. The existence of such a domain
follows from the fact that we can find a compact set in W ~ E which carries
a basis for the non-dividing cycles of W ~ E. The fact that *du is semi-
exact implies that » is the real part of an analytic function f in Q@ ~E.
Since the DIrICHLET integral of f is twice that of u, f has a finite DIRICHLET
integral and hence is regular on E. Thus u is regular on £ and so must be
constant, since it is harmonic on all of W. Similarly, the imaginary part of
h is constant, and W ~ E is of class Opp.

Let E be an 4 B nullset on W and £ as before. Let & be of class F B in
W ~ E, and let u be the real part of k. Then as before u is the real part
of a function f which is analytic in 2 ~ E. If m is a bound for «, then the
function (f — 2m)~! is a bounded analytic function in 2 ~ E and so must
be regular on E. Thus w is regular on E and therefore constant, since it is
everywhere harmonic. Similarly, the imaginary part of » is constant, and
W ~E is of class Opp.

This shows that surfaces obtained by removing an 4D (or 4 B) nullset
from a compact surface are of class Oz, (or Ogg). Since Opy c 0,5 and
Ogp © O,p, our theorem will be proved if we show that every surface of
finite genus of class O,; (or O,p) is obtained by removing an 4D (or A B)
null set from a compact surface.

Suppose that we have a surface of finite genus of class O,;,. Then by
lemma 8 it can be obtained from a compact surface W by the deletion of a
closed set . Let W have genus g, and suppose that  is not an 4 D nullset.
Then by lemma 7 we can find g + 1 disjoint closed subsets E,,..., E,,,
of B, none of which is an 4 D nullset. Let f, be a function which is analytic
and has a finite DIRICHLET integral in some neighborhood £, of E, but
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which is not regular on E,. By lemma 9 we can find a function %, which is
semi-analytic in W ~ E, and which differes from f, by a function which
is semi-analytic in a neighborhood of E,. Thus k, has a finite DIRICHLET
integral in W ~ E, and can not be extended to a harmonic function in all
of ©,, since such an extension would give us a harmonic extension of f, to
all of Q,, and this harmonic function would be analytic in £2,, since it is
analyticin 2, ~ E.

The number of everywhere analytic differentials on W is g. Hence there
are constants ¢,,...,¢,,.,, not all zero, such that, if we set h = Zc¢ h,,

then oh =0, i.e. h is analytic. If ¢, £ 0, then A does not admit a har-
monic extension to E,, since A, does not and the functions &,, j # &k, are
harmonic on Z,. Thus % is & non-constant analytic function with a finite
DiricHLET integral in W ~ £, and so W ~ E is not of class O,;. This
shows that if W eO,,, then E is an 4D nullset. A similar proof applies
to the 4 B case, proving the theorem.

Since the class Oy, is preserved under quasiconformal mappings, we obtain
as an immediate corollary the following theorem:

Theorem 3. For RIEMANN surfaces of finite genus the class O,y is preserved
under quasiconformal equivalence.

Mori [7] has given an example which shows that the above theorem is
false if one omits the hypothesis that the surfaces are of finite genus. Since
Opp 18 always preserved under quasiconformal equivalence, and one of the
two surfaces of MorI is not of class O, , it tollows that the other surface
belongs to O,; but not to Opp. In the next section we show that even for
planar surfaces the class Opp = O, is not preserved under quasiconformal
equivalence.

6. A counterexample. Arrrors and BEURLING [5] have constructed an
example of a mapping ¢ of the unit disk onto itself which is quasiconformal
and which is not absolutely continuous on the circumference. Consequently,
@ must take a closed set E, of zero linear measure on the circumference into
a closed set K, of positive linear measure. Extend ¢ by reflection to be a
mapping of the full RieMaNN sphere 8 onto itself. As a result of AHLFORS [2],
this extended ¢ is again quasiconformal. Thus the planar RIEMANN surfaces
S~E,  and S~ E, are quasiconformally equivalent. But the first is of
class O,; while the second is not, since a necessary and sufficient condition
that a closed subset of the unit circumference be an A B nullset is that it
have linear measure zero [4].
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7. A criterion of the SARI0-PFLUGER type for the class Oy;,. Let W be an
open RIEMANN surface and do = u(z) | dz| a conformal metric on W whose
curvature is non-positive as in [10] section 10.106, and let g(p) denote the
distance to a point p from a fixed point p,. We assume further that g, << o
has the property that for g,<<p,, the set of p such that o(p) <p, is compact.

Then the “circles” p(p) = ¢ consist in general of a finite number of closed
curves. Let these curves be grouped into sets I'; such that each set I'; is the

relative boundary of a component of {p: o(p)>o}. Set A(p) = max § do.
i Iy
Since each I'; is a dividing cycle on W, and consequently f xdy = 0 for

each u ¢ F, an immediate modification of PFLUGER’s proof [12] of the
Sar10-PFLUGER criterion for O, gives us the following proposition (cf. also
[16] and [10]):

Proposition 8. A sufficient condition that W ¢ Oy, is the divergence of

the integral o

do
A(g)
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Added in proof (October 26, 1959): After the submission of this paper 1
have been informed that K. Omkawa has previously demonstrated the in-
variance under quasiconformal mappings of planar surfaces of class O,.
This proof occurs in an article in Japanese entitled “Some properties of quasi-
conformal mappings” Sugaku, 9 (1957), 13-14. The proof of O1kawa depends
on several deep results including: STREBEL’s result on the extension of quasi-
conformal mappings to A D nullsets; the AHLFORS-BEURLING [4] characteriza-
tion of a 4 D nullset as a closed set such that every conformal image its com-
plement has complementary area zero; the theorem of BERs [6] that a quasi-
conformal mapping carries sets of zero area into sets of zero area.
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