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in the neighbourhood of an isolated singularity 

by OLI~ L~HTO 

1 .  I n t r o d u c t i o n  

1. This paper deals primarily with the behaviour of meromorphic functions 
/(z) in the neighbourhood of an isolated essential singularity. In a joint paper 
[4] K. I. Vn~TANEN and I introduced the spherical derivative 

I I ' ( z )  l 
e ( / ( z ) )  - 1 + I I ( z ) I  ~ 

as a natural measure for the growth of / (z )  near the singularity. We proved 
that  if �91 is meromorphic in the neighbourhood of the singularity z ~- a, 
an absolute constant k > 0 exists such that  

l i m ] z - -  a l O(f(z)) >~ k .  (1.1) 
z - - ~ a  

We found later that  k > �89 ; a proof to this effect was reproduced in the 
survey lecture [2]. This numerical estimate of k became interesting as it 
appeared that  k = �89 is the best possible value in (1.1): there do exist mero- 
morphic functions /(z) for which 

l i m l z - a l ~ ( / ( z ) )  = �89 
z - - ~  t i  

This result will be established in Theorem 1 below. 

(1.2) 

2. For meromorphic functions f(z) omitting at least one value in a neigh- 
bourhood of the singularity z = a,  we have always 

l i m  I z - -  a l q ( f ( z ) )  = o o ~  
z - - . ) . r  

In  particular, this is true for regular functions (f (z) # oo). One might think 
that  in this case, the slowest possible growth for Q (/(z)) would occur for 
functions t (z) growing slowly in the classical sense, i. e. for • (z) of  order zero 
and with simple zeros very thinly distributed. This, however, is not the case: 
it will be shown (Theorem 2) that,  on the contrary, for such functions ~ (/(z)) 
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is always of  fair ly rapid  growth  at  the  zeros of ] (z). This admits  interest ing 
conclusions regarding the  dis t r ibut ion of values of such funct ions (Theorem 4). 

3. In  [4], par t icu lar  a t t en t ion  was devoted  to the  class of meromorphic  
functions for which 

t z - - a ] ~ ( ] ( z ) )  = 0 ( 1 ) .  

I t  appeared  t ha t  these funct ions are identical  with funct ions weakly normal in 
a v ic in i ty  of  z = a .  This class also coincides with the  funct ions exceptional 
in the  sense of JULIA. This la t te r  resul t  was discovered a l ready b y  MALTY [5], 
a fact  which was un fo r tuna te ly  overlooked in [4]. 

Hence,  JULIA's well-known modification of PICARD'S Theorem can be s ta ted  
as follows: I f  

l i m l z  --  a I ~(f(z)) = oo ,  (1.3) 
z - - ~  a 

there  exists a sequence of circular discs C v : ] z --  z~ ] < s I z~ --  a I, lim z~ = a ,  
s > 0 arbi t rar i ly  small, such t h a t  ] (z) takes all values, except  perhaps  two, 
in the  union of eve ry  infinite subsequence of the  discs C, .  

In  this paper,  we shall show tha t  quite a simple reasoning yields the  following 
best  possible improvement  of JuLIA's Theorem:  Le t  h(r) be an a rb i t r a ry  
funct ion tending to zero with the  posit ive variable r .  I f  

l imh( I z  v -  al)e(l(zv)  ) = oo,  

t hen  and only t he n  PICARD'S Theorem holds in the  union of every  infinite 
subsequence of  the  discs Cv : I z - -  zv I < sh(Iz~ --  al)  with a rb i t ra r i ly  small 
posit ive s 1). 

Hence,  the  more rapid is the  maximal  growth of the  spherical der iva t ive  
the  smaller is the  point  set in which PICARD'S Theorem a l ready  holds, and 
vice versa. The  above-ment ioned  regular  funct ions wi th  a v e ry  small charac- 
terist ic funct ion  bu t  with a large spherical der iva t ive  at  cer ta in  points show 
t h a t  it is in this connect ion essential  to character ize  the  growth  of  [(z) by  
means of  the  spherical der iva t ive  ~ (l(z)) i tself and  no t  b y  in tegra ted  mean 
values of  e (f (z)) (characterist ic  funct ion,  spherical area of  cer ta in  maps,  etc.) 
as it  is cus tomary  in the  classical theory .  

We conclude the  paper  b y  cer ta in  remarks  on the  existence of  a JuHA 
radius for  funct ions meromorphic  in the uni t  disc, which sharpen and com- 
plete a previous resul t  of  CONSTA~TI~ESCU [1]. 

a) This result sharpens a recent generalization of JULIA's Theorem by CONSTANTINESCU [1]. 
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2. Growth of the spherical derivative 

4. As regards the  growth  of  the  spherical  derivat ive,  we shall now prove 

Theorem 1. Let  / (z)  be meromorphic in  a neighbourhood o/ the essential 
s ingulari ty  z ------ a .  Then  

l i m l z - a I ~ ( f ( z ) )  ~ �89 (2.1) 
g *'--~ a 

Equal i t y  ho lds /or  the WEn~RSTRASSian products 

/ (z)  ----- I1 z - -  a - -  a v , 
z - - a + a  v 

where the numbers  a~ satis]y the condit ion I a~+l [ ~ o(Ia~]). 

Proo]: For  simplicity,  we assume tha t  a -~ 0, and recall first how the  
inequal i ty  (2.1) can be established. 

P u t  F ( z )  -~ [ ( z ) [ ( ze  i~ and choose 0 so t h a t  F (z )  is singular a t  z ----- 0; 
all values of  v~ with one possible except ion  do for this purpose.  B y  WEIER- 
STBASS' Theorem,  there  corresponds to  eve ry  e > 0 a sequence of points  z~, 
converging towards  z = 0, such t ha t  ] F(z~) + 1 [ < e. The  points  /(z~) 
and /(zve i~ lie " a lmos t "  d iametr ica l ly  opposite on the  RIEMANN sphere, and  
hence the  spherical length of the  image of  [ z { ~- f z, { b y  /(z) is grea ter  
t h a n  ~ - -  O(e), where 6 ( e ) - + 0  as e - * 0 .  On the  o ther  hand,  this length  
is a t  most  equal  to 2~]  z, [ max  Q(f(z)) ,  and (2.1) follows2). 

[zl=lzvl 
In  order  to prove  the  la t te r  pa r t  of  the  Theorem we const ruct  a convergent  

WEIE~STRASSian produc t  

](z) ~ - / ~  z - - a ~  , (2.2) 
�9 =o z + a~ 

where a v > O ,  a ~ > a v + l ,  l i m a v - ~ O .  For  this funct ion,  / ( - - z ) :  1//(z) so 
t ha t  e ( f ( - - z ) )  -~ ~(1/](z) )  -~ ~ ( ] ( z ) ) .  Hence,  in es t imat ing Q(/ ( z ) ) ,  we m a y  
assume tha t  Re  {z) ~ 0. 

Different iat ion yields 

I / (z)  I 2a ,  I 
e ( / ( z ) )  - -  1 + [ / ( z )  l 2 Z z ~ _ a ~  [" (2.3) 

*) The reasoning applies also to functions ](z), quasiconformal in a neighbourhood of the 
singularity z = 0. If [a, b] denotes the chordal distance of a and b on the RIEMANN sphere, the 
result can be expressed as follows: 

lira (max [/(zl),/(z,)]) = 1 . 
r-4o Iz, l=[z,[ =r 
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For Re {z} _>-- 0, 

I f ( z ) [  <~ z - - a  v < 1 v =  O ,  1 2 . . . .  ( 2  4 )  
- -  z ~ a  v - -  ' ' " 

Because x(1 + x2) -1 is increasing for 0 < x < 1, we get from (2.3), by 
replacing /(z) by the linear majorants in (2.4), 

g / ,  

e( l (~))  < v I g~ = ~ "  Iz + a ,  2 D 

Let us now suppose that  

av+ , = O(av) . 
I f  a,+ 1 < ] z I g a , ,  it then follows readily that  

1 + o (1) Q(/(~)) < 

(2.5) 

+ av (2.6) 
2 [ z [  ,~=,~ +~ I z [2 + a~ " 

Further, by (2.5), 

n - 1 av  0 ( a n - 1  
V 12 2 - -  \ a 2 _ 1  _.~ i z 12 7" [z + a ,  

and hence, 
n-1 av 0(1) o(1) 

Similarly, 

v ,:~ ,e _ _ 0 (  12an+ 2a 2 ) = o [ a . + ~ _  o(1) 
, ~ l z  + a ,  Iz + ,,+2 \ t z l  ~] f z l  " 

Hence, by (2.6), (2.7) and (2.8), 

(2.7) 

(2.8) 

I z l e ( / ( z ) )  _ 1 §  o (1 ) .  

Thus we have equality in (2.1) for the functions (2.2) whenever a~+ 1 = o (av); 
the assumptions a = 0 and a v real and positive are clearly unessential. 

The above extremal functions satisfying (2.1) as an equality are mere- 
morphic for all z # 0. Hence, there exist extremal functions meromorphic 
in every neighbourhood of the singularity. 

5. Let us study the growth of e (l(z)) for certain meromorphic and entire 
functions. In order to have the situation most familiar in the classical theory 
we assume, for the moment, that  l(z) is meromorphie in the whole plane 
except for the singularity at  z = ~ .  The inequality (2.1) then becomes 

l i m [ z l ~ ( l ( z ) )  > �89 
Z ---)- O0 
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I t  is known ([4], [3]) t ha t  

[ z ] e ( f ( z ) ) - ~ O ( 1 )  (2.9) 

is equivalent  to f (z) being an  exceptional funct ion in the  sense of  JULIA. The 
relat ion (2.9) implies t h a t  these functions have a slowly growing character- 
istic funct ion:  T(r) -~ O(log2r), and  tha t  the  distr ibution of values is quite 
symmetric .  Funct ions  omit t ing a value cannot be exceptional,  and it follows, 
therefore, t ha t  for all entire functions 

l im [z ]~(l(z))  = oo.  
Z - - ~ o o  

We have, for instance,  max  Q (cos z�89 ~-~ �89 ] z ] -�89 max ~ (e z~) ~ ~/2 ] z [~-1, 
etc. 

One might  th ink  t h a t  ~ ([(z)) would be of quite a slow growth for entire 
functions of order zero wi th  simple zeros very  th in ly  distributed.  Such func- 
tions possess a slowly growing characteristic funct ion and  max imum modulus. 
Oddly enough,  almost  the opposite is t rue:  For  such entire functions,  e ([ (z)) 
is always fairly large a t  the zeros of the  function.  

We introduce the cus tomary  counting funct ion N (r, a) and  establish the 
following result. 

o o  

T h e o r e m  2. Let f(z) = H(1 -- z/av) 

be an entire function the zeros of which satisfy the conditions 

] an+i/an I ~ q > 1 . (2.10) 
Then 

l i m i a  v ] e -~(ta~l'~ e(f(a~)) > 0 .  (2.11) 
v - - ~  oo  

Proof: At a zero z ~ an we have 

l an I ~ (f(an)) --- I I  [ 1 --  an/a v ]. 
v~n 

This can be wri t ten  in the form 

[an ]~(f(an)) ---- / /  ] an - : - I  H T l - - a v / a ~ l  H ] l - - a J a ~ ] .  
y ~ n  ~v 

B y  the condition (2.10) we thus  have 

l a~ I ~ (f(an)) >= C, 11 ] a~/a v I , 

where C~ ~ 11(1 -- q-V)2 > 0. Since 
1 

log H l an/a~ I = N ( l a ,  [, 0 ) ,  
t ~ n  

the  Theorem follows. 
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6. I t  is clear that  if a function ] (z) takes a value a infinitely often, then 

l im  N (r , a) _ oo .  
�9 -~ ~ l og  r 

Hence, we obtain the following less accurate but  more striking version of 
Theorem 2 : 

For  the ]unctions o] Theorem 2, 

lim I av I - ' q ( ] ( a v ) )  : c~ 
v - - ~  o o  

]or arbitrari ly  large p .  

Hence, for the functions of Theorem 2, which from the classical point of 
view represent non-rational functions of slowest possible growth, the maximal 
growth of the spherical derivative is more rapid than e. g. for any function 
e *n n - - ~ l  2, , �9 o .  

In certain cases it is possible to state (2. l l )  in a more explicit form. For 
instance, if ] a,,+l/a n I ~ q ~ 1, it follows by  an easy computation that  

log I a v  [ 
l ime(/(av))  [av I-- 21ogq : > 0 .  

y - - ~  o o  

In contrast to the JvLIA exceptional functions, the distribution of values 
of the entire functions of Theorem 2 is quite "non-uniform". I f  the zeros 
z ~ av are isolated with small circles, the function tends uniformly to oo out- 
side the discs, whereas the behaviour inside the discs is quite different: for 
large v, the set of values in the disc covers the whole RIEMA~ sphere, ex- 
cept perhaps for two small islands. (See Theorem 4 below.) 

3.  S p h e r i c a l  d e r i v a t i v e  a n d  I~CARD'S T h e o r e m  

7. In  this section we shall prove, in exact terms, that  if [(z) is of rapid 
spherical growth in the neighbourhood of the isolated singularity, then ] (z) 
takes all values, with two possible exceptions, already in a small point set, 
and conversely. We shall say in the following that  :PICARD'S Theorem holds 
f o r / ( z )  in a point set E if /(z) omits at most two values in E.  

The proof is based on the following simple remark (cf. also [1], [3]). Let 
us consider all meromorphic functions ](z), omitting three given values in a 
simply-connected domain G. Denoting by  da the element of length in the 
hyperbolic metric of G and fixing a point z in G, we obviously have at this 

point Q ([(z)) [ d z l  
~- -C<  oo,  (3.1) sup da(z)  
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since the existence of the extremal functions is clear by virtue of ScHw~z 's  
Lemma. Now (3.1) is a conformal invariant, and it follows immediately that  
(3.1) holds with the same constant C, irrespective of the simply-connected 
domain G and the special point z. 

Denoting by h (r) an arbitrary positive function of the positive variable r, 
with the property h (r) = O (r) as r -~ 0, we shall now prove 

Theorem 3. Let f ( z )  be meromorphic in a neiffhbourhood of the singularity 
z --~ a. I ] / o r  a sequence z v, lira z v = a, 

lim h(t % -- a l )e( f ( zv)  ) = oo, (3.2) 

PICARD'S Theorem holds/or  /(z) in the union o / a n y  in/inite subsequence o/ the 
discs 

Cv: I z - -  zv I < eh(]zv --  al) (3.3) 
[or each ~ > O. 

Conversely, i / there exist discs (3.3) such that/or any e > 0 PIC~D'S Theorem 
oo 

is valid in every U Cv~, then (3.2) is true. 
1 

Proo/: Supposing first tha t  (3.2) holds, we make the antithesis that  [(z) 
omits three values in a set U Cv~. Afortiori ,  /(z) omits the same three values 
in every Cvi. Hence, by (3.1), 

e(/(z)) [ dz I ~ Cda 

in Cv~. I f  especially z ~ z~i ( =  centre of Cvi ), da / Idz l  equals the reciprocal 
value of the radius of Cv~ so that  

h ( l z v ,  - < < o o .  

This, however, contradicts the assumption (3.2), and the sufficiency of the 
condition (3.2) is proved. 

In order to prove the necessity of (3.2), we suppose that  for any e > 0, 
PICARD'S Theorem is valid in the union of every infinite subsequence of the 
discs (3.3). 

Let us consider the function family 

Iv(w) = l(z  § wh( I zv  - -  a l ) )  , v -~  1 , 2  . . . .  ( 3 . 4 )  

By hypothesis, the functions of any infinite subsequence {/v~(w)} take all 
values, with two possible exceptions, in every disc [w I <  e. The family 
{]v(w)} cannot, therefore, be normal at w = 0. Hence, by MA:aTY'S condition, 

lim ~ (fv(0)) = cr (3.5) 
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By (3.4), 

q(f~(0) )  = e ( / ( z ~ ) ) h ( I z v  - al )  

so t h a t  (3.5) is equiva len t  to  (3.2).  The  T h e o r e m  is thus  comple te ly  proved.  
I f  the  s ingular i ty  lies a t  infinity,  we mus t  pu t  in (3.2) and  (3.3) a ~ 0. 

The  par t i cu la r  choice h (r) ~- r t hen  yields JVLLCS Theorem.  

8. CONSTA:NTINESCU ([1], Theo rem  5) p roved  the  va l id i ty  of  PICA~D'S Theo-  
r em in t3 Cv~ under  a condi t ion which in our  nota t ions  assumes the  fo rm 

l imh([z- -a l ) I~  I ~2(/(z))dz~) � 8 9 1 7 6 1 7 6  ( z - - a = r e ' ~  �9 (3.6) 
z --~ a - a  I = c o n s  . 

This is somet imes  a m u c h  s t ronger  r equ i remen t  t h a n  (3.2).  Fo r  instance,  for 
the  funct ion 

/ ( z )  = ~ (1 - ze-V) 
Y = I  

we have  the  s t r iking difference 

( .[ e2(/(z))dO)�89 = O(1/V~r) 
Izl =r 

as r -+ oo, while (cf. n ~ 6) 

q ( / ( r ) )  ~: o (r ,ogr al2) . 

9. Apply ing  Theo r em  3 to the  ent i re  funct ions of  T h e o r e m  2, s lowly growing 
in t he  classical sense, we see t h a t  in the  ne ighbourhood  of  the  zeros the  func- 
t ions are e x t r e m e l y  ac t ive  as regards  t ak ing  m a n y  values.  

T h e o r e m  4. Let the zeros of the entire function 

f(z) ~- //(1 - -  z/a~) 

satisfy the conditions fan+i/an I >= q > 1. Then PIc~a~D'S Theorem holds in 
the union of every infinite subsequence of the discs 

Cv: t z - - a ~ l < ~ l a ~ l  -v 

where p may be chosen arbitrarily large. 

4. F u n c t i o n s  in the  uni t  disc 

10. Le t  /(z) be  meromorph ic  in the  uni t  disc I z l < 1. I f  f(z) omi ts  a t  
mos t  two values  in the  angle t~ - -  s < arg z < z~ -~ s,  no m a t t e r  how small  
e > 0 has been  chosen, arg z ~ v ~ is called a JUL][A radius. CONSTANTr~ESCU 
[1] p roved  t h a t  f(z) possesses a JVL~A radius  if 
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lira (1 - -  r )A(r )  = oo,  (4.1) 
!" --)-  1 

where A (r) denotes  the  spherical area of  the  map  of ] z I < r b y  f (z). 
I t  seems to  be difficult to  give a necessary and sufficient metr ical  condit ion 

for the  existence of  a JULIA radius.  However ,  simple necessary and sufficient 
conditions, in te rms of  the  spherical derivat ive,  can be given which are not  
ve ry  far  apa r t  f rom each other .  

Theorem 5. A function f (z) ,  meromorphic in ] z ] < 1, possesses a JULIA 
radius i/ f(z) is not normal, i. e. if  

lim (1 -- ]z  ])~(f(z)) = ooa). (4.2) 
t z T ~ l  

This  condition is not necessary; on the other hand, the condition 

lira (1 - -  ] z I)e(f(z))  > 0 (4.3) 
Izt-~l 

is not sufficient. 
A necessary condi t ion/or  the existence of a JULIA radius is that 

lim ~ ( 1  - -  l z t ) Q ( / ( z ) )  = oo ( 4 . 4 )  
Izl-~l 

/or all positive functions q~ with the property 

dr 
;o < oo. (4.5) 

Proof: Le t  us first suppose t h a t  f(z) does not  possess any  JULIA radius.  
Then  every  radius arg z----z9 has an angular  ne ighbourhood Ao: 
0 - -  ~a < arg z < v~ -F ea in which f (z) omits three  values. Thus  f (z) is normal  
in eve ry  Aa, and  b y  HEIN~-BOl~.L'S covering theorem,  f(z) is normal  in the  
whole uni t  disc. Hence  (4.2) implies the  existence of  a JULIA radius.  

In  order  to  prove t h a t  (4.2) is not  a necessary condition,  let us consider an 
a rb i t r a ry  angle ~ -  e < arg z < ~ q -E .  I f  f(z) omits  th ree  values in this 
angle, then  b y  a well-known theorem,  it possesses radial  limits on a set dense 
on the  arc (e i(a-*), ei(a+*)). Hence,  for a funct ion wi th  no radial  limits on 
]z I = 1, eve ry  radius is a JULIA radius.  

Now it was proved  in [3] (p. 58) t ha t  there  exist  normal  funct ions wi th  no 
radial  limits on ]z] ---- 1. In  o ther  words, there  exist  funct ions for which 
(1 --  Iz l )0(f(z))  = 0(1)  and  for which every  radius is a JULIA radius.  Hence,  
(4.2) is cer ta inly  not  a necessary condit ion.  

s) The condition (4. I) implies o f  c o u r s e  (4.2). 
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For  the elliptic modular  funct ion the condit ion (4.3) is fulfilled. On the 

other  hand, since this funct ion omits three values in the whole disc I zl < 1, 
no radius is a JvLIx  radius. Thus (4.3) is not  a sufficient condition. 

The necessity of the condit ion (4.3) can be proved by  a direct computa t ion.  
I f  (4.4) does not  hold, we get the est imate 

('-, Idrl  

for the  spherical distance of the  points ] ( r l e  i~ and ](r~eia) .  B y  (4.5), this 

imphes the  existence of continuous radial limits on [ z l :  1. Hence,  f(z) 
cannot  possess any  JULIA radius. 
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