The spherical derivative of meromorphic functions
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1. Introduction

1. This paper deals primarily with the behaviour of meromorphic functions
f(2z) in the neighbourhood of an isolated essential singularity. Ina joint paper
4] K. I. VIRTANEN and I introduced the spherical derivative

[F'(2) |
L+ 1@ [?

as a natural measure for the growth of f(z) near the singularity. We proved
that if f(z) is meromorphic in the neighbourhood of the singularity z = a,
an absolute constant %k > 0 exists such that

e(f(2) =

lim|z—ale(f(2) = k. (1.1)
Z2> 4
We found later that & = }; a proof to this effect was reproduced in the
survey lecture [2]. This numerical estimate of k¥ became interesting as it
appeared that k& = } is the best possible value in (1.1): there do exist mero-
morphic functions f(2) for which

lim |z —a|o(f(z)) = }. (1.2)

zZ—>a

This result will be established in Theorem 1 below.

2. For meromorphic functions f(z) omitting at least one value in a neigh-
bourhood of the singularity z = @, we have always

lim|z—a|eg(f(z)) = oo.

zZ2—>>a
In particular, this is true for regular functions (f(z) # oo). One might think
that in this case, the slowest possible growth for o (f(z)) would occur for
functions f(z) growing slowly in the classical sense, i. e. for f(z) of order zero
and with simple zeros very thinly distributed. This, however, is not the case:
it will be shown (Theorem 2) that, on the contrary, for such functions g (f(2))
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is always of fairly rapid growth at the zeros of f(z). This admits interesting
conclusions regarding the distribution of values of such functions (Theorem 4).

3. In [4], particular attention was devoted to the class of meromorphic
functions for which

lz—ale(f(z)) =0(1).

It appeared that these functions are identical with functions weakly normal in
a vicinity of z == a. This class also coincides with the functions exceptional
in the sense of JuLIA. This latter result was discovered already by Marty [5],
a fact which was unfortunately overlooked in [4].

Hence, Juria’s well-known modification of PicARD’s Theorem can be stated
as follows: If

lim |z —a] o(f()) = oo, (1.3)
Z—>a
there exists a sequence of circulardises C,: |z — 2, | <e&|2z, —a|, limz, = a,
g > 0 arbitrarily small, such that f(z) takes all values, except perhaps two,
in the union of every infinite subsequence of the dises C,.
In this paper, we shall show that quite a simple reasoning yields the following
best possible improvement of Juria’s Theorem: Let A(r) be an arbitrary
function tending to zero with the positive variable r. If

lim & (|2, — al)e(f(z,)) = oo,

¥ —> o0
then and only then Picarp’s Theorem holds in the union of every infinite
subsequence of the dises C,: |z — z,| < eh(]z, — a|) with arbitrarily small
positive &1).

Hence, the more rapid is the maximal growth of the spherical derivative
the smaller is the point set in which P1icarp’s Theorem already holds, and
vice versa. The above-mentioned regular functions with a very small charac-
teristic function but with a large spherical derivative at certain points show
that it is in this connection essential to characterize the growth of f(z) by
means of the spherical derivative g(f(z)) itself and not by integrated mean
values of ¢ (f(z)) (characteristic function, spherical area of certain maps, etc.)
as it is customary in the classical theory.

We conclude the paper by certain remarks on the existence of a JULIA
radius for functions meromorphic in the unit disc, which sharpen and com-
plete a previous result of CoNsTANTINESCU [1].

1) This result sharpens a recent generalization of Juria’s Theorem by ConstanTINESCU [1].
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2. Growth of the spherical derivative

4. As regards the growth of the spherical derivative, we shall now prove

Theorem 1. Let f(z) be meromorphic in a meighbourhood of the essential
singularity z = a. Then

limjz —alo(f(z) = 4. (2.1)

zZ—>a

Equality holds for the WEIERSTRASS1an products

z—a—a,
fley =10 " ata,
where the numbers a,, satisfy the condition | a,.,| = o(la,]).

Proof: For simplicity, we assume that a = 0, and recall first how the
inequality (2.1) can be established.

Put F(z) = f(2)f(ze"®) and choose & so that F(z) is singular at z = 0;
all values of & with one possible exception do for this purpose. By WEIER-
sTRASS’ Theorem, there corresponds to every &> 0 a sequence of points z,,
converging towards z = 0, such that | F'(z,) + 1| <e. The points f(z,)
and f(z,e'?) lie “almost’ diametrically opposite on the RIEMANN sphere, and
hence the spherical length of the image of |z| =2, by f(2) is greater
than n — 6(¢), where 6(z) -0 as & — 0. On the other hand, this length
is at most equal to 2x|z2,| max p(f(z)), and (2.1) follows?).

[zl =lav]
In order to prove the latter part of the Theorem we construct a convergent

WExIBRSTRASSIan product
© z—a

fa) =11 22 (2.2)

v=Oz+ay ’

where a,>0, a,> a,,,, lima, = 0. For this function, f(—=z) = 1/f(2) so
that o (f(—2)) = 0(1/f(2)) = o(f(2)). Hence, in estimating o(f(z)), we may
assume that Re {z} = 0.

Differentiation yields

| f(2) |
o(f(2) = 1+ fz) 2

2a,
2 — a?

> (2.3)

#) The reasoning applies also to functions f(z), quasiconformal in a neighbourhood of the
singularity z = 0. If {a, b] denotes the chordal distance of a and b on the RIEMANN sphere, the
result can be expressed as follows:

lim (max  [f(z1), f(z)]) = 1.

T>0 {z|=|z]=r
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For Re {z} = 0,

z2—a,
24 a,
Because z(1 + 2?)-! is increasing for 0 <z <1, we get from (2.3), by
replacing f(z) by the linear majorants in (2.4),

[fz) ] = <1, »=0,1,2,... (2.4)

av
o(f(z) = Em-

Let us now suppose that

@1 = 0(a,) . (2.5)
If a,.,<]|z|=a,, it then follows readily that
1+ o0(l) a
e e 2.6
Further, by (2.5),
S 0<_“ni_)
T[22+ a} an+ |z [
and hence,
e 0Q1) (1)
TTert @ a1l (27
Similarly,
® a a a, o(l)
E——J~f=0-——ﬂL*~=0<“ﬂ: . 2.8
Srrre -0 (prta) o) - e

Hence, by (2.6), (2.7) and (2.8),
lz|e(f(z)) =4+ o0(1).

Thus we have equality in (2.1) for the functions (2.2) whenever a,,, = o(a,);
the assumptions @ = 0 and a, real and positive are clearly unessential.

The above extremal functions satisfying (2.1) as an equality are mero-
morphic for all z 52 0. Hence, there exist extremal functions meromorphic
in every neighbourhood of the singularity.

5. Let us study the growth of ¢ (f(2)) for certain meromorphic and entire
functions. In order to have the situation most familiar in the classical theory
we assume, for the moment, that f(z) is meromorphic in the whole plane
except for the singularity at z = co. The inequality (2.1) then becomes

lim|z|o(fz) 2 %.

Z > o0
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It is known ({4], {3]) that

lz]e(f(2) =0() (2.9)
is equivalent to f(z) being an exceptional function in the sense of Juria. The
relation (2.9) implies that these functions have a slowly growing character-
istic function: T'(r) = O(log?r), and that the distribution of values is quite
symmetric. Functions omitting a value cannot be exceptional, and it follows,
therefore, that for all entire functions

lim | 2| o(f(2)) = oo

We have, for instance, max g(cos z'%) ~3|z I—%, max g(e?") ~ %/, |z |1,
ete.

One might think that o (f(z)) would be of quite a slow growth for entire
functions of order zero with simple zeros very thinly distributed. Such func-
tions possess a slowly growing characteristic function and maximum modulus.
Oddly enough, almost the opposite is true: For such entire functions, g (f(z))
is always fairly large at the zeros of the function.

We introduce the customary counting function N (r, a) and establish the
following result.

Theorem 2. Let fe) = (1 — zfa)

y=1

be an entire function the zeros of which satisfy the conditions

| Gppafan | 20> 1. (2.10)
Then
lim | a, | e~ V19 o (f(a,)) > 0. (2.11)

Y>> OO0

Proof: At a zero z = a, we have
‘anig(f(an)) = g l 1 —an/avl .
v n
This can be written in the form
a’ﬂ
la,le(f(e) = 1T | =
y<n v
By the condition (2.10) we thus have
la, | e(fla.)) = Cp 1T |ayfa,l,
- -] <N
where C, = II(1 — ¢~")2 > 0. Since
1
log II |a,ja,|= N(a,l|,0),

r<<m

| I |1-—a)fa,| II |1—a,a,].
r<n r>n

the Theorem follows.
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6. It is clear that if a function f(z) takes a value a infinitely often, then

m N9 _
— logr

v ~> 00

Hence, we obtain the following less accurate but more striking version of
Theorem 2:

For the functions of Theorem 2,

lim | a, |7 (f(a,)) = oo
for arbitrarily large p.

Hence, for the functions of Theorem 2, which from the classical point of
view represent non-rational functions of slowest possible growth, the maximal
growth of the spherical derivative is more rapid than e. g. for any function
et n=1,2, ...

In certain cases it is possible to state (2.11) in a more explicit form. For

instance, if | a,,,/a,| = ¢ > 1, it follows by an easy computation that
. _ loglav|
lim o(f(a,)) | @, |7 "2lga >0.

In contrast to the JurLia exceptional functions, the distribution of values
of the entire functions of Theorem 2 is quite “non-uniform”. If the zeros
2 = a, are isolated with small circles, the function tends uniformly to oo out-
side the discs, whereas the behaviour inside the discs is quite different: for
large v, the set of values in the disc covers the whole RIEMANN sphere, ex-
cept perhaps for two small islands. (See Theorem 4 below.)

3. Spherieal derivative and Picarpn’s Theorem

7. In this section we shall prove, in exact terms, that if f(z) is of rapid
spherical growth in the neighbourhood of the isolated singularity, then f(z)
takes all values, with two possible exceptions, already in a small point set,
and conversely. We shall say in the following that Prcarp’s Theorem holds
for f(2) in a point set F if f(z) omits at most two values in K.

The proof is based on the following simple remark (cf. also [1], [3]). Let
us consider all meromorphic functions f(z), omitting three given values in a
simply-connected domain G. Denoting by do the element of length in the
hyperbolic metric of G and fixing a point z in @, we obviously have at this

point o(f(2) | dz |
P o (2)

su =0C< oo, (3.1)
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since the existence of the extremal functions is clear by virtue of ScHWARZ’s
Lemma. Now (3.1) is a conformal invariant, and it follows immediately that
(3.1) holds with the same constant C, irrespective of the simply-connected
domain @ and the special point z.

Denoting by k(r) an arbitrary positive function of the positive variable 7,
with the property k(r) = O(r) as r — 0, we shall now prove

Theorem 3. Let f(z) be meromorphic in a neighbourhood of the singularity
z = a. If for a sequence z,, limz, = a,
lim &(jz, — af)e(f(z,)) = oo, (3.2)
PicarD’s Theorem holds for f(z) in the union of any infinite subsequence of the
discs
C,: |z—z2,|<eh(z, —al) (3.3)
for each &> 0.
Conversely, if there exist discs (3.3) such that for any ¢ > 0 PICARD’s Theorem

then (3.2) is true.

is valid in every U C,,,
1

Proof: Supposing first that (3.2) holds, we make the antithesis that f(z)
omits three values in a set U C,,. A fortiori, f(z) omits the same three values
in every C,,. Hence, by (3.1),

e(f(2)) [dz| = Cdo

in C,,. If especially z = z,, (= centre of (,,), do/|dz| equals the reciprocal
value of the radius of C,, so that

h(lzvi - al)@(f(zv,)) = 0/8 < oo.

This, however, contradicts the assumption (3.2), and the sufficiency of the
condition (3.2) is proved.

In order to prove the necessity of (3.2), we suppose that for any &> 0,
Proarp’s Theorem is valid in the union of every infinite subsequence of the
discs (3.3).

Let us consider the function family

fv(w):/(zv_{—wh(lzv—‘al))’ v=1,2,... (34)

By hypothesis, the functions of any infinite subsequence {f,,(w)} take all
values, with two possible exceptions, in every disc |[w | <e. The family
{f,(w)} cannot, therefore, be normal at w = 0. Hence, by MARTY’s condition,
lim g (f,(0)) = oo . (3.5)

y—> o©
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By (3.4),
e(f,(0) = e(fz,) (2, — al)

so that (3.5) is equivalent to (3.2). The Theorem is thus completely proved.
If the singularity lies at infinity, we must put in (3.2) and (3.3) a = 0.
The particular choice Ah(r) = r then yields Juria’s Theorem.

8. CoNsTANTINESCU ([1], Theorem 5) proved the validity of Prcarp’s Theo-
rem in U C,, under & condition which in our notations assumes the form

lTn—lh(|z—al)( f gz(f(z))dﬁ)%z o (z—a=re?). (3.6)
z2->a | z—a | = const.
This is sometimes a much stronger requirement than (3.2). For instance, for

the function

flz) = 1T (1 — ze™)

y =

[N

we have the striking difference
(J etenant=oavn
as r — oo, while (cf. n° 6)

o (f(r)) # o(rioevr=alz),

9. Applying Theorem 3 to the entire functions of Theorem 2, slowly growing
in the classical sense, we see that in the neighbourhood of the zeros the func-
tions are extremely active as regards taking many values.

Theorem 4. Let the zeros of the entire function

fe) = II(1 — 2fa,)

v=1
satisfy the conditions |a, . /a,| = q> 1. Then PicArRD’s Theorem holds in
the union of every infinite subsequence of the discs
Ov: }z—av1<$|av|*p

where p may be chosen arbitrarily large.

4. Functions in the unit dise

10. Let f(z) be meromorphic in the unit disc |z | < 1. If f(2) omits at
most two values in the angle ¢ — ¢ < argz <¥ -+ ¢, no matter how small
&€ > 0 has been chosen, arg z = & is called a JuLiA radius. CONSTANTINESCU
[1] proved that f(2) possesses a JULIA radius if
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lim (1 — r)A(r) = oo, (4.1)
r—>1
where A (r) denotes the spherical area of the map of |z | <r by f(z).

It seems to be difficult to give a necessary and sufficient metrical condition
for the existence of a Juria radius. However, simple necessary and sufficient
conditions, in terms of the spherical derivative, can be given which are not
very far apart from each other.

Theorem 5. A4 function f(z), meromorphic in |z | <1, possesses a JULIA
radius if f(z) is not normal, 1. e. if

lim (1 — | z|)o(f(2)) = oo ?). (4.2)

lz]—>1

This condition s not necessary,; on the other hand, the condition

1@(1 — |z De(f(2) >0 (4.3)
fzj—=>1
is not sufficient.

A necessary condition for the existence of a JULIA radius ts that

lim ¢(1 — [z])e (f(2)) = oo (4.4)

|zj—1

for all positive functions ¢ with the property

dr
5e < (4.5

Proof: Let us first suppose that f(z) does not possess any JuLia radius.
Then every radius arg z=%¢ has an angular neighbourhood A4,:
¥ — g5 < arg z <& + &, in which f(z) omits three values. Thus f(z) is normal
in every 4,, and by HEINE-BOREL’s covering theorem, f(z) is normal in the
whole unit disc. Hence (4.2) implies the existence of a Juria radius.

In order to prove that (4.2) is not & necessary condition, let us consider an
arbitrary angle ¢ — ¢ <argz <@ - . If f(2) omits three values in this
angle, then by a well-known theorem, it possesses radial limits on a set dense
on the arc (e!®~9, ¢i®+9)  Hence, for a function with no radial limits on
lz| = 1, every radius is a Juria radius.

Now it was proved in [3] (p. 58) that there exist normal functions with no
radial limits on |2] = 1. In other words, there exist functions for which
(1 —]2))e(f(z)) = O(1) and for which every radius is a JuLia radius. Hence,
(4.2) is certainly not a necessary condition.

%) The condition (4.1) implies of course (4.2).
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For the elliptic modular function the condition (4.3) is fulfilled. On the
other hand, since this function omits three values in the whole disc |z] <1,
no radius is a JULiA radius. Thus (4.3) is not a sufficient condition.

The necessity of the condition (4.3) can be proved by a direct computation.
If (4.4) does not hold, we get the estimate

s(f(r, e®), f(ryet?)) = 0(" M)

LAY (p(r)
for the spherical distance of the points f(r,e®) and f(r,e®). By (4.5), this
implies the existence of continuous radial limits on |z| = 1. Hence, f(2)

cannot possess any JULIA radius.
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