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The Kervaire Invariant of Hypersurfaces 

in Complex Projective Spaces 

SHIGEYUKI MORITA 1) 

1. Introduction 

In [4], E. H. Brown and F. Peterson defined the Kervaire invariant for (8k+2)-  
dimensional spin manifolds. The purpose of this paper is to calculate it for certain 
manifolds. Precisely, let V + (d) be a non-singular hypersurface of degree d in complex 
projective (n+ 1)-space CP "+1. Assume that n = 1 (mod4) (n#  1) and d is odd. Then 
V n (d) is an (8k + 2)-dimensional differentiable manifold with a spin structure. More- 
over, since V"(d) is simply connected, spin structure is unique up to homotopy. 
Therefore we have a well defined Kervaire invariant K(V"(d))eZ/2. The result is 

THEOREM (1.1). 

{~ if d =  __+ l (mod 8) 
K(V"(d))= if d =-1-3 (mod8).  

A motivation for this calculation arose when the author was trying to understand 
the topology of some well-known complex manifolds, such as the hypersurfaces in 
complex projective spaces. For example, if n is odd, then it can be shown that (cf. 
Remark (5.1)), there are closed simply connected almost smooth manifold (by an 
almost smooth manifold, we mean a PL manifold M with a smooth structure on 
M-pt.) M2n(d) and ( n - l )  connected almost smooth manifold N 2n (d) such that 

H,(M2"(d); Z ) - - H ,  (CP"; Z). H,(N2~(d); Z)-&-H,((b./2) Snx S'; Z) 

and 

V n (d) ~ M 2" (d) # N 2" (d)  (1.2) 
PL 

where b~ is the nth Betti number of V" (d) and ~ PL denotes a PL homeomorphism. 
(The cohomology ring of M 2" (d) is not isomorphic to that of CP" if d #  1. M 2n (d) is 
only a rational homotopy CPn.) 

1) This work was supported in part by the National Science Foundation grant MPS72-05055 A02. 



4 0 4  SHIGEYUKI MORITA 

It might be natural to ask whether (1.2) holds in the differentiable category or not. 
The answer to this question is given by 

THEOREM (1.3) (i) I f  n = 1, 3 or 7, then there is a closed simply connected dif- 
ferentiable manifoM M 2" (d) such that 

H, (M 2" (d); Z) ~ H,  (CP"; Z) and V" (d)'~ M 2" (d) # (b,,/2) S" • S" 
( ~ stands for a diffeomorphism). 

(ii) l f  n is odd (~  1, 3, 7) and d ~ +_ 3 (mod 8), then there is a closed simply connected 
differentiable manifold M 2, (d) such that 

H, (M 2" (d); Z) ~ H, (CP"; Z) and V" (d) ~ m 2" (d) # (b./2) S" x S". 

(iii) l f n - -1  (mod4) (n~ 1) and d=  ___3 (mod8), then there is no such decomposi- 
tion of V" (d). 

Remark (1.4). For the remaining case n = 3  (mod4) (n#3, 7) and d=  +_3 (mod8), 
we can not say anything reflecting the mysterious part of the Kervaire invariant one 
problem. 

The author would like to express his hearty thanks to Professor W. Browder for 
suggesting Theorem (1.1) and to Professor M. Kato for helpful and encouraging dis- 
cussions 1. 

2. Preliminaries on the Topology of V"(d) 

Let V" (d) be a non-singular hypersurface of degree d in complex projective space 
CP" + 1. Since any two non-singular hypersurfaces of the same degree are diffeomorphic, 
to study the topology of them, we may assume that V"(d) is defined by the equa- 
tion d d e Zo+Zl + ".. +z,+l =0,  where [z0, z I ..... z,+l] is the homogeneous coordinate of 
CP "+1. Now let W"(d) be the non-singular affine hypersurface in C "+1 defined by 

+ . . .  1 .  

Then we can consider W" (d) as an open submanifold of  V"(d) by considering 
C "+1 as affine part of CP "+1 defined by z~+ 150. W" (d) is a special type of so-called 
Brieskorn variety and by the works of Brieskorn [3] and Milnor 1"8] the topology of 
it is quite well understood. For example, it has the same homotopy type as the bouquet 
of ( d -  1) "+1 copies of the n-sphere S ~. 

Now let i: W " ( d ) ~  V"(d) be the inclusion. Then we have the following 

x) The main result of this paper has alse been proved by W. Browder and J. Wood [10]. 
(Added in proof.) 
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LEMMA (2.1). (i) l f  n is odd, then 

i.:Hn(W"(d); A ) ~  H.(V"(d); A) 

is surjective. 
(ii) I f  n is even, then 

Cok(i,:U.(W"(d); A)-, H.(V"(d); .4))~-A 

where A is either Z or Z/2. 
Proof. Consider the following exact sequence 

O~ H.+I(V)~ H.+,(V, W)~  H.(W)--+ H . (V )~  H.(V, W)~O, (2.2) 

where the coefficient A is either Z or Z/2 and V (resp. W) stands for V" (d) (resp. 
w"(a)). 

We have only to show that 

{O if n i s o d d  
H. (V, W)= if n is even. 

Let V ' = { [ z  o ..... z.+l]~V"(d); z.+1=0}. Then we have W = V - V ' .  Note also 
that 

V ' =  V"-X (d )= C P"  = {Fz o .... , z.+1] ~ c e " + '  ; z.+~ =0}.  

Let T be the tubular neighborhood of  V' in V. Then, by the excision H.(V, W) 
"~H.(T, OT). By the Lefschetz duality H.(T, OT)_~H"(T). Since T is homotopy 
equivalent to V', we have H"(T)_~H"(V'). But, it is well-known, by the Lefschetz 
hyperplane section theorem (cf. [1]), that 

{O if n i s o d d  
H " ( V ' ) =  if n is even. 

Therefore we have 

H.(V, W ) = { A  if n i s o d d  
if n is even. 

This proves Lemma (2.1). 
Let K. (A) = Ker (i,: H n ( W; A) -~ H.  (V; A)). Then we have 

LEMMA (2.3). The natural map K. (Z)-~ K. (Z/Z)/s surjective. 
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Proof This follows from the exact sequence (2.2) and the fact that H . ( W ;  Z), 
H.(V, Z), H.(V, W; Z) have no torsion. 

LEMMA (2.4). 

1 { ( d _ l ) . + 2 _ ( d _ l ) }  

(i) rank H.  (W (d)) = 
1 {(d_  1 ) , + 2 + ( d _ l ) )  + 1 

1 1).+ 1 (ii) rank K , ( Z ) =  ~ /{ (d-1)"+~+(  - ( d - l ) } .  

n: odd 

n: even 

Proof. (i) follows from the Lefschetz hyperplane section theorem ([1]) and the 
formula for the Euler number of  V"(d). (ii) follows from (i) and the exact sequence 
(2.2). 

As we mentioned before, topology of  W" (d) is well-understood. We quote some 
of the results from Hirzebruch and Mayer [6]. 

Let Z/d be the cyclic group of order d and let G=Z/d~3...~Z/d ((n+ 1) copies). 
Let wj e G ( j  = 0 ..... n) be the element corresponding to the generator for thejth factor. 
G acts on Wn(d) as follows. Let ~o~ wk"eG and (Zo ..... zn)~Wn(d). Then 

w~O ... w~-(Zo, ..., z , )=  (r ..., ck.~,) 

where ~ = exp [2ni/d]. 
There is a homology class heH. (W" (d); Z) such that h can be represented by an 

imbedded sphere S"c W"(d) whose normal bundle is isomorphic to the tangent 
bundle �9 (S"). Moreover we have 

THEOREM (2.5). ([6]). 

H,(W"(d); Z)- -Z(O) h. 

Here Z (G) is the group ring of  G and 

z (~) h--_ z (a)/x(a). 

I(G) is the ideal of Z (G) generated by { 1 + w i +... + w~- 1 } j = 0,..., n. 
The intersection numbers can be given as follows. Let 

~ : z ( a ) - , z  
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be an additive homomorphism defined by 

~(1)=-~(Wo... w.)- - ( -1)"(-1)  ~C"-~/2 
e(g)=0 for g~G, g# 1, w o... w. 

and let -:Z(G)~Z(G) be the ring automorphism defined by g~g-~, geG. Let 
r/= (1 - Wo)... (1 - wn)eZ (G). Then we have 

THEOREM (2.6). ([6]). The intersection number of two elements xh, yhe 
Hn(W'(d)) is given by 

xho yh=~( f,x.). 

Here we identify the group H~(W'(d)) with Z(G)h by Theorem (2.5). 

LEMMA (2.7). 

K . ( Z ) =  { x h ~ H , ( W " ( d ) ) ;  wxh= xh(w= Wo... w,)}. 

Proof. Let us define a Z/d action on W" (d) by 

(Zo .... , z,) = ((Zo ..... Cz.), ~ = exp [2~zi/d]. 

Then obviously we have wxh =xh~--~[, (xh) =xh where ~, is the homomorphism on 
the homology induced from the action of ~. Now the action of Z/d on W" (d) can be 
extended to that on V" (d) by 

[Zo . . . . .  z ,+ , ]  = [~Zo .. . .  , ~z,, z,+~]. 

The quotient space of V" (d) with respect to this action can be shown to be CP ~. 
Therefore we have, by a well known theorem (see [2]) 

n.(v"(d): Q)Z/a=H. (OR"; Q)={Q ifif nn isis even.~ (2.8) 

Here the left hand side is the group of invariant homology classes. If n is even 
(n=2m), then H,(V"(d); Q)Z/a is generated by [Vm(d)]~H.(V"(d)), V ' ( d ) =  
= {[Zo,..., z .+ l ]e  V"(d), z , = 0  for i>m}. 

Now let us assume that wxh=xh for an element xh~H.(W). Then we have 
~,(i,(xh))=i,(xh) where i: W ~  V is the inclusion. Therefore i,(xh) is an invariant 
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homology class. By (2.8), we have 

i , (xh)=O if n is  odd i , ( x h ) = a [ V " ( d ) ]  for some a e Q  if n is even. 

But if i ,  (xh) = a [ V m (d)] for a # 0, the it would follow that 

i ,  (xh)o [ V m (d)] = a [- V m (d)]o [ V m (d)] = a d s  O. 

This is a contradiction, since clearly we have 

i , (xh)o[Vm(d)]=O for any xhr  

Therefore we have i ,  (xh)= 0 ~ H. (V" (d); Q). But since H. (V" (d), Z) has no torsion, 
it follows that i ,  (xh)=0. Thus we obtain {xhEH. (W); wxh =xh} c K. (Z). 

Now since both K. (Z) and {xh ~ 11. (W);  wxh = xh} are direct summands of H. (W), 
we have only to show that the ranks of them coincide. Now the action of Z/d on W 
is free and the quotient manifold can naturally be identified with C P " - V " - l ( d ) .  
Therefore we have 

rank {xh ~ H, ( W); wxh = xh} = rank 11. (CP n - V"- 1 (d)). 

The homology exact sequence of the pair (CP", C P " -  V "-1 (d)) yields, 

~'rank H "-1 (V "-1 (d)) if n is odd 
rank H~ ( C P " -  V ~-1 (d))= ( rank  H "-1 (V"-I ( d ) ) -  1 if n is even. 

But this is the same formula for rank Kn (Z) (cf. Lemma (2.4)). 

3. The Kervaire-Milnor Map 

Since W"(d) is a paraUelizable ( n - 1 )  connected 2n-manifold, if n is odd ( n # l ,  
3, 7), we have the Kervaire-Milnor homomorphism (see [71) 

cp:H~ (W) --, Z/2 

which is defined as follows. Let x h ~ H , ( W )  be an element. Then xh can be represented 
by an imbedded sphere S " c  IV. The normal bundle v of this imbedding is either trivial 
or the tangent bundle of the sphere, z (S"). We put 

{0 if v is t r iv ia l  
tp (x) = if v = z (S"). 
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It  is known that the map go is quadratic with respect to the intersection pairing; 
go (x + y)  = go (x) + tp (y)  + x o y (mod 2). 

Obviously, go can be considered as a homomorphism from H,(W; Z/2) to Z/2. 
Now recall that  we have a special element heH,(W).  By a property of  h, we have 

go(h)= t. 
According to Theorem (2.5), we have H,(W)~-Z(G)h.  
Let g6G be any element. Since g acts on W as a diffeomorphism, we should have 

go(gh)= 1 for any g~G. 
Now it is clear that this property together with the quadraticity determine cp 

uniquely on H,(W). Note that one can also define q~ for the cases n =  l, 3 or 7 by the 
above characterization. We have 

L E M M A  (3.1). I f  d is even, 
go(xh:)= 1 (h 2 =h (mod2)) .  

Proof. Put n = 2 k -  1 and 

then there is an element xh2~Kn(Z/2 ) such that 

x h ~  _ _  W2IW21+ I . 
_ > /=0 \ d - 2 = i _ j _ O  

We claim that xh2EKn(Z/2 ) and go(xh2)= 1. To prove xh2~Kn(Z/2), it suffices to 
show that xh6K.(Z). Now we calculate; 

wxh=  1-[ ,,2, ,v:,+l} h. 
l=O \ d - 2 = i = j > O  

But 

i + l  j + l  i j , d - l , , , j  
w2, w2t+l 2 + 2 W21W2I+ 1 vv2l ~v21+ 1 

d--2>=i~j>O d - 2  >i~j>= 1 j=  1 

2 W21W211 j + l ' ~ ( 1 - ~ ' W 2 1 ~ - ' " q - w d l 2 ) ( l " ~ w 2 1 + l ' ~ ' ' " ' ~ ' w d 1 2 1 )  
d - 2 > i ~ _ j ~ l  

Z ' J W2IW21+ 1 �9 
d-2>_i~j>=O 

Here - denotes the congruence modulo the ideal I(G) which is generated by 

n .  

Thus we have wxh = xh. 
By Lemma (2.7), this proves xheK, (Z). Next we calculate go(xh). 

We have 

x h ~ -  2 io Jo , . , i k - lu , Jk - I  h WOW 1 . . .  W n - l r r n  
d -  2~_im~_Jm~_O 

re=O, ..., k-- 1 
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Therefore the number of the monomials in the above expression ofxh is {�89 1)}k. 
On the other hand 

io J o  a ~ , i k -  , , , , J u -  i l ,  , , , i ' o ~ , , J ' o  u , i ' k -  l u , J ' k -  11, 
W o W  1 . . .  r V n _ l ~ y  n t~,o rv 0 rv I . . .  TVn_  1 vv n it. 

- -  o [ , ,+ io - -  i'o,,,Jo--J'o -o~"o "a ... w~ k-'-s'k-' (1 --Wo)... (1 --wn) ) 

1o n . . . . . .  

+1 if t,.-~m, Jr.-Jr.=O or _+1 for all 

= d for at least one m,i=#i"  or J m # f .  
otherwise. 

m 

Therefore the numbers of unordered pair (W/o~176 w~. k-'h, w~~ ~'k-,h) for which 
the intersection number is equal to +__ 1 is 

{+} ( d -  l) ( d -  2)} k. 

Therefore we have 

q~ (xh) = {�89 1)} + {~ ( d -  1) ( d -  2)} k mod2 = ( d -  1)k {((d/2)k + (~ ( d -  2)) k} 
mod2 = 1. 

This proves Lemma (3.1). 
To study W, it is convenient to study the "suspension" of W, denoted by W', 

which is defined by z~ + zaa +... + z. + z.+ 2 = 1. 
We have natural isomorphisms (cf. [6]). 

H,(W; Z)-~H,+I (W'; Z) H,(W; Z/2 ) -H .+ ,  (W'; Z/2). 

Under this isomorphism, the class heH.(W; Z) (resp. h2EHn(W; Z/2)) corre- 
sponds to a class h'eH.+I(W';  Z) (resp. h'2eH.+I(W'; Z/2)). 

LEMMA (3.2) ([6]). The isomorphism 1-1, ( W; Z/2 ) ~- 11, +I ( W' ; Z /2 ) respects the 
bilinear pairing defined by the intersection number mod 2 and therefore induces a qua- 
dratic function qf :H,+I(W'; Z/2)--, Z/2. Moreover q~" is defined by ~'(xhD= 
=�89 (mod2) where xh'2 =xh' (mod2). 

Proof. Calculation shows 

xho yh= xh'o yh' (mod2) 

for any xh, yheH.(W; Z). This proves the former part of the lemma. The latter part 
follows from this and the fact that xh'oxh'= +2 for any X=~o~ 1+*o". 
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LEMMA (3.3). I f  d is odd, then tp(xh2)=O for any xh2~K,(Z/2). 
Proof. Since the natural map K,(Z)~ K,(Z/2) is surjective (Lemma (2.3)), we 

have only to show that q~ =0 on K, (Z). Thus let xh be an element of K, (Z). We have 
wxh=xh. By induction, we obtain wJxh=xh for anyj.  Therefore 

(1 + w+. . .  + w e-l) xh=dxh. 

Since d is odd by the assumption 

tp(xh)=q~(dxh)=~o((1 +w+ ... +w n-l) xh). 

Now we claim that q~((l+w+...+we-:)xh)=O for any xheH,(W). To prove 
this, by Lemma (3.2), it suffices to show that 

(1 + w +  ... +w a-l) xh'o (1 + w +  ... + w a-:) xh'=O (rood4) 

for any xh'EH.+l (W';  Z). Now let us write 

xh'=~ a~rw~h ", K=(ko ..... k,) O~kj<d-2 ,  
K 

W K ko kn 
Wn- . . .  W n �9 

Then we have 

(1 + w +  . . .  + w d - a )  x h ' o  (1 + w +  . . .  + w d-l) xh' 

=~( (1  + w + . . .  + w ~ - ' y  x ~ ( 1 -  ~o) . . .  (l  - w , + , ) )  

= ~ (d(1 + w +  ... + w ~ - ' )  x~(1  - Wo)... (1 - w,+~)) ,  

and 

X X ~  E a K a K  " W K - K ' "  
IK, K" 

Therefore we have only to prove the following. 

(i) e((l+w+...+w e-i) (1-Wo)...  ( 1 -  w.+,))= +4 

(ii) e((1 +w+...+w a-l) ( g + g - l )  ( 1 -  Wo)... (1 -w.+l ) )=O (mod4) 
for any g~G. 

But these two can be checked by a direct calculation. This proves Lemma (3.3). 
In view of this lemma, if dis odd, then q~: H, ( W; Z/2) ~ Z/2 induces a well-defined 

quadratic function ~0:H, (V; Z/2)~ Z/2. On the other hand, if n = 1 (mod4), then E. 
H. Brown and F. Peterson [4] defined a quadratic function ~O:H"(V; Z/2)--.Z/2 
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(with respect to the bilinear pairing defined by the cup product evaluated on the 
fundamental cycle). We have 

PROPOSITION (3.3). ~o and ~ above are dual to each other under the Poincar~ 
duality. 

Proof. It will be indicated in w 5 that there is an almost smooth ( n -  l)-connected 
2n-manifold N 2" (d) and a map f : V" (d) ~ N 2~ (d) such that 

f *  : H" (N  2" (d); Z/2) -~ H" (V" (d); Z/2). 

Then the proposition follows from the naturality of Brown-Peterson's ~ and the 
fact that for almost smooth ( n -  1) connected 2n-manifolds, the Kervaire-Milnor map 
~o and Brown-Peterson's r are dual to each other. 

4. Proof of Theorem (1.1) 

In this section, we prove Theorem (4.1), which is the main result of this paper. By 
virtue of Proposition (3.3), Theorem (1.1) is an immediate consequence of it. 

THEOREM (4.1). Assume that both n and d are odd. Then the Art-Kervaire in- 
variant of the well-defined quadratic function q~: H n ( V ~ (d); Z/2) ~ Z/2 is given by 

{~ if d - + l ( m o d 8 )  
K(Vn(d) )=  if d = _ 3 ( m o d 8 ) .  

To prove this theorem, we have to investigate the manifold W' more carefully. 
Let Z/d be the cyclic group of order d. Then Z/d acts on W' by 

~(Zo ..... z .+ , )=  (~Zo ..... ~z., z.+l), (=exp[2zri/d]. 

Let Z [ l /d]  be the subring of Q consisting of all the rational numbers of the form 
e/d k, e, k~Z.  Then H. + 1 (W' ;  Z [1/d]) is a free Z [ l /d]  module of rank ( d -  1) "+ 1. Let 

(w'; z {x; 

and let v:H.+~ (W';  Z[1/d])-~H.+I (W';  Z[1/d])  be defined by 

It is easy to see that v2= dv and ( .v = v. Let 

Kerr = {xr 1 (W';  Z [ l /d]) ;  vx=0}. 

Then we have 
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LEMMA (4.2). 

413 

(i) H.+x(W'; Z [ 1 / d ] ) ~ - H . + I ( W ' ;  Z[l/d])Z/d$Kerv. 
(ii) IfxeH,,+l (W';  Z[1/d]) z/d, yeKerv,  

then x o y = O. 

Proof. (i) Let x~H.+ l (W';  Z [-I/d]) be any element. Then we have 

x=(1/a) vx + (x- (1 /d)  vx). 

But 

( ,  ( l /d) vx= (l /d) ~,vx= (l /d) vx and v (x - ( l / d )  vx)=vx-(1/d)  v2x=O. 

Thus we have 

(1/d) v x e H , + l ( W ' ; Z [ l / d ] )  z/d and x- (1 /d)  vx~Kerv. 

Now assume xeH,+l (W';  Z [1/d])Z/ac~Kerv. Then ( , x = x  and vx=O. 
Therefore dx=(1 + ~ , +  ,-. +~d,-1) x=vx=O, 
But since H,+I (W' Z [ l /d])  has no d-torsion, it follows that x=O, 
(ii) If  xeH,+l (W';  Z [ l /d])  and yeKerv, then 

dxoy=vxoy=xovy=O. 

Hence xoy=O. This proves Lemma (4.2). 
Now let {el .... , es} be a basis for free Z[1/d]-module Kerr. Let A=(aij) be the 

matrix defined by aij= eioej. Then we claim 

LEMMA (4.3). 

{~ if detA=__+l(mod8) 
K(V"(d))= if de tA= +3 (mod8). 

Proof. First note that the bilinear form on Kerr defined by the intersection number 
is even. Namely xox is divisible by 2 in Z[1/d] for any x~Kerv. Therefore we can 
construct a quadratic function q on 

Ker v | Z/2 ~- (11. + 1 ( W')/H. + I (w')Z/a) | Z/2 
_~ (H,, (W)/H, ( w)Z/a)| ~- (H, ( W)/K, (Z)) |  

'~-H,(V)| Z/Z). 

by q(x)=�89 mod2 for x~Kerv. 
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By I.emma (3.2), this is the same as the quadratic function ~o:H. (V; Z / 2 ) ~  Z/2 
defined in w Then the lemma follows from [6] w 

Now let us extend the basis e 1 ..... es by adding elements f l  ..... f t  (f~eH,+l (W';  
Z [1/d])Z/a) to obtain a basis for H. + 1 (W' ;  Z [ 1/d]). This is possible by Lemma 
(4.2) (i). We know also by Lemma (4.2) that e~ofj=0 for any i andj .  Let B= (b~j) be 
the matrix defined by 

b,l=f~ofj. 

Then the intersection matrix of W' with respect to the basis el ..... es, f~ .... ,ft  is 
given by 

o) 
Let det W' be the determinant of the bilinear form on H ,+I (W' ;  Z)  defined by 

the intersection numbers. Then since el .... , es,f~ .... ,ft is a basis for H, + 1 (W';  Z [1/d]), 
we have 

Idet W'[ = IdetA[" [detBl" d 2a (4.5) 

for some aeZ .  Now let us calculate Idet W'I and IdetB[. First Idet W'I; 

LEMMA (4.6). 

Idet W'I = 2  rank K .  (Z) 

Proof. First we recall the following fact. 
Let  M 4k be a 4k-dimensional oriented compact manifold with boundary. Let 

de tM be defined by the determinant of bilinear forms on H2k (M; Z)/Tor defined by 
the intersection numbers. Then 

Idet M I = # [Cok: H2k (M; Z)/Tor ~ H2k (M, dM; Z)/Tor].  (4.7) 

Here # denotes the order of a group if it is finite and zero if it is infinite. 
In our case, we know by [8], that IdetW'l=#H,(K; Z) where K={zeC"+2;  

d d 2 Zo+'"+z,+z~+l = 0 } n S  2"+a By [6], we have 

# H n ( K ;  Z ) =  I-I (1 +~k~ (k"), ~=exp[2xi[d], j = 0  . . . . .  n. 
l__kj~d-1 
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Now we show 

l~ ( 1 + ~  k~ ... ~k")=2ra"kK"~Z), j = 0 ,  ..., n.  (4.8) 
1 ~ k / ~ d -  1 

To prove this, we use the induction on n. For simplicity, we write fin, J for the left hand 
side of  (4.8). I f  n = 0 ,  we have flO,d=(1 + ( ) . . .  (1 + ( d - l ) .  

But we have 

x d-~ + x ~ - 2  + ... + 1 = ( x - ~ ) . . .  ( x -  ~ - ' ) .  

Substituting x = - 1, we obtain 

(- I) d-' (I +~)... (I + ~d-I)= (_ i)d-i +... + I. 

Since d is odd, we obtain flo,d= 1. This checks the case n = 0 ,  for K o ( Z ) =  {0}. Now 
assume that  (4.8) holds for  n<k,  k>- 1. Let us write flk-,.d formally as 

flk_X,d=(l +()"'. . .( l  +(d) "n 

where 

a i =  # {(k o . . . . .  k , ) ;  ~.kl= j (modd)} .  

Then by the definition of  fig, d, we have 

/~k, ~.pk_l, ~= {(1 + r  (1 + r +... +~ 

But clearly 

a~+. . .+ad=(d--1)  n+l and ( l + ~ ) . . . ( l + ( d ) = 2 .  

Therefore 

f lk,  d f l k _ l , d =  2 (d -1 )n+ l . 

By the induction hypothesis and Lemma  (2.4) (ii), we obtain the required result. This 
proves (4.8) and hence L e m m a  (4.6). Next we calculate detB. 

L E M M A  (4.9). 

det B = 2 'ank K, (Z)d2b+ 1. 

for  some beZ .  
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Proof. The action of Z/d on W' has two fixed points (0, 0,..., 0, ___ 1). Let /4/0 be 
the compact manifold obtained from W' by subtracting an equivariant open tubular 
neighborhood of (0, 0 ..... 0, ___ 1 ) and ~ (here oo is the"point  at infinity"; if W' u { ~ } 
is the one point compactitication of W', the action of Z/d extends to W ' u  {oo}). 
Then Z/d acts on W o freely and OWo=KuSZn+IuS zn+l. The boundary of the 
quotient manifold ff'o = Wo/Z/d is 

O( ff'o)= K/Z/du L1u L2 

where L1 and L2 are lens spaces of type (d; 1 ..... 1). By a standard argument of 
homology for covering spaces, we have an isomorphism 

/-/. +, (Wo; z (if'o; z [1/d]). 

Now since degree of the map W o --* ff'o is d and rank Ha+ 1 (Wo; Z) zla is even, 
we have 

IdetBl=ldetff 'o ld 2b forsome b e Z .  

Now the Cartan-Leray spectral sequence yields 

(i) H,+I (0if'o; Z) is a torsion group 
(ii) H,+I (if'o; Z) is a free abelian group. 

(iii) H,+ 1 (if'o, 0ff'o; Z) is isomorphic to the direct sum of a free abelian group of 

the same rank as H,+I (if'o; Z) and Z/d. 

(iv) H.  (0 ff'o; Z)-~ H. (K; Z)O)Z]d~Z/dO)Z/d. 
(v) Ha(if'o; Z)-~Z/d. 

(vi) The natural map H. (8 if'o; Z)-~ H. (if'o; Z) is surjective. 

From the above data and (4.7), 
Lemma (4.9). 

Proof of Theorem (1.1). 
By Lemma (4.9), we have 

we obtain [det Wol = 2  'a"kg" (Z)d. This proves 

I det B I = 2 rank r .  (Z)d2b + t .  (4.10) 

By (4.5) and Lemma (4.6), we have 

[det A] ]det BId  2a  = 2 rank r , ,  ( Z ) .  (4.11) 
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Combining (4.10) and (4.1t), we obtain 
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[ d e t A l  = d  - 2 ( " +  b ) - I  . 

But since d 2= 1 (mod8) (recall that d is odd), we have IdetA[ ~-d (mod8). Theorem 
(4.1) now follows from this by Lemma (4.3). 

5. Proof  of  Theorem (1.3) 

L e t  e I . . . . .  er, f l ,  ...,f~ be a symplectic basis for H,(V"(d); Z). Thus 

eioej=fiofj=O 

eiofj=fiiy. 

By Lemma (2.11), the map i , :H, (W) ~ 11, (V) is surjective. Therefore, we can choose 
elements e] ..... e',,f; ..... f /  such that i,(e'i)=e i and i , ( f / ) = f i .  Now the Kervaire- 
Milnor map ~0 restricted to the submodule of Hn(W) generated by {e~,f[}i=l ..... , 
gives rise to a well defined Art-Kervaire invariant K defined by 

K = ~ go (e~) q) ( f / )  mod 2. 
i = 1  

By Haefliger's imbedding theorem [5] and Whitney's technique [9], we can imbed a 
plumbed manifold U into W to realize the homology classes e~,f[.  The boundary of 
U is the standard sphere or the Kervaire sphere according as (i) n=  1, 3, 7 or n is 
odd ( #  1, 3, 7) and K = 0  or (ii) n is odd ( #  1, 3, 7) and K =  1 respectively. Now as- 
sume the former. Then 0U is diffeomorphic to the standard sphere. Moreover U is 
diffeomorphic to rS" x S " - b  2". Look at the complement V -  0. Since the boundary 
of this manifold is diffeomorphic to the standard sphere, we can attach a disc D 2" 
along the boundary to obtain a closed differentiable manifold M 2" (d). By the con- 
struction, clearly M is simply connected and H, ( M 2, (d); Z) ~ H,  ( CP"; Z). 

The above argument proves (i) of Theorem (1.3). (The case n = 1 is more or less 
trivial.) We now prove (ii). First assume that d is even. Then according to Lemma 
(3.1), there is an element xh~K.(Z) such that <p(xh)= 1. We change the elements 

e~, f [  as follows: 

if (o (e~) = O, then e"-- e~, if rp (e ; )  = 1 then 

e"=e~+xh, the same for f / .  

Then clearly we have i ,  (e~)= e~, i ,  ( f i " )=f i  and the Kervaire invariant corresponding 
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to e~,f{' is zero. Now if d =  _+ 1 (mod8), then the Kervaire invariant is zero by The- 
orem (4.1). Then the same argument as before proves (ii). 

Next we prove (iii). Assume the contrary. Then as elements of  c~spin aa8k+2 ~ we have 

bn n 
Iv]  = [M] + IS • S"]. 

Therefore 

K (V) = K (M) + ~ K (S n x S ~) = K (M). 
z 

But since H ~ ( M ;  Z/2)=0 ,  we have K ( M ) = 0  and hence K ( V ) = 0 .  This contradicts 
Theorem (4.1). 

Remark  (5.1). The above argument and the generalized Poincar6 conjecture show 
that there are almost smooth manifold M 2n (d) and ( n - 1 )  connected almost smooth 
manifold N 2n (d) such that 

H , ( M 2 n ( d ) ; Z ) ~ - H , ( C p n ; z ) ,  H, (N2n(d);Z)~-H,(b-2n-  S n x S n ; Z )  

and 

V'(d)~ Men(d)#N2n(d). 
P L  

Remark  (5.2). Let Z 2~-3 be the Kervaire sphere of  dimension 2 k -  3. Then the 
above argument shows that there is a compact differentiable manifold M 2~-2 such 
that 

(i) z = a g  
(ii) H .  (M; Z)  ~- H ,  (CP z~-' - ' - D; Z), in particular Hzk-: -1 (M; Z/2) = 0. 

(iii) all the Stiefel Whitney classes of  M vanish. 
This follows from considering the variety V 2 ~ - ' - '  (d) with d = +3  (mod8) and 

the fact that all the Stiefel Whitney classes of  V 2k- ' -  ~ (d) vanish. 
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