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§I. Introduction

In order to discuss the irrationality, the transcendence and the algebraic independence for p—
adic numbers, the first author introduced in two previous papers [1,2] a simple form for p-adic
continued fraction which is called p—adic simple continued fraction by making use of the algebraic
theory of continued fraction in the real field mentioned by Schmidt®), and gave a sufficient
condition for certain p—adic integers which and whose sum, defference, product and quotient are
all p-adic transcendental numbers.

In the present paper we shall apply a technique used in transcendental continued fraction in
the real field by Bundschuh® and a criterion of algebraic independence for .general p-adic
numbers due to Wylegala'®! to generalize the results in [2] to the general case. Furthermore, we
also obtain a sufficient condition of algebraic independence for a system of p-adic simple
continued fractions, and establish the transcendence for the value &7 of power exponent function in
p—adic numbers £ and 1 under some condition by using a theorem on linear forms in logarithms in
the p-adic case due to van der Poorten!®.

For the real case the second author have generalized the results of Bundschuh!! in other

paper [7].

§II. Notations, Definitions and Results

Let Q, R, C denote the fields of rational, real and complex numbers respectively. Let Z
denote the domain of the rational integers, and N the set of the natural numbers. Let p be a fixed
prime number, Q,, represent the field of p-adic numbers, and Z, the ring of the integers of Q,, C,
the completion of the algebraic closure of Q,, A the set. of the p-adic algebraic numbers of C,,.
Write . .

L,={zeC||lz— 1|, <p™V¢~1},
- Oy= {zeC,ll2l, =1} .
The p-adic logarithm function log,z is defined as an analytic function in the form

log,z = ,zl (—1)"—;(2'_' 1y
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which converges in the subdisc of those z in C, with |z — 1|, <1. The p-adic exponential
function expz is defined as the series

2 2"

expz = b
n=0 n!

which converges in {ze C,||z|, < p~*®~ 1}, Finally, we define the power exponent function as
follows
@ 1
) &= exP('I logpg) = Zo 'r;"( logp f)n
where (€L, and neZ,.
" For any { € Q,\{0} we can represent uniquely { as a p-adic simple continued fraction in the
form (see {1,2])

1
C =g + 1 = [CO’ C19C25 "5 Cys '"] (l)
Cy +
Ca + A
4 .
G- ¥ Cy+ -
or ‘
1
{=co+ 1 = [€0,€15€25 "+ €4= 15 {al
g+
Cy + 1
-.+C,|_1 + —

where ¢, are all finite p-adic fractions with 0 Sco<p, 0<c,<p, n>1, and

ICqu = lcnlp =p', €N, n20. (PA]
With these notations and definitions our results read as follows
Theorem 1. Let {, ne€Q,\ {0} with
¢ =[ap,ay,a3,---] and 5 = [b, b, b5, -]
If there exist a real number r with r > 1 and a sequence of real numbers {s,} €[1, )N with
lim s, = 00 such that

1ba- 113" < lanl, < 771 by, @

Jor sufficiently large n, then the numbers & and n are algebraically independent.

Corollary 1. Under the assumption of Theorem 1, all the six numbers &, n, & + n and &n*?
are p-adic transcendental numbers.

Moreover we have

Theorem 2. Let ,eQ,\ {0} with

e = [a, 0,0, -], k=1, -, q.

If there exist a real number r with r > 1 and a sequence of real numbers {s,} €[1, oo)N with
lim s, = o0 such that

L g <X

la®l, < r~Ya®* D, k=191, @

s, .
(fll 1a;*’|,) < ey, )

Sor sufficiently large n, then the numbers &,,---,&, are algebraically independent.
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Theorem 3. Let €U, () L,\ {1} and ne U,. Suppose that they have expansions in p-adic
simple continued fractions
¢ =lao,ay,a3,---] and 5 =[bo,b,,b;,-]
with
log|ad, 10g b,l, = 0 (log min (lays 1l lbysil)  (n— ). ©)
where log x denotes the real logarithm function of x, Then £" is a p—adic transcendental number.

§$III. Lemmas
Let us regard co,c;,¢5,++ in (1) as variables. We define polynomials p,.q, n=
-1,0,1,2,--- by the following recurrence relations:

p—l=1’ Po =Cos Pn= CpPa-1 +Pn—27 n?l,

()
g9-1=0, go=1 gu=cgn-1+gu-2 n21L
It is easy to verify that
&=[Co,cl,-",c,l], n?o.
According to the paper [1] we have
Lemma 1. Let {€Q,\ {0} with { = [co,cl,cz,- ). Then
Iqllp = |cl €2 culpy nz 1,
'pulp = lcolp Icl a2 cllp’ nzl, lf co # 0,
lpl|p = lv ‘Pulp |Cz culps nz2, lf Cop = 0;
and
lqnl;z |cu+1lp_ly n ? 1-
Now we write for n > 1
Mll = max( lpnlp’ |qn|p)s
P,=pM, Q,=q.M
Clearly, we see that M,,P,,Q, are all in N and that
Mu+1 = Mnlcn+1|p-
Suppose that P,,Q,e N with
P, P, p,
2acnPond (PLQ) =1 )

¢ 0 4.
Lemma 2. Let {€Q,\ {0} with { =[co,cy,¢5,::). Then we have for n > 1

W K, = ’ﬁ
anlp
(i) 1Cl, =1Qul, s if co #0.
Proof. By (1) and (2) we see that

[Colp = leolos if ¢ #0,
[Kl, = )
ICI'p Icl|p ’ if Co = 0.
On the other hand, it follows from Lemma 1 that
Pal _ {lco|ps if ¢o #0,
qn |p Icllp-l; if Cg = 0.

Thus the property (i) is proved. To show (ii) it is sufficient to note that
1Qul, = |0..|p = |Co|;1, if co#0
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which is from the equality (12) in [1]. 0
Lemma 3. Let [eQ,\ {0} with { = [co,cl,cz,--] If 1<¢o <p, then
Q, <P, forn>=

Proof.” First, we show by induction that
G <Pw Jor n2=2l
In fact, if n =1, we have by (7) that
@i =cgo+g-1=¢y,
P1=¢Po+p-1 =c160+ 1
which implies ¢, < p, since ¢, = 1. If n =2, then we have ¢, < p, by noting that
ga=c¢3¢c; + 1 < ce060 + €3 + € =Py
since ¢, > 1. Now we assume that n > 2and ¢,y < p,-, and g, < p,. Then it is easily seen that

Gn+1 = Cnt1Gn T Gn—1 < Cas1Pn + Pu-y =DPn+1-
Thus we complete the step of induction. In view of (8) we deduce that

ﬂ'—&"->l for n>1

O

which completes the proof of Lemma 3.
Lemma 4. Let { GQ \ {0} with { = [co,¢1,¢3, -] and let s be any real number witk s
>1 If
In—1lp < lealps Sfor sufficiently large n,
then
max(P,, Q,) < lesl} Sfor sufficiently large n,

s =max<3, i)
s—1/

Proof. Noting that s > 1 and (2) we see that the assumption of Lemma 4 implies. that

where

lim |c,|, = co. Hence there exists a natural number ny > 1 such that
n—o0 '

Pn < F Icuolp Icn|p9 n°+1 < Pnofl < lcno+ ll;” 'Cu"p

for n = ngy, where
&= (2,3 + 1).
s—1

In general, we shall prove by induction on m that
P, < P, <lcdplculy for m > ng. )
Assume that the above inequalities hold for m and m — 1. Then we have
Pm+l —PM+1MM+1
(Cm+ 1Pm +Pm-1) M, !Cm-l‘llp

='(€m+ PouMy + P 1 M-y lclllp) G+ 1',

< (plealplemly + lealplem=117 lemlp) loms1lp

<lealplemly (2 + lemly ™+ 1) loms 1l

<, |cnlp lcm+ ll(p’”+ D+t

) S |c»|p lcm+ 11;“

since |c,l, = 2p. Taking m = n in (9) we obtain

P, < P, <|cplcaly =lcafy for sufficiently large n.
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Similarly, we have
Qn < Q, <lefs for sufficiently large n.
This completes the proof of Lemma 4. 1!

Remark. If ny =1 in the proof of Lemma 4, then it is easy to verify that

Pi<cl, i=1,2.
Moreover, we obtain the inequalities
max(P,, Q,) < c,l, for all n > 1.

Suppose that € A and p(x) is its minimal polynomial with degree d. Let K = 0(9) be the
splitting field in C of p(x) with 8 C. As usual, a place of K corresponds a valuation of K. Let ¥
denote the set of all places of K. Write ¥, and ¥, for the set of infinite and finite places of X which
correspond all Archimedean and non—Archimedean valuations, respectively, Write n, = [K,: Q,]
for every place v of K. If ve ¥, and v lies p we write v| p. We normalize the v—adic valuation ||, so
that

(i) if ve ¥V, and if v is real, then |6, = |0),

(i) if veV, and if v is complex, then 8], = 6],
where || represents the ordinary absolute value in R or C.

(iii) if v| p, then |6}, = (b, (6))", where ¢, (6) is a corresponding non~Archimedean valuation.
In pafticular,

lplo =p"".
We define the absolute height of the algebraic number 8 by the formula
H(0) = [] max(1,161,),

veV
and the absolute logarithmic height of 8 by
h(6) = [K: Q)" log H(0).

In this paper we denote the ordinary height of 8 (that is the maximum of the absolute values of
coefficients of the minimal polynomial of 6) by A (6). We define the absolute logarithmic height of
p-adic number ae A by k(x) = &(6). g

Lemma 5. (i) h(¢™) = mh(x) for any a€ A and meN. (ii) h(a/b) = log max(|al,|b])
= logH (a/b) for a,beZ with b+#0 and (a,b) = 1.

Proof. See [8].

Lemma 6. Letay,--,a,€C, be the limits (p-adic convergence) of a sequences of algebraic

numbers {a{"}, ---, {a™}, respectively. If there are sequences {g,} and {h,} €[1, oo)N with lim g,

= lim h, = co such that for sufficiently large n
0<logey —af, lp < & oy — a(k")lp’ k=1-,9-1, (10)
0 <oy —afl, < exp(—h,,D"" t h(a{"’)) a1
K=1

where D™ = [Q(af”, ---,a{): Q], then the numbers a,, -+, 8, are algebraically independent.
Proof. See Chapter IIl in [5].
Lemma 7. Let ¢, n,CEOpﬂLP. Then
(i) log,(¢n) = log, & + log, 7,
(i) Nlog,¢l, = I — 1),
(iii) log,& =log,n==¢ =1.
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Proof. See [9] (or [5], [10]).
Lemma 8. Let a,,---,aquﬂLP with
D=[Q (al’ ) dq):O],
max(e‘,H(a,)) €A, k=1,-¢
Put
Q =logA, ---log4,_,

Then the inequalities

0< <exp{—C Q log Qlog A, logB) (12)

t bklogpa,‘
k=1 ]

have no solutions in rational integeré by, -, b, with
b, %0 (med p) and B = max(|b,], -, |b,])
where C is a constant depending only on p, g, D.
Proof. Note that
|a=1 ...d:q —_— llp =

Xy

according to (ii) in Lemma 7 and see Theorem 1 in [6] and Chapter II in [5].

§IV. Proofs of Theorems
Obviously, Theorem 1 and Corollary 1 are special cases, so we give here the proof of Theorem

2 only. .
Proof of Theorem 2. By means of Lemma 1 and the condition (4) in Theorem 2 we see that
0< e, 2280l g a2 et
gn (&i+ 1)
<O Dg (E) |2 [a®) |5t = Gt g, _P-(fk) .
U (6&) P

Take g, = #"*!. Then the condition (10) in Lerma 6 is satisfied. To show that the condition (11)
is satisfied we shall prove the following inequalities

max (P, (&) @ul(é)) <la®l;, k=14 (13)
for sufficiently large n, where s is a constant determined below. According to the hypotheses (4)
and (5) of Theorem 2, we see that for sufficiently large n

o <[] 1o, ) <l < 2, (14
k=1
where s is a given constant with s > 1. Therefore (13) hold Lemma 4. Clearly, we have
n ‘f - \~5n
0<lg 2 palls) = lga(S4)l; 2Iaf.'+’1|,. <l < ]51 o, (15)
ql(él) k=1

by (14). On the other hand, by use of Lemma 5 (ii) and (13) with s’ = max (3, 2s/(s — 1)) and by
noting that D™ =1, we obtain

exp =m0 £ 4(E0) ) - 11 (max(ea e Qule) > 0" a9
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Choosing h, =s,/s and comparing (15) with (16) we have

e, <or (- 54 C)

for sufficiently large n. Hence the condition (11) in Lemma 6 is satisfied. And so we established the

algebraic independence of the system of p—adic numbers £,,-,&,.
Now we give some examples of p-adic simple continued fractions which are algebraically

0<

¢1—

independent.
Example 1. In Theorem 1 put r=p, s, = n, |apl, = p, |bol, = p? and
|bil—-1I; = Ianlp =P—1 |bn|p’ nz 1.
This implies that
'allp =P2, |b1|p =P3, lazlp =P69 lb2|p =P77
|a3'p =P21, |b3|p =P229
By Theorem 1 the p-adic continued fractions
€= [p—ly P_29 P_6’ P_zl; "']
and .
=02 p=3 p7, p722, -]
are algebraically independent. The other two numbers

E=lp+Up N+ )P %+ Up ™% p + 1)p 77, ]

and
n=[p+)p %+ 1p % +1)p " (p+1)p %]
are also algebraically independent. g
Example 2. In Theorem 2 take r = p, s, = 3n, and la“)l =p, Ia(") ]a”"lp, k=14,
and
|a(")| _p—l Ia(k+l)|p’ =1,,q—1,

q 3n
iy = ( [ 1at,) "

laf’l, = p, la), = p?, -+, |a§, = p*,
|a(11)|,, =P3? Ia(lz)lp =P6 |a(q)| ='P3q,
|a‘”| _P9q(¢+1)/2 Ia(2)| =P9q(q+ 1)/2+1, beny

Ia(q)l 9q(q+l)/2 +q- l

This implies that

According to Theorem 2, p—adlc continued fractions
— [p— l’p-3’p—9q(q+ 1)/2+q— l’ ],
~2 -6 _—9qq+1)2-1
€2=[P 2 %p q(g+ 1)/ ,...],

fq _ [p-q,p-3q’p-9q(q+1)/2-q+1, .;_]’ :
are algebraically independent. )
Proof of Theorem 3. First, given a real number s > 1, we shall show under the assumption
of Theorem 3 that for any real number C; > 0 there exists a natural number n; = n, (s, C;) such

that
o288, 249

qn (’1) P

) < exp(— C,logH logH) 17
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where

S

(p..(c“) Paln
n(8) " quln

pulC = max ¢
H, = H(q. (é)) = max (P, 2), 0.(&))

,Hl,Hz)eQz x N2,

~—

(P _
H, = H(q" (n)) (Pa(n)s Quln))-

Indeed, from Lemma 1 we have

pal$)
(%)

In view of (6) we see that

6_

= 1ga(&); 2 ans 1yt <lapsilp 'y n 21 (18)
I4

log |a,l, = o(loglas+1l,) »— o0,
| log b, = 0(log|By1l,). 7 — 0,
which imply that for any real number s > 1,
Ian!; < lan+ llps Ian; < Ibn+ llp
provided that n is large enough. Hence for sufficiently large n we have
max (P, (8), a($)) < lauly »
max (P, (n), Qa(n)) < Iblp »
according to Lemma 4. Again by (6) we see that for any C; > 0,
logH,logH, = log max (P, (&), Q,(£)) log max(P,(n), Q.(n))
< s'%logla,l, loglb,l, < C7 ' loglay .+ l,
Le.
an+4l, ' < exp(— C, logH, logH,)
for sufficiently large n. This together with (18) implies that

palé)
& - < exp(— C,logH, logH
0 ( {) P( 1 logi1, log 2)
for sufficiently large n. Similarly, we can obtain
pa(n)
n——-+| <exp(— C,logH,logH
) Qn('l)p P( 1 logit, log 2)

for sufficiently large n. So we complete the proof of (17).
On the other hand, by Lemma 1 we see that

b EE-o)L ke

= an(é)lp—zlan+1‘p—l < lan+l|p_1 <P-1 SP_”“’—“ .

Therefore & -12a(9) €L,. It follows from Lemma 7 (i) that

g.(¢)
) 8) e

\é—lpn __1

14 [4
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By means of (17) and Lemma 7 (ii) we obtain

) ()

= f - 11_’»45_) f Pn (é)
9n (C) _ P Gn (‘f)
< exp( — C_logH,logH,), for sufficiently large n. (19)

Assume now that the assrtion of Theorem 3 is fales, and that £” is algebraic over Q. Then we

.- P
apply Lemma 8 with ¢ = 2,0, =y =§" a, = Q"—Eg, b, = Q.(n), b, = — P,(n). Without loss of

generality, we may assume that (P, (1), p) = 1(see [1]). Clearly, we see from (19) and Lemma 2 that
Ibl log‘, dl + bz logp azlp

plt),  (PulE)
OB = ) (o. (:))

i) 2 )
< iyt "‘“( logrtlor =, gﬂ; ; elf 0 ")

@) |
< exp( — C, logH, logH,) - (20

=1Q.(n)l,

= |Qn(") 'I

since [log,¢l, = 1§ — 1, <p™* Y <1 and |y|,=1. If
' by logga, + b, log,aal, # 0,
according to Lemma 8 we have :

[b; log,ay + b, log,a,l,

> exp( — ClogH ()loglogH (v)logH (g: Eg) log max (P,(n), Q, )

= exp( — C,logH,logH,) 1)

where

€, =Clog A, loglogAd,, A, = max(e*, H(y)).

Taking C, = 2C,, the inequalities (20) and (21) give a contradiction. Therefore we obtain

g 05) =

(g EED - 2t

by Lemma 7. According to Lemma 5 (i) we have

P(E) = autnnt

and so
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Noting that Q,(n) < P,(n).n > > 1 by Lemma 3, we see that

o =ten(g ) =4 (zre) <40

This means that logH, is bounded by the constant k (y). However, this is impossible since {P, (¢)},
{Q.(%)} are all unbounded sequences of natural numbers. Consequently the number " must be
transcendental.

Finally, we give

Example 3. In Theorem 3, put ao=1, Iallp = p?, and |a,4,], = ods, g, = b,, n > 1. Tt is
easy to verify that [ —1],=p 2 <p~ =1 and so £eU, L,,\{l} nelU, and that
logla,l,logla,l, = o(logla,. ,I ») (n = o0). Thus ¢ is a p-adic transcendental number by Theorem
3.
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