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II1" 

w Introduction 
In order to discuss the irrationality, the transcendence and the algebraic independence forp-  

adic numbers, the first author introduced in two previous papers [], 2] a simple form for p-adic 
continued fraction which is ealledp-adie simple continued fraction by making use of the algebraic 
theory of continued fraction in the real field mentiJned by Schmidt [31, and gave a sufficient 
condition for certain p-adic integers which and whose sum, defference, product and quotient are 
all p-adic transcendental numbers. 

In the present paper we shall apply a technique used in transcendental continued fraction in 
the real field by Bundsehuh [41 and a criterion of algebraic indePendence for general p-adic 
numbers due to Wylegala [51 to generalize the results in [2] to the general case. Furthermore, we 
also obtain a sufficient condition of algebraic independence for a system of p--adi c �9 
continued fractions, and establish the transcendence for the value C 0 of power exponent function in 
p-adic numbers ~ and q under some condition by using a theorem on linear forms in logarithms in 
the p-adic case due to van der Poorten [61. 

For the real case the second author have generalized the results of Bundschuh [4] in other 
paper [7]. 

w Notations, Definitions and Results 
Let (~, R ,  C denote the fields of rational, real and complex numbers respectively. Let Z 

denote the domain of the rational integers, and N the set of the natural numbers. Letp be a fixed 
prime number, Qp represent the field ofp-adic numbers, and Zp the ring of the integers of Qp, Cp 
the completion of the algebraic closure of Qp, A the set of the p-adic algebraic numbers of C r 
Write 

L, = {ze C,I I z -  11, < f l / ~ - , } ,  
U~ -- {z ~ Cpl Izlp = 1}. 

The p-adie logarithm function logpz is defined as an analytic function in the form 

logpz-- ~ ( - 1 ) ~ - 1 ( z "  1)~ 
rim1 n 
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which converges in the subdisc of those z in Ct, with Iz - lip < 1. The p-adic exponential 
function expz is defined as the series 

|  ~ 
e x p z =  ~ o ~  

m= ~ 

which converges in {z r Cpl Izlr < P-1/(r-t)}. Finally, we define the power exponent function as 
follows 

~"=exp( t / logp~)= ~ 1 ( log  
where ~ 6 Lt, and t/~ gp. 

For any ~E Qp\{O} we can represent uniquely ~ as a p-adic simple continued fraction in the 
form (see [1,2]) 

1 
= Co + = [Co, c , ,  cz,  - - - ,  c , , . - . ]  (1)  

1 
cl + 

c2 + �9 1 
" ' +c . - t  + -  

or ca + "'" 

~' = Co + = [Co, c l ,  c , ,  . - . ,  c , ,_ , ,  ~. ]  
1 

1 
cl + 

c 2 -!- 
1 

""+c,_ 1 + -  1" 

where c, are all finite p-adic fractions ~ t h  0 ~<Co < p ,  0 < c, < p ,  n >I 1, and 

IC.I, ffi lc.le ffi p ' . ,  v.  e N ,  n I> 0. (2) 
With these notations and definitions our results read as follows 
Theorem 1. Let ~, t/~ Q p \  {0} with 

= [ao ,  a l ,  a2 ,"- ' l  and n = [bo, bl, b2,"']. 
I f  there exist a real number r with r > 1 and a sequence o f  real numbers {s,} ~ [1, oo) N with 

lim sn ffi oo such that 
n - . ~  o o  

I b . - d  s" ~< la,lr ~< r -~ Ib.lp (3) 

for sufficiently large n, then the numbers q and tl are algebraically independent. 
Corollary 1. Under the assumption o f  Theorem l ,  all the six numbers ~, tl, ~ • q and ~tl • 

are p--adic transcendental numbers. 

Moreover we have 
Theorem 2. Let ~h e Q r \  {0} with 

~t = r~(k) ~(k) ~(~) 3 k = I ,  q. Lt*O )L*I ) ~ 2  ) ' " J ,  " " ,  

I f  there exist a real number �9 with r > 1 and a sequence o f  real numbers {s,} e [1, oo) N with 

lim sn = oo such that 
N - . t  OO ". 

for sufficiently large n, then the numbers ~1, "",~q 

la~t)lp ~ r - l l a ~ + l ) l  r k - 1, . . - ,q  - 1, (4) 

y - . + ,  p (5) 

are algebraically independent. 
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Theorem 3. Let ~ e Up ~ L ,  \ {1} and tl e U v. Suppose that they have expansions in p -ad ic  

simple continued fractions 

= [ao, a , , a  2, . . .] and tl = [bo, bt,b2, ""] 

with 

logla.I,  loglb.I, = o(log min(la.+,lp, lb.+ xlv) ) (n ~ oc). (6) 
where log x denotes the real logarithm funct ion o f  x, Then ~ is a p--adic transcendental number. 

w  I ~ m m .  
Let us regard Co, Cl,C2,... 

--1, 0, 1, 2, ... by the following recurrence relations: 
in (1) as variables. We define polynomials p, ,q , ,  n = 

p - l f f i l ,  p o = c o ,  p .  = c,p.-  l + p . -  2, n >~ l, 

q -  t = O, qo = l, q. = c.q._ x + q._ 2, n >l l.  

It is easy to verify that 

P~ = [Co, c t , ' " ,  c..], n 1> O. 
q. 

Let ~ e Q r \ { 0  } with ~ = [Co, CI,C2,"']. Then 

Iq.lp -- Icxc2""c, lr, n >I 1; 
[p.lp -- IColp Ict c2"" c.lp, n >t 1, i f  c o ~ O, 
Lotlr ffi 1, Ip,lr = Ic2  - . .  c,l~, n >I 2, / f  c o -- 0; 

According to the paper I'1] we have 
I k m m a  1. 

and 

Now we write for n I> 1 
M. = m=(Ip.l , ,  Iq.I,), 

P~ = p,M,,  Q~ = q,m,.  
Clearly, we see that M,, P~, Qn are all in N and that 

iV/,+, -- M,  l c ,+ , l r  
Suppose that P,,  Q ,e  N with 

P" P'~ P2 and (P,,Q,)= 1. 
0---~ = - ~  = q. 

Lemma 2. Let ~ z Q t  \ {0} with ~ = [c o, c 1, c2,...]. Then we "have for  n >1 1 

(i) I ~ [ p = ~ l  . 
P 

(ii) I~lr = IQ, lp-x, i f  Co # O. 
Proof. By (1) and (2) we see that 

yl~olp = Icolo, 
I~lp = [l~xlp-' = lcxl~", 

On the other hand, it follows from Lemma 1 that 

if Co # 0 ,  

if Co = 0 .  

Jp~] = ,)'lcol~, if co # o ,  
r ~]c, Ip" t, if c o = O. 

Thus the property (i) is proved. To show (ii) it is sufficient to note that 

IQ, I, = IQ~I, = Icol~X if c o ~ 0 

(7) 

(8) 
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Which is from the equality (12) in [1]. 0 

LemmR 3. Let ~ e Op \ {0} with ~ -- [Co, Cl, c2 , ' - ' ] .  I f  1 <<. Co < p,  then 

Qa < Pa f o r  n >~ l .  

Proof .  First, we show by induction that 

qa < Pa, f o r  n >11. 

In fact, if n ---- 1, w e  have by (7) that 

ql = clqo + q-1  ffi Cl, 

Pl = ChOo + P - t  =c l co  "~ 1 
which implies ql < Pl  since c o i> 1. I f  n -- 2, then we have q2 < P2 by noting that 

q2 -- C2Cl Jr- 1 < c2clco + c2 + Co = P2 

since c o/> 1. Now we assume that n t> 2 and qa- ~ < Pa-  I and qa < Pa- Then it is easily seen that 

qn+l = Ca+ tqa + qa-1 < Ca+hOt + Pa-  t "~" Pa+ x. 

Thus we complete the step of induction, in view of (8) we deduce that 

P~ = P ' >  1 for n > ~ l  
Q, qa 

which completes the proof of Lemma 3. 

Lemma 4. Let ~ e Q r \ { 0 }  with ~ ffi [Co, C1,C2, . . .]  and let s be any real number wi th  s 

> l . q  
Ica-!l~ < Ical,, for suff'wiently large n, 

then 

where 

max(Pa, Q~) < Ic, l~ for sufficiently large n, 

s - m a x  3 ,  

Proof. Noting that s > 1 and (2) we see that the assumption of Lemma 4 implies, that 

lim Icalp = ~ .  Hence there exists a natural number no > 1 such that 
a-~ou 

C Z '  eao ~< g-c-< Ic.ol~"lc.l,. Pao+l ~< P~o+X <1 ao+~l, Icap 
for n 1> no, where 

m=/2' + 
; =  L , 

In general, we shall prove by induction on m that 

P .  ~< P~, < Ic.lp Ic.l~," for m I> n o. 
Assume that the above inequalities hold for m and m -  1. Then we have 

P~,+t - - P - +  tM.+x 
ffi (cm+ lp,, + p . - x ) M . l c . +  llp 

= (c.+ t p . M .  + p . - , M . - x  )c.lp) Ic.+ lip 

< (p Ic.I, Ic.l~' + Ic.I, Ic.- 11~'" Ic.lp)Ic., ~1, 
a"/S + 1 - - s "  < Ic.lp le.l~"(p + Ic.lp )lc.+tl,  

<. Ic.l, lc.+ 1,("+ 1)/,+x 
~< Ic, lplc.+xl~' 

since Ic.lp t> 2p. Taking m - - n  in (9 )we obtain 

P, ~< P; < Ic, le Icily," = Icily' for sufficiently large n. 

(9) 
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Similarly, we have 

Q. ~< Q. < Ic, l~" for sufficiently large n. 
This completes the proof of Lemma 4. 

Remark. If no = 1 in the proof of Lemma 4, then it is easy to verify that 
PI < Ic, l~', i = 1, 2. 

Moreover, we obtain the inequalities 

max (P., Q.) < Ic, l~, for all n />  1. 
Suppose that et �9 A and p (x) is its minimal polynomial with degree d. Let K = Q (0) be the 

splitting field in C ofp(x) with 0 � 9  C. As usual, a place of K corresponds a valuation of K. Let V 
denote the set of all places of K. Write V~ and V o for the set of infinite and finite places of Kwhich 
correspond all Archimedean and non-Archimedean valuations, respectively. Write nv = [Ko : 0 ~  
for every place v of K. If v �9 V o and v lies p we write v IP. We normalize the v-adic valuation I" Io so 
that 

(i) if v � 9  V~ and if v is real, then 101o = 101, 
(ii) if v~ V~ and if v is complex, then 10Jr = 101 z, 

where I" I represents the ordinary absolute value in R or C. 
(iii) if v IP, then [0Iv = (do~ (0)~'o, where dO~ (0)is a corresponding non-Archimedean valuation. 

In particular, 

Lplo = P - ' v .  
We define the absolute height of the algebraic number 0 by the formula 

H(O) = I-I max (1,10lv), 
t ~ Y  

and the absolute logarithmic height of 0 by 
h (0) = [K: Q ] - '  log H(O). 

In this paper we denote the ordinary height of 0 (that is the maximum of the absolute values of 
coefficients of the minimal polynomial of 0) by/7(0). We define the absolute logarithmic height of 
p-adic number e t � 9  by h(e t )=  h(O). 

Lemma 5. (i) h(et') = mh(et) for any e t � 9  and m � 9  (ii) h(a/b) = log max(lal, lbl) 
= IogH(a/b) for a,b �9 Z with b # 0 and (a,b) = 1. 

Proof. See [8]. 
Lem_ma 6. Let eta,..., aq �9 C r be the limits (p-adic convergence) of  a sequences of  algebraic 

numbers {a~")}, .--, {a~")}, respectively. I f  there are sequences {g.} and {h.} �9 [1, oo) N with lira g.  
R ~ a D  

= l imh .  = oo such that for sufficiently large n 
n ~  ao 

0 < letk+l ~(") J ~< _ - t  I,, ~(,), I. = 1 , . . . ,q  1, (10) - - ~ k + l l p ' ~ n  I~k~ t *k  I p ,  n ,  

0 <  ' ~ t -  a]")lp ~< exp( -h~9~")=~  t h(a~"))) (11) 

where D~"= [Q(a ]  "), -.-,a~")): Q] ,  then the numbers al, ...,et a are algebraically independent. 
Proof. See Chapter III in [5]. 

Lemma 7. Let r th ~ �9 Qp N Lr Then 
(i) log, (~r/) = log, r + log, r/, 

(ii) Ilogvr = [~ -- lip, 
(iii) logp ~ = logp q =~ ~ = r/. 
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Proof. See [9] (or I"5], [I0]). 

[,emma 8. Let ~ t t , . . . , ~ tqeA~L  p with 
l )  = [ Q  (o~,, . . . ,  ~+): Q-I, 

max(ee, H(a,)) ~ Ait, k = 1,.. . ,q. 
Pitt 

Then the inequalities 

t'l ffi logA 1 " "  logAn_ I" 

I 

0 < IIt = ~1 bit logp ~ltp '~ exp ( -- C ~ log t~log A+ log B) 

have no solutions in rational integers bl, ...,br With 

b+~0 (mod p) and B =  max(Ibll,.--,Ibql) 
where C is a constant depending only on p, q, D. 

Proof. Note that 

,+ +-,,.=lA,.lo+,. L 
according to (ii) in I.emma 7 and see Theorem 1 in [6] and Chapter II in [5]. 

(12) 

w Proofs of Theorems 
Obviously, Theorem 1 and Corollary I are special cases, so we give here the proof of Theorem 

2 only. 
Proof of Theorem 2. By means of Lemma 1 and the condition (4) in Theorem 2 we see that 

I "l+'+'l 0 < ~tt+l q.(~t+l) , = lq'(~t+1)l;2la~+~x)l;1 

~m+ - - ~  p" 

Take g, ffi r 2"+ 1. Then the condition (10) in Lemma 6 is satisfied. To show that the condition (11) 
is satisfied we shall prove the following inequalities 

max(P.(r Q,(~)) < laC, t'l +'e , k = 1, ...,q, (13) 
for sufficiently large n, where s' is a constant determined below. According to the hypotheses (4) 
and (5) of Theorem 2, we see that for sufficiently large n 

(.o,)" (k) a _ ( t )  la, Ir < la~)le ~< (1) ah+llp < a.+ll p (14) 

where s is a given constant with s > 1. Therefore (13) hold Lemma 4. Clearly, we have 

I I 00. )" P.(qx) =lq,(~x)l;2 ~(1) - x  . ( x )  -1  0 < ~t q.(~l) p ,-,+i p < -,+., ~< la~)Ir (15) 

by (14). On the other hand, by use of Lemma 5 (ii) and (13) with s' = max (3, 2s/(s - 1)) and by 
noting that D~'l= 1, we obtain 

e=p(-h,~" ~ h(e'(+')~ ~ (m= (P, (+~), 0,(+~))) -+, > I'I Ua:%)-s",. (16) 
,:1 tq-;T~) : : = , . ,  ,.1 
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Choosing h. = s , / s  and comparing (15) with (16) we have 

0 < ~t P'(~l) < e x p ( - h ,  D t " ) ~ = n ~ q - ~ ) ] ] ~  ' ['P~(~) '~ "~ 

for sufficiently large n. Hence the condition (11) in Lemma 6 is satisfied. And so we established the 
algebraic independence of the system of p-adir  numbers ~l, " " , ~ -  

Now we give some examples of p-adic simple continued fractions which are algebraically 
independent. 

Example 1. 

This implies that 

By Theorem 

In Theorem 1 put r = p ,  s, = n, laolo =t9, Ibolo =p2 and 
Ib,-xl~ = la, lv = p - X  Ib,lv, n >/1. 

[ a l l v = p  2, Ib~]o=p3, la210=p 6, Ib21v=p 7, 
la3[r = p  2x, Ib31r = p  22, .... 

1 the p--adic continued fractions 
= [p- l ,  p -2 ,  p -6 ,  p-21, ...] 

and 
tl = [p-2, p-a,  p-~,  p-22, ...] 

are algebraically independent. The other two numbers 
= [(p + 1)p- l , (p  + 1)p-2 , (p  + 1)p-S,(p + 1)p -2 ' ,  . . .]  

and 
t / =  [(p + 1)p-2,(p + 1)p-3 , (p  + 1)p-7,(p + 1)p -2~, . . .] 

are also algebraically independent. 
Example 2. 

and 

This implies that 

[1 
.(t) 3 = la~k)lv ' k = 1, ..-, q, In Theorem 2 take r = p, s, = 3n, and la~o*)l~ = p, ,-0 

la~)[v = p - 1  ~',~(~+ ,),,v, k = 1, . . . ,q - 1, 

(n a,.y" 
/14" ~ 

la~ol)lr = p ,  la(o2)lv = p2, "", la~)l~ = p , ,  
la~X)lp = p 3  la~=)lp = p 6 . . . ,  la~% =.p3~, 
la~l)l~ = p9~q + 1)/2 la~2)lp = p9q(q+ 1)/2 + 1,.. ", 

According to Theorem 2, p--adic continued fractions 
~1 = [p- t ,p-  a,p-9r l)12 +~- l, ""3, 
~2 = [p-2 p-S,p-9q(r 1)12- l, ...], 

~tl = [p-q,p-aq,p-9q(q+ l)/a-q+ l, . : . 3 ,  

are algebraically independent. 
Proof of Theorem 3. First, given a real number s > 1, we shallshow under the assumption 

of Theorem 3 that for any real number C1 > 0 there exists a natural number nl = nl (s, Ct) such 

that 

max( [~  p ' (~ )  t/ p , ( t / ) ' ~  exp(_CalogH, logH2 ) (17) 
- q - ~  .' - q.{t/) v/~< kl 
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where 

HI, 
q - ~  'q,(t/) ' 

E 

H(p-'(r ~ max(P,(~), Q,(~)), H,= 

H{ p'(tl) "~ max(P.(q), Q.(t/)). H 2 =  ~,q. (t/) ] = 

Indeed, from Lemma 1 .we have 

P,(r - q - ~  

In view of (6) we see that 

x N 2, 

= I q , ( 0 i ; 2 1 a , + , l ;  ~ < l a , + , l ; * ,  n / >  1. 

logla.lv = o(logla.+llp), n ~ or, 
log Ib.lv -- o (log Ib.+ lip), n ~ m, 

which imply that for any real number s > 1, 
la.[~ < [a.+x[v, Ib.{~ < Ib.+llv 

provided that n is large enough. Hence for sufficiently large n we have 
max (P. (r Q. (r < la.]~, 
max(P.(,) .  Q.(t/)) < ]b.]~. 

according to Lemma 4. Again by (6) we see that for any C l > 0. 
logH, logH 2 = log max(P.(~). Q.(~)) log max(P.(,) .  Q.(r/)) 

~< s'Zlog la.lp log lb.Jv ~< C~" i log la.+ lip. 
i.e. 

la.+ ,Iv '  < exp (-- C~ logH 1 logHz) 
for sufficiently large n. This together with (18) implies that 

- q - ~ v < P "  (~) exp ( -- C, logH, logH2) 

for sufficiently large n. Similarly, we can obtain 

t/ exp(-- C, logH1 
p.(~) 

logH2) - - q - - ~ p <  

for sufficiently large n. So we complete the proof of (17). 
On the other hand, by Lemma 1 we see that 

1L=lr ,(0_ = _ 

= I q , ( O l p Z l a , + d ;  1 < [a,+llp 1 ~p-I  ~<p-Z/'v-*}. 
,p,(r 

Therefore ~- q - ~  eL  r It follows from Lemma 7 (i) that 

l ;P.(0~ los (~-~P.(0 og l,q- ) = + l o g Z  

(18) 
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By means of (17) and Lemma 7 (ii) we obtain 

I , pn(r log,C] = lo. { : - ' P ' ( r  

, - , p . ( 0  ] , p . (0  =, :.~ 1 =.-q-~, 

< e x p ( -  C logHllogHz), for sufficiently large n. (19) 

Assume now that the assrtion of Theorem 3 is fales, and that ~* is algebraic over Q.  Then we 

P.(O 
apply Lemma S with q 2, a ,  = ? = r az = Q--~,  b, = Q.(t/), b z = - P.(t/). Without loss of 

generality, we may assume that (Pn (t/), p) = 1 (see [1]). Clearly, we see from (19) and Lemma 2 that 

Ibl logvch + bz logv~tzl v 

Iq.I,)l,]log,~ p.In). (~'.(r - q~ 'Og ,  k~-~yl ,  

t \ 

N,  '"'.'l r - ' - q - 7 ( 8 1 , ]  

exp ( - C, logU, logU2) (20) 

since [logv~lv = I~ - l[v < p - l / ( v - n  < 1 and It/It = 1. If 
Ibl lograt + b~ logva2l v # 0, 

according .to Lemma 8 we have 

Ib I l og fq  + b a lograz] r 

ClogH(v)loglogH(?)logH(~) log max (P. (t/), Q.(t/))) > exp( - -  

= exp ( -- C2 logHllogH2) (21) 
where 

c, = c log A, log loga,, A, = m= (:,  H(~)). 

Taking C1 = 2Ca, the inequalities (20) and (21)give a contradiction. Therefore we obtain 

P'(~) ~o-/P'(r 
q.(t/) ~ '~Q--~,}  = log,?. 

and so 

[e. (0 ~'.':' = : . , , ,  
kQ-~:  

by Lemma 7. According to Lemma 5 (i) we have 

~,r p'(0~ r162 
\ q . ( o ]  = 
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Noting that Q . ( q ) <  P.(q),  n >i 1 by Lemma 3, we see that 

lo H ,o H, = 

This means that log//, is bounded by the constant h (y), However, this is impossible since {P, (~)}, 
{Qm(~)} are all unbounded sequences of natural numbers. Consequently the number  ~ must be 
transcendental. 

Finally, we give 
E u m p l e  & In Theorem 3, put a 0 -- 1, lall- =p2  and la,+llo =plaJ,, a ,  ffi bin, n I> i. It i s  

easy to verify that I~-llpffip-Z<p-t/~-l)'and so ~r }, ~Up, and that 
log la,lv log laml, ---- o (log la, +lip) (n -* co). Thus ~ is ap--adic transcendental number  by Theorem 
3. 
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