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w O. Introduction 

The purpose of this paper is to investigate %he %heory of probabilis%io me%rio 
spaces (PM-spaces) and if~ applications. In  w I we introduce a t~nd of Menger P~/I- 
spaces. By  v i r ~ e  of their  basic properties and the Menger-Hausdorff  me%-rie defined 
for this kind of spaces, in w 2 we shall give some fixed point  theorems for mu l t i -  
valued mappings on PM-spaoes. I n  addition, in w 3 we shall give some fixed point  
theorems for one-valued mappings on PM-space, which generalize and improve  
some recent resulta of [1---4]. As an application, in w 4 we shall use resulf~ in w 2 
and w 3 to s tudy the fixed point  theorems for mul t i -va lued  mappings on PM-spaces 
and %he existence and uniqueness of the  solution of  nonlinear Volterra integral 
equations on Banach spaces. 

Throughout  this paper let R = ( - - o o ,  co), R + =  [0, oo), Z + be the  set of all 
positive integers, ~ the set of all (leff~-continuous) dis%ribution functions on R,  and 
/~ a special distribution function defined b y  

=S 1, t>0, 
H ( t )  [ O, t~O. 

The defini%ions, terms and notations in this paper relating %o PM-space are adopted 
from [7, 5]. 

As Schweizer and Sklar ~ point  out  that  i f  (/~, ~-, ~) is a Menger PM-space 
(briefly Menger space) with a continuous t -norm zJ, then (E,  J ,  /I) is a Hausdorff  
space in the  topology S -  induced by  the family  of neighborhoods 

{~,(8, x): pEE, 8>o, ~.>o}, 
w h ~ o  

u,(8, x)={~B: ~=.,(8)>i-~}. 

w 1. "M'engez Space (E, .~ ,  ,4) 

D e f i n i t i o n  1. Let (E, ~-, z l ) 'be  a Menger space wi%h continuous t -no rm ~J, 

t Supported by the Science Fund of ~hin~e Academy of Sciences. 
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and A a nonempty subset of E.  I f  sup Dx(t) =1, where 
$:>o 

Da(t) - s u p  inf  F~,~(s), 
$<t ~,q EA 

then A is called a probabilistica]_]y bounded set, and Da (t) ~he probabilistie diameter 
of A. 

P r o p o s i t i o n  1.1. Let (E, ~-, A) be ~ Me~geq" space with co~zt~uaus t--.aorqn A. 
( i ) I f  A is a ~robabi~istica~y bounded set, thin Dx(t) is a distv~)ution fu~ctioq~. 
( i i )  I r A ,  B e E  are any two Frobabi~istica~ly bounded sets, the~ A U B  ~s a~so a 

~q'vbabi~istica~ly baundeg set of E. 
Proof. (i) Since A is probabflisticaHy bounded, by definition it is easy to see 

~hat Da(t) is nondecreasing in t, Dx(O)-O, sup D~( t )~1  and Dx(t) is left-continuous 
t > o  

in  t. This shows that  Da(t) is a distribution function. 
(ii) Since A and B are probabilisMeally bounded, so is B\ A. From Theorem 10 

of [8] we have 

and therefore by the continuity of s 

(')) �9 sup DauB(t) ~sup  A Da , Dn~a --~ 
t:>O $>0 

k t:>0 \ Xd / t>O 

In  the rest of this section we always assume that  (J~, ~ ,  A) is a Menger space 
with continuous t -norm zl, and D the family of all nonempty J--closed 
probabilistically bounded sets. We define a mapping ~ as follows (we denot~ 
~ ( A ,  B) by ~a,s  and the value of ~a0r at t ~ R  by ~a ,s ( t ) ) :  

~a,~( t )~supA(infsupF~,~(s) ,  infsup_Fo,~(s)), VA, B ~ 9 .  ( l . 1 )  
~<t a E ~  b ~ B  b ~ B  a ~ . d  

is called the Menger-Hausdorff metric induced by ~-. 

P r o p o s i t i o n  1.2. (~, ~ ,  A) is a Me~ger space, i.e. ~ ~ a qnappi,ag fr 
%) • D ~nto ~ satisf~/~g the fo~o,wimg co,aditions: 

( i ) ~a,~(t) =1, Vt>0 i f  and o~y i r A = B ;  
( i i )  2a,n(0) =0; 
(iii) 2a,~ = ~ , a ;  
(iv) ~.~(t~+tD>~(?~,o(tD, i~o,~(tD), CA, B, v ~  a ~  t~, t~>~o. 
Proof. By the definition of J ~ i t  is easy ~o see that ~a,n(t)  is nondecreasing 

and left-continuous in t, and ~ . ~ ( 0 )  --0. l~ow we prove that  

sup 2 a , ~  (t)  - i. 
t>0  

In  fact, since A, B ~ D, we have A U B ~ D. By the continuity of A we have 

sup ~a,~(t) --sup sup A(inf sup ~o,~(~), inf sula F~ 
]~>0 t>O $<f$ a~  A b ~ B  b 6 B  a6~L 

~>~(sup sup inf inf ~o,~(s) sup sup inf inf Fo,~(s)) 
t>O s < t  a ~ L  b ~ B  t>0 $<t b E B  a ~  

>//l(sup D~..(t), sup ~)a~.(t))=A(1, 1)=1. 
t.>O t >O  
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This shows tha~ ~ is a mapping from ~2 X ~ into ~ .  It is obvious that  ~ satisfies 
conditions (ii) and (iii). From Theorem 17 of [8] it follows that  ~ satisfies 
condition (iv).  To show ~ satisfies condition (i), we firs~ suppose Vt>0,  ~ , n ( ~ )  =-1. 
By ~he continuity of A, for any s > 0  we have 

1 =~,~,~(s) =sup  A(inf sup Fo,~(s), inf sup ~o.~(s)) 
$<$ ~ b E B  b E B  a E A  

--A(sup inf  sup F,.~(s), sup inf  sup F,,~(s)). 
$<$  ~  A b E B  $<$  b~J~  ~  "~ 

This implies that  
sup inf sup Fo,~(s) =1; (1.2) 

S<B aEA.  b E B  

sup inf  sup Fa,~(s)=1. (1.3) 
~ : s  b E B  aE.K 

From (2[.2) we have sup ~'a,~(8) =1, VaEA.  Therefore for any a C A  and any %>0 
b E B  

there exists b. E B such that  

_Vo,~.(8) > l - x .  
This shows that  a is a3--aecumulation point of B, hence a E B ,  i.e. A c B .  

Similarly we can prove that BC-_A. Therefore we have A = B .  
Conversely, if A--B, then for any ~ 0  and any 8E (0, ~) we have 

fl~.~(~) ~ A ( i n f  sup ~'..b(s), inf  sup ~'~ =~A(1, 1) --1. | 
a E A  b E B  b E B  ~  

D e f i n i t i o n  2. Let A E ~2 and ~ E E.  The probabilis~ie distance between point z 
and set A is the funct ion/~, .~ defined by 

F~.~Ct ) =sup  sup F , , , ( s ) ,  V ~ O .  
I < t  y E A  

P r o p o s i t i o n  1.3. Le~ A E ~2, a=d z, y be twbi~q'acy point8 of E. The~ 
( i ) lv,.x(t) =1,  V~>O ~fa~d on~g i f z E A ;  

(iii) 2r162 a~g A, B ~ 2  and a~ A, 

Proof. (i) I f  ~ A ,  then for any ~>0 and any s~ (0, t) we have 

This shows that  

~,.~(~) =~, W>o. 
Conversely, if _F,,~(t) =~1, Vt>0,  then for any s ) 0  we have 

1=~',,~@) =sup sup F.,As)=sup F~,As). 
s < s  Y6.& y E A  

This implies that  for any %>0 there exists y. ~ A  sueh that 

F,.u.(s) ~>i--%. 

It follows that ~ is a ~--aceumulation point of A and �9 ~ A. 
(ii) By the Menger triangle inequality and the continuity of A we have 

~',.,(~+~,)= sup sup~,..(s~+,~)> sup ~(~..~(s~).sup~,..(8~)) 
s z + $ s < t s 4 - t s  z~A.  sz+ss<:~lq-~s Z~A. 

>~(sup ~,.As~), sup sup ~,,.C~))-~(~,.,(t~), ~,.~(t~)). 
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(iii) I f  a: ~ A, ~hen we have 

/~.,s(t) - s u p  sup ~ . , ~ ( s ) > s u p  in f  sup F.,~(s) 

�9 - s u p  A(inf  sup lq'.,a(s), 1) 
$ < t  aEA.  b E B  

;;~sup ACinf sup ~~ in f  sup ~ . .a (s ) )  "~Ya,n(t), 
~<$ a ~ A  b g B  b E B  aE~.  

vt>o .  I 

w 2. F i x e d  P o i n t  T h e o r e m s  for  M u l t i - v a l u e d  M a p p i n g s  

Throughou t  this seotion let (~ ,  ~-,  .4) be a J - - c o m p l e t e  Menger space wi~h 
cont inuous t - n o r m  A satisfying ACt , t ) ~ t ,  V tE  [0, 1]. We denot~ by g2 the family 
of all n o n e m p t y  J--closed probabilis~ically bounded se~s and by -~ the Menger-  
Hausdorff  me~ric defined by (1.1) .  

T h e o r e m  2.1. Let (T,}: E--*f2 be a sequence of  ~u~t6--~alued ~ ,~pi~gs .  Su~o1~ose 
that thete exists a constant k :> l  such that foq" any ~, j E  Z +, ~ j  and amy x, y E  E 

f f r , , . r ,u ( t )>min{F. , , (k t ) ,  F.,r,~(kt), F , , r~(k t )} ,  Vt~0 .  (2.1)  

SuTpose fuq'theq" that foq" any �9 E E,  any ~ ~ 1, 2, ... and any a E T~x theq'e ex~sts 
b E T.+la such that 

ro.~(t)>~, . , .~  .... (t), v t>o .  (2.2) 

Then theq'e exists x. E E such that x. 6 ~-~ T~x.. 

Proof. Fo r  any xo E E ~ake x~ E Tlxo E ~.  By the supposit ion there exist~ 
xa E T~xx E/2 such that  

~~  ~.,,(t), vt>~o. 
Similarly there exists xa E Tax~ such tha t  

~. . , . .  (t) >~P~. . , ,~  (t) ,  V~>0. 

Cont inu ing  this procedure we can obtain a sequence {x,} sar ~he following 
conditions: 

( i ) a:.~T.x,_~, ~=1 ,  2, -..; 
( i i )  ~ ~  . . . . . .  ( t ) > ~  . . . . . .  ~ . . . .  (t), v t>o .  

I t  is easy ~o prove r { x ~ } ~ E  is a Cauchy sequence. By the f - -comple teness  of 

(~ ,  ~-, A) we can suppose x. > x. E E .  
Now we prove that  x. is a common fixed point  of {T,}7.~. 
In  fact, i t  follows from Proposi~ion 1 .3  (ii) and (iii) ~hat 

1----/~ )t  ), F t 

. . . . . .  . . . . . . .  

. \ -, \ \  B /  

�9 kt 

In  addition, by Proposi~ion 1 .3  C i) and (ii) we have 
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Substi tut ing the above inequality into (2.3) and letting ~-~co we have by the 
continuity of ~J 

((x) 
Lett ing m-~oo on the r ight  we have 

~v,..r~.(t)-l, u ~-~1, 2, ..., 
and therefore $. ~T~s., ~ 1 ,  2, --. by Proposition 1.3 (i), i.e. 

Moreover, Theorem 2.1 is equivalen~ to the following result. 

Theorem 2.2. Let (TjT.~:~--*~ be a ~ q u ~  of ~nu~t~-~a~ued m ~ g ~ .  Sut~o~ 
that the~'e e~st~ a c ~ a ~ t  k ~ l  such that fo~" a~y ~, j ~  Z +, ~ j  and a ~  ~, y ~  E 

vt>~o. (2.4) 
Suppose further fo~" a ~  ~ F,, a~y ~=1,  2, ... and any a ~ T . ~  thee e ~ t s  a Toi~t 
b ~ T,+~a such that 

~o.~(t) > ~ , ~ . . , , ( t ) ,  vt~>o. 
The~ there exists x. 6 E such that 

Proof. I t  can be seen that condition (2.4) and condition (2.1) are equivalent, 
and therefore Theorem 2.2 is equivalent to Theorem 2.1. I 

w 3. ~ i x e d  P o i n t  T h e o r e m s  for  One V a l u e d  M a p p i n g s  

Throughout  this sectdon we always assume that  (E, ~ ,  A) is a ~--complete 
Monger space with continuous t -norm A, and the function ~5 sa~yisfies the following 
condition (q~) : 

~5: ~+-~z~+ is strictly increasing, ~5(0~ ~0  and ~5"(t)-~w, Vt~O, 

(q~) l where ~ denotes the ~- th  iteration of qS. 

In  addition, in Theorem 3.1 and Corollary 3.2 we assume that  

z1(a, b ) ~ m a x { a + b - 1 ,  0}, Va, bE [0, 1]. 

We have ~he following results. 

T h e o r e m  3.1. Zet {Ti}~'.l be a sequence of  s e ~ f - - m ~ g s  o~ (E, ~ ,  A), a~g 
{~n,)~'.l: E ~ Z  + a ~q~e~ce of ~ p ~ g s  ~uoh that for e~h  ~EZ +, ~n,(~) Im,(T~), 
V~E ~ .  Su~ose that foq" any ~, j E Z +, ~@j a~d a~/ ~, yE  E 

~,'-' , .w,'~ (t)1> m~- F,. ,(~(t)),  W~o. (~.~) 
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Su~ose further that there ecaist cao 6 E and G ~ ~ ,  G (0) = 0 sueh that 

in f  .F, ,a( t )>G(t) ,  Vt>0 ,  

where 

(3.2) 

.satisfies 

inf ~ , , , ( t ) > o ( t ) ,  vt>o. (3.6) 
p,~ E (~.);,., 

The~ there ezists a unique eocacaon fized point ca, 6 E of  I"1 a~d T~ w4th ca. , ca.. 
Proof.  Let {ca.} be the sequence in (3 .5) .  Then  for any i, ] 6 Z § with i + j  

odd (without  loss of generali ty we can suppose i is odd and j is even)  we have 

F.,,., (t) =~v~ r ...... .,-,yr.-,~'.,-, 0) 

>min{~. ..... . ( ~ ( t ) ) ,  ~ . , - , , . , (~0) ) ,  ~ .~, , . , (o(t))} ,  vt~>0. 
I t  follows f rom (3.6) that  for any  ca, ~ Z  + with ca<:n 

inf ~ , , . . ,0) ;~  mf ~. , . , , (~(t)) ,  Vt>o. (3.7) 
~+J=odd ~+J=odd 

In view of the arbitrariness of ~n and ~ we obtain 

inf  F . , , , , ( t ) >  in f  F.,,.,(q~(t)), Vt>0.  
Lymm ~d;.m--I 

�9 .=T~"<"'~ ~=I, 2, -... (3.3)  
. 9 "  

Then there ecaist8 a u~ique cocamo~a fi~ed point ca. of  {T,}Tffil i~ E a~d ca. �9 ~.. 

Take O(t) =--,t  a 6  (0, 1), t ~ 0 ,  I t  is easy %0 see tha% �9 sa~-isfies the  condi t ion 

(O).  Therefore f rom Theorem 3.1  we have the following result. 

Corollary 3.2. Let {Ti}~il, (E ,  J ' ,  A) and {ca~}~'=l be the sacae a8 i~ Theoreca 
3.1.  Suppose that for  a~l i, ] 6 Z +, i ~ j a~d an~l ~, ~I E E 

p , q  fi (~,y, T ~". <z~z" T']'/v~ ) 

Suppose further there ecaist cao 6 E and G 6 ~ ~oith G (0) = 0 arch that the segue~e~ {z,} 
defined b~l (3.3) satisfies the condition (3 .2) .  The~ the cone~usio~ of  Theoceca 3.1 sti~ 
ho~ds. 

R e m a r k  1. The  speeial case of Corollary 3 .2  wi~h T~ = T  and ~n~ =ca  for ~ 6 Z + 
v [13 appears in Istrateseu . Moreover, ~he ma in  result  of [3] is also a special case of 

CoroLlary 3.2.  | 

T h e o r e m  3.8. Let T~, T~ be two sdf-~a~ypin98 o~ (E, ~ ' ,  A) a~d ~nl, ca~: E -~  
Z + be two r such that ~n~(ca) [r Va~EE, i = l ,  2, and tha t /or  any ~, YE  
~E, and awy t~O 

F~,m~,.,~r,,,, , (t) > m i n { F . , , ( ~ 5 ( t ) ) ,  F.,~m,., , (~ ( t ) ) ,  .F,,~r,,,,, ( ~ ( t ) ) } .  (3.4)  

Suppose that there ecaist cao 6 E m~d (~ 6 ~ w~th (~ (0) = 0  such that the sequence {ca.}~=o 
defined baj 

'~'r - n = 0 ,  1,  2,  -.- ( 3 . 5 )  
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Induct ively  we can prove that  

inf F~,=,(t)~ inf F~,,,,(~(t))~ sup inf F=,,=~(s), Vt~0. (3.8) 
~,~rn ~,~>O s<~(O 4,J>O 

,+J:odd i+J=odd ,+J=odd 

Letting m-->oo and noting condition (r we have 

Jim inf P=,,=,(t)>isup inf F=,.=j(s)~sup(~(s)~1, Vt>0. 
m ~  (~,j>rn 8>0 4,j>O s>O 

~+]=odd 4+]=odd 

Therefore for any  8 ~ 0  and %~0 there exists N=zV(s ,  k) E Z  + such that  

(3.9) 
whenever  i, j > / m > N  with i - h i = o d d .  

Moreover, by the continui ty of t -no rm A, for any %>0 there exists k~, O<k~< 
rain{k, i}, such that  

a ( z - x ,  i-x1) (3.10) 
Then it follows from (3.9) ~hat for any  8 ~ 0  and for given kl there exists N~=- 

NI(s,  kl) such that  

vi, i+j-odd.  (3.11) 
Now we consider the case that  i, j E Z  + with i - t - j=even .  I t  is sufficient ~o discuss the 
case that  i , j  axe both odd since the opposite case is ~mi]ar.  By using Menger tr iangle 
inequality we have 

~ , , ~ , ( 2 s ) > A ( ~ , , . , . ( s ) , ~  .... , (8)) ,  i + j = e v e n ,  

where ~ is an axbitrraxy even. Therefore it  follows from (3.11) and (3.10) that  for 
any i, j, n ~  N:L 

i+ --even. 
Combining ( 3 . 9 ) a n d  ( 3 . 1 2 ) w e s e e t h a t f o r  any  ~:>0 and %>0 there exista a 

positive integer N~ ~max{N,  N~} such that  

�9 '=,.,,(28)>1--k, Vg, j>~N~. (3.13) 

This means that  {x,} is a ~ - C a u c h y  sequence of E .  By the  ~--eomple~eness of E ,  
~ -  

we can suppose tha t  x. ) ~. ~ ~ ,  hence it  can be proved tha~ ~o is the unique 
common fixed point  of 271 and Ta. | 

The following theorem gives a necessary and suffioient condition for a pair of  
mappings h) have a common fixed point. 

T h e o r e m  ~.4. Z~t Tx, T~ b~ two ~--~a~f~uou~ s ~ $ f ~ g s  o~ (~,  .@', A). 
The~ Tx, T~ haq)e a unique commo~ fixed To~nf i~ E i f  a~g onby i f  ther exists a ~- -  
cont~nuau~ maT1g~g A, which coqnq~utes w~th T~ and Ta a~d satisfies th~ f o ~ l ~ g  
caaditio~s: 

( i ) A(E)~TI( .E)~T~( .E);  
( i i )  For  an~y x, y ~.h7 a~'~ amy t~O 

/Va~.a,(t) >min{~r , , . r , , (~5( t ) ) ,  $'~,,.aa(~5(t)), z~', , , ,a,(r 

Proof. Necessity r Suppose that  x~ is ~he unique common fixed poin~ of Tx and 
T_,. We define the mapping A: ~- - )E  as follows: 
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A~=~., VzEE. 

It is obvious that  

AT~ =x. =TzA~, Vx 6 E; AT~--z. =T~Az, V* 6 E. 

This implies that condition (i) is satisfied. The ~r-continuity of .4 is trivial. 

iV~oreover, since 

F,,,~.a,,(t) =F~..,.(O = H ( t ) ,  Vx, y 6 E ,  
and H is greater than any other distribution functions, it is obvious that  (ii) is 
true.  

Sufficiency. For  any Xo 6 E,by condition (i) we can choose ah, x~,.., induct ively 
such that A~o=T~, A~z=T~, "'" A~.=Tix~.+~, Ax~.+~=T~.+~, .... . Let y.--Ax., 
~=1 ,  2, --.. B y  the same way as stated in Theorem 3.3 we can prove that  {H.} is a 

~ - C a u o h y  sequence in E. By the ~ -comple teness  of E le~ y. ) y. By virtue of 

the ~ - c o n t i n u i t y  of A, T~ and Ts we have Ta,ys.+~ ~')T~/., Aye. ~')A~/.. Moreover, 
Menger triangle inequality implies 

. t F t 

/F , ( 

and. letting ~--,co we have 

This implies that  T~V. =Ay.. Similarly, we can prove T~y. =A?/.. Now put Ay. ='~. 
Then 

�9 . ~/ =mm{F,,x, L#(t)) ,  H ( # ( t ) ) ,  _~,~,.~ Cg)(t)) } 

w>o. 
Hence 

(0 vt>o, 
and therefore letting ~-.oo we have 

" F ,n(O V t > O ,  

i.e. ~=A~ .  On the other hand, 

F =AF =AT2y. =T2Ay. --T,F, 

SO ~ is a common fixed point of A, Tx and T2. FinaLly it is easy %0 prove %hat ~ is 
the unique common fixed point of ,4, T~ and T2. I 

The following are the immediate consequences of Theorems 3.3 and 3 .4  
respectively. 

Corollary 8.5. Let ~ be a faintly of se~f-~a~r~gs o~ (E, ~-, A), a ~  r a 
~ 4 ~ g  of ~ ~to Z +, such that .for c6~ ~, ~6 E a~d a~ t~O, a~d for a~y t,vo 
malo2~gs S, T6~, S§ T 
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(,) 
Then there exists ~. 6. E such that x. --Tx., VT 6. ~ ,  a~g that for a~y ~o 6. E the sequence 
{x.} defi~ed by 

z~.+x *. S'(S}zs., $=.+~ = T'(Z)xs.+x, ,~ = 0, I, 2, ..., 

.~7--co~vver ges tO x.. 

Corol lary  8.6. Let fFr be a family of ~--co~ti~uaus se~f-maptrb~gs o~ (E,~-, A). 
Then !l~ has a unique cqramo~ fixed point in E i f  and ou~y i f  there exists a ~"~conti~uaus 
�9 n a ~ g  A which commutes with each T of ~ a~d satisfies the following conditions: 

( i i )  ~or all x, y6. E and a[~ t>~O, and/or any two maFlaings S a~l T6.~, S# T 

Far, a, (t) >min{Fs,.~,, C~ 5 (t)) ,  Fs,.a,  (~ (t)) ,  -Fr,, a, (r (t)) }. 

p(T~x, T ~ ) < a  max{d(x, y), d(x, T,x), d(y, Tg/)}, 

~zhere p denotes the ttausdoq'ff metric o~ C(E). Then there exists z. 6. E such that 

w 4. Appl i ca t i ons  

Firs%, we shall use the results in w 2 %o stndy the fixed point theorems for 
multi-valued mappings in metric spaces. We give the following results. 

Theorem 4.1. Let (E, d) be a complete metric space, C(E) the family of a~ 
no,empty compact sets of E, a~w~ { T~} ~'=I : E--)C ( E) a sequence of mu~ti-va~ued mappings. 
~u~ose that there exists a6. CO, 1) such that for way i, ~6. Z +, i ~ j  a~d a~y x, yE E 

(4.1) 

Proof. 
by F~.~) : 

x. 6_ ~T,x.. 

Firs% we define a mapping -~-: E x E--~9 as follows (we denote ~-(x, y) 

Therefore for any ~, 

F~.~(t) = . H ( t - d ( x ,  yJ),  Vx, y E E ,  tER .  (4.2) 
I t  follows from Theorem 8 of [3] Chat %he space (E, .~, min) with t-norm A =rain 
is a ~-comple~e Menger space, called Menger space induced by the metric space 
(E, a). 

Le~ s E E  and AE G(E). ~hre define a probabilistic distance Fa, a as follows: 
X)). 

I t  is easy to prove that rhe Menger-Hausdorff me,rio ~ induced by ~ -  [defined by 
(4.2) in terms of (1.1)] has the following form: 

 v ,Kt) =H(t-p(A, B)), A, B6C(E). (4.S) 
y6.E,  any i, ]6.Z +, iq~], and any t~0 ,  we have by (4.1) 
=H(t--p(T~, T/y)) 
>ll(t-a max{d(x, y), a(z, T~), d(y, T,y)}) 

=.H(at-----max{d(x, y), g(x, T,x), d(y, T,y) })  

mmin {F,,, ( t ) ,  F . .~. . , (~) ,  F , . , ~ , ( ~ ) } ,  Vt~0.  
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Moreover, i~ follows from [6] that  for any mEE,  any  ~=1,  2, -.. and any a E T ~ ,  
%here exis%s b E T,+I a such %ha% 

d(a, b)<p(T.~, T.+~a), 
hence 

-Y~.b(t) =H(t-g(a, b))>/H(~-p(T.x, T.+~a))=;~.=.~.+,~(~), Vt>O. 

Therefore all condi~ious of Theorem 2.1 are satisfied, and Theorem 4.1 follows from 
Theorem 2.1 immedia%ely. | 

I n  wha~ follows we shall use results in w 3 %0 s~udy %he exis%ence and uniqueness 
of %he solu%ion of nonlinear Vol%erra integral equa%ion on Banaeh space. For  ~he 
sake of convenience we firs~ in~roduee some nora%ions and basic definitions as 
follows. 

We assume%ha~ [0, a] is a given real in%erval ( 0 < a < o o ) ,  (E,  ~'~s) a real 
Banaeh space, C([0, a]; E )  %he Banaeh space of all JE-valued continuous rune%ions 
defined on [0, a] with %he norm 

and C( [0, a] x [0, a] x C ) [0, a] ; E )  ; E )  %he linear space of all E -va lued  continuous 
rune%ions defined on [0, a] x [0, a] xO( [0 ,  a]; E ) .  Besides %he no rm ~. ~v, %he space 
C([0,  a]; E )  can be endowed wi%h ano%her norm 

n ~ U. = ~  ( ~-~' II ~ (t) H ~), ~ E C ( E0, a] ; E~, (4.4) 

where 15 is an arbi trary posi%ive number.  I~ is obvious %ha~ %he norm ~. ~. is 
equivalen~ %0 the norm H" ]]v- 

Now we define a mapping ~-: C([0,  a]; E )  x C([0,  a]; E) - ->~  as follows: 

By Theorem 3 of [3J we know %ha% (C([0,  a]; E ) ,  ~ ,  rain) is %he ~--comple~e 
Menger space induced by C([0,  a]; E ) .  In  addi%ion, we can prove ~ha% in %he space 
(C([0,  a]; E ) ,  ~ rain) ~he convergences in %opology ~-, in norm ~. [[. and in 
norm ~ �9 IIv are equivalent each to o~her. 

Now we consider %he existence and uniqueness of ~he solution of %he nonlinear  
Vol%erra in%egral equation of %he ~ype 

where the kernel K is assumed %0 satisfy r following conditions: 
( i ) K E ~ ( [ o ,  a3 x [0, a] xO([0, a3; E);  ~)  and 

~, sE [O,a] 
~E C([O,~];B) 

( i i )  There exis~ m E Z  + and L > 0  such %ha~ for all x, ?]~O([0, a]; E )  and all 
~, s E [0, a3 

~I=l-(t, s, T ' -~xCs))-ICCt,  s, T~-~#(s ) )~s<L.  max . { Ip-q l j s} ,  
p , q E { x , y , T  m,T y} 

where %he mappings T, T", ~=1 ,  2,-.-, are self-mappings on C([0, a] ; E )  defined 
by 
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Z=(,) =;(,) + [' K (,, ,, ~(~))~, 
JO ~EoCEo, a]; E). ft 

T-,(,) =;<,) + Jo K (,, ,, T"-~,Cs))~, 

T h e o r e m  4.2. Let ((7([0, a]; E) ,  ~ ~ng~) be the Me~ger ,pace g~duoed b~ 
O([0, a]; E).  Su_~rt~ose ~,h~e e~4~s so~e  ZoEO([0, a]; E)  ,u& tha~ the sequence {~.} 
4e~ed b~ 

x.(t) =f',._~(t), ~=-1, 2, ..- (4.6) 

4s bau~geg, ~vh~re ~ @ tha ~oeitive i~tege~" aIz2eaced i~ the above c d ~ i o ~  (ii). Then 
Sheer ez~ets a u~que so~ut~o~ of equat~o~ (4.5) ~ O([0, a] ; E) and the 8eq~noe {~.} ~s 
..~7--oo~ve~'ge~t (hence co~ve~'gent g~ ~or~s [l " ~. a~d ll " ~o) to the8 unique so~t~o~. 

Proof. Let us consider the norm [I "~. defined by 44.4) with the positive 
nnmber L given in condition (ii). Then 

II T~$- T~Y~.< max I' o . , . =  o e~"-''e-~llm(s' *' T ' - * , ( s ) ) - K ( , ,  s. f ' - l # ( s ) ) ~ s g s  

f' <L. max { ~io--q~.}-max ez('-*' ds 

<(I- -e-"=) .  max {~--q~.},  Vz, y 6 0 ( [ 0 ,  a]; E ) .  
p,q E (~,y,T~,Tr'*Y) 

Putting ~ =I--~-~, we have for any r 6 R + 

-- rain 2 ' , . , (  r V, ,  ?]60(EO, a]; E)  
\~:)/ 

l~urthermore, since {z.} iS a bounded sequence, the function 

is a distribution function with value 0 for t=0.  Therefore Theorem 4.2 follows 
immediately from Corollary 3.2. II 

Finally we consider the existence and uniqueness of the common solution of the 
system of two nonlinear Volterra integral equations of the type 

x( , ) - -z( t )  +~'oKX(t, 8, z(s))ds l 
0 < t < a < o o ,  (4.7) 

v(~) =;<~) +]: r.<,, 8, v(8))~ 
where the kernel K~, g =1, 2, are assumed ~o satisfy the following conditions: 

(iii) K ,6O([0 ,  a] x [0, a] • a]; E);  E) ,  r 2, and 

s , t  E [O,a] 
='e c([O,a]; E) 

(iv) There exist ~n, ~EZ* and L:>0 such that for all ~, #EO([0, a]; ~ )  and 
~ll ~, s 6 [0, a] 

~(~,  8, T ~ - ~ ( s ) ) - K ~ ( ~ ,  8, T~-~V(~))~, 
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<L.max{]]z--y~E, ~z-  T~xII. , I ly-  T~y~.}, 
where the mappings T~, T~, ~=1, 2, ~ = 1 ,  2, .-. are defined as above. 

We have the following resulL 

T h e o r e m  4.8. Let (O([O, a]; E) ,  .~:-, m ~ )  be the 27--vomT~ete Me~gev spac8 
i~aduced by C([0, a]; E).  Suppose that theee exists XoCC([O, a]; E) such that th~ 
sequence {~.} defi~ed by 

-T~x,.,+~(t), ~=0,  1, 2, -" 

is bounded. The~ the system of equatio~ (4.7) has a unique common so~utdo~ ~. 

C([O, a]; E) qz~th x. ) ~. and x. ) ~.. 
Proof. We consider ~he norm ~ �9 ~. defined by (4.4) wi~h ~he positive number  L 

given in condition (iv),  and ~herefore we have 

~T~x--T~yIl.<~L.max{~$--y~. , ~x-T~z~., ~y-T':y~.} "max" e~('-')o.~<~o ds 

<(1 -e  Ily-g yl]3", V,,, yeOCl:O, a]; .E). 
Le~ f l = l - - e  -z~. I% follows from ~he above inequali ty ~hat for all r ~  + and for any  

= m i n  

Since {x.} is bounded, we see ~hat inf  ! '~,,(t) is a dis~ribu%ion function 
p,q E {x.}7,-a 

inf  F~.q(0) =0.  Therefore Theorem 4.3 follows from Theorem 3.3 

diately. 
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