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§ 0. Introduction

The purpose of this paper is to investigate the theory of probabilistic metrie
spaces (PM-spaces) and its applications. In § 1 we introduce a kind of Menger PM-
spaces. By virtue of their basic properties and the Menger—Hausdorff metric defined
for this kind of spaces, in § 2 we shall give some fixed point theorems for multi-
valued mappings on PM-spaces. In addition, in § 3 we shall give some fixed point
theorems for one—valued mappings on PM-space, which generalize and improve
some recent results of [1—4]. As an application, in § 4 we shall use results in § 2
and § 3 to study the fixed point theorems for multi—valued mappings on PM-spaces
and the existence and uniqueness of the solution of nonlinear Volterra integral
equations on Banach spaces.

Throughout this paper let R=(—oc0, o), R*=[0, o), Z* be the set of all
positive integers, 2 the set of all (left-continuous) distribution functions on R, and
H a special distribution function defined by

H) ﬂ{ i, >0,
0, <0.
The definitions, terms and notations in this paper relating to PM-space are adopted
from [7, 5].

As Schweizer and Sklar™ point out that if (H, &, 4) is a Menger PM-space
(briefly Menger space) with a continuous {~norm 4, then (E, &, 4) is a Hausdorff
space in the topology 7 induced by the family of neighborhoods

{U,(s, A): pEE, e8>0, A>0},
where
U,(8, \) ={z € E: F,y(8)>1—A}.

§ 1. Menger Space (E, Z, 4)

Definition 1. Let (B, #, 4) 'be a Menger space with continuous f-norm 4,
* Supported by the Science Fund of Chinese Academy of Sciences.
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and A a nonempty subset of E. If sup D,(t) =1, where
D4(2) “"Sup inf Fp-a(s):

<t p.q¢€

then A is called a probabilistically bounded set, and D,(#) the probabilistic diameter
of 4.

Proposition 1.1. Let (B, &, A) be a Menger space with continuous t—norm 4.

(1) If A is a probabilistically bounded set, then D, (t) is a distribution function.

(ii) If A, BCE are any two probabilistically bounded sets, then AUB is also a
probabilistically bounded set of H.

Proof. (i) Since A is probabilistically bounded, by definition it is easy to see
that D,(t) is nondecreasing in ¢, D,(0)=0, sup D,(¢) =1 and D,(¢) is left-continuous

in ¢. This shows that D,(¢) is a distribution function. :
(ii) Since A4 and B are probabilistically bounded, so is B\ A. From Theorem 10
of [8] we have

.DAUB(t) ==.DAUB\A(t) =>4 (D‘_ <-—;—>, DB‘.A (%)),
and therefore by the continuity of 4

1 Dun®>smp 4 (Da (£), Daa())

t>0
-4 supDA(—) supoA( )) =4(1,1) =1. _ |
t>0
In the rest of this section we always assume that (B, &, 4) is a Menger space
with continuous #-norm 4, and 2 the family of all nonempty .7-closed
probabilistically bounded sets. We define a mapping .Z as follows (we denote
Z(4, B) by Fa,pand the value of Fy,zat t€R by Fas®):

F,,3(t) =sup 4(inf sup F,,,(s), inf sup F,,,(s)), V4, BEQ. a.1
s<t acA dEB beB acAd

Z i3 called the Menger~Hausdorff metric induced by #.

Proposition 1.2. (@, Z, 4) is a Menger space, i.e. F is a mapping from
QX Q into D satisfying the following conditions:

(1) Fu() =1, Yt>0 if and only if A=B;

(ii) FA.B(O) =0;

(iii) Fa5=Fp 4

(iv) Fap(s+t)=4(Fu,0(ty), Fo,u(ta)), VA, B, CEQ and #1, 1,>>0.

Proof. By the definition of F it is easy to see that F,,;(#) is nondecreasing
and left-continuous in ¢, and F,,5(0) =0. Now we prove that

sup Fu (@) =1.
In fact, since A, BEQ, we have AU BE Q. By the continuity of 4 we have
sup F,5(¢) =sup sup A(inf sup Fo,5(s), inf sup F,.3(s))
= A4(sup sup inf inf Fg,;(s) sup sup inf mf Fy(3)

t>»0 s<t a€d DER t>0 s8<t bEB a

=4(sup D4ys(?), sup Dyus(®)) =41, 1) =1.
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This shows that & is a mapping from 2x Q into 2. It is obvious that Z satisfies
conditions (ii) and (iii). From Theorem 17 of [8] it follows that Z satisfies
condition (iv). To show Z satisfies condition (i), we first suppose V>0, F4,5(¢) =1.
By the continuity of 4, for any >0 we have

1=F4,5(s) =sup A(inf sup Fon(s), inf sup Fa.(8)

= A(sup inf sup F,(8), sup inf sup Fmb(s))

s<s a6€d DER s<s dEB a€Ad
Thisg implies that
sup inf sup Fo(s) =1; (1.2)
s<s a€d beD
sup inf sup Fg,p(s) =1. (1.8

8<8 DEB a€
From (1.2) we have sup Fy(8) =1, Va€ A. Therefore for any a € 4 and any A>0
there exists b, € B such that

Fop(8)>1—A.
This shows that ¢ is a7 —accumulation point of B, hence a € B, i.e. ACB.

Similarly we can prove that BC 4. Therefore we have 4 =B,
Conversely, if 4=B, then for any ¢>>0 and any s€ (0, ¢) we have

Fan(t) > AGnt sup Fo(s), inf sup Fop(s)) = 4(1, 1) =1. X

a€EAd beB dbEB acd

Definition 2. Let A€ Q and € E. The probabilistic distance between point z

and set A is the function F,,, defined by
FGVA(t) I.l.=su'p sup F‘;l‘(s)! Vt?o'
<t ycd
Proposition 1.3. Let A€ Q, and », y be arbitrary points of E. Then
(i) Foa(t)=1, Vt>0 if and only if € 4;

(ii) Foa(brtta)=A(Fay(81), Fya(ta)), Vi, ta>>0;
(iii) For any A, BEQ and € 4,

Fos(t)=>Fa(t), Vi=0.
Proof. (i) If s€ A, then for any ¢>0 and any s€ (0, £) we have
Fga(t) >su}A) F. y(s)>Fa,e(s)=1.
Ve

This shows that
F,.(t)=1, Vi>0.
Conversely, if F,4() =1, V¢>0, then for any >0 we have
1="F,,4(8) =sup sup F,,y(s) =sup F,,,(¢).
. 3<8 Yc4d yeEA

This implies that for any A>0 there exists y, € A such that
F,,(8)>1—A.
It follows that » is a J—accumulation point of 4 and z€ 4.
(i) By the Menger triangle inequality and the continuity of 4 we have

Fe,a(ti+t)= sup sup Feo(s1+8)> sup A(Fe,(80), fup Fye(s)

81-h8g<t +ly ZEA 8 +33<ty+ia

>A(EE£ Fay(s1), fri? f’g}') Fyo(82)) =A(Fo,y(t1), Fy,a(ta))-
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(iii) If z€ A, then we have
Foa,5(t) =sup sup Fu,3(s) >5up inf sup Fo,p(s)

=gup A(mf sup Fon(9), 1)

3<t

>sup A(inf sup Fo.(s), mf sup F, () =F4i (@), Vi=O0. |
dERB

<t acEA

§ 2. Fixed Point Theorems for Multi-valued Mappings

Throughout this section let (B, &, 4) be a J—complete Menger space with
continuous #~norm 4 satisfying 4(2, ¢)>¢, V¢€[0, 1]. We denote by 2 the family
of all nonempty F—closed probabilistically bounded sets and by # the Menger-
Hausdorff metric defined by (1.1).

Theorem 2.1. Let {T,}: E—>Q be a sequence of multi—valued mappings. Suppose
that there exists a constant k>>1 such that for any ¢, §E€Z*, i+j and any z, yEE

FT‘z ‘I',y(t/ >m1n{F¢ v(kt>: S-T«z(kt), s Tﬂ(kt)}; Vt?O. (21)

Suppose further that for any s €E, any n=1, 2, -+ and any aET,z there exists
beT, 10 such that

F...b(t) >Fr o), Vi=0. (2.2)

Then there exists », € B such that », EQ Tw,.
Proof. For any z,€ E take 2:€T12,€ Q2. By the supposition there exists
@3 € T'ywy € Q such that
Foet(®)=Fra, 10(2), Vi=0.
Similarly there existy z; & T'3za such that
Frpe(t) >FT.¢1.2'.¢. (t), Vt=0.
Continuing this procedure we can obtain a sequence {z,} satisfying the following
conditions:
(1) 2, €Twn_1, n=1,2, --+;
() Fopes @) Frps,tanen(t), V1=0.
It is easy to prove that {z,}”E is a Cauchy sequence. By the .7 —completeness of

T
(B, &, 4) we can suppose z, —> ,C K.
Now we prove that =z, is a common fixed point of {7}iz;.
In fact, it follows from Proposition 1.8 (ii) and (iii) that

AROES ¢ (CEY) AN C23)
>4 (Fue, ((1—-) ) Frue, T(%-))
24 (P (1-5)) min{F,, .. (&),

Fopiras (—I‘Bi) Fere(E0)}). @.3)

In addition, by Proposition 1.3 (i) and (ii) we have
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Frrais ()2 (P (B 1)), Frrarn ()

~Foen((E=55)).

Substituting the above inequality into (2.8) and letting m—>c0 we have by the
continuity of 4

Form(®) >F...T,,.(—Z- )+ Fuyza, ((7’;-)'"t ) m=1,2,

Letting m~»>co on the right we have
Fora () =1, V>0, 4=1, 2, «,
and therefore z, € T'2,, 4=1, 2, -« by Proposition 1.8 (i), i.e.

@, € ﬁ Tw,. [ |
§=1

Moreover, Theorem 2.1 is equivalent to the following result.

Theorem 2.2. Let {T,};ni: E—>Q be a sequence of multi—valued mappings. Suppose
that there exists a constant k>1 such that for any 4, §E€EZ*, i+ J and any o, yE B

Frpry@>min{F,,,(kt), Fary (k8), Fyry(kt), Fery(2kt), Fy 1o (2k8)},
Vit=>0. (2.4)
Suppose further for any s € E, any n=1, 2, +-- and any a € T,z there exists a point
beTl, 1a such that
Fo () =Frar,.0(t), Vi=0.
Then there ezists x, € E such that

z, € ﬁ T,.
=1

Proof. It can be seen that condition (2.4) and condition (2.1) are equivalent,
and therefore Theorem 2.2 is equivalent to Theorem 2,1. |

§ 3. Fixed Point Theorems for One Valued Mappings

Throughout this section we always assume that (E, &, 4) is a J—complete
Menger space with continuous ¢~norm 4, and the function & satisfies the following
condition(®):

(@) { &: R*—>R* ig strictly increasing, #(0) =0 and &"(¢)—>c0, V>0,
where @" denotes the n~th iteration of &.
In addition, in Theorem 3.1 and Corollary 3.2 we assume that

4(a, b)>max{a+b—1, 0}, Ve, bE[O, 1].

We have the following results.

Theorem 3.1. Let {T'};2, be a sequence of self-mappings on (E, Z, 4), and
{mi}iey: E—>Z* a sequence of mappings such that for each i€Z*, my(z)|mi(Tw),
Vz € E. Suppose that for any ¢, jEZ*, i%j and any z, yEH

Foppicorg,ppsvy (8) > min Foo(®(@)), Vi=o0. 3.1

PAEAS, ¥y TP, TPLVY)
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Suppose further that there exist zo€ B and G € D, G(0) =0 such that

inf F,(8)=G (), Vi=0, (8.2)
Pl E{Zndnag
where
gy =Tmn@ntg o, n=1, 2, «, (8.8)

. . e
Then there ewists @ uniqus commeon fized point x, of {T}v, in B and v, —> =,.
Take &(¢) =-, a€(0,1), £=0, Itiseasy o seo that & satisfies the condition
[21

(®). Therefore from Theorem 3.1 we have the following result.
Corollary 3.2. Let {T}2,, (B, F, 4) and {m}, be the same as in Theorem

8.1. Suppose that for any i, §E€Z*, i%j and any z, yE E

: + ?
Fr?gtau.rgu‘r)y (t ) = min. -Fp.q <_>, Vt}o_
D€ (@,y, TPHD= TPSVY) a

Suppose further there exist z,€ B and G € D with G(0) =0 such that the sequence {w,}
defined by (3.8) satisfies the condition (8.2). Then the conclusion of Theorem 3.1 still
holds.

Remark 1. The special case of Corollary 8.2 with T;=T and m;=m for € Z*
appears in Istritescu™’. Moreover, the main result of [8] is also a special case of
Corollary 3.2. 1

Theorem 8.8. Let Ty, T be two self~mappings on (E, F, 4) and my, my: E—>
Z* be two mappings such that mi(z) |m(Tw), Vo€ E, i=1, 2, and that for any =, yE
E and any t=0

Frowwnpeny (8) Zmin{Fe,y(D(1)), Forpew s (B(), Fyrpery (B} (3.4)

Suppose that there exist 5, € B and G € D with G-(0) =0 such that the sequence {2 )0
defined by
WQ,.+1=T5"‘("”>275,., Zan4a= é"'@“ﬂ)wﬂn+1: 'n'=0: 1; 2) o (3-5)
satisfies
inf F,(8)=G(), Vi=0. (3.6)
DA E{Tn)5ioe
Then there emists a unique common fized point , € E of Ty and T, with , -, @,.
Proof. Let {z,} be the sequence in (38.5). Then for any 4, j€Z* with i+j=
odd (without loss of generality we can suppose 4 is 0dd and j is even) we have

F’l-@; (t) =FT;"“"“’“-1 'T’:"“'l""l-x (t)

. >min{F¢«—u'J-x(¢(t))’ Fft-u'o(¢<t)>’ Fﬂ;—:.l’;<@<t))}l Vt?o'
It follows from (8.6) that for any m, n € Z* with m<n

inf F,,.(t)> inf F,,(0(¢)), Vi=O0. 3.7
m<t, f<n m-—-1<i, j<n
$+f=o0dd $+j=0dd

In view of the arbitrariness of m and « we obtain
inf F,,,,(t)> inf F, . (B(4)), Vit=0.
$j=m $,§>m—1

¢+i=odd sl f=oad
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Inductively we can prove that

inf F,, ()= inf F,,(P"(¢))> sup inf F,_(s), Vi=0. (3.8)
$,i>m $,§>0 s<PM(t) 4,50
$+J=o0dd $+71=0dd $+f=0dd

Letting m~»co and noting condition (P) we have
lim inf F, (%) >su§) ir_lf0 F,,.,(8)=>sup G(s) =1, Vi>0.
> {,i> 8>0

m—oo  §,§>m
$+5=0ld $+J=0dd

Therefore for any >0 and A>>0 there exists N =N (g, A) €Z* such that
Foo(8)>1—1, (3.9)
whenever 4, j=>m>N with ¢+j=o0dd.
Moreover, by the continuity of —norm 4, for any A>>0 there exists A;, 0<As<
min{A, 1}, such that
A(1=2Ay, 1=A)>1—2. (3.10)
Then it follows from (8.9) that for any >0 and for given A, there exists N;=
Ny(s, Ay) such that
F,..,(8)>1—4y, Vi, j=DN4, i+j=o0dd. (8.11)
Now we consider the case that ¢, j€ Z* with ¢+ j=even. It is sufficient to discuss the
case that 4, j are both odd since the opposite case is similar. By using Menger triangle
inequality we have
F.,..(28)=>4(F,,..(8), F...(e)), i+j=even,
where n is an arbitrary even. Therefore it follows from (8.11) and (3.10) that for
any %, j, n=>Ny
Foe(2e)=>4(1~21, 1—2)>1—A, é+j=even. (8.12)
Combining (8.9) and (3.12) we see that for any &>0 and A>0 there exists a
positive integer Ny=max{N, N} such that

-Fn.s, (28) >1-1, Vi, .7>NSI (38 13)
This means that {z,} is a J—Cauchy sequence of K. By the .7-completeness of K,

we can suppose that =, AN z,EFH, hence it can be proved that z, is the unique
common fixed point of T’y and T’,. |

The following theorem gives a necessary and sufficient condition for a pair of
mappings to have a common fixed point.

Theorem 3.4. Let Ty, Ty be two T -continuous self-mappings on (E, F, 4).
Then T4, T3 have a unique common fized point in E if and only if there exists a T —
continuaus mapping A, which commutes with Ty and T,y and satisfies the following
conditions:

(1) A(B)cTy(B)<T.(B);

(ii) For any =, yE€ K and any t=>0

FM,AV(@ >min{F1',a-Tw(¢ (t)): FT,c.Aa (dj (t)) ’ FT!Y'AV (dS (t))}“

Proof. Necessity. Suppose that z, is the unique common fixed point of T; and

T;. We define the mapping A: E—E as follows:
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Az=z, VzC€H,
It iy obvious that
AT w=2,=T Az, Vo€ E, ATx=2,=T:4As, VosCE.
This implies that condition (i) is satisfied. The Z—continuity of 4 is trivial.
Moreover, since
FAz.Ay@) =anz,.(t) =H(t), Vo, y€E,
and H is greater than any other distribution functions, it is obvious that (ii) is

{rue. .
Sufficiency. For any #,€ E,by condition (i) we can choose z,2,,+-- inductively

Such that Amo=T1a:1, .A.!E1=T2£I72, see .A.wg,.=T1m2,.+1, Amg,,+1=T2m2,.+2, <., Let y,,=Aa;,.,
n=1, 2, ---. By the same way as stated in Theorem 3.3 we can prove that {y.} is a

JCauchy sequence in E. By the 7 —completeness of K let y, ——'9; y By virtue of

the J-continuity of 4, T’y and T'; we have T;yg,.ﬂ——)le*, Aygn—_; Ay,. Moreover,
Menger triangle inequality implies

F T1yur Ay (t) =4 <F TxilnTxﬂlnﬂ(—%_)’ F T)illnuuiyo(_;-))

=4 <F1'm.:1'1v.,.+,<%>: FAvx,.-Aﬂ. (%))1 Vt>0’ .

and letting n—>co we have
Fry,1,(@)=H (%) =H(t), Vt=0.

This implies that Ty, = Ay,. Similarly, we can prove Ty, =A4y,. Now put Ay, =7.
Then
Fi,45(®) >min{Fr,y,,7,5(@(®)), Fruy, 4. (P@)), Fr,5,a5(P®))}
=min{F5,45(@(*)), H(P()), Fus,s5(P($))}
=F;,4(D(2)), Vi=O0.
Hence
Fi.45 (t) >Fy3, Au(@<t)>> >Fy.u<¢ (t)), Vt?O,
and therefore lefting n—>co we have
- Fai(8)=H(®@), V=0,
i.e. ¥ =Ay. On the other hand, »
y=Ay =A%, = ATy, =T: Ay, =Ty,
y = Ay = ATy, =T: Ay, =Ty,
50 ¥ is a common fixed point of 4, T; and Te. Finally it is easy to prove that y is
the unique common fixed point of 4, Ty and T. ]
The following are the immediate consequences of Theorems 3.3 and 8.4
respectively.
Corollary 8.5. Let M be a family of self-mappings on (B, F, 4), and m a
mapping of M into Z*, such that for all », yEE and all t=0, and for any two
mappings 8, TEM, ST
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F gmdr, Ty (t) >min{F &y (@ (t> ) » F @,8mp (Q (t) ) ’ F Y TDy (¢ (t) ) }
Then there exists o, € B such that x,=T=z,, VT €M, and that for any v, E the sequence
{@.} defined by
Tans1 =829, Danea =T’"‘T)w2,.+1, n=0, 1, 2, -,
T —converges to ,.

Corollary 3.6. Let M be a family of T —continuous self~mappings on (E,F, 4).
Then M has a unique common fized point in B if and only if there exists @ T -continuous
mapping A which commutes with each T of M and satisfies the following conditions:

(1) AB)c()T(E);
(ii) For all z, yE E and all ¢=0, and for any two mappings S and TEM, S+T
F a2, 49(8) Z>0in{Fgz,04(P()) 5 Fita,ua(D(2))s Fryyay(P(2))}-

§ 4. Applications
First, we shall use the results in § 2 to study the fixed point theorems for
multi-valued mappings in metric spaces. We give the following results.

Theorem 4.1. Let (H, d) be a complete metric space, C(E) the family of all
nonempty compact sets of B, and {T'}r,: E—>C(E)a sequence of multi—valued mappings.
Suppose that there exists a € (0, 1) such that for any i, §EZ*, %4 and any o, yE B

p(Tw, Tiy) <amax{d(z, y), d(z, Tw), d(y, Tw)}, (4.1)
where p denotes the Hausdorff metric on C(H). Then there exists x, € B such that

z, € ﬁT,a;,.
$=1

Proof. First we define a mapping #: E X E—>2 as follows (we denote Z (=, y)
by Fo,y):
F,,(§)=H(—d(z, v)), Vs, yEH, tcR. (4.2)
It follows from Theorem 38 of [3] that the space (E, &, min) with {-norm 4=min
is a J*complete Menger space, called Menger space induced by the metric space
E, d).
( L)et € K and A€ C(Z). We define a probabilistic distance F,, s as follows:
Fo,u() =H(¢—d(2, 4)).
It is easy to prove that the Menger—Hausdorff metric # induced by % [deﬁned by
(4.2) in terms of (1.1)] has the following form:
F, (@) =H(t—p(4, B)), A, BEC(H). (4.3)
Therefore for any =, y € B, any 4, j€EZ*, i+4, and any =0, we have by (4.1)
Fro0y(@) =H(t—p(Tw, T))
>H (t1—a maz{d(s, v), d(z, Tw), d(y, Tw)})

=H (-:—‘--—max {d(=, ¥), d(z, Tw), d(y, T.y) })

~min {F,,, (%) Fure (-:7), Fory (%)}, Vi=0.
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Moreover, it follows from [6] that for any mEE any n=1, 2, -+ and any a €73,
there exists b €T 41 @ such that
d(a, ) <p(Twz, Th41a),
hence
Fmb@) =H<t—d(d, b))>H(t_P(an; TM-:LG)) =F1',.a:.1'n+1a (t), Vi=0.

Therefore all conditions of Theorem 2.1 are satisfied, and Theorem 4.1 follows from
Theorem 2.1 immediately. |

In what follows we shall use results in § 8 to study the existence and uniqueness
of the solution of nonlinear Volierra integral equation on Banach space. For the
sake of convenience we firgt introduce some notations and bagic definitions as
follows.

We assume that [0, @] is a given real interval (0<e<oo), (H, |+[z) a real
Banach space, O([0, ¢]; E) the Banach space of all E—-valued continuous funclions
defined on [0, ¢] with the norm

Jolo=sup [2(4) 5
and C(f0, ¢] x [0, a] XC)[0, a]; E); E) the linear gpace of all F—valued continuous

functions defined on [0, a] % [0, a] XO([0, a]; E). Besides the norm |« |¢, the space
O([0, a]; E) can be endowed with another norm

ﬂwﬂ*=gg<§(e'“ﬂw(t)ﬂm), #€0([0, al; B, (4.4)

where L is an arbitrary positive number. It is obvious that the norm [-[, is

Now we define a mapping #: O([0, a]; E) XC([0, al; B)—>D as follows:
Fc,v(t) =H(t— ﬂw—y”*>) tER; o, yEO([O) a]; -E)'
By Theorem 8 of [3] we know that (O([0, a]; E), &, min) is the J—complete
Menger space induced by C([0, ¢]; E). In addition, we can prove that in the space
(0([0, a]; B), &, min) the convergences in topology 7, in norm |+|,and in
norm |«
Now we consider the existence and uniqueness of the solution of the nonlinear

Volterra integral equation of the type
a(t) =50+ [ Kt 5, a(s))ds, 0<t<a<oo, @.5)

where the kernel K is assumed to satisfy the following conditions:
(1) K€0([0, a1x [0, a] xO([0, al; B); E) and
[Klo=, sup [K(s, 2(s))]a<oo;
a:teC'(E[O al; B)
(ii) There exist m€& Z* and L>0 such that for all z, y€O([0, ¢]; E) and all
¢, s€[0, o]
IK(t, s, T"2(s))— K (4, s, T"y(s)) [e<Le  max  {Jp—q]s},

v €z, y, T2, Ty}
where the mappings T, T™, n=1, 2,---, are self-mappings on O([0, a]; E) defined
by
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To(2) =§5(t)+rK(t, s, o(s))ds,
; z€0([o, ql; B).
Tog(£) =5 (8) + j (K (G, 5, T"())ds,

Theorem 4.2. Let (O([0, al; B), &, min) be the Menger space induced by
O([0, al; E). Suppose there exists some £, € C([0, a]; H) such that the sequence {z.}
defined by

2, (8) =T™z, 4(¢), n=1, 2, «- (4.6)
48 bounded, where m is the positive integer appeared in the above condition (ii). Then
there exists @ unique solution of equation (4.5) in C([0, al; E) and the sequence {%,} is
T —convergent (hence convergent in norms [+ |, and |+ [qg) to this unique solution.

Proof. Let us consider the norm [+[, defined by (4.4) with the positive
number I given in condition (ii). Then :

[ T""U—T"‘yﬂ,<§ntax J': XL K (s, ¢, T™ w(s)) =K (¢, s, T™ *y(s)) |eds

2

<ZL. max {[Ip-—qﬂ,}-maxf ek ds

Py ¢ E{z,¥, '™z, T™y) 0<t<a/ O

<@-e™). max  {[p—g[.}, Vs, y€O([0,q]; B).

0,4 € {z,y, ™2, T™Y}

Putting 8=1—¢"%, we have for any r € R*
-FT"':D.T'"!I("') >H(T—ﬁ° max HP“QH*)

9,4 € {2,v,Tm2, T™Y}

- oo H(E-lp-dl.)

2,9 € {2,¥,T™z,T™Y}

-  min F,,,(-g—), Va, y€0([0, al; E)

. (2,4, T™z, T™y)
Furthermore, since {z,} is a bounded sequence, the function

inf F, (f)= inf H(@—[p—q|.)

PrIE{Tn)nny Pvd E{Tn)r=o
is a distribution function with value O for ¢{=0. Therefore Theorem 4.2 follows
immediately from Corollary 3.2. ]

Finally we consider the existence and uniqueness of the common solution of the
system of two nonlinear Volterra integral equations of the type

a(8) =3 + [ Ka(t, 3, a(5))ds
B ; } 0<t<a< oo, 4.7
9(®) =5()+ [ Kat, s, y(s))ds
where the kernel K, ¢=1, 2, are assumed to satisfy the following conditions:
(iii) K,€0([0, a]x [0, a] XO([0, a]; BE); E), 4=1, 2, and
[Kilo= mp Kt 3, 2(0)ls<oo

z€ C(00,41; B)
(iv) There exist m, n€ Z* and L>0 such that for all =z, y€O([0, a]; E) and
all ¢, s€ [0, a]

”Ki(t) S, Tlﬁ_ w(.?)) —K2<t: s, Tg— ?/(s)) ﬂE
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<L-max{|z—y[s, |o—TTa]s, |y—Tiyls},
where the mappings 7;, T7, i=1, 2, n=1, 2, :-- are defined as above.
We have the following result.

Theorem 4.3. Let (0([0, al; B), ¥, min) be the T —complete Menger Sspace
induced by C([0, al; E). Suppose that there ewists mgCC([0, al; E) such that the
ssquence {x,} defined by

Tons1(8) =T?wm(t); Tansa(t) =T§m2n+1(t)) n=0,1, 2, -
48 bounded. Then the system of equation (4.7) has a unique common solution =, €

O([0, al; E) with :v,,-i z, and =z, __>H‘"* ,.
Proof. We consider the norm [-[, defined by (4.4) with the positive number L

given in condition (iv), and therefore we have

t

[T%e— Ty, <L-max{|z~y],, [o~T7]., lv—T].} -gnaxfoe"“'“ ds
<tea

<@-e¢™) max{|z—~yl,, [~TTs],, ly—TWl.}, Ve, y€O([0, al; B).
Let B=1—¢71a. It follows from the above inequality that for all r € R* and for any
z, y€0([0, al; E)

Frgersy(r)>H(f~mox{lo—yl., |s~TTal., [y-Tl].} )

=min {Fa,, (-g—), F o rpa (-g—), Fy 1y (‘%‘)}

Since {z.} is bounded, we see that inf F, ,(¢) is a distribution function and
P E{Tn}
inf = F,,4(0) =0. Therefore Theorem 4.3 follows from Theorem 3.3 imme-
9,4 € {&n)n=0

diately. |
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