

Ekeland's Variational Principle and the Mountain Pass Lemma:

Shi Shuzhong $({\frac{1}{2}H}\psi)$ *Na~dcai U~wrsity, Tianfln*

Received Aug. 9, 1984 Revised June 22, 1985

Ekeland's variational principle is a fundamental theorem in nonconvex analysis. Its general statement is as the following:

Ekeland's Variational Principle^{$\text{1, 2},$} Let V be a complete metric space, and $F: V \rightarrow \mathbf{R} \cup \{+\infty\}$ a lower semicontinuous function, not identically $+\infty$ and bounded *from below. Let* $s>0$ *be given, and a point* $u \in V$ *such that*

$$
F(u) \leqslant \inf_{V} F + \varepsilon.
$$

Then there exists some point $v \in V$ *such that*

$$
F(v) \le F(u),
$$

$$
d(u, v) \le 1,
$$

$$
F(w) > F(v) - ed(v, w), \text{ for any } w \ne v.
$$

This principle has extremely extensive applications (see $[2]$), and probably, its potential is not yet brought into full play. In this paper we shall give a new application of this famous prinoiple, namely, a new brief proof of the generalized Mountain Pass Lemma.

The Mountain Pass Lemma is a very useful argument for finding orifical points of a function f which is unbounded from above and below. Its initial formulation is the following:

Mountain Pass Lemma^{$(3, 4, 5)$}. Let f be a $C¹$ real function defined on a Banach $space X and satisfying (PS)-condition, i.e.$

(PS) *Any* sequence $\{x_n\} \subset X$ such that $\{f(x_n)\}$ is bounded and $f'(x_n)$

 \rightarrow 0 in X^{*} (the dual space of X) has a convergent subsequence.

If there is an open neighbourhood Ω of 0 and a point $x_0 \notin \overline{\Omega}$ such that

$$
f(0),\,f(x_0)\!<\!c_0\!\!\leqslant\!\inf_{\mathfrak{g}_0}\!f,\quad
$$

then the following number is a critical value of f:

$$
c-\inf_{g\in\Gamma}\max_{t\in(0,1]}f(g(t))\geqslant c_0,
$$

whece

 $\Gamma = \{g \in C([0, 1]; X) | g(0) = 0 \text{ and } g(1) = x_0\},\$

and c is said to be a critical value of f, if there exists $\bar{x} \in X$ such that $f(\bar{x}) = c$ and $f'(\overline{x})=0.$

The Mountain Pass Lemma has many extensions and variations (see $[5-7]$ and others); particularly, Chang Kung-Ching^[3] generalizes this lemma to locally Lipschitz functions. Our new proof is also given in this general case. For this purpose, we recall the definitions of a locally Lipschitz function, of its generalized gradient and the corresponding (PS)-condition.

 $f: X \rightarrow \mathbb{R}$ is said to be a locally Lipschitz function, if for any $x \in X$, there exists $\delta_a>0$ and $c_a>0$ such that for any $x_1, x_2 \in B(x, \delta_x) = \{y \in X \mid ||y-x|| < \delta_x\},\$

$$
|f(x_1)-f(x_2)| \leq c_{\pmb{\varepsilon}} \|x_1-x_2\|.
$$

The generalized gradient $\partial f(x)$ of a locally Lipschitz function f at x is the subset of X^* defined by

$$
\partial f(x) = \{x^* \in X^* \mid \langle x^*, v \rangle \leq f^0(x; v), \ \forall v \in X\},\
$$

where

$$
f^{o}(x; v) = \lim_{\substack{y \to x \\ y \downarrow 0}} \sup \frac{f(y + \lambda v) - f(y)}{\lambda}.
$$

For a detailed discussion on the generalized gradient, we refer to Clarke^{19, 101}. Here, **we shall use the** following properties:

i) $f^{0}(x; v)$ is upper semicontinuous as a function of (x, v) , and as a function of v alone, is sublinear, i.e. positively homogeneous and subadditive.

ii) ∂f is weak^{*}-closed, i.e. if $x_a \rightarrow x$, $x_a^* \in \partial f(x_a)$ and $x_a^* \xrightarrow{w^*} x^*$, then $x^* \in \partial f(x)$.

iii) ∂f is locally bounded, i.e. for any $x \in X$, there exist $\delta_x > 0$ and $c_x > 0$ such that

$$
\|x^*\| \leq c_{\varepsilon}, \quad \forall x_1 \in B(x, \delta_{\varepsilon}) \text{ and } \forall x^* \in \partial f(x_1).
$$

iv) ∂f satisfies the mean-value theorem, i.e. for any $x_1, x_2 \in X$, there exists $\theta \in$ $(0, 1)$ and $x^* \in \partial f(x_1+\theta(x_2-x_1))$ such that

$$
f(x_2) - f(x_1) = \langle x^*, x_2 - x_1 \rangle.
$$

We can find the proof for these properties in Clarke^[10].

For a locally Lipschitz function f , (PS) -condition is as follows:

(PS) Any sequence $\{x_n\} \subset X$ such that $\{f(x_n)\}\$ is bounded and

 $\min_{\mathbf{x^*} \in \partial f(\mathbf{x}_n)} ||\mathbf{x^*}|| \rightarrow 0$ has a convergent subsequence.

Theorem 1. Let f be a locally Lipschitz function defined on a Banach space X and satisfying (PS)-condition. If there is an open neighbourhood Ω of 0 and a point $x_0 \notin \overline{\Omega}$ such that

$$
f(0), f(x_0) < c_0 \leq \inf_{i \neq 0} f,\tag{1}
$$

then the following number is a critical value of f:

$$
c = \inf_{g \in \Gamma} \max_{t \in [0,1]} f(g(t)) \geq c_0,
$$
\n(2)

 $where$

$$
T = \{ g \in C([0, 1]; X) \mid g(0) = 0 \text{ and } g(1) = x_0 \},
$$
 (3)

and c is said to be a critical value of f, if there exists $\bar{x} \in X$ such that $f(\bar{x}) = c$ and $0 \in \partial f(\bar{x})$.

The idea of our proof is very simple: Considering

$$
F(g) = \max_{t \in [0,1]} f(g(t))
$$

as a function defined on the closed linear manifold Γ of $C([0, 1]; X)$, it is easy to check that F is a locally Lipschitz function on Γ . Then, by Ekeland's variational principle, \boldsymbol{F} has almost minimizers satisfying some particular conditions. Using a sequence of these points on Γ , we shall associate this sequence of almost minimizers a sequence on X , which satisfies the requirement in (PS) -condition for f. Finally, the limit of a subsequence in this sequence on X is just a critical point of f . The difficult point in this process is to establish a relationship between the sequence of almost minimizers of F and a sequence on X , which satisfies the requirements in (PS) -condition for f .

We decompose the proof of this theorem into several propositions. These propositions will be proved for a general case, in which E0, 1] is replaced by a compact metric space K , and then they can be also used for some more general extensions of Mountain Pass Lemma.

Proposition 1. Let $f: X \rightarrow \mathbb{R}$ be a locally Lipschitz function on a Banach space *X*, and *K* a compact metric space. Then $F: C(K; X) \rightarrow \mathbb{R}$, defined by

$$
F(g) = \max_{x} f(g(t)), \quad \forall g \in C(K; X)
$$

is a locally Lipschitz function on $C(K; X)$.

Proof. For any $q \in \mathcal{O}(K; X)$, as a continuous image of the compact space K , $g(K)$ is a compact subset. Since f is a locally Lipschitz function, for any $t \in K$, there are $\delta_t > 0$ and $c_t > 0$ such that

$$
\forall x_1, x_2 \in B(g(t), \delta_t), \quad |f(x_1) - f(x_2)| \leq c_t \|x_1 - x_2\|.
$$
 (4)

Then $\{B(g(t), \delta_t)\}_{t \in K}$ constitutes an open covering of $g(K)$, and there are $t_1, \dots,$ $t_k \in K$ such that

$$
g(K) \subset \bigcup_{i=1}^k B(g(t_i), \, \delta_{t_i}). \tag{5}
$$

On the other side, by Lebesgue lemma, there exists a Lebesgue number $\delta > 0$ depending on $g(K)$ such that for any $x \in g(K)$, there exists some *i*, satisfying

$$
B(x,\,\delta)\subset B(g(t_i),\,\delta_{t_i}).\tag{6}
$$

Set $c_g = \max_{1 \leq i \leq k} c_{i_i}$. By (4)--(6), we have that

$$
\forall t \in K, \ \forall x_1, \ x_2 \in B(g(t), \delta), \quad |f(x_1) - f(x_2)| \leq c_g \Vert x_1 - x_2 \Vert.
$$

Thus, when h_1 , $h_2 \in C(K; X)$ satisfy

$$
\|h_i - g\|_{C(\mathbf{X};\,X)} = \max_{t \in \mathbf{K}} \|h_i(t) - g(t)\| < \delta, \quad i = 1, 2,
$$

we have

$$
|F(h_1) - F(h_2)| = |\max_{t \in K} f(h_1(t)) - \max_{t \in K} f(h_2(t))| \le \max_{t \in K} |f(h_1(t)) - f(h_2(t))|
$$

$$
\le c_g \max_{t \in K} ||h_1(t) - h_2(t)|| = c_g ||h_1 - h_2||.
$$

Proposition 2. Let f, F, X, K be as in Proposition 1 and assume that for $h\in C(K; X)$,

$$
F^{o}(g; h) = \lim_{\substack{u \to g \\ \lambda \downarrow 0}} \sup \frac{F(u + \lambda h) - F(u)}{\lambda},
$$

and

$$
M(g) = \{s \in K \mid f(g(s)) = F(g) = \max_{t \in K} f(g(t))\}.
$$

Then

$$
F^{\mathbf{0}}(g; h) \leqslant \max_{\mathbf{s} \in \mathbf{M}(g)} f^{\mathbf{0}}(g(s); h(s)).
$$

Proof. We choose two suitable sequences $\{u_i\} \subset C(K;\; X)$ and $\{\lambda_i\} \subset \mathbb{R}_+$ such that $||u_i-g|| = \max_{t \in K} |u_i(t) - g(t)| \to 0$, $\lambda_i \downarrow 0$ as $i \to \infty$ and

$$
F^{o}(g; h) = \lim_{i \to \infty} \frac{F(u_i + \lambda_i h) - F(u_i)}{\lambda_i}.
$$
 (7)

Pick any $s_i \in M(u_i + \lambda_i h)$, $i = 1, 2, \dots$, then it follows that

$$
\frac{F(u_i+\lambda_i h)-F(u_i)}{\lambda_i}\leqslant \frac{f(u_i(s_i)+\lambda_i h(s_i))-f(u_i(s_i))}{\lambda_i}.
$$
\n(8)

By the mean-value theorem, there exist $\theta_i \in (0, 1)$ and $x_i^* \in \partial f(u_i(s_i) + \theta_i \lambda_i h(s_i))$ such that

$$
\frac{f(u_i(s_i)+\lambda_i h(s_i))-f(u_i(s_i))}{\lambda_i}=\langle x_i^*, h(s_i)\rangle, \quad i=1, 2, \cdots.
$$
 (9)

Since K is a compact metric space, $\{s_i\}$ has a convergent subsequence, denoted again by $\{s_i\}$, such that $s_i \rightarrow s \in K$. Then, it is obvious that

$$
u_i(s_i)+\theta_i\lambda_i h(s_i)\rightarrow g(s).
$$

By the local boundness and the weak*-oloseness of the generalized gradient, $\{x_i^*\}$ has a weak^{*}-cluster point $x^* \in \partial f(g(s))$. We may suppose $\langle x_i^*, h(s) \rangle \rightarrow \langle x^*, h(s) \rangle$, and then, by $(7)-(9)$, we have that

$$
F^0(g; h) \leq \lim_{i \to \infty} \langle x_i^*, h(s_i) \rangle = \lim_{i \to \infty} \langle x_i^*, h(s_i) - h(s) \rangle + \lim_{i \to \infty} \langle x_i^*, h(s) \rangle.
$$

Finally, we merely have to check that $s \in M(g)$. Indeed, from $s_i \in M(u_i + \lambda_i h)$ we have

$$
f(u_i(s_i)+\lambda_i h(s_i)) \geq f(u_i(t)+\lambda_i h(t)), \quad \forall t \in K.
$$

By taking limits, we conclude

$$
f(g(s)) \geqslant f(g(t)), \quad \forall t \in K.
$$

Proposition 3. Let f, F, X, K and others be as above and $K_0 \subset K$ a closed subset. If for $g\in C(K; X)$,

$$
M(g)\subset K\setminus K_0,\tag{10}
$$

a~d there exists 8>0 *such that*

$$
\forall h \in C_0(K; X) = \{h \in C(K; X) \mid h(t) = 0, \quad \forall t \in K_0\},
$$

$$
F^0(g; h) \ge -\varepsilon \|h\|, \tag{11}
$$

 \bm{then} *then there exists* $s \in M(g)$ *xuch that* \cdots *i.e....* \cdots *i.e.* \cdots *i.e.* \cdots *i.e.* \cdots *i.e.*

$$
f^0(g(s); v) \geqslant -\varepsilon \|v\|, \quad \forall v \in X. \tag{12}
$$

Proof. If there does not exist such *s*, then for any $t \in M(g)$, there exists $v_i \in X$ with $||v_i|| = 1$ such that

$$
f^0(g(t); v_t) < -\varepsilon.
$$

Since g is continuous and f^0 is upper semicontinuous, we have that for any $t \in M(g)$, there exists $v_t \in X$ with $||v_t|| = 1$ and $\delta_t > 0$ such that

$$
\forall s \in B(t, \delta_t) = \{s \in K \mid d(s, t) < \delta_t\}, \quad f^0(g(s); v_t) < -s,\tag{13}
$$

 ${B(t, \delta_t)}_{t \in M(g)}$ is an open covering of $M(g)$ and from the compactness of $M(g)$ and the relation (10), we may suppose

$$
K_0 \cap B(t, \delta_t) = \phi, \quad \forall t \in M(g), \tag{14}
$$

and there are finite $t_1, ..., t_k \in M(g)$ such that

$$
M(g)\subset \bigcup_{i=1}^k B(t_i,\,\delta_{t_i}).\tag{15}
$$

For any $t \in K$, we define

$$
\rho_0(t) = \min_{s \in \mathcal{X}(g)} d(t, s), \tag{16}
$$

$$
\rho_i(t) = \min_{s \in K \setminus B(t_i, \delta_{t_i})} d(t, s), \quad i = 1, 2, \cdots, k. \tag{17}
$$

From (15), we have

$$
K = \left\{ \bigcup_{i=1}^k B(t_i, \, \delta_{t_i}) \right\} \cup \left\{ K \backslash M(g) \right\},\,
$$

and it follows that

$$
\sum_{i=0}^k \rho_i(t) > 0, \quad \forall t \in K.
$$
 (18)

SeL

$$
h(t) = \frac{\sum\limits_{i=1}^{N} v_{i,} \rho_i(t)}{\sum\limits_{i=1}^{k} \rho_i(t)}.
$$

Then, by (13) - (18) , we have

$$
h\in C_0(K;\,X)\quad\text{and}\quad \|h\|\leqslant 1.
$$

Since $f^0(x; v)$ is sublinear in v,

$$
f^{\mathbf{0}}(g(t);h(t)) \leq \frac{\sum_{i=1}^{k} \rho_i(t) f^{\mathbf{0}}(g(t);v_t)}{\sum_{i=0}^{k} \rho_i(t)}.
$$

By (13), (16) and (17), for any $t \in M(g)$, we have

$$
\rho_{\mathbf{0}}(t) = 0 \text{ and } [\rho_{\mathbf{i}}(t) > 0] \Rightarrow [f^{\mathbf{0}}(g(t); v_{t_i}) < -\mathbf{s}].
$$

Then

$$
\forall t \in M(g). \quad f^{\mathbf{0}}(g(t); \ h(t)) < -s \leq -\varepsilon \|h\|,
$$

From Proposition 2, it follows

$$
F^0(g; h) \leqslant \max_{s \in \mathcal{X}(g)} f^0(g(s), h(s)) < -\varepsilon \|h\|,
$$

and we have a contradiction to (11) . Hence, (12) is proved.

Proof of Theorem 1.

Set $K = [0, 1]$ and $K_0 = \{0, 1\}$. Since $\partial\Omega$ separates 0 and x_0 , for any $g \in \Gamma$, we have

$$
g(K) \cap \partial \Omega = g([0, 1]) \cap \partial \Omega \neq \phi \tag{19}
$$

and by (1) and (3) ,

$$
\max_{t\in[0,1]} f(g(t)) \geq \inf_{\partial \Omega} f \geq c_0 > f(g(0)), \quad f(g(1)).\tag{20}
$$

Therefore,

$$
\forall g \in \Gamma, \; M(g) = \{s \in [0, 1] \; | \; f(g(s)) = \max_{t \in [0, 1]} f(g(t)) \} \subset (0, 1) = K \setminus K_0.
$$

 Γ is a closed linear manifold of $\mathcal{O}([0, 1]; X)$ and it is a complete metric space for the distance determined by its norm. We define $F: \Gamma \rightarrow \mathbb{R}$ by

$$
F(g) = \max_{t \in [0,1]} f(g(t)), \quad \forall g \in \Gamma.
$$

Then, by Proposition 1, F is a locally Lipschitz function on Γ and from (20) and (2), it is bounded from below. According to Ekeland's variational principle, for any positive sequence $\{s_n\}$, $s_n \downarrow 0$, there exists a sequence $\{g_n\} \subset \Gamma$ such that

$$
c \leqslant F(g_n) \leqslant c+\varepsilon_n,
$$

and

$$
F(u) > F(g_n) - \varepsilon_n \|u - g_n\|, \quad \forall u \neq g_n, n = 1, 2, \cdots.
$$

Thus, for any $h \in C_0([0, 1]; X) = {h \in C([0, 1]; X) | h(0) = h(1) = 0}$, we have

$$
F^{0}(g_{n}; h) \geqslant \lim_{\lambda \downarrow 0} \sup \frac{F(g_{n} + \lambda h) - F(g_{n})}{\lambda} \geqslant -\varepsilon_{n} \|h\|, \quad n = 1, 2, \dots.
$$

By Proposition 3, there exists $s_n \in M(g_n)$ such that

$$
f(g_n(s_n)) = F'(g_n),
$$

$$
f^0(g_n(s_n); v) \geqslant -\varepsilon_n \|v\|, \quad \forall v \in X, n = 1, 2, \dots.
$$

Then, setting $x_n = g_n(s_n)$, $n = 1, 2, \dots$, we have

$$
f(x_n) \rightarrow c
$$

and

$$
0 \in \partial f(x_n) + \varepsilon_n \overline{B}^*, \quad n = 1, 2, \cdots,
$$

where $\overline{B}^* \subset X^*$ is the closed unit ball of X^* . By (PS)-condition, $\{x_n\}$ has a convergent subsequence $\{x_{n_i}\}$. Suppose that \bar{x} is the limit of $\{x_{n_i}\}$, and then \bar{x} satisfies

$$
f(\bar{x}) = \lim_{n \to \infty} f(x_{n_i}) = c
$$

and

$$
\forall v \in X, \ f^0(\overline{x};\, v) \geq \lim_{n \to \infty} \sup f^0(g_{n_i}(s_{n_i});\, v) \geq -\lim_{n \to \infty} \varepsilon_{n_i} \|v\| = 0,
$$

i.e. $0 \in \partial f(\bar{x})$.

The technique used in proving Theorem 1 is also adapted to more general extensions (see $[4, 5, 6]$). For example, we have

Theorem 2. Let f be a locally Lipschitz function defined on a Banach space X and satisfying (PS)-condition. Δ s_iume that X has a direct sum decomposition

$$
X = X_1 \oplus X_2, \quad \text{where } \dim X_1 = k \lt +\infty.
$$

Let S_1 (resp. B_1) be the unit sphere (resp. ball) in X_1 , and S_2 a sphere $\{x \in X_2 \mid \|x\| = r\}$ *with* $r > 0$. If for c_0 , $c_1 \in \mathbb{R}$ and $\varphi \in C(S_1; X)$,

- *i*) $f(x) \geq c_0 > c_1$, $\forall x \in S_2$;
- ii) $f(x) \leq c_1$, $\forall x \in \varphi(S_1);$
- iii) *the linking number* $l(S_3, \varphi(S_1)) \neq 0;$

then the following number is a critical value of f:

$$
c=\inf_{g\in\Gamma}\max_{t\in\mathcal{B}_1}f(g(t))\geqslant c_0,
$$

where

$$
\Gamma = \{ g \in C(\overline{B}_1; X) \mid g(x) = \varphi(x), \ \forall x \in S_1 \}.
$$

For the proof of this theorem, we merely need to take $\overline{B}_1=K$ and $S_1=K_0$. The condition iii) ensures

 $q(\overline{B}_1) \cap S_2 \neq \phi$, $\forall q \in \Gamma$,

which replace (19) , and then

$$
\max_{t\in B_1} f(g(t))\!\geqslant\!\inf_{s_1}\!f\!\geqslant\!c_0\!\!>\!\!c_1\!\geqslant\!\sup_{\varphi(s_1)}\!\!f.
$$

Henoe

$$
M(g) \subset B_1 = \overline{B}_1 \backslash S_1, \quad \forall g \in \Gamma.
$$

The rest is the same as in the proof of Theorem 1.

The most general version, including Theorems l and 2 as special cases, is in the following:

Theorem 3. Let f be a locally Lipschitz function defined on a Banach space X and satisfying (PS)-condition. Assume that K is a compact metric space, K_0 a closed *subset of K,* $\varphi \in C(K_0; X)$ *and* $S \subset X$ *. If*

i) $f(x) \geq c_0 > c_1$, $\forall x \in S$; ii) $f(x) \leq c_1$, $\forall x \in \varphi(K_0);$ iii) for any $g \in \Gamma = \{ g \in C(K; X) | g(x) = \varphi(x), \ \forall x \in K_0 \},\$ $g(K) \cap S \neq \phi$:

then the following number is a critical value of f:

$$
c-\inf_{g\in\varGamma}\max_{t\in K}f(g(t))\!\geqslant\!c_0.
$$

The author wishes to thank Professor Zhang Gongqing (Chang Kung-Ching) for helpful conversations and suggestions.

Remark. After completion of this paper, the author has learned that in the new book of J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984, p. 272, there is a different proof, also using Ekeland's variational principle, for a strengthened version of the Mountain Pass Lemma, but their proof is not suitable for a locally Lipsohitz function. In addition, by private communication, the author has still learned that Prof. J. Mawhin at University of Bruxelles has too a similar proof for a $C¹$ function. Nevertheless, our proof is new, even in the C^1 case.

References

- [1] Ekeland, I., On the variational principle, *J. Math. Anal. Appl.*, 47 (1974), 324-353.
- [2] Ekeland, I., Nonconvex minimization problems, *Bull. Am. Math. Soc.* (N. S.), 1 (1979), 443-473.
- [3] Ambrosetti, A. and Rabinowitz, P. H., Dual variational methods in critical point theory and applications, *J. Fun. Anal.*, 14 (1973), 349-381.
- [4] Nirenberg, L., Variational and topological methods in nonlinear problems, *Bull. Am. Math. Soc.* (N. $(S.), 4 (1981), 267-302.$
- [5] Ni Wei-Ming, Some minimax principles and their application in nonlinear elliptic equations, J. *d'A~dyse Math.~ 37* (1980), *248--275.*
- [6] Rabinowitz, P. H., Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), $31 - 68.$
- [7] Brézis, H., Coron, J. M. and Nirenberg, L., Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, *Comm. Pure Appl. Math.*, **33** (1980), 667-684.
- [8] Chang Kung-Ching, Variational methods for non-differentiable functionals and their applications to partial differential equations, *J. Math. Anal. Appl.*, **80** (1981), 102-129.
- [9] Clarke, F. H., A new approach to Lagrange multipliers, *Math. Oper. Res.*, 1 (1976), 165-174.
- [10] Clarke, F. H., Optimization and Nonsmooth Analysis, *Wiley-Interscience*, New York, 1983.