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Ekeland's variational principle is a fundamental ~heorem in nonconve~ 
analysis. I~s general s~a~ement is as %he following: 

E k e l a n d ' s  Var i a t iona l  Pr inc ip le  u.~. Let V be a com~ete ~ebr~c ~/~ce, a~d 

f~'o~n below. Let s > 0  be g~v~, a ~  a ~ t  ~E  V ~uch that 

F(u)  ~ i n f  F +  8. 
V 

The~ the~'e ez~sts soqne ~94mt v 6 V such that 

d(u, v) <1,  

F C v ) > / ' ( v  ) - , d ( v ,  w), for  a~y v .~v.  

This prinoiple has extremely extensive applications (see [2]), and probably, it~ 
po~en~ial is not ye~ brought into full play. In ~his paper we shall give a new 
application of this famous prinoiple, namely, a new brief proof of the generalized 
Mountain Pass Lemma. 

The Mountain Pass Lemma is a very useful argument for finding orifical points 
of a function f which is unbounded from above and below. Its initial formulation 
is the following: 

Moun ta in  Pass L e m m a  ~3,',~J. /_~ f be a 6'* rea~ f~,~ct~a,~ defi~e~ a,~ a Ba,a~h 
space X a~d sat4sf~.l~g (PS)--con~t/Z~, ~.e. 

(PS) An~j sequer~ee {~,,}~X such that {f(a~,,)} ~ baumded a ~  f'(a~,,) 

4~ X* (the dual space of  X)  ha~ a co~ecgm~t ~ab~equmw~4. 

I f  the~'e ~,, a,~ ~ ,~ghbou,rho~4 ~ of 0 a,~ a ~ , ~ t  ~o~ ~ such that 

f (0) ,  f(zo) < o o < i n f f ,  SD 

~h~ the fvllv,w~g nucnber is a cv4tical value o f f :  

r inf max f (g ( t ) )~r  
g~P t~ [O,1i 

whece 
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/~= {g E O( [0, 1]; X ) I g ( 0 ) = 0  and g(1) =zo}, 

a~d c ~s saSd to be a cv~ticcd val~e o f f ,  i f  there exists ~ X such "that f (~)  =o and 

f ' (~ )  =0 .  
The Mountain  Pass Lemma has m a n y  extensions and variations (see [5--7] and 

others);  par t icular ly ,  Chang K u n g - C h i n g  cs3 generalizes this lemma *o locally 
Lipschitz functions.  Our new proof  is also given in this general  case. For  this 
purpose,  we recall the definitions of a locally Lipschitz funct ion,  of its generalized 
gradien~ and the corresponding (PS)-condi t ion .  

f :  X--~R is said to be a locally Lipschitz funct ion,  if for any  z ~ X ,  ~here 
exists 8~>0 and c~>0 such that  for any  x~, a ~ B ( x ,  8,) = { y ~ X [  [ ly-z[ l<8,} ,  

I - ! < c ,  II 
The generalized gradient Of(z) of a locally Lipschitz funct ion f at �9 is the  subset of 
X"  defined by 

where 

f(y+~.v) - - f (y )  fo(x;  v )=  l im sup 

For  a detailed discussion on the generalized gradient ,  we refer to Olarke :9'~~ Here,  
w e  s h a l l  u s e  t h e  following properties:  

i) re(x ;  v) is upper  semicont inuous  as a funct ion  of (x, v), and as a funct ion  
of v alone, is sublinear,  i.e. posit ively homogeneous and subadditive. 

ii) Of is wcak'-closed, i.e. if x~-*x, z~EOf(x~) and x~, w*) , ,  t hen  z*COf(~).  
iii) Of is locally bounded,  i.e. for any  z ~ X ,  there  exis~ 8 , > 0  and c ,>O such 

that  

!l$'li<C,, V z l E B ( z ,  8,) and Vx 'E0f($1) .  
iv) ~ f  satisfies the mean-va lue  theorem, i.e. for any ~ ,  x~ E X ,  there exists ~ E 

(0, 1") and ~*E~f(x l+~(x~-~l ) )  such that  

f(x~) - f ( x l )  = <z*, z~ -  zl>. 
We can find the proof for these properties in Clarke El~ 

For  a locally Lipsehitz funct ion  f ,  (PS)-condi t ion  is as follows: 

(PS) A n y  sequence { z , } c X  such that  { f ( z . )}  is bounded an4 

r a i n  II 'l[- o l as a convergent  subsequence. 
~Eaf (xn) 

Theorem 1. Let f be a $ccaZly IApsehStz fu~ct$o~ defi~ed o~ a Ba~ach space X 
a~d sat~sfy~ag (PS)-co~ditio~. I f  there ~s an opeu ~eighbouvhood ~2 of  0 a~d a 19oint 
xo ~ ~ s~ch that 

f ( 0 ) ,  f(a;o) < r  f ,  (1) 
~Q 

then the f~lcwi~g ~umber ~s a cr valaze of  )q 

c = in f  max f (g (t))  ~>co, (2) 
r te [o,11 

whe,r~ 
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r = { g E c ( [ 0 ,  i];  x ) I n ( o )  =o and g(i)  =~o}, (3) 
and c is sadd to be a critical value of fi  i f  theq'e exists ~ E X such that f (~)  - c  and 
OE af(~).  

The idea of our  proof is very simple: Considering 

/ ' ( g )  = m a x  f ( g ( t ) )  
re[o,1] 

as a funct ion defined on the closed linear manifold F of C([0, 1]; X ) ,  it is e ~  T to 
check t h a t / '  is a locally Lipschi~z function on F .  Then, by Ekeland's variational 
principle, F has almost minimizers satisfying ~ m e  par%icular conditions. Using a 
sequence of these points on /~, we shall associate this sequence of almost 
minimizers a sequence on X ,  which satisfies the requirement  in (PS)-condi t ion for 
f .  Final ly ,  the l imit  of a subsequence in this sequence on X is just a critical point 
o f f .  The difiicul~ point  in this process is to establish a relationship between the 
sequence of almost minimizers of / '  and a sequence on X ,  which satisfies the 
requirements in (PS)-condit ion for f .  

We decompose the proof of this theorem into several propositions. These 
propositions will be proved for a general case, in which E0, 1] is replaced by  a 
compact metric space / i  ~, and %~hen they can be also used for some more general 
extensions of Mountain Pass Lemma. 

P r o p o s i t i o n  1. Let f :  X--~R be a locally L@schitz f~nction on a Banach space 
X ,  and K a compact wet~'ic space. Then F:  C ( K ;  X)--~R, defined by 

F ( g )  = ~ / ( g ( ~ ) ) ,  V g E C ( K ;  X )  

is a locally Lipschgtz fu~ctio~ on C(K; X ) .  
Proof. For  any g E C ( K ;  X) ,  as a continuous image of the compact space /C, 

g ( / ( )  is a compact subset. Since f is a locally Lipschitz function, for any t E K ,  
there are ~ t~0  and c ~ 0  such that 

Vwa, x, E B (g (t) ,  ~,),  I f (x~)  - f (x~)  ! ~<c, !: x ~ -  x.~][. (4) 
Then {B(g( t ) ,  8t)}tea" constitutes an open covering of g ( K ) ,  and there are ti, "", 
t~ E / (  such that 

k 
g(I~) c U  B(Kt,), ~,,). (5) 

~ 1  

On the other side, by  Lebesgue lemma, there exists a Lebesgue number  ~ > 0  
depending on g ( K )  such that for any x E 9 ( K ) ,  there exists some i, satisfying 

B(~, ~) cB(g(~,),  ~,,). (6) 
Set ca= max c~,. By (4 ) - - (6 ) ,  we have that 

Thus, when hi, haEC(K; X )  satisfy 

'h 

we have 

A F (h~) - / '  (h..~ ] = I m~x f (~ :  ( t))  -- max,~ f(h~ (t)) I <max, e~ !f (h~ (t)) - f (h~. (t)) ] 

< c, ~a~ !i ~ (~) - h .  (t) II = c, II h~- h_~ :l. I 
t ~ K  
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P r o p o s i t i o n  2. Let f, F, X, K be as i n  ~q'o~ositio~ 1 a,~d assum~ that for 
bEe(K; x ) ,  

and 

Then 

~,O(g; h) = l i m  sup ..F(u+Xh) - FCu) 

.~(g) = {sE ~ i f (~(og)zF(~)  = ma~ f (~(~))}. 

Proof. 

tha~ Uu,-g]l = maxlu,(t)  - g ( t ) i ~ 0 ,  h $ 0 as i - , oo  and  
t E K  

~O(g; h ) = l i m  ~(u,+X,h)--~(u,) 

Pick any s ~  M(u~+k~h), ~=1, 2, ..., then  it follows that 

F (u, + ~h) - ~ ( ~ ) <  f (~, (s,) -b Xih (s,)) -- f (u, (s,)) 

F~ h) <max f~ h(s)) .  

We choose two.suitable sequences {u,}~C(K; X)  and { h } c R +  such 

(7) 

�9 (8) 

By the mean-va]ue theorem, there exist 9 ,E(0,  1) and x:EDf(u,(s~)+~h(s,)) 
such that 

f (u , (s , ]+~g~(sD) ' - f (~ , (s i ) )  =<x,, h(sO>, ~=1, 2, -.-. (9) 
ki 

Since I (  is a compact metric space, {st} h~s a convergent subsequence, denot~gd again 
,by {s~}, suoh that  Sr-*s 6 K.  Then, it is obvious that  

4, (s,) + O,x,h (st)-~g (s). 
By the local boundness and the weak*-oloseness of ~he generalized gradient, (xD has 
a weak'-clusf~r point x'E~f(g(s)) .  We may Suppose <x;, h(s)>--~,<x ", h(s)>, and 
%hen, by (7 ) - - (9 ) ,  we have tha~ 

F ~ (g: h) < lira<x:, h (s,) > = lira<x:, ]~(s,) - h (s) > + lim<x~, h (s) >. 

Final ly,  we merely have to oheok that  s E M  (g). Indeed, f rom s~ E M (u~+2~h) 
we have 

f(u,(s,) +x,h(s , ) )  > f ( ~ ( t )  +~h(t)) ,  Vt E K.  
By f~king limits, we conclude 

f ( g ( s ) ) ~ f ( g ( t ) ) ,  V tEK.  I 

Proposition 3. Let f, F, X, K and others be as above a~d I (oCKa cIvsed sub- 

set. I f  for gEC(K; X) ,  
(g) c K \ Ko, (1~) 

a~d there exists 8>0  such that  

VhEOo(K; X )  ={bEG(K; X)Ih( t )  =o, VtEKo}, 
~ ( g ;  h) >-8',[hl, (IL) 

t h e n  there e x e r t s  s E  M Q g ]  ~ . ~ u : A . ~ a t  . . -  " , .  . . . . . . . . . . . . .  ; . . ; .  . . . . . . . . . . . . . . . . . . . . . . . .  �9 ...~.~ 
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f~ ~)~>-~ii~li, w E x .  (12) 
s I f  ~hero does not exist such s, then  for any ~EM(g), there exists 

v,E X wibh l[v,! I =1 such that 
ff(g(t); ~ ,~<-e .  

Since g is continuous and fo is upper semicontinuous, we have that  for any  
t E M (g), there exists vt E X with 1[ v, II = 1 and  ~t~ > 0 such that  

VsCB($, ~,)={sEK!d(s, t] ~ , } ,  f~ v , ) < - - s ,  (13) 

{B(t, ~t)}te~e~ is an open co~'ering of M(g) and  f rom the compactness of M(g) and 
the relation (10), we may suppose 

Ko{1B(t, ~ , ) = r  W E M ( g ) ,  (14) 

and there are finite t,, -.-, t,  E M (g) such ~hat 

M(g)~U B(=,, ~,,). (~5) 

For  any $ E K, we define 

From (15), we have 

and iL follows t~ha~ 

SeL 

Po(~) = r a i n  d(t,  s),  (16) 
= E M ( g )  

p,(t) = min d(t, s), i = l ,  2, -.-, k. (17) 
s E K ~ ( t  i, at6) 

]E p,(,)>o, VtEK. (28) 

v,,p,r 
k g )  = '= '  

2] p,(t) 
i~- I I  

Then, by (13)- - (18) ,  we have 

hEC, o(K; X)  and ][h:]<l. 

Since fo(~; v) is sublinear in v, 

2] p,9)P(g(t); ~,.) 
]*(gCt); h(~))< ,-1 ~ 

2] p,(O 
By (13), (16) and (17), for any I E M ( g ) ,  we have 

po(~) = 0  and [ p , ( / ) > 0 ] ~ [ f f ( g ( t ) ;  v , , ) < -  8]. 
Then 

VtEM(g). ffCg(t); h ( t ) ) < - 8 ~ - ~ l l ] , ' , l ,  

F rom Proposition 2, it follows 

~(g;  h)<maxl~(g(8), h ( , ) ) < -  ~lhU, 
aEM(O)  

and we have a oongradiction to (11). Hence, (12) is proved. | 
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Proof of Theorem 1. 

Set K= [0, I] and Ko={0, 1}. Since ~D separates 0 and So, for any gE/', we 

have 

g(K)  n ~ e = g ( [ o ,  l J )  n ~ D @ r  (19) 

and b~ (1) and (3), 

max f (g (t)) ~ i n f f ~ c o > f  (g(0)) ,  f (g (1)).  (20) 
/ e [ o , l )  ~D 

Therefore,  

VgE I ~, M (g)={sE EO, 1] If(g(s)) -~max f (g(t) ) } c  (O, 1 ) - K \ K o .  
te[O,l] 

/1 is a closed linear manifold of U([0,  1]; X )  and it is a complete metric space 
for the distance determined by its norm.  We define F:  / '--~R by 

F(g )=max  f (g ( t ) ) ,  VgEF.  
rE[0 .1]  

Then,  by Proposit ion 1, F is a locally Lipsehitz funcMon o n / ~  and f rom (20) and 
(2), it is bounded f rom below. According to Ekeland 's  variat ional  principle,  for 
any positive sequence (8.),  s~ ~ 0, there exists a sequence ~ g . ) c F  such tha~. 

c ~ F ( g . )  • c §  en, 
and 

F(U)>F(gn)-s . ! iu-g.II ,  Vu~g., n=l ,  2, .... 
Thus,  for any  hEOo([0,  1]; X ) =  {bEG([0 ,  1]; X ) l h ( 0 ) = h ( 1 ) = 0 } ,  we have 

F~ h ) ~ H m  sup F(g.W-kh)-t~(g.) ~-s. , i lhl ,  I, n = l ,  2, ..-. 
z;o ~, 

:By Proposit ion 3, there exists s~ E M (g,,) such that  

f(g.(s~)) = F ( g . ) ,  
W E X ,  2, . . . .  

Then,  setMng x~=g~(s~), n ~ l ,  2, ..., we have 

and 

0Eaf(x . ) -hs~B*,  n = l ,  2, --., 

where B * c X "  is the closed uni t  ball  of X*. By (PS)-condit ion,  (x.)  has a convergen~ 
subsequence (x.,}. Suppose that  ~ is the l imi t  of (x~,), and then  z satisfies 

f ( z )  = lira f (x . , )  - c  

and 

Vq~ C X,  fo (~; v) ~ lira sup fo (g~, (s.,); v) ~ - lira s,, I] v i[ = 0, 

i.e. 0 E ~f (x) .  
The technique used in p rov ing  Theorem 1 is also adapted to more  general  

extensions (see [4, 5, 6J). Fo r  example, we have 

Theorem 2. Let f be a ~oca~ly Zipsch~tz f~.etio~ defi~ed on a Banach space X 
and satisfying (PS)-coq~d~t~on. .~,~me that X has a diq'ect sum decoqnposit~on 

X = X ~ X ~ ,  where dim X~=.k<: +oo. 
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with r  I f  fo~- co, c~E R and q, EG(8~; X ) ,  
i ) f(z)>~Co>C~, VzES~; 
ii ) f (x )~c~,  VxE~o(S~); 
iii) the b~nking number ~(S,, f~(S~) ) =#0; 

the~ the fc, Z~owi,g ~nbe~" is a c~'it~ca~ r of f: 

c = i n f  max f(g(t))>~co, 
g E P  t E ~ t  

where 

r = ( g EO ( ~ ;  x)Ig(~)-~(z) ,  VzES~}. 
For the proof of this theorem, we mere ly  need to take B ~ = K  and S~=Ka.  The 

r iii) ensures 

which'replace (19), and then 

max f (g(t))  >/infy>~Co>Cl~sup f .  
t E ]~l 81 ~(BD 

Henoe 

The r6s~ is ~he same as in the proof of Theorem 1. 
The most general version, including Theorems l and 2 as special cases, is in the 

following: 

T h e o r e m  3. Let f be a ~ocal~y L~psch~tz f~tnct~o~ defined on a Banach space X 
and satisfying (PS)-condition. Astarte that K is a eempact m~tr space, Ko a c~osezl 
subset of Iff, ~EC(Ko;  X )  and S ~ X .  U 

i ) f(z)>~Co>C~, VzES; 
ii ) f (x)<c~,  VxE~(Ko) ;  
liP, fo~. any gE s  X ) ] g ( z ) - ~ ( z ) ,  V.zE Ko}, 

g(K)  r~ s @r 

ghe~ the fo~owing ~umbev ~s a cvitica~ val~e off'. 

c - i n f  max f ( g ( t ) )  >~co. 
g ~ l "  t ~ h  ~ 

The author  wishes to thank Professor Zhang Gongqing (Chang Kung-Ching)  
for helpful  conversations and suggestions. 

R e m a r l r .  Af ter  completion of ~his paper, ~he author  has learned ~ha~ in the 
new book of J. P .  Aubin and I. Ekeland,  Applied b~onlinear Analysis, Wi ley -  
Infzrseienca, New York, 1984, p. 272, there is a differen~ proof, also using Ekeland 's  
variational principle, for a s~reng~hened version of the Mountain Pass Lemma, bub 
their  proof is no~ suitable for a locally Lipsohi~z function. In  addition, by  privaf~ 
communication, ~he author has s~ill learned that  Prof.  J. Mawhin at Univers i ty  of 
Bruxelles has ~oo a similar proof for a O x funo~ion. NevezCheless, eRr proof is new, 
even in ~he O ~ case. 
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