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Ekeland’s variational principle is a fundamental theorem in nonconvex
analysis. Its general statement is as the following:

Ekeland’s Variational Principle™®. Let V be a complete metric space, and
F: V>R U {+0o0} a lower semicontinuous function, not identically +oo and bounded
Jrom below. Let >0 be given, and @ point w €V such that
F(u) <ir‘3f F+e.

Then there exists some point vE V such that
F(v)<F(u),
d(u, v)<1,
F(w)>F(v)—ed(v, w), for any wew.
This principle has extremely extensive applications (see [2]), and probably, its

potential is not yet brought into full play. In this paper we shall give a new
application of this famous principle, namely, a new brief proof of the generalized

Mountain Pass Lemma.

The Mountain Pass Lemma ig a very useful argument for finding eritical points
of a function f which is unbounded from above and below. Iis initial formulation
is the following:

Mountain Pass Lemma® 45, Let f be a C* real function defined on a Banach
space X and satisfying (PS)-condition, i.e.

(PS) Any sequence {z.} CX such that { f(z.)} i3 bounded and) f'(z,)}
—0 én X* (the dual space of X) has a convergent subsequence.
If there is an open neighbourhood Q of 0 and a point zo& Q such that
F(0), f(=o) <00<i£ff:

then the following number is a critical value of f:
c=inf max f(g(¢))>co,

gel teio 1}

where
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I'={geo([0, 11; X)1g(0) =0 and ¢g(1) =0},
and ¢ is said to be a critical value of f, if there ewists TE€ X such that f(z)=c and
f(z)=0.

The Mountain Pass Lemma has many extensions and variations (see [6—7] and
others); particularly, Chang Kung-Ching® generalizes this lemma to locally
Lipschitz functions. Our new proof is also given in this general case. For this
purpose, we recall the definitions of a locally Lipschitz fanction, of its generalized
gradient and the corresponding (PS)-condition.

f: X—>R issaid to be a locally Lipschitz function, if for any z&€ X, there
exists §,>>0 and ¢,>0 such that for any @4, 2. € B(g, §,) ={yE X | |y— =] <d.},

| f(@1) = f(@a) | <celmy—as!.
The generalized gradient 9f(z) of a locally Lipschitz function f at « is the subset of
X* defined by
of (z) ={z" € X" |<z", ) <f°(&; v), VwEX},
where _
f°(z; v)=1lim sup f(y—i—?\.'u?“) —f@) .

s
For a detailed discussion on the generalized gradient, we refer to Clarke® 1%, Hero,
we shall use the following properties:

i) f°(w; v) is upper semicontinuous as a function of (z, v), and as a function
of v alone, is sublinear, i.e. positively homogeneous and subadditive.
ii) &f is weak"—closed, i.e. if z,—w, 2 €df (2.) and z; " o*, then 2" Caf(x).
iii) 9f is locally bounded, i.e. for any # € X, there exist §,>>0 and ¢,>0 such
that

le* <c,, Vz1€B(x, d,) and Yz"€3f(zy).
iv) 8f satisfies the mean—value theorem, i.e. for any =;, 2. € X, there exists § &
(0, 1) and 2" € af (#;+0(wa—=4)) such that
J(@s) — f (21) =<2", Ba~ 2.
We can find the proof for these properties in Clarke™®,
For a locally Lipschitz function f,(PS)-condition is as follows:

(PS) Any sequence {,} <X such that {f(z,)} is bounded and
min |z"|—0 has a convergent subsequence.

z*edf (wn)
Theorem 1. Let f be a lecally Lipschitz function defined on @ Bamach space X
and satisfying (PS)-—condition. If there is an open neighbourhood Q of 0 and a point
Tot Q such that

f(O) ) f(m0> <00<i31‘1)f f! (1)
then the fcllcwing number is a critical value of f:
c=inf max f(g(¢))>co, @)
ger tel0.1]

wheire
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I'={ge€C([0,1]; X)|g(0} =0 and g(1) =0}, 3
and c is said to be a critical value of f, if there evists £ € X such thai f(z)=c¢ and
o€ af(z).

The idea of our proof is very simple: Considering
F(g) =max f(g(?))
tel[0,1]

ag a function defined on the closed linear manifold I' of C([0, 1]; X), it is easy to
check that ¥ is a locally Lipschitz function on I". Then, by Ekeland’s variational
principle, ¥ has almost minimizers satisfying some particular conditions. Using a
sequence of these points on I', we shall associate this sequence of almost
minimizers a sequence on X, which satisfies the requirement in (PS)-condition for
f. Finally, the limit of a subsequence in this sequence on X is just a critical poinb
of f. The difficult point in this process is to establish a relationship between the
sequence of almost minimizers of # and a sequence on X, which satisfies the
requirements in (PS)-condition for f.

We decompose the proof of this theorem into several propositions. These
propositions will be proved for a general case, in which [0, 1] is replaced by a
compact metric space K, and then they can be also used for some more gencral
extensions of Mountain Pass Lemma.

Proposition 1. Let f: X—R be a locally Lipschitz function on a Banach space
X, and K a compact metric space. Then F: O(K; X)—R, defined by

F(g) =max f(g(#)), Vg€O(K;X)
is @ locally Lipschitz function on C(K; X).
Proof. TFor any g€O(K; X), as a continuous image of the compact space K,

g(K) is a compact subset. Since f is a locally Lipschitz function, for any t€K,
there are 3,>0 and ¢;>0 such that

in: Z2 € B(.q(t): 8#)7 |f<w1) —f(w2> ! <6 ) T1— T2 :! - (4)

Then {B(g(%), 8;) }:ex constitutes an open covering of g(K), and there are ¢;, -+,
1, € K such that

k
g(E) <=L B(g(#:), 8. (5
On the other side, by Lebesgue lemma, there exists a Lebesgue number >0

depending on g(K) such that for any # € g(K ), there exists some %, satisfying

B(z, ) B(g(), 8:). (6)
Set ¢,=max ¢,. By (4)—(6), we have that

1<ick
Vi K; V&1, T3 € B(g(t) ’ 8)) lf(ml} _f<m2> { <cﬂéiw1— ws!‘l .
Thus, when ky, e €EC(K; X) satisfy
ﬂht—g“mx;m=D}f§fihs(t) —-g@®) <3, i=1,2,

we have

| F (k) = F (ko) | = |max f(R:($)) —max f(ha(t)) | <max!f(h: () — f (B (£))]
<ey max [hy(t) = ha(£) | =¢,|hs—a]. §
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Proposition 2. Let f, #, X, K be as in Proposition 1 and assume that for
h€EC(K; X), .
F(u+rh) —F(u)

.. e A )

F°(g; h) =lim sup
L0
‘and
Mg ={scKif(g(®))=F(g)=max f(g())}-
Then
F*(g; h) <max f°(g{s); h{s)).
sEM(g)

Proof. We choose two-suitable sequences {u,}—C{K; X) and {M}CR, such

that |u;— g| =max|w(¢) — g(t) |0, ;| 0 as 4—>co and
teK

Fo(g; ) = lim LMD - F(w) )
{0 "
Pick any s,€ M (w,+Ah), i=1, 2, -, thep it follows that
F(uc‘*‘?w}}e —F(u‘-)'< S (w(s) +?‘4;h(::)> —f(ui(s)) . (8)

By the mean-value theorem, there exist #,& (0, 1) and =z} €adf(u(s) +O0MA(s:))
such that '

f(us(sa\)+7wh(?\‘36))'—f(“¢(3i)) =, hG»" G=1, 2, +n. (9

Since K is a compact metric space, {s;} has a convergent subsequence, denoted again
by {s:}, such that s;—>s€ K. Then, it is obvious that

uy(8;) +0Mh(8)—>g(s).
By the local boundness and the weak*-closeness of the generalized gradient, {{} has
a weak"—cluster point 2"€9f(g(s)). We may suppose <zi, A(s)d—><{z", h(s)D, and
then, by (7)—(9), we have that

Folg: h) <1'im<a;2’, h(s)>= ljm<§:, Fi(s) — R (8)>+1im<a;, A(s)).

Finally, we merely have to check that s€ M (g). Indeed, from s& M (u+Ak)
we have

S () +2d(s)) =F () +Ma(2)), VIEK.
By taking limits, we conclude -
flg()=f(g(®), ViekK. |
Proposition 3. Let f, ¥, X, K and others be as above and Ko Ka closed sub-
set. If for gcO(K; X),
M(g)=K\K,, (10)
and there exists >0 suck that
VREC(K; X)={h€C(K; X)|h(t)=0, VtEK,},
CFO(g; B)=—elh], (1)
then there exists s€ M (y) such that . ... ... ... U S U SRR
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fg@); v)=—¢gjvf, VveX. (12)
Proof. If there does not exist such s, then for any tEM(g), there exists
v, € X with |v,{ =1 such that
Fog(@); v)<—e.
Since g is continuous and f° is upper semicontinuous, we have that for any
tE M (g), there exists v,€ X with |v,| =1 and 8,>0 such that
Vs€B(, 8,) ={s€Kd(s, t; <8;}, f°(g(s); v)<—s, (13)
{B(t, 8;) }+cumy is an open covering of 3/ {g) and from the compactness of M(g) and
the relation (10), we may suppose

and there are finite t,, -+, £, € M (¢) such that
k
M(g) Cg B(%, 3,,).- (15)
For any t€ K, we define
po(t)=mind(i, s), (16)
SEM(g)
(1) = i i=1, 2, -
ei(t) ,exﬂﬁf:aﬂ)d(t’ s), i=1,2, -, k. an

From (15), we have
k
k=-{UBa, soluik\u @),
and it follows that '

3 p(6)>0, VIEK. (18)
Set = ‘
2 v,ipi(.t)
O s
PRAFNG)!

Then, by (18)—(18), we have
h€C,(K; X) and [h]l<1.

Since f°(z; v) is sublinear in v,
k

PRI A CIOHN)
g hd)) <=— .
._Z;' p(2)
By (13), (16) and (17), for any t€ M (g), we have
po(t) =0 and [0;(#) >0]1=>[f°(g(¢); v, ) <~—8].

Then

VieM(g). f(g(); MB)<—8<-sli],
From Proposition 2, it follows

Fo(g; h)<max fo(g(s), h(s))<—elh],

and we have a coniradiction to (11). Hence, (12) is proved. |
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Proof of Theorem 1.
Set K=[0, 1] and K,={0, 1}. Since 82 separates 0 and z,, for any g€ I', we
have
9(K)No=g([0,1])NoR+¢ (19)
and by (1) and (3),
max f{g(¢))>inf f>eo>7(g9(0)), f(g(1). (20)

te[0,1)

Therefore,
Vger', M(g)={sc [0, 11(f(g(s)) =max f(g(#))}< (0, 1) =K\ K,.

I is a closed linear manifold of O([0, 1]; X) and it is a complete metric space
for the distance determined by its norm. We define ¥: I'>R by

F<g)=gg§]f(g(t)>, Vger.

Then, by Proposition 1, F is a locally Lipschitz function on I" and from (20) and
(2), it is bounded from helow. According to Ekeland’s variational principle, for
any positive sequence {&,}, &, | 0, there exists a sequence {g,} I such that
e<F(g,)<c+e,,
and
Fu)>F(g,) — et~ ¢a|, Yu#tg, n=1,2, -,
Thus, for any A€ C,o([0, 1]; X) ={A€0([0, 1]; X)|~(0) =k(1) =0}, we have

F°(g.: h)}lirzl sup F(!]n-*-?»};\)—F(gn) >—cb], n=1,2, -
Al

By Proposition 3, there exists s, € M (g.) such that

F(ga(82)) =F (gn),

I (8n); v)=—eallv], VWEX, n=1, 2, .-
Then, setting z,=¢,(s,), n=1, 2, ---, we have
f@)—e
and '
0€df (z,) +&,B*, n=1,2, -,

where B*C X* ig the closed unit ball of X*. By (PS)~condition, {«,} has a convergent
subsequence {z,}. Suppose that z is the limit of {z,}, and then x satisfies

F(@) =lim f (z,) =

and
VOE X, (% 0) >1im sup (g, (8,); ©)>~1lim eyv] =0,

ie. 0€0f(2).

The technique used in proving Theorem 1 is also adapted to more general
extensions (see {4, b, 6]). For example, we have

Theorem 2. Let f be a locally Lipschitz function defined on @ Banach space X
and satisfying (PS)-condition. Assume that X has a direct sum decomposition

X=X ,®X, wheredim X;=k<+oco.
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Let Sy (resp. Dy) be the unit sphere (resp. ball) in Xy, and Sz a sphere {z€ X gl o] =r}
with r>0. Iffo’)' Co, OIER and ¢EO(SI; X),

i) flg)>e>e;, VoE€Sy

i) flo)<e,, Ve€p(81);

iii) the linking number 1(Ss, @(S1)) #0;
then the following number is @ critical value. of f:

c=1inf max f(g(2))>c,,
geEDr teB

where -
I'={geO0(By; X)|g(2) =p(z), Vz€3:}.
For the proof of this theorem, we merely need to take B;=K and S;=K,. The
condition iii) ensures
g(Pl) 032*45, VgEI‘,
which' replace (19), and then

max f (g(t)) >inf f>¢,>e¢,>sup f.
1€, 8 #(8)

Henoe
.M(g)CB1'=.§1\S1, VgET.

The reést is the same as in the proof of Theorem 1.

The most general version, including Theorems 1 and 2 as special cases, is in the
following: _

Theorem 8. Let f be a locally Lipschitz function defined on a Banach space X
and satisfying (PS)-condition. Assume that K is a compact metric space, K, a closed
subset of K, p€C(Ky; X) and ScX. If

i) flz)=eo>eq, Vo ES;

i) f(z)<ei, Vo€p(Ko);

i) for any g€ I'={g€C(K; X)|g(2) =p(2), Vz€ Ko},

g(E)NS+#;
then the following number is a critical value of f:
c=inf max f(g(¢))>co.
gETr teK

The author wishes to thank Professor Zhang Gonggqing (Chang Kung-Ching)
for helpful conversations and suggestions.

Remark. After completion of this paper, the author has learned that in the
new book of J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley—
Interséience, New York, 1984, p. 272, there is a different proof, also using Ekeland’s
variational principle, for a strengthened version of the Mountain Pass Lemma, but
their proof is not suitable for a locally Lipschitz function. In addition, by private
communication, the author hag still learned that Prof. J. Mawhin at University of
Bruxelles has too a similar proof for a C* function. Nevertheless, our proof is new,
even in the O case. '
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