

An Analytic Doubly-expansive Selfhomeomorphism of the Open *n***-cube**

Mai Jiehua $({*}_4\#)$ G uangxi *University*

Ouyang Yiru (欧阳奕孺) $Peking$ University

Yang Yanchang $(\frac{1}{2}, \frac{1}{2})$ $Beijing$ Polytechnic University

Received Jan. 25, 1984 Revised March 27, 1985

§ 0. Introduction

Originally, the definition of expansive homeomorphism was proposed in [9] as a concept in topological dynamics. Since then, it has been involved in some important topics in differentiab]e dynamics. For instance, the well-known Anosov diffeomorphism and the restriction of Smale's horseshoe map on its Ω -set are typical examples of expansive homeomorphisms. This concept has also been applied, for example, in ergodic theory^{100} and the theory of structural stability^[4]. In the mathematical description of the strange attractors^{(s)}, expansiveness is one of the main characteristics.

The existence of expansive homeomorphisms on some manifolds is a problem evoking many interesting discussions^{$(1,2,3,5,6,7,11)$}. The one-dimensional case of this problem is easy to solve^[1]. However, in the case of two-dimensional compact manifolds, a definite answer has been obtained only for orientable surfaces with positive genus^{63}. Recently, the existence of expansive homeomorphism on an n dimensional open ball $(n\geqslant 2)$ was thoroughly solved^[2,5]. It is shown in [5] that the self-homeomorphisms of an open disk given by Reddy^{[71} and Williams^[11] is. actually not expansive, and the positively expansive se]f-homeomorphism of $n(\geqslant 2)$ -dimensional open ball given in [5] can be made O⁻-smooth through a simple modification. In [3], the same existence result follows from a more general! fact; but the smoothing of the positive expansive homeomorphism in that paper seems difficult.

In this paper, an expansive homeomorphism f is constructed on an open n-cube I" $(n\geqslant 2)$ (or equivalently, on an open n-ball $B^{n(1)}$). Compared with [3, 5] it has the following outstanding features:

- 1) f is doubly-expansive, analytic and f^{-1} is also analytic:
- 2) f can be imbedded in an analytic flow F on I^* ;
- $3)$ f has a simpler analytical expression and the proof is shorter.

§1. Definitions and the Key Lemma

Throughout this paper, we denote by I the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, R^{*} the ndimensional Euclidean space, I^* the *n*-dimensional open oube in R^* , and $J(\mathcal{J}_+)$ the set of all integers (the set of all nonnegative integers) respectively.

Definition. A self-homeomorphism f of a metric space (S, d) is said to be expansive if there is a positive number θ (called an expansive constant of f) such that for any $x, y \in S$, $x \neq y$, one has $d(f^m x, f^m y) > e$ for some $m \in J$.

If, moreover, J is replaced by J_+ , then f is said to be positively expansive. f is called negatively expansive if f^{-1} is positively expansive, and f is doublyexpansive if f is both positively and negatively expansive.

The main result of this paper depends on the following key lemma.

Lemma 1.1. Let

$$
h(r, s) = s[1 + \pi r^2 + \pi (1 + r^{126})^{\frac{1}{64}}] + r^2 (1 + r^2)^{\frac{1}{4}} [\sin 2\pi (1 + r^2)^{\frac{1}{4}} - \sin 2\pi (1 + r^2)^{\frac{1}{3}}]
$$

and let (λ_1, μ_1) and (λ_2, μ_2) be two defferent points in R^2 . Then for any $N \in J_+$, there is an integer $m \ge N$ such that at least one of the following inequalities hold:

$$
h(\lambda_1+m,\mu_1)<-1<1
$$

$$
h(\lambda_2+m,\,\mu_2)\!<\!-1\!<\!1\!<\!h(\lambda_1+m,\,\mu_1). \hspace{1.5cm} (1.2)
$$

(1) Firstly consider the case $\lambda_1 + \mu_1 \neq \lambda_2 + \mu_3$. Let Proof.

$$
\Delta\lambda = \lambda_2 - \lambda_1, \ \Delta\mu = \mu_2 - \mu_1, \ \delta = \Delta\lambda + \Delta\mu.
$$

Then $\delta \neq 0$. Take a number $c \in \left[\frac{1}{3}, \frac{2}{3}\right]$ so that $\lambda_1 + \mu_1 + c\delta$ is a rational number. Let $\lambda_0 = \lambda_1 + c \Delta \lambda$, $\mu_0 = \mu_1 + c \Delta \mu$, and take a positive integer *n* such that $n_0 + \lambda_0 + \mu_0 > 0$. We set

$$
a=\sqrt{\frac{n_0+\lambda_0+\mu_0}{12}},
$$

$$
K = \{k | k \in J_+, k > 100 \left(|\lambda_1| + |\lambda_2| + |\mu_1| + |\mu_2| + n_0 \right)
$$

and a^2k is the square of an even integer}.

Clearly, K is an infinite subset of J_+ . For every $k \in K$, let

$$
m = m(k) = k4 + 8ak3 + 4ak3 + 16a3k + 2ak3 + n0
$$

then m is also an integer and $\lim m(k) = \infty$. For $-1 \le s \le 1$, let.

$$
\lambda = \lambda(s) = \lambda_0 + s \Delta \lambda,
$$

\n
$$
\mu = \mu(s) = \mu_0 + s \Delta \mu,
$$

\n
$$
r = r(k, s) = m + \lambda = m(k) + \lambda(s).
$$

We have

An Analytic Doubly-expansive Self-homeomorphism of the Open n -cube 337

$$
(1+r^2)^{\frac{1}{4}} = \sqrt{r} (1+r^{-2})^{\frac{1}{4}} = \sqrt{r} (1+O(r^{-2})) = \sqrt{m+\lambda} + O(r^{-\frac{3}{2}})
$$

= $k^2 + 4ak^{\frac{1}{2}} + 2ak^{-\frac{1}{2}} + ak^{-\frac{3}{2}} - (8a^2 - \frac{\lambda+n_0}{2})k^{-2} + O(k^{-3}).$

Remark. Suppose that g_1 is a function of $i (>1)$ variables defined on some domain D, and g_2 is a function of x. If there exists a positive number M such that $|g_1(x, y_2, ..., y_i)| \leq M \cdot g_2(x)$ for any $(x, y_2, ..., y_i) \in D$, then $g(x, y_2, ..., y_i)$ will be briefly denoted by $O(g_2(x))$ when we are not interesting in the expression of g_1 and the concrete value of M. In other words, $O(g_2(x))$ will denote a function whose absolute value does not exceed $g_2(x)$ multiplied by a positive number.

Thus we can write

$$
(1+r^2)^{\frac{1}{3}} = \sqrt[4]{m+\lambda} + O(r^{-\frac{7}{4}}) = \sqrt{\sqrt{m+\lambda}} + O(r^{-\frac{7}{4}})
$$

= $k+2ak^{-\frac{1}{2}}+ak^{-\frac{3}{2}}-2a^2k^{-2}+O(k^{-\frac{5}{2}}),$

$$
(1+r^{126})^{\frac{1}{64}} = r^{\frac{63}{32}}[1+O(r^{-126})] = k^{\frac{63}{3}}+O(k^{-504}).
$$

From

$$
\sin x = x - \frac{x^3}{6} + O(x^5)
$$

we have

$$
\sin 2\pi (1+r^2)^{\frac{1}{4}} = 2\pi \left[2ak^{-\frac{1}{2}} + ak^{-\frac{3}{2}} - \left(8a^2 - \frac{\lambda + n_0}{2} \right) k^{-2} + O(k^{-8}) \right]
$$

$$
- \frac{4}{3} \pi^3 \left[8a^3 k^{-\frac{3}{2}} + O(k^{-\frac{5}{2}}) \right] + O(k^{-\frac{5}{2}}),
$$

$$
\sin 2\pi (1+r^2)^{\frac{1}{8}} = 2\pi \left[2ak^{-\frac{1}{2}} + ak^{-\frac{3}{2}} - 2a^2k^{-2} + O(k^{-\frac{5}{2}}) \right]
$$

$$
- \frac{4}{3} \pi^3 \left[8a^3k^{-\frac{3}{2}} + O(k^{-\frac{5}{2}}) \right] + O(k^{-\frac{5}{2}}),
$$

and it follows that

$$
h(m+\lambda, \mu) = \pi \mu [k^8 + O(k^{7\frac{7}{8}})]
$$

+
$$
[k^8 + O(k^7)] [k^9 + O(k)] \cdot 2\pi \left[\left(\frac{\lambda + n_0}{2} - 6a^2 \right) k^{-3} + O(k^{-\frac{5}{2}}) \right]
$$

=
$$
\pi (\mu + \lambda + n_0 - 12a^2) k^8 + O(k^{7\frac{7}{8}}) = \pi \varepsilon \delta k^8 + O(k^{7\frac{7}{8}}).
$$
 (1.3)

Let $\varepsilon_1 = -c$, $\varepsilon_2 = 1-c$. Then $\lambda_i = \lambda(\varepsilon_i)$, $\mu_i = \mu(\varepsilon_i)$, $i = 1, 2$. By (1.3), it is easily shown that, for $k \in K$ large enough, if $\delta > 0$, then (1.1) holds; and if $\delta < 0$, then (1.2) holds. Hence, in the case $\lambda_1+\mu_1\neq\lambda_2+\mu_2$, the lemma is proved.

(2) The case $\lambda_1 + \mu_1 = \lambda_2 + \mu_2$. We can suppose $\lambda_2 > \lambda_1$. Let

$$
\lambda_0 = \frac{1}{2} (\lambda_1 + \lambda_2), \quad \mu_0 = \frac{1}{2} (\mu_1 + \mu_2), \quad \delta = \frac{1}{2} (\lambda_2 - \lambda_1)
$$

and take an integer n_0 so that

$$
2 \leq n_0 + \lambda_0 + \mu_0 < 3.
$$

Let

$$
a_0=\sqrt{\frac{n_0+\lambda_0+\mu_0}{3}},
$$

Then $a_0 \in \left[\frac{\sqrt{6}}{3}, 1\right]$. Now we set

$$
Q = \{q | q \in J_+, q \ge 100, \sqrt[4]{q} > | \mu_0 | + \delta \}.
$$

Clearly Q is an infinite subset of J_+ . For any $q \in Q$. Let $p = p(q)$ be an integer such that $\frac{p}{q} \leq a_0 < \frac{p+1}{q}$. Then $\frac{4}{5}q < p \leq q-1$. Clearly, we have

$$
3\left(\frac{p+\sqrt{q}-2}{q}\right)^2 - 3\left(\frac{p+1}{q}\right)^2
$$

\n
$$
= \frac{3}{q^2}(\sqrt{q}-3)(2p+\sqrt{q}-1) > \frac{3\sqrt{q}}{q} > \frac{|\mu_0|+\sqrt[4]{q}}{q};
$$

\n
$$
3\left(\frac{p}{q}\right)^2 - 3\left(\frac{p-\sqrt{q}+2}{q}\right)^2
$$

\n
$$
= \frac{2}{q^3}(\sqrt{q}-2)(2p-\sqrt{q}+2) > \frac{3\sqrt{q}}{q} > \frac{|\mu_0|+\sqrt[4]{q}}{q}.
$$

\n(1.4)

Furthermore, for any integer $i \in [-\sqrt{q}, \sqrt{q}-1]$ **, we have**

$$
3\left(\frac{p+i+1}{q}\right)^2 - 3\left(\frac{p+i}{q}\right)^2 = \frac{3}{q^2}(2p+2i+1) < \frac{3}{q^2} \cdot \frac{22}{10}q < \frac{7}{q}.
$$
 (1.5)

From (1.4) it follows that

$$
3\left(\frac{p-\sqrt{q}+2}{q}\right)^2 < 3a_0^2 + \frac{\mu_0\sqrt[4]{q}}{q} < 3\left(\frac{p+\sqrt{q}-2}{q}\right)^2. \tag{1.6}
$$

From (1.5) , (1.6) it can be easily seen that there exists an integer

$$
i_0=i_0(q)\in[-\sqrt{q},\sqrt{q}-1]
$$

such that

$$
-\frac{7}{q} < 3a_0^2 + \frac{\mu_0 \sqrt[4]{q}}{q} - 3\left(\frac{p+i_0}{q}\right)^2 \leq 0. \tag{1.7}
$$

Let $a_r = \frac{p + i_0}{q}$. $\frac{d^2q}{d^2q}$, \cdot $\Delta_q = 3a_q^2 - 3a_0^2$ and $k = k(q) = q^3$. For $0 \leqslant a \leqslant 2$ and $\mu_0 - |\mu_0| - \delta - 1$ $\mu \leq \mu_0 + |\mu_0| + \delta + 1$, we denote

$$
\eta(k, a, \mu) = k^8 + 4k^7 + 6k^6 + (4a+4)k^5 + (8a+1)k^4 + 6ak^3 + (2a+4a^2)k^2 + ak + 3a^2 - \mu.
$$

Then we have

$$
\sqrt{\eta(k, a, \mu)} = k^4 + 2k^3 + k^2 + 2ak + ak^{-1} - ak^{-2} + \frac{3}{2}ak^{-2}
$$

$$
-\left(\frac{a^2}{2} + 2a + \frac{\mu}{2}\right)k^{-4} + O(k^{-5}),
$$

$$
\sqrt[4]{\eta(k, a, \mu)} = k^2 + k + ak^{-1} - ak^{-2} + \frac{3}{2}ak^{-3} - \left(\frac{a^2}{2} + 2a\right)k^{-4} + O(k^{-5}).
$$

Let
$$
\lambda = \lambda(\mu) = \lambda_0 + \mu_0 - \mu
$$
. Since $a_q k = \frac{p + v_0}{q} \cdot q^3$ is an integer, we have
\n
$$
\eta(k, a_q, \mu + dq) = 3a_q^2 - \mu - 4q = n_0 + \lambda_0 + \mu_0 + dq - \mu - 4q = \lambda \pmod{1},
$$
\n
$$
\sqrt{\eta(k, a_q, \mu + dq)} = a_q k^{-1} - a_q k^{-2} + \frac{3}{2} a_q k^{-3}
$$
\n
$$
-\left(\frac{a_q^2}{2} + 2a_q + \frac{\mu + dq}{2}\right)k^{-4} + O(k^{-5}) \pmod{1},
$$
\n
$$
\sqrt[4]{\eta(k, a_q, \mu + dq)} = a_q k^{-1} - a_q k^{-2} + \frac{3}{2} a_q k^{-3}
$$
\n
$$
-\left(\frac{a_q^2}{2} + 2a_q\right)k^{-4} + O(k^{-5}) \pmod{1}.
$$

Let $m = m(k, a_q, \mu + \Delta q) = \eta(k, a_q, \mu + \Delta q) - \lambda$. Then m is an integer. Since $m+\lambda=\eta(k, a_q, \mu+4q)=k^3+O(k^7),$

it follows that

$$
h(m+\lambda,\mu) = \pi\mu [k^{16} + k^{15\frac{3}{4}} + O(k^{15})] + [k^{16} + O(k^{15})] [k^4 + O(k^3)]
$$

\n
$$
\times {\sin 2\pi \sqrt{m+\lambda} [1 + O(m^{-2})] - \sin 2\pi \sqrt[4]{m+\lambda} [1 + O(m^{-2})] }
$$

\n
$$
= \pi\mu [k^{16} + k^{15\frac{3}{4}} + O(k^{15})] + [k^{20} + O(k^{19})]
$$

\n
$$
\times \left\{ 2\pi \left[a_q k^{-1} - a_q k^{-2} + \frac{3}{2} a_q k^{-3} - \left(\frac{a_q^2}{2} + 2a_q + \frac{\mu + \Delta q}{2} \right) k^{-4} \right] - 2\pi \left[a_q k^{-1} - a_q k^{-2} + \frac{3}{2} a_q k^{-3} - \left(\frac{a_q^2}{2} + 2a_q \right) k^{-4} \right] + O(k^{-5}) \right\}
$$

\n
$$
= \pi\mu [k^{16} + k^{15\frac{3}{4}} + O(k^{15})] + [k^{20} + O(k^{19})]
$$

\n
$$
\times 2\pi \left[-\frac{\mu + \Delta q}{2} k^{-4} + O(k^{-5}) \right]
$$

\n
$$
= \pi [\mu k^{15\frac{3}{4}} - \Delta q k^{16} + O(k^{15})] = \pi q^{48} \left[\frac{\mu \sqrt{q}}{q} - \Delta q + O(q^{-8}) \right].
$$

Thus it follows from (1.7) that when q is large enough, we have

$$
h(m+\lambda_1, \mu_1) = \pi q^{48} \left[\frac{(\mu_0 + \delta) \sqrt[4]{q}}{q} - 4q + O(q^{-8}) \right]
$$

$$
> \pi q^{48} \left[\frac{\delta \sqrt[4]{q}}{q} - \frac{7}{q} + O(q^{-8}) \right] > 1
$$

and

 \mathcal{L} ~ 10

 ϵ

$$
h(m+\lambda_2, \mu_2) = \pi q^{48} \left[\frac{(\mu_0 - \delta) \sqrt[4]{q}}{q} - 4q + O(q^{-3}) \right]
$$

$$
\leq \pi q^{48} \left[-\frac{\delta \sqrt[4]{q}}{q} + O(q^{-3}) \right] < -1.
$$

Hence, the lemma is also valid for $\lambda_1 + \mu_1 = \lambda_2 + \mu_2$ and the proof is completed.

§ 2. An Analytic Doubly-expansive Homeomorphism of $I^*(n\geqslant 2)$

Now let us construct a mapping $\rho: R^{\bullet} \rightarrow R^{\bullet}$ such that

 $p(r, s_2, \dots, s_n) = (r, h(r, s_2), \dots, h(r, s_n)),$

for any $(r, s_2, \dots, s_n) \in R^*$. Since h is an analytic function of R^2 into R, the mapping ρ is analytic on the whole R^n . Let

$$
g(r, s') = \frac{s' - r^2(1+r^2)^{\frac{1}{4}} \left[\sin 2\pi (1+r^2)^{\frac{1}{4}} - \sin 2\pi (1+r^2)^{\frac{1}{8}}\right]}{1+\pi r^2+\pi (1+r^{126})^{\frac{1}{64}}}
$$

It is easy to see that $g(r, h(r, s)) = s, h(r, g(r, s')) = s'$ and

 $\rho^{-1}(r, s'_2, \dots, s'_n) = (r, g(r, s'_2), \dots, g(r, s'_n)).$

Hence, ρ is a homeomorphism and ρ^{-1} is also analytic. Thus the Jacobian of ρ and ρ^{-1} cannot be zero at any point of R^* .

Now we construct mappings $P: R^* \times R \rightarrow R^* \times R$, $T: R^n \times R \rightarrow R^n$ and $T_1: R^n \rightarrow R^n$ respectively such that

$$
P(v, t) = (\rho(v), t),
$$

\n
$$
T(v, t) = (r + t, s_2, \dots, s_n),
$$

\n
$$
T_1(v) = T(v, 1),
$$

for any $v-(r, s_2, ..., s_n) \in \mathbb{R}^n$ and $t \in \mathbb{R}$. T is, obviously, a continuous uniform "translational motion"; and T_1 translates every point in R " by a unit distance. If T_1 is regarded as a self-homeomorphism and T as a flow, then T_1 can be imbedded in T .

We further construct a flow Φ in R^* and a self-homeomorphism φ such that

$$
\Phi = P T P^{-1}, \quad \varphi = \rho T_1 \rho^{-1}.
$$

In other words, for any $v = \rho(r, s_2, \dots, s_n) - (r, h(r, s_2), \dots, h(r, s_n)) \in \mathbb{R}^n$ and $t \in \mathbb{R}$, we let

$$
\Phi(v, t) = \rho(r+t, s_2, \dots, s_n),
$$

\n
$$
\varphi(v) = \rho(r+1, s_2, \dots, s_n).
$$

It is clear that Φ and φ are analytic and φ can be imbedded in Φ .

Lemma 2.1. The homeomorphism φ is expansive. Moreover for any

$$
v_i-\rho(\lambda_i, \ \mu_{2i}, \ \cdots, \ \mu_{ni})\in R^n, \quad i=1, \ 2
$$

and $N\in J_+$, $j\in\{2, \ldots, n\}$, if $\lambda_1\neq \lambda_2$ or $\mu_{j1}\neq \mu_{j2}$, then there exists an integer $m\geq N$ $\emph{such that at least one of the following inequalities holds}$

$$
c_j \varphi^m(v_1) < -1 < 1 < c_j \varphi^m(v_2), \qquad (2.1)
$$

$$
c_j \varphi^{\mathfrak{m}}(v_2) < -1 < 1 < c_j \varphi^{\mathfrak{m}}(v_1).
$$
 (2.2)

Here, c, is a mapping of R^* *to R defined by*

$$
c_j(s_1, s_2, \cdots, s_n) = s_j, \quad \forall (s_1, s_2, \cdots, s_n) \in \mathbb{R}^n.
$$

Proof. Since $c_j \varphi^m(v_i) - h(\lambda_i + m, \mu_i)$, by Lemma 1.1 we know that there is an integer m satisfying (2.1) or (2.2) .

Now let $\theta: I \rightarrow R$ be a mapping such that

$$
\theta(x)=\mathop{\rm tg}\nolimits x,\quad \forall x\!\in\!I.
$$

Then $\theta^{-1}(r)$ = arctg $r(\forall r \in R)$. Furthermore, we let $\psi: I^{\bullet} \rightarrow R^{\bullet}$ and $\Psi: I^{\bullet} \times R \rightarrow R^{\bullet} \times R^{\bullet}$ R_{be}

 $\psi(v) = (\theta(x), \theta(y_2), \dots, \theta(y_n)),$ $\mathcal{W}(v, t) = (\psi(v), t).$

Obviously, ψ and Ψ are homeomorphisms and ψ , Ψ , ψ^{-1} , Ψ^{-1} are analytic. Let F be a flow on $I[*]$ and f be its self-homeomorphism such that

$$
F = \psi^{-1} \Phi \Psi = \psi^{-1} \rho T P^{-1} \Psi^{-1},
$$

$$
f = \psi^{-1} \rho \psi = \psi^{-1} \rho T_1 \rho^{-1} \psi.
$$

$$
= \psi^{-1} \rho(r, s_2, \dots, s_n) \in I^n \text{ and any } t \in R \text{ with } t \in R.
$$

ve let That is, for any $w =$ $F(w, t) = w^{-1} o(r + t, s_0, \dots, s_n).$

$$
f(w) = \psi^{-1} \rho(r+1, s_2, \cdots, s_n).
$$

Since ψ , Ψ , φ , Φ , ρ , P , T_1 , T and their inverses are all analytic, F and f are analytic as well, f can clearly be imbedded in F . This completes the proof.

Furthermore, we have

Lemma 2.2. The above self-homeomorphism f of I^* is doubly-expansive. Moreover, for any $w = \psi^{-1} \rho(r_i, s_{2i}, \dots, s_{ni}) \in I^n$ $(i = 1, 2)$ and $N \in J_+, j \in \{2, \dots, n\},$ when $r_1 \neq r_2$ or $s_{j1} \neq s_{j2}$, there exists $m>N$ such that

$$
d(f^{\mathfrak{m}}(w_{1}), f^{\mathfrak{m}}(w_{2})) > \frac{\pi}{2}
$$
 (2.3)

and at least one of the inequalities

$$
c_j f^{m}(w_1) < -\frac{\pi}{4} < \frac{\pi}{4} < c_j f^{m}(w_2), \qquad (2.4)
$$

$$
c_j f^{m}(w_1) < -\frac{\pi}{4} < \frac{\pi}{4} < c_j f^{m}(w_1)
$$
\n(2.5)

is true.

Proof. Let $v_i = f(r_i, s_{2i}, \dots, s_{ni})$ and m be as in Lemma 2.1. Then $f^m(w_i)$ $\psi^{-1}\varphi^{m}(v_i)$. Since arctg $x < -\frac{\pi}{4}$ for $x < -1$ and arctg $x > \frac{\pi}{4}$ for $x > 1$, the inequality (2.1) implies (2.4) and (2.2) implies (2.5) . Since either (2.1) or (2.2) must be true, so does (2.4) or (2.5) . Hence, f is positively expansive.

In order to show that f is negatively expansive, let $w_i' = \psi^{-1} \rho(-r_i, s_{2i}, \dots, s_{ni}).$ By the above result there exists an integer $m' > N$ satisfying at least one of the following inequalities:

$$
c_j f^{m'}(w'_1) < -\frac{\pi}{4} < \frac{\pi}{4} < c_j f^{m'}(w'_2), \qquad (2.6)
$$

$$
c_j f^{m'}(w'_2) < -\frac{\pi}{4} < \frac{\pi}{4} < c_j f^{m'}(w'_1).
$$
 (2.7)

Because the mapping ψ , ρ are symmetric about the first $(n-1)$ -dimensional coordinate plane (i.e., the plane given by $r=0$) in R^* , we have

$$
c_j f^{-m'}(w_i) = c_j \psi^{-1} \rho(r_i - m', s_{2i}, \dots, s_m) = c_j \psi^{-1} \rho(-r_i + m', s_{2i}, \dots, s_m) = c_j f^{m'}(w'_i). \quad (2.8)
$$

(2.8), (2.6) and (2.7) imply that f is negatively expensive, completing the

proof. |

By all of above results, we finally obtain

Theorem. An *n*-dimensional open cube I^* $(n \geq 2)$ admits an analytic doublyexpansive self-homeomorphism which can be imbedded in an analytic flow.

References

- [1] Bryant, B. F., Expansive self-homeomorphisms of a compact matric space, *Amer. Moth. Month.*, 69 (1962), 386-391.
- [2] Gottschalk, W. H., Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc., 64 (1958), 336-351.
- [3] Masaharu Kouno, On erpansive homeomorphisms on manifolds, *Journal of Math. Soc. Japan*,33 (1981), 535--538.
- [4] Nitecki, Z., Differentiable Dynamics, *M. I. T. Press,* 19TI.
- [5] Ouyang Yi-ru, The existence of expansive homeomorphism on an open n-dimesional ball Bⁿ, Journal *of Peking University (Natural Science)*, 1983, No. 3, 22-40.
- [8] O'Brien, T. and Reddy, W., Each compact orientable surface of positive genus admits an expansive homeomorphism, Pacific J. of Math., 35 (1970), 737-741.
- [7] Reddy, W., The existence of expansive homeomorphisms on manifolds, Duke Math., J., 32 (I965), $627 - 632.$
- [8] Ruelle, D., Strange attractors, the Mathmatical Intelligence, 2 (1980), 126-137.
- [9] Utz, W. R., Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774.
- [10] Walters, P., "An Introduction to Ergodic Theory", Chap. 5, Springer-Verlag, 1982.
- [11]: W~]l~m,, R. K.,.Some results on expansive mappings, *Proc. Amer. MaSh. ~., 26* (1970)~ 655--663.