
Sociedad de Estad[stica e lnvestigaci6n Operativa
Top (1998) Vol. 6, No. 2, pp. 205-221

Efficient Solution Methods
for Covering Tree Problems

T. B. Boffey
University of Liverpool
Liverpool L69 3BX, Great Britain

Abstract

In recent years, interest has been shown in the optimal location of 'extensive' facil-
ities in a network. Two such problems - the Maximal Direct and Indirect Covering
Tree problems - were introduced by Hutson and ReVelle. Previous solution tech-
niques are extended to provide an efficient algorithm for the Indirect Covering Tree
problem and the generalization in which demand covered is attenuated by distance.
It is also shown that the corresponding problem is NP-hard when the underlying
network is not a tree.

Key Words : location, covering, tree covering.

A M S s u b j e c t classification: 90B80, 90C27, 90C35.

1 I n t r o d u c t i o n

A considerable li terature has built up on the location of point facilities in
a network including, in particular, covering models. Recently, interest has
also been shown in the location of more extensive facilities such as paths
and trees (Mesa and Boffey, 1996). Hutson and ReVelle (1989) and Church
and Current (1993) noted the relevance of tree structures with regard to
placing dirt roads in a logging region: trees are felled and logs are hauled
to a nearest road for onward t ranspor t provided there is a road within
some prescribed distance S. Other relevant situations mentioned include
planning of subway, electricity transmission, road and pipeline networks.
Hutson and ReVelle (1989, 1993) introduced two tree covering problems
and solved example problem instances by integer programming. Related
tree covering problems have been studied by Kincaid et al., (1988) and Kim

et al., (1989, 1990).

In 1989, Hutson and ReVelle introduced two versions of the Maximal
Direct Covering Tree Problem (or ' M D C T ' for short) which we will refer to

Received: August 1997; Accepted: November 1998

206 T. B. Boffey

as the anchored and floating forms and denote, respectively, by ' M D C T a '
and 'MDCTf ' . For both, an underlying tree T = (V, E) is given with
V : V(T) being the set of nodes and E = E(T) the set of arcs. Each
node k has an associated weight c~ _> 0 (its population) and each arc ij
an associated length di~ >>_ 0 (its cost). The general aim is to determine a
subtree T* of T which maximizes the cover (EkeY(T.)C~ provided by T*
and minimizes its cost (~ijEE(T.)d~ The anchored variant imposes the
constraint tha t a specified node, ,4, called the anchor node, must belong to
T*, whereas for the floating variant there is no such constraint. (Actually, in
the original paper, a subtree was specified rather than an anchor node but it
may be seen tha t shrinking this subtree to a single node does not material ly
affect the problem and no generality has been lost.) Four years later the
same authors introduced the Maximal Indirect Covering Tree Problem (or
'MICT' for short) which differs from the direct case in that a node can be
covered from a node of T* if it is within a service distance S > 0 of tha t
node irrespective of whether the covered node is, or is not, in T* itself.
Again anchored and floating versions MICTa and M I C T f can be defined
in an analogous and obvious way.

Consider first M D C T a and suppose tha t the arcs of T have been as-
signed orientations so tha t they all 'point towards ' the anchor node. Then,
to each node i E V \ {A} there is a unique outgoing arc ij which we refer
to as the out arc from i. The M D C T a problem may now be formulated as
a bicriterion integer linear program in which xij = 1 if and only if arc ij is
in the solution subtree T*, and Yk -- 1 if and only if node k is covered. (YA
is fixed at 1.)

MDCTa: maximize o
ckYk

kEV

minimize y ~ di~xi j
i j eE

subject to

yj = xjk, Vj • A, j k E E

xij <_ xjk, Vj C A, j k E E, Vij E E

Yk, xij E {0, 1}, Vk E V, Vij E E

(1)
(2)
(3)

Constraints in set (2) reflect the requirement that if j r A and ij is in

Covering Tree Problems 207

T* then so must be the (unique) next arc j k towards the anchor node. (3)
are the usual integer constraints. Constraints in set (1) state that j =/= .4
is in T* if and only i f j k (the out arc from j) is. It may be noted that
this formulation differs from that of Hutson and ReVelle (1989) only in
the constraints defining cover. They regard a node as being covered if any
incident arc is in the solution subtree. Thus, using the present notation the
Hutson-ReVelle model may be written as above except that constraint set
(1) is replaced by

yj ~_ Xjk + ~i jeEXi j ,Vj ~ A , j k E E (1')

While the two formulations are equivalent this is not, in general, true for
the linear programming relaxations. This is important since the 'stronger'
constraints (1) can potentially help to eliminate fractional optimal solutions
of the linear programming relaxation.

Of course, such a bicriterion problem will not, in general, possess a fea-
sible solution that optimizes each objective in isolation and it is natural
to look for efficient solutions (Cohon, 1978). Hutson and Revelle (1989)
generated the efficient frontier, that is, the set of extreme efficient solu-
tions (in objective function space). This is achieved by solving the single
objective problem MDCTa(w):

MDCTa(w): maximize WEkeVC~ -- (1 - w)~ijEEdi~

= ~kEVCkYk -- ~ijEEdijxij

subject to (1), (2) and (3)

for a carefully selected set of values of the parameter w lying in the range
0 < w < 1. Note that , for simplicity of exposition, we replace wc~, by ck and
(1 - w)d~ by dlj from now on, the weight w being accounted for implicitly
rather than explicitly. Similarly, single objective problems MDCT.f(w),
MICTa(w) and MICTf(w) may be defined by replacing the separate cover
and distance objectives by the weighted objective used in MDCTa(w) .

MDCTa(w) may possess alternative opt ima - this will happen when
there is an optimal solution subtree T* to which an arc (or arcs) can be
added which will increase the cover (relative to coefficients {ck}) by exactly
the same amount that the cost (relative to coefficients {dij)) is increased.
To facilitate our discussion it will be assumed from now on that T* is the
unique maximal solution subtree of MDCTa(w), that is, no more arcs can

208 T. B. Boffey

be added - this will be called the maximality assumption.

Temporarily denoting the optimal solution subtree of MDCTa(w) by
T*(w), it is clear that every node belonging to T*(Wl) also belongs to
T*(w2) if wl < w2 - that is, increasing the relative importance of 'cover'
cannot lead to nodes becoming 'uncovered'. This nesting ofsubtrees implies
there can be at most n (the number of nodes in the underlying tree network)
distinct solution subtrees. Moreover, it is not difficult to construct an
example in which there are indeed n distinct subtrees. The complexity of
determining the efficient frontier is thus n times the complexity of solving
the corresponding single objective problem. Consequently, we shall from
now on be concerned with solving the single objective problems.

Hutson and ReVelle solved MDCTa(w) by using a commercial integer
programming package. They acknowledged that more efficient methods
might be developed but added that 'These solution methods may yield sig-
nificant improvements in solution times for direct covering tree problems,
but are not expected to apply readily to the indirect covering tree prob-
lem'. Church and Current (1993) introduced an alternative formulation,
devised an algorithm that performed operations carried out directly on the
underlying tree T and pointed out that MICTf(w) could be solved by solv-
ing MDCTf(w) on a modified network though the the modified network
might possess O(n ~) nodes. The same strategy could be adopted with the
Hutson-ReVelle approach. It will be shown here that there are O(n 2) time
algorithms for both MDCTf(w) and MICTf(w).

In the next section algorithms for MDCTa(w) and MDCTf(w) are out-
lined. Section 3 then looks at the indirect covering problems: an algorithm
and proof of validity are given. In section 4, a generalization in which cover
is attenuated by distance to the facility is outlined. It is also shown that
MDCTa(w) becomes NP-hard for general underlying networks.

2 A l g o r i t h m s Fo r M D C T a (w) a n d M D C T f (w)

In order to establish ideas, at this point we only outline network algorithms
for MDCTa(w) and MDCTf(w). More precise descriptions and proof of
validity follow, by setting S = 0, from the treatment of the next section.

Since constraints (1) are equalities, we may add Zi#AAi(xij - yi) to the
objective of MDCTa(w) without changing the identity of optimal solutions

Covering Tree Problems 209

or their values. The new objective is thus Z = ~ k E V C k Y k - - ~ijEEdijXij
where, for k ~s A, ck = Ck--)~k is the reduced population at node k (cA = cA)
and, for all i j E E, [lij = dij - Ai is the reduced length of i j . This will be
referred to as (population) trading, the reduction in length of the (unique)
arc from a node being exactly balanced by the reduction in the populat ion
of tha t node.

Consider now a particular node i r A and set Ai = min (ci, dij) resulting
in {3 i : 0 o r di j : O. It is clear tha t solving M D C T a (w) with the ' reduced '
da ta leads to the same optimal solution subtree and solution value - if
i j ~ T* then nothing is affected whereas if i j E T* then cover and cost have
been reduced by the same amount leading to no net change in objective.
Suppose dij = 0 and j E T*, then arc i j can be added at zero extra cost and
thus must also belong to T* (by the maximal i ty assumpt ion) . Tha t is, we
now have xij = yj. Provided j ~- `4, this together with yi = xij and yj = Xjk
(see formulat ion of M D C T a) yields a new constra int Yi = xjk. Thus, in
a sense, cover is being provided indirectly by j k . Adding .~ ik (Xjk -- Y i) t o

the objective with Aik = rain (~i, djk) will result in (3i = 0 (~i here denot ing

populat ion after two reductions) or djk = O, in addit ion to dis = 0. In this
way popula t ion can be t raded from a node until the reduced populat ion is
zeroed or .4 is reached in which case i must be in T* - this will be te rmed
cascading. (An al ternat ive interpretat ion is to consider the zero length arc
as being shrunk to a point thus coalescing its end nodes the new 'composi te
node' having the total of the populat ions of its ' const i tuent nodes'. T h a t is,
the process of t rad ing could be regarded as producing an equivalent problem
on fewer nodes.) Figure 1 illustrates the effect of populat ion t rading for the
da t a given in figure l (a) . First t rading popula t ion from nodes 1, 2, 3, 4 and
5 in turn leads to cl = c2 = k3 = (:4 : c5 = 0 and dlA = 2, d21 = o, d3x = 1,
d41 = 1 and d54 = 0 (see figure l (b)) . So far no cascading has taken place.
Now consider node 6: t rading three units of populat ion gives c6 = 4 and
d63 = 0; t rad ing a fur ther one unit gives r : 3 a n d d31 : 0 ; and finally,
t rading a fur ther two units yields r : 1 and d l a = 0 - the t rading is now
complete since .4 has been encountered (see figure l(c)) . The solution to
the problem is clearly as shown in figure l (d) .

It is noted t ha t the above process is applicable since each node of the
underlying network other than the anchor node has a unique outgoing arc.
The nodes can be considered in any order but a simple and effective order
is to work outwards from node .4.

210 7". B. Boffcy

7 2 2 I 0 0

(a) 0 0
3 t % r., o o

7 0 0

(d)

F i g u r e 1 (a) tire original tree T will, l)opulations shown beside nodes and
arc lengths beside arcs. (b) After t rading populat ion from nodes 1, 2, 3, -1
and 5. (c) After t rading from ,,ode 6. (d) The opt imal solution subtree T ' .

M D C T f (w) can be solved by t ak i , g each node in turn as the anchor
node and c o m p a r i , g the n solution subtrees obtained. This gives an O(n 2)
algori thm, where n = ll,"l, though the following result might lead to some
reduction in computa t iona l effort.

T h e o r e m 2.1 . If b is in lhc optimal .~ubtree. T~" t~'lnlit:(to e as anchor
trade, then the optimal subtt~c T~ t~laticc to b a.~ anchor node is contained
m Tg.

Proo f . Tile arcs in 7~" but ,lot in F e" together with their end nodes
form a set of disJoint trees r , where r, has the node i in common with both
"I~" and Te'. Then tlre objective value (cover minus cost) for each ri must
l)e nonnegative otherwise they would ,tot be part of I~'. However, this
means that all nodes in each 7", could be added to T ; without worsening
the objective. This is a contradiction because of tl,e optimali ty of T~" and
t he max,reality asst, m pt io,.

It may be noted that tile above result (an(l l)roof) remains valid for tile
case of indirect cover (.5" > 0).

Covering Tree Problems 211

3 I n d i r e c t C o v e r i n g

MICTa(w) can be solved in much the same way as tha t described for
MDCTa(w) . First, note tha t if the length of arc i j is less than S then
i can be covered even though i j is not in the solution subtree. This leads
us to modify the concept of 'out arc'.

D e f i n i t i o n 3.1. Let 7r(i) - i l i 2 . . . i t - l i t be the unique path from i = il to
,4 = it. Suppose i~i~+~ is an arc of ~(i) satisying d(i, ir) <_ S, d(i, it+l) > S,
where d(x, y) denotes the distance from x to y relative to the unreduced
arc lengths. Then iri~+l is called the S-out arc from i and i~ is the S-out
node of i. On the other hand if no arc satisfies this condition then there is
no S-out arc from i and the S-out node of i is taken to be ~4.

Population at node i is not traded for the length of any arc between
i and its S-out arc irir+l (if such exists) since inclusion of iri~+l would
ensure tha t i is covered albeit indirectly. (Of course the distance between
i and i~ may later be reduced when trading population from a node other
than i.)

We are now in a position to formulate the algorithm. /: will denote the
set of nodes ' ready for t rading' and corresponds to the set of temporari ly
labelled nodes in the context of label setting shortest path algorithms. The
algorithm terminates when ~: -- O

A l g o r i t h m (Input: a tree T with arcs directed towards anchor node A.}

S t e p 1 (Setup)

Set f~ = {mlm~4 E E(T)}.

Set ~k = ek, Vk E V(T); do = dij, Vij E E(T) .

S t e p 2 (Terminat ion/node selection)

I f s = 0

t h e n Set T~ = { i l l is at zero reduced distance from ~4}.

Set T* to be the subtree on node set T~. Stop.

else Select i E s

212 T. B. Boffey

S t e p 3 (Out arc check)

I f i has an S-out ~rc j k

t h e n Set ab +-- j k .

else Set s 6 - (/ : \ { i } U { m l m i E E(T)} . Go to step 2.

S t e p 4 (Population trading)

Set)~ = min (ci, etch).

Set ci 6- ci - A and d~b +- d~b - ,~.

S t e p 5 (Cascade check)

I f b = A or ci = 0

t h e n Set L ~ (s \ {i} U { m l m i E E(T)} . Go to step 2.

e lse Replace ab by next nonzero reduced length arc in T towards A.

Return to step 4.

T h e o r e m 3.1. The algorithm terminates after O(n) population trades at
most where n = IV(T)I , and the optimal solution subtree is the subtree of
T on node set T4.

Proof. The algorithm terminates after O(n) population trades since
for a tree IE(T)[= n - 1 and at each t rade either a reduced population
becomes zero or a reduced arc length becomes zero.

Next we note tha t t rading as described does not affect the identity of
the optimal solution subtree. This is so since:

1. MICTa(w) can be formulated as an integer program with among its
constraints ones of the form yi = xjk where j k is the S-out arc from
i;

2. adding)t = min(6i, d/k) times (xjk - Yi) to the objective does not
alter the value of any solution and so the modified problem has the
same optimal solution subtree;

3. t rading from i can take place using arcs j k , ke, . . . successively (ig-
noring zero length arcs) until t rading is complete or ~4 is encountered
(see the discussion in section 2).

Covering Tree Problems 213

Consequently we may find the optimal solution subtree by solving the final
problem, that is, relative to the reduced populations and reduced arc lengths
at termination of the algorithm.

Let R+ be the set of nodes not in T~ but at a distance not greater than
S (relative to unredueed arc lengths) from a node in R. Now T* is the
subtree on node set T~ so all nodes in R+ are covered by T*. Consider
i ~ 7~ +. By the definition of 7~ +, i must have an S-out arc j~k ~ say, with
j~ ~/~. Consequently, either j 'k ~ or some arc on the path from j ' to A has
nonzero length. This means that ki = 0 since otherwise further population
could have been traded from node i. Hence, in the final problem, adding to
T* any node not in ~ + provides no extra cover but increases the cost (since
every arc j#k" with jn ~ T~ and k H E ~ has nonzero reduced length). It
follows that the optimal subtree is a subtree of T* and the proof is complete
by the maximality assumption.

While only O(n) population trades are required, this does not automat-
ically mean that the algorithm can obtain an optimal subtree T* in O(n)
time. However, by implementing the algorithm appropriately the following
result holds.

C o r o l l a r y 3.1. The algorithm can be implemented such that:

(1) T* can be determined in O(n) and O(n 2) time for MDCTa(w) and
MDCTf (w) respectively. The efficient frontier can be found in O(n 2) time
for MDCTa.

(2) T* can be determined for both MICTa(w) and MICTf (w) in O(n 2)
time. The efficient frontier can be found in O(n 2) time for MICTa.

In order to show how the result of theorem 2 translates into the time
complexities quoted we briefly outline an implementation of the algorithm.
In order to facilitate the following discussion we shall assume, for con-
venience, that all arc lengths and node populations are strictly positive;
however, the complexity results are still valid if this assumption is not
made.

First, it is essential that the network be represented in an appropriate
way. One possibility is to use a Forward Star representation, that is, prede-
cessor nodes are stored in blocks in an array, pred say, with predecessors of
node 1 first, followed by predecessors of node 2, etc. The beginning of the
block of predecessors of node i is stored in array element start(i). (Another

214 T. B. Boffey

possibility is to keep the successors of each node as a linear linked list - this
would have advantages but some disadvantages also and was not tried.)

Further arrays tha t can be used are succnode, succarc, outnode and first
where

succnode(i) stores the successor node of i, i ~ A

succarc(i) stores the successor arc of i, i ~ .4

outnode(i) stores the S-out node of i

first(i) is used to determine the first node between i and .4 with a
nonzero length outgoing arc (or, .4 if no such arc exists).

Consider first MDCTa(w). succnode, succarc and outnode can be set
up in O(n) t ime (outnode(i) being just i). Initially f i r s t (i) is set to i for
all i. When t rading in step 4 results in the length of arc ab being reduced
to zero the operation first(j) +- first(b) is performed. To see the effect of
this, consider a linear chain and trade from nodes working away from .4.
As execution of the algorithm proceeds, so 'strings' of zero reduced length
arcs, which we term zero sequences, form and grow. More precisely

D e f i n i t i o n 3.2. A zero sequence, ZS, is a nonempty set of arcs satisfying:

(1) all arcs in Z S have zero reduced length;

(2) arcs in Z S form a path ir --__ i l i2 , . . . , is in T; the node il is called
the start node of ZS.

(3) Z S is maximal in tha t no set of arcs ZS ' ~s ZS , ZS ' D ZS, satisfies
(1) and (2).

It may be seen tha t the update first(i) +- first(b) maintains the condi-
tion tha t first(i) points to the s tar t of the first arc between i and -4 with
nonzero reduced length when i is the start node of a zero sequence. For the
linear chain this is sufficient to enable jumping over zero reduced length
arcs when required in step 5.

For a more general tree network, however, it may be necessary to use
first(i) for nodes 'within' a zero sequence. Assuming nodes are considered
for trading in a depth-first manner, this can be taken account of straight-
forwardly by updat ing first(i) as i is encountered when backtracking along
a branch. This lat ter modification permits arcs to be jumped over in step
5 after their lengths have been reduced to zero. Again such operations can

Covering Tree Problems 215

be accomplished in O(1) time for each node visited and hence in O(n) time
overall.

Since initialisation of succnode, succarc, outnode and first, and updates
of first (as indicated above) can all be carried out in O(n) t ime it follows the
algorithm can solve MDCTa(w) in O(n) time. This immediately implies
an O(n 2) algorithm for MDCTa.

The situation is not so simple for indirect cover. It is not difficult to see
that all S-out nodes (S-out arcs) can be calculated initially in O(n 2) time.
While this may seem very conservative the author was unable to devise
a way of guaranteeing that the algorithm will run in O(n) time. (The
difficulty is that , though rather unlikely, O(n) nodes may be separated
from their S-out nodes by O(n) arcs.) This yields only an O(n 2) time
algorithm for MICTa(w). However, for MICTa the S-out nodes need only
be calculated once so the efficient frontier can be found in O(n 2) time.

For the floating variants of the tree covering problem, there is no es-
sential difference between the direct and indirect cover cases and we shall
discuss only the indirect case. For MICTf(w) it is true that MICTa(w)
may need to be solved n times and the set of S-out nodes will be different
at each application. However, we can get round this by traversing the net-
work moving from one node to another with only incremental changes being
required. Using a 'depth-first search' this may be accomplished in 2n - 2
steps (once along each arc in either direction). Each step requires updating
the Forward Star representation to reflect the new anchor node - this is
'messy' but requires only O(n) time. A full calculation of first must be
performed for the initial application of MICTa(w) but thereafter outnode
and dist can be updated in a single pass over the nodes at each subsequent
application of MICTa(w). For this it is only necessary to change the values
of outnode(i) for a few i from the old anchor node to the new one, and for
a few i from the new anchor node to the old one - again this can be ac-
complished in O(n) time. With this strategy the initial O(n 2) calculation
of outnode values is ameliorated over the O(n) MICTa(w) problems that
are solved in order to solve MICTf(w). Consequently, the latter problem
can be solved in O(n 2) time.

216 T. B. Boffey

4 N n m e r i c a l E x p e r i m e n t s

The algorithm was tested on tree networks randomly generated as follows.
The number of nodes, n, is specified then, for each node i in order of gen-
eration, p predecessor nodes (and hence arcs incoming at i) are generated.
p is sampled from a uniform distribution on {0, 1, ..., 4) but is capped as
soon as n nodes have been generated. Costs ci are sampled from a uni-
form distribution on the set {5, 6, ..., C} and lengths dij from a uniform
distribution on the set {5, 6, ..., L). Clearly, if C/L is very small then the
solution subtree will be very small (perhaps just the anchor node) and if
L/C is very small the solution subtree will be large (perhaps the whole of
the underlying tree). We used C = 20 and L = 25 leading, very roughly,
to 40% of the nodes being covered for the case of direct cover and 80%
for indirect cover when S = 10. In the indirect case, the cover was nearly
always provided by smaller solution subtrees than for direct cover (for the
same weight w) - in our experiments, with parameters as specified above,
the solution subtree contained, very roughly, 30% of all nodes.

The algorithm was coded in Ada and run on a Sun 3. Results for
MDCTa(w) and MICTa(w) are given in Table 1 with each row correspond-
ing to a set Gxxx of five separate problems each with xxx nodes. T denotes
the total of the separate times (in seconds) of all five problems in a set. (The
last digit is always even since the timing mechanism rounds to the nearest
0.02 seconds.) It is seen that the results are consistent with a linear time
complexity for MDCTa(w). For the data tested, MICTa(w) appeared to
require linear time, that is, better than the O(n 2) time suggested by the
Corollary to Theorem 2.

The floating variants naturally took much longer as each problem po-
tentially required the solution of n corresponding anchored problems. Con-
sequently, the implementation outlined in section 3 for MDCT/MICTf(w)
was tested for the smaller data sets G20, G40, G60 and G80 on 20,
80 nodes respectively and each containing five separate problems. The re-
sult of Theorem 1 was incorporated by omitt ing to perform trading for
an anchor node which had been found present in the solution subtree for
an earlier anchor node - of course, the overheads of updating the network
and data structures still needed to be carried out. The values of lOOT/n 2
(where again T is the total t ime for five separate problems) were 10.0, 9.6,
9.4 and 9.1 for G20, ..., G80 respectively. This is consistent with the O(n 2)
complexity quoted in the Corollary.

Covering Tree Problems 217

Problem set n S T (secs) IOOT/n

G100 100 0 0.08 0.08
G200 200 0 0.10 0.05
G300 300 0 0.18 0.06
G400 400 0 0.22 0.055
G500 500 0 0.24 0.05

G100 100 10 0.10 0.10
G200 200 10 0.14 0.07
G300 300 10 0.28 0.09
G400 400 10 0.34 0.085
G500 500 10 0.40 0.08

Table 1 Anchored covering tree problems

5 E x t e n s i o n s

At this point we note that Hutson and ReVelle required the solution subtree
to have at least one arc. If desired, this may be accommodated as follows.
Let T(i) and T(j) be the two subtrees that would result from T if arc ij
were removed where i E T(i) and j E T(j). Now take each arc ij in turn
and apply our algorithm with the following modification: i is regarded as
the anchor node for the subtree T(i) and j is regarded as the anchor node
for the subtree T(j).

Next, consider the situation in which demand at node i is satisfied by
traveling to a nearest node j of the facility. (An example is provided by
passengers traveling to a station to access a subway network.) It may be
expected that willingness to travel decreases as the distance d(i, j) between
i and j increases. In other words, the level of cover yi at i is h(d(i,j))
where the attenuation function h may reasonably be assumed to satisfy:

h(0) = 1; h(x) _> 0, x > 0; h is monotonic decreasing,

and yi is no longer restricted to being an integer. We now outline the way
in which population trading can be modified to take account of attenuation.

218 T.B. Boffey

Let rr(i) = i~i2 . . . i t_ l i t be the unique path from i = il to .4 -- it and
suppose that i, ir+l is not in the solution subtree but all arcs from ir+l to
.4 are. Node i is a distance d(i, i t+l) from the solution subtree so the level
of cover at i is h(d(i, i t+l)). Upon adding arc irir+l to the subtree, the
level of cover at i increases to h(d(i, ir)). That is, the extra level of cover
provided by adding arc iri~+l is eirir+, = h(d(i,i~)) - h(d(i, ir+l)) >_ O.
Based on this observation we obtain the constraint

Yi - ~ i l i 2 x i l i 2 E i t _ l i t X i t _ l i ~ - - ~i : 0 (5)

where 6i = h(d(i, .4)). To see tha t this is correct, note that if ili2, i l ia , . . . ,
is- l is are no t in the solution subtree, b u t / s i s + l , . . . , i t - l i t (where it = .4)
are, then

Y i - -

t - I

j = s

t - 1

Z [h (d (i , ij)) - h(d(i, ij+,))] + h(d(i, it))
j-~8

[h(d(i, is)) - h(d(i, it))] + h(d(i, it))

h(d(i, is))

as it should. Adding)~ times the left hand side of (5) to the objective gives
an equivalent problem and the update in step 4 of the algorithm above
becomes:

Set % = min (ci, min{djk I j k e q })

Set ci = (?i - hi; djk = d j k - A, Vjk E Q.

where Q = { j k l j k �9 ~r(i) and ejk :/: 0}). If Q = 0 then min { j k l j k �9 Q}
is interpreted as zero. The idea of an S-out arc is no longer applicable
and step 3 is removed from the algorithm. The same effect is obtained for
the MICTa(w) by only t rading population for length of those arcs j k with
n o n z e r o r

Trading as just specified either results in ci = 0, or ci r 0 but djk = 0
for some j k �9 lr(i). In the lat ter case arc j k could automatical ly be added
to the subtree if k is in the subtree. Tha t is, if k ~ .4 and dkt ~ 0 we have
the constraint xjk = xkt which may be accounted for by setting

Covering Tree Problems 219

e k e = e k e + e j k , k : / : A and 6 i = ~ i + e j k , k r

then resetting ~jk to zero - arc j k now takes no part in further population
trading. This corresponds to the first cascading step - further cascading
towards .4 can take place as other reduced lengths become zero.

When all t rading has taken place ~i = 0 or djk -- 0 for all j k E 7r(i)
since if this were not so then fur ther t rading could take place. The optimal
subtree is, as before, the subtree on the set of nodes a zero reduced distance
from .4. The proof of validity of the algorithm is now essentially tha t of
theorem 2.

The reader may note that the above prescription for population trading
reduces to tha t of the algorithm for MICTa(w) by setting h(x) = 1 if x _(S;
and h(x) = O if x > S.

While there are clearly applications in which the solution T* should
be a subtree, it is less clear why the underlying network should be con-
strained to be a tree. The present author when studying a generalization
of the Hierarchical Network Design Problem (Current et al., 1986) in which
cover is not mandatory, developed a Lagrangean relaxation in which one
subproblem is just MDCTa(w) over a general network. Since Lagrangean
techniques typically involve solving many relaxations (corresponding to dif-
ferent multiplier sets) the solution of these relaxations should be as efficient
as possible. For these reasons it is appropriate to look briefly at the more
general version, MDCTGa , of M D C T a where the underlying network need
not be a tree.

M D C T G a is the problem of finding a subtree, T*, of a symmetr ic net-
work N = (V, E) containing a given node .4 so as to maximize cover pro-
vided and to minimize cost involved. (By a ' symmetric network' we mean
tha t j i is in the network whenever ij is, and has the same length.) As
before, yi = 1 if and only if i E T* and xij = 1 if and only if ij is an arc of
T*. Then we may assert that yi = ~jlijEEXij which means tha t population
trading from node i can be performed by subtract ing the same amount hi
from each of the arcs outgoing from i as is subtracted from the population.
However, we cannot validly cascade trading towards `4 as before since there
is no longer a unique path from i to `4. (It is not difficult to construct an
example in which cascading would lead to an upper bound to the optimal
value of M D C T G a (w) for which the bound is not exact.)

220 T. B. Boffey

T h e o r e m 5.1. MDCTGa(w) is NP-hard.

Proof. Let .4 be the anchor node with U a subset of V \ {.A}. Set
the populations of all nodes in U to be M (a very large number) and the
populations of all other nodes to be zero. Then it is clear that if M is
large enough every node in U tO {.A} must be in T* but otherwise all that
is required is to minimize cost. This is clearly a Steiner Tree problem in
which the nodes in U U {.A} are to be connected. Since the Steiner tree
problem is NP-hard then so must be MDCTa(w) over a general network
(Garey and Johnson, 1979).

6 C o n c l u s i o n

An algorithm, similar to that of Church and Current (1993), has been
given for solving MDCTa(w) in O(n) time and MICWa(w) in O(n 2) time.
Numerical results were consistent with these complexities though, for the
data tested, the time required for MICTa(w) grew more nearly linearly.

We feel that MDCTf(w) is probably a less practically oriented tree
covering problem. However, a relatively efficient solution of this is still
possible.

The way in which the algorithm may be generalized to the case in
which cover is attenuated by distance was also outlined. Finally, we have
proved that MDCTa(w) becomes NP-hard when the underlying network is
not restricted to being a tree, and consequently so are the other covering
problems mentioned. It is unlikely, therefore, that any polynomial time
algorithm exists for their solution.

R e f e r e n c e s

Church, R. L. and J. R. Current (1993). Maximal covering tree problems. Naval
Research Logistics 40, 129-142.

Cohon, J. L. (1978). Multiobjective Programming and Planning. Academic Press,
New York.

Current, J. R., C. S. ReVelle and J. L. Cohon (1986). The hierarchical network
design problem. European Journal of Operational Research 21, 188-197.

Covering Tree Problems 221

Garey, M. J. and D. S. Johnson (1979). Computers and Intractability: a Guide to
the Theory of NP-Completeness, Freeman, San Francisco.

Hutson, V. A. and C. S. ReVelle (1989). Maximal direct covering tree problems.
Transportation Science 23, 288-299.

Hutson, V. A. and C. S. ReVelle (1993). Indirect covering tree problems on span-
ning tree networks. European Journal of Operational Research 65, 20-32.

Kim, T. U., T. J. Lowe, J. E. Ward and R. L. Francis (1989). A minimum length
covering subgraph of a network. Annals of Operations Research 18, 245-260.

Kim, T. U., T. J. Lowe, J. E. Ward and R. L. Francis (1990). A minimum length
covering subtree of a tree. Naval Research Logistics Quarterly 37, 309-326.

Kincaid, R. K., T. J. Lowe and T. L. Morin (1988). The location of central
structures in trees. Computers gJ Operations Research 15, 103-113.

Mesa, J. A. and T. B. Boffey (1996). Location of extensive facilities in networks.
European Journal of Operational Research 95, 592-603.

