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Abstract 

In recent years, interest has been shown in the optimal location of 'extensive' facil- 
ities in a network. Two such problems - the Maximal Direct and Indirect Covering 
Tree problems - were introduced by Hutson and ReVelle. Previous solution tech- 
niques are extended to provide an efficient algorithm for the Indirect Covering Tree 
problem and the generalization in which demand covered is attenuated by distance. 
It is also shown that the corresponding problem is NP-hard when the underlying 
network is not a tree. 
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1 I n t r o d u c t i o n  

A considerable li terature has built up on the location of point facilities in 
a network including, in particular, covering models. Recently, interest has 
also been shown in the location of more extensive facilities such as paths 
and trees (Mesa and Boffey, 1996). Hutson and ReVelle (1989) and Church 
and Current  (1993) noted the relevance of tree structures with regard to 
placing dirt roads in a logging region: trees are felled and logs are hauled 
to a nearest road for onward t ranspor t  provided there is a road within 
some prescribed distance S. Other relevant situations mentioned include 
planning of subway, electricity transmission, road and pipeline networks. 
Hutson and ReVelle (1989, 1993) introduced two tree covering problems 
and solved example problem instances by integer programming. Related 
tree covering problems have been studied by Kincaid et al., (1988) and Kim 

et al., (1989, 1990). 

In 1989, Hutson and ReVelle introduced two versions of the Maximal 
Direct Covering Tree Problem (or ' M D C T '  for short) which we will refer to 
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as the anchored and floating forms and denote, respectively, by ' M D C T a '  
and 'MDCTf ' .  For both, an underlying tree T = (V, E) is given with 
V : V(T) being the set of nodes and E = E(T) the set of arcs. Each 
node k has an associated weight c~ _> 0 (its population) and each arc ij 
an associated length di~ >>_ 0 (its cost). The general aim is to determine a 
subtree T* of T which maximizes the cover (EkeY(T.)C~ provided by T* 
and minimizes its cost (~ijEE(T.)d~ The anchored variant imposes the 
constraint  tha t  a specified node, ,4, called the anchor node, must belong to 
T*, whereas for the floating variant there is no such constraint.  (Actually, in 
the original paper, a subtree was specified rather  than an anchor node but it 
may be seen tha t  shrinking this subtree to a single node does not material ly 
affect the problem and no generality has been lost.) Four years later the 
same authors  introduced the Maximal Indirect Covering Tree Problem (or 
'MICT'  for short) which differs from the direct case in that  a node can be 
covered from a node of T* if it is within a service distance S > 0 of tha t  
node irrespective of whether  the covered node is, or is not, in T* itself. 
Again anchored and floating versions MICTa  and M I C T f  can be defined 
in an analogous and obvious way. 

Consider first M D C T a  and suppose tha t  the arcs of T have been as- 
signed orientations so tha t  they all 'point towards '  the anchor node. Then,  
to each node i E V \ {A} there is a unique outgoing arc ij which we refer 
to as the out arc from i. The M D C T a  problem may now be formulated as 
a bicriterion integer  linear program in which xij = 1 if and only if arc ij is 
in the solution subtree T*, and Yk -- 1 if and only if node k is covered. (YA 
is fixed at 1.) 

MDCTa:  maximize o 
ckYk 

kEV 

minimize y ~  di~xi j 
i j eE  

subject to 

yj = xjk, Vj • A, j k  E E 

xij <_ xjk, Vj C A, j k  E E, Vij E E 

Yk, xij E {0, 1}, Vk E V, Vij E E 

(1) 
(2) 
(3) 

Constraints  in set (2) reflect the requirement that  if j r A and ij is in 
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T* then so must be the (unique) next arc j k  towards the anchor node. (3) 
are the usual integer constraints. Constraints in set (1) state that  j =/= .4 
is in T* if and only i f j k  (the out arc from j)  is. It may be noted that  
this formulation differs from that  of Hutson and ReVelle (1989) only in 
the constraints defining cover. They regard a node as being covered if any 
incident arc is in the solution subtree. Thus, using the present notation the 
Hutson-ReVelle model may be written as above except that  constraint set 
(1) is replaced by 

yj ~_ Xjk + ~i jeEXi j ,Vj  ~ A , j k  E E (1') 

While the two formulations are equivalent this is not, in general, true for 
the linear programming relaxations. This is important  since the 'stronger'  
constraints (1) can potentially help to eliminate fractional optimal solutions 
of the linear programming relaxation. 

Of course, such a bicriterion problem will not, in general, possess a fea- 
sible solution that  optimizes each objective in isolation and it is natural 
to look for efficient solutions (Cohon, 1978). Hutson and Revelle (1989) 
generated the efficient frontier, that  is, the set of extreme efficient solu- 
tions (in objective function space). This is achieved by solving the single 
objective problem MDCTa(w):  

MDCTa(w):  maximize WEkeVC~ -- (1 - w)~ijEEdi~ 

= ~kEVCkYk -- ~ijEEdijxij 

subject to (1), (2) and (3) 

for a carefully selected set of values of the parameter w lying in the range 
0 < w < 1. Note that ,  for simplicity of exposition, we replace wc~, by ck and 
(1 - w)d~ by dlj from now on, the weight w being accounted for implicitly 
rather than explicitly. Similarly, single objective problems MDCT.f(w), 
MICTa(w) and MICTf(w)  may be defined by replacing the separate cover 
and distance objectives by the weighted objective used in MDCTa(w) .  

MDCTa(w) may possess alternative opt ima - this will happen when 
there is an optimal solution subtree T* to which an arc (or arcs ) can be 
added which will increase the cover (relative to coefficients {ck}) by exactly 
the same amount  that  the cost (relative to coefficients {dij)) is increased. 
To facilitate our discussion it will be assumed from now on that  T* is the 
unique maximal solution subtree of MDCTa(w), that  is, no more arcs can 
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be added - this will be called the maximality assumption. 

Temporarily denoting the optimal solution subtree of MDCTa(w) by 
T*(w), it is clear that every node belonging to T*(Wl) also belongs to 
T*(w2) if wl < w2 - that is, increasing the relative importance of 'cover' 
cannot lead to nodes becoming 'uncovered'. This nesting ofsubtrees implies 
there can be at most n (the number of nodes in the underlying tree network) 
distinct solution subtrees. Moreover, it is not difficult to construct an 
example in which there are indeed n distinct subtrees. The complexity of 
determining the efficient frontier is thus n times the complexity of solving 
the corresponding single objective problem. Consequently, we shall from 
now on be concerned with solving the single objective problems. 

Hutson and ReVelle solved MDCTa(w) by using a commercial integer 
programming package. They acknowledged that more efficient methods 
might be developed but added that  'These solution methods may yield sig- 
nificant improvements in solution times for direct covering tree problems, 
but are not expected to apply readily to the indirect covering tree prob- 
lem'. Church and Current (1993) introduced an alternative formulation, 
devised an algorithm that performed operations carried out directly on the 
underlying tree T and pointed out that MICTf(w) could be solved by solv- 
ing MDCTf(w) on a modified network though the the modified network 
might possess O(n ~) nodes. The same strategy could be adopted with the 
Hutson-ReVelle approach. It will be shown here that there are O(n 2) time 
algorithms for both MDCTf(w) and MICTf(w). 

In the next section algorithms for MDCTa(w) and MDCTf(w) are out- 
lined. Section 3 then looks at the indirect covering problems: an algorithm 
and proof of validity are given. In section 4, a generalization in which cover 
is attenuated by distance to the facility is outlined. It is also shown that 
MDCTa(w) becomes NP-hard for general underlying networks. 

2 A l g o r i t h m s  Fo r  M D C T a ( w )  a n d  M D C T f ( w )  

In order to establish ideas, at this point we only outline network algorithms 
for MDCTa(w) and MDCTf(w).  More precise descriptions and proof of 
validity follow, by setting S = 0, from the treatment of the next section. 

Since constraints (1) are equalities, we may add Zi#AAi(xij - yi) to the 
objective of MDCTa(w) without changing the identity of optimal solutions 
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or their values. The  new objective is thus  Z = ~ k E V C k Y k  - -  ~ijEEdijXij 
where, for k ~s A,  ck = Ck--)~k is the reduced population at node k (cA = cA) 
and, for all i j  E E,  [lij = dij - Ai is the reduced length of i j .  This will be 
referred to as (population) trading, the reduction in length of the (unique) 
arc from a node being exactly balanced by the  reduction in the populat ion 
of tha t  node.  

Consider  now a particular node i r A and set Ai = min (ci, dij) resulting 
in {3 i : 0 o r  di j  : O. It is clear tha t  solving M D C T a ( w )  with the ' reduced '  
da ta  leads to the same optimal  solution subtree and solution value - if 
i j  ~ T* then  nothing is affected whereas if i j  E T* then cover and cost have 
been reduced by the same amount  leading to no net change in objective.  
Suppose dij = 0 and j E T*, then arc i j  can be added at zero extra  cost and 
thus must  also belong to T* (by the maximal i ty  assumpt ion) .  Tha t  is, we 
now have xij = yj. Provided j ~- `4, this together  with yi = xij and yj = Xjk 
(see formulat ion of M D C T a )  yields a new constra int  Yi = xjk. Thus,  in 
a sense, cover is being provided indirectly by j k .  Adding .~ ik (Xjk  -- Y i )  t o  

the objective with Aik = rain (~i, djk) will result in (3i = 0 (~i here denot ing  

populat ion after two reductions) or djk = O, in addit ion to dis = 0. In this 
way popula t ion can be t raded from a node until the reduced populat ion is 
zeroed or .4 is reached in which case i must  be in T* - this will be te rmed 
cascading. (An al ternat ive interpretat ion is to  consider the zero length arc 
as being shrunk  to a point  thus coalescing its end nodes the new 'composi te  
node'  having the total  of the populat ions of its ' const i tuent  nodes'.  T h a t  is, 
the process of t rad ing  could be regarded as producing an equivalent problem 
on fewer nodes.) Figure 1 illustrates the effect of populat ion t rading for the  
da t a  given in figure l (a) .  First  t rading popula t ion from nodes 1, 2, 3, 4 and 
5 in turn  leads to cl = c2 = k3 = (:4 : c5  = 0 and dlA = 2, d21 = o, d3x = 1, 
d41 = 1 and d54 = 0 (see figure l (b)) .  So far no cascading has taken place. 
Now consider node 6: t rading three units of populat ion gives c6 = 4 and 
d63 = 0; t rad ing  a fur ther  one unit  gives r : 3 a n d  d31  : 0 ;  and finally, 
t rading a fur ther  two units yields r : 1 and d l a  = 0 - the t rading is now 
complete  since .4 has been encountered (see figure l(c)) .  The  solution to 
the problem is clearly as shown in figure l (d) .  

It is noted t ha t  the  above process is applicable since each node of the  
underlying network other  than the anchor node has a unique outgoing arc. 
The  nodes can be considered in any order but  a simple and effective order  
is to work outwards  from node .4. 
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7 2 2 I 0 0 

(a) 0 0 
3 t % r., o o 

7 0 0 

(d) 

F i g u r e  1 (a) tire original tree T will, l)opulations shown beside nodes and 
arc lengths beside arcs. (b) After t rading populat ion from nodes 1, 2, 3, -1 
and 5. (c) After t rading from ,,ode 6. (d) The  opt imal  solution subtree T ' .  

M D C T f ( w )  can be solved by t ak i , g  each node in turn as the anchor 
node and c o m p a r i , g  the n solution subtrees  obtained.  This gives an O(n  2) 
algori thm, where n = ll,"l, though the following result might lead to some 
reduction in computa t iona l  effort. 

T h e o r e m  2.1 .  If  b is in lhc optimal .~ubtree. T~" t~'lnlit:( to e as anchor 
trade, then the optimal subtt~c T~ t~laticc to b a.~ anchor node is contained 
m Tg. 

Proo f .  Tile arcs in 7~" but ,lot in F e" together with their end nodes 
form a set of disJoint trees r ,  where r, has the node i in common with both 
"I~" and Te'. Then tlre objective value (cover minus cost) for each ri must 
l)e nonnegative otherwise they would ,tot be part of I~'. However, this 
means that all nodes in each 7", could be added to T ;  without worsening 
the objective. This is a contradiction because of tl,e optimali ty of T~" and 
t he max,reality asst, m pt io,.  

It may be noted that tile above result (an(l l)roof) remains valid for tile 
case of indirect cover (.5" > 0). 
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3 I n d i r e c t  C o v e r i n g  

MICTa(w)  can be solved in much the same way as tha t  described for 
MDCTa(w) .  First, note tha t  if the length of arc i j  is less than S then 
i can be covered even though i j  is not in the solution subtree. This leads 
us to modify the concept of 'out arc'. 

D e f i n i t i o n  3.1. Let 7r(i) - i l i 2 . . . i t - l i t  be the unique path from i = il to 
,4 = it. Suppose i~i~+~ is an arc of ~(i) satisying d(i, ir) <_ S, d(i, it+l) > S, 
where d(x, y) denotes the distance from x to y relative to the unreduced 
arc lengths. Then iri~+l is called the S-out arc from i and i~ is the S-out 
node of i. On the other  hand if no arc satisfies this condition then there is 
no S-out  arc from i and the S-out node of i is taken to be ~4. 

Population at node i is not traded for the length of any arc between 
i and its S-out  arc irir+l (if such exists) since inclusion of iri~+l would 
ensure tha t  i is covered albeit indirectly. (Of course the distance between 
i and i~ may later be reduced when trading population from a node other 
than i.) 

We are now in a position to formulate the algorithm. /: will denote the 
set of nodes ' ready for t rading'  and corresponds to the set of temporari ly 
labelled nodes in the context  of label setting shortest  path algorithms. The 
algorithm terminates  when ~: -- O 

A l g o r i t h m  (Input:  a tree T with arcs directed towards anchor node A.} 

S t e p  1 (Setup) 

Set f~ = {mlm~4 E E(T)}. 

Set ~k = ek, Vk E V(T);  do = dij, Vij  E E(T) .  

S t e p  2 (Terminat ion/node  selection) 

I f s  = 0 

t h e n  Set T~ = { i l l  is at zero reduced distance from ~4}. 

Set T* to be the subtree on node set T~. Stop. 

else Select i E s  
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S t e p  3 (Out arc check) 

I f  i has an S-out ~rc j k  

t h e n  Set ab +-- j k .  

else  Set s 6 - ( / : \  { i } U { m l m i E  E(T)} .  Go to step 2. 

S t e p  4 (Population trading) 

Set )~ = min (ci, etch). 

Set ci 6- ci - A and d~b +- d~b - ,~. 

S t e p  5 (Cascade check) 

I f b  = A or ci = 0 

t h e n  Set L ~ (s  \ {i} U { m l m i  E E(T)} .  Go to step 2. 

e lse  Replace ab by next nonzero reduced length arc in T towards A. 

Return to step 4. 

T h e o r e m  3.1. The algorithm terminates after O(n) population trades at 
most where n = IV(T)I , and the optimal solution subtree is the subtree of  
T on node set T4. 

Proof. The algorithm terminates after O(n) population trades since 
for a tree IE(T)[ = n - 1 and at each t rade either a reduced population 
becomes zero or a reduced arc length becomes zero. 

Next we note tha t  t rading as described does not affect the identity of 
the optimal solution subtree. This is so since: 

1. MICTa(w)  can be formulated as an integer program with among its 
constraints ones of the form yi = xjk where j k  is the S-out arc from 
i; 

2. adding )t = min(6i, d/k) times (xjk - Yi) to the objective does not 
alter the value of any solution and so the modified problem has the 
same optimal solution subtree; 

3. t rading from i can take place using arcs j k ,  ke, . . .  successively (ig- 
noring zero length arcs) until t rading is complete or ~4 is encountered 
(see the discussion in section 2). 
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Consequently we may find the optimal solution subtree by solving the final 
problem, that  is, relative to the reduced populations and reduced arc lengths 
at termination of the algorithm. 

Let R+ be the set of nodes not in T~ but at a distance not greater than 
S (relative to unredueed arc lengths) from a node in R.  Now T* is the 
subtree on node set T~ so all nodes in R+ are covered by T*. Consider 
i ~ 7~ +. By the definition of 7~ +, i must have an S-out arc j~k ~ say, with 
j~ ~/~.  Consequently, either j 'k  ~ or some arc on the path from j '  to A has 
nonzero length. This means that  ki = 0 since otherwise further population 
could have been traded from node i. Hence, in the final problem, adding to 
T* any node not in ~ +  provides no extra cover but increases the cost (since 
every arc j#k" with jn ~ T~ and k H E ~ has nonzero reduced length). It 
follows that  the optimal subtree is a subtree of T* and the proof is complete 
by the maximality assumption. 

While only O(n) population trades are required, this does not automat-  
ically mean that  the algorithm can obtain an optimal subtree T* in O(n) 
time. However, by implementing the algorithm appropriately the following 
result holds. 

C o r o l l a r y  3.1. The algorithm can be implemented such that: 

(1) T* can be determined in O(n) and O(n 2) time for MDCTa(w) and 
MDCTf (w) respectively. The efficient frontier can be found in O(n 2) time 
for MDCTa. 

(2) T* can be determined for both MICTa(w) and MICTf (w) in O(n 2) 
time. The efficient frontier can be found in O(n 2) time for MICTa. 

In order to show how the result of theorem 2 translates into the time 
complexities quoted we briefly outline an implementation of the algorithm. 
In order to facilitate the following discussion we shall assume, for con- 
venience, that  all arc lengths and node populations are strictly positive; 
however, the complexity results are still valid if this assumption is not 
made. 

First, it is essential that  the network be represented in an appropriate 
way. One possibility is to use a Forward Star representation, that  is, prede- 
cessor nodes are stored in blocks in an array, pred say, with predecessors of 
node 1 first, followed by predecessors of node 2, etc. The beginning of the 
block of predecessors of node i is stored in array element start(i). (Another 
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possibility is to keep the successors of each node as a linear linked list - this 
would have advantages but some disadvantages also and was not tried.) 

Further  arrays tha t  can be used are succnode, succarc, outnode and first 
where 

succnode(i) stores the successor node of i, i ~ A 

succarc(i) stores the successor arc of i, i ~ .4 

outnode(i) stores the S-out node of i 

first(i) is used to determine the first node between i and .4 with a 
nonzero length outgoing arc (or, .4 if no such arc exists). 

Consider first MDCTa(w).  succnode, succarc and outnode can be set 
up in O(n) t ime (outnode(i) being just i). Initially f i r s t ( i )  is set to i for 
all i. When t rading in step 4 results in the length of arc ab being reduced 
to zero the operation first(j) +- first(b) is performed. To see the effect of 
this, consider a linear chain and trade from nodes working away from .4. 
As execution of the algorithm proceeds, so 'strings' of zero reduced length 
arcs, which we term zero sequences, form and grow. More precisely 

D e f i n i t i o n  3.2. A zero sequence, ZS,  is a nonempty set of arcs satisfying: 

(1) all arcs in Z S  have zero reduced length; 

(2) arcs in Z S  form a path ir --__ i l i2 , . . . ,  is in T; the node il is called 
the start node of ZS.  

(3) Z S  is maximal in tha t  no set of arcs ZS '  ~s ZS ,  ZS '  D ZS,  satisfies 
(1) and (2). 

It may be seen tha t  the update  first(i) +- first(b) maintains the condi- 
tion tha t  first(i) points to the s tar t  of the first arc between i and -4 with 
nonzero reduced length when i is the start node of a zero sequence. For the 
linear chain this is sufficient to enable jumping over zero reduced length 
arcs when required in step 5. 

For a more general tree network, however, it may be necessary to use 
first(i) for nodes 'within'  a zero sequence. Assuming nodes are considered 
for trading in a depth-first  manner,  this can be taken account of straight- 
forwardly by updat ing first(i) as i is encountered when backtracking along 
a branch. This lat ter  modification permits arcs to be jumped over in step 
5 after their lengths have been reduced to zero. Again such operations can 
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be accomplished in O(1) time for each node visited and hence in O(n) time 
overall. 

Since initialisation of succnode, succarc, outnode and first, and updates 
of first (as indicated above) can all be carried out in O(n) t ime it follows the 
algorithm can solve MDCTa(w)  in O(n) time. This immediately implies 
an O(n 2) algorithm for MDCTa.  

The situation is not so simple for indirect cover. It is not difficult to see 
that  all S-out nodes (S-out arcs) can be calculated initially in O(n 2) time. 
While this may seem very conservative the author was unable to devise 
a way of guaranteeing that  the algorithm will run in O(n) time. (The 
difficulty is that ,  though rather unlikely, O(n) nodes may be separated 
from their S-out nodes by O(n) arcs.) This yields only an O(n  2) time 
algorithm for MICTa(w).  However, for MICTa the S-out  nodes need only 
be calculated once so the efficient frontier can be found in O(n 2) time. 

For the floating variants of the tree covering problem, there is no es- 
sential difference between the direct and indirect cover cases and we shall 
discuss only the indirect case. For MICTf(w)  it is true that  MICTa(w) 
may need to be solved n times and the set of S-out nodes will be different 
at each application. However, we can get round this by traversing the net- 
work moving from one node to another with only incremental changes being 
required. Using a 'depth-first search' this may be accomplished in 2n - 2 
steps (once along each arc in either direction). Each step requires updating 
the Forward Star representation to reflect the new anchor node - this is 
'messy' but requires only O(n) time. A full calculation of first must be 
performed for the initial application of MICTa(w) but thereafter outnode 
and dist can be updated in a single pass over the nodes at each subsequent 
application of MICTa(w). For this it is only necessary to change the values 
of outnode(i) for a few i from the old anchor node to the new one, and for 
a few i from the new anchor node to the old one - again this can be ac- 
complished in O(n) time. With this strategy the initial O(n 2) calculation 
of outnode values is ameliorated over the O(n) MICTa(w)  problems that  
are solved in order to solve MICTf(w). Consequently, the latter problem 
can be solved in O(n 2) time. 
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4 N n m e r i c a l  E x p e r i m e n t s  

The algorithm was tested on tree networks randomly generated as follows. 
The number of nodes, n, is specified then, for each node i in order of gen- 
eration, p predecessor nodes (and hence arcs incoming at i) are generated. 
p is sampled from a uniform distribution on {0, 1, ..., 4) but is capped as 
soon as n nodes have been generated. Costs ci are sampled from a uni- 
form distribution on the set {5, 6, ..., C} and lengths dij from a uniform 
distribution on the set {5, 6, ..., L).  Clearly, if C/L is very small then the 
solution subtree will be very small (perhaps just the anchor node) and if 
L/C is very small the solution subtree will be large (perhaps the whole of 
the underlying tree). We used C = 20 and L = 25 leading, very roughly, 
to 40% of the nodes being covered for the case of direct cover and 80% 
for indirect cover when S = 10. In the indirect case, the cover was nearly 
always provided by smaller solution subtrees than for direct cover (for the 
same weight w) - in our experiments, with parameters as specified above, 
the solution subtree contained, very roughly, 30% of all nodes. 

The algorithm was coded in Ada and run on a Sun 3. Results for 
MDCTa(w) and MICTa(w) are given in Table 1 with each row correspond- 
ing to a set Gxxx of five separate problems each with xxx nodes. T denotes 
the total of the separate times (in seconds) of all five problems in a set. (The 
last digit is always even since the timing mechanism rounds to the nearest 
0.02 seconds.) It is seen that  the results are consistent with a linear time 
complexity for MDCTa(w). For the data tested, MICTa(w) appeared to 
require linear time, that  is, better than the O(n 2) time suggested by the 
Corollary to Theorem 2. 

The floating variants naturally took much longer as each problem po- 
tentially required the solution of n corresponding anchored problems. Con- 
sequently, the implementation outlined in section 3 for MDCT/MICTf(w) 
was tested for the smaller data  sets G20, G40, G60 and G80 on 20, . . . .  
80 nodes respectively and each containing five separate problems. The re- 
sult of Theorem 1 was incorporated by omitt ing to perform trading for 
an anchor node which had been found present in the solution subtree for 
an earlier anchor node - of course, the overheads of updating the network 
and data  structures still needed to be carried out. The values of lOOT/n 2 
(where again T is the total t ime for five separate problems) were 10.0, 9.6, 
9.4 and 9.1 for G20, ..., G80 respectively. This is consistent with the O(n 2) 
complexity quoted in the Corollary. 
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Problem set n S T (secs) IOOT/n 

G100 100 0 0.08 0.08 
G200 200 0 0.10 0.05 
G300 300 0 0.18 0.06 
G400 400 0 0.22 0.055 
G500 500 0 0.24 0.05 

G100 100 10 0.10 0.10 
G200 200 10 0.14 0.07 
G300 300 10 0.28 0.09 
G400 400 10 0.34 0.085 
G500 500 10 0.40 0.08 

Table  1 Anchored covering tree problems 

5 E x t e n s i o n s  

At this point we note that  Hutson and ReVelle required the solution subtree 
to have at least one arc. If desired, this may be accommodated as follows. 
Let T(i) and T(j) be the two subtrees that  would result from T if arc ij 
were removed where i E T(i) and j E T(j). Now take each arc ij in turn 
and apply our algorithm with the following modification: i is regarded as 
the anchor node for the subtree T(i) and j is regarded as the anchor node 
for the subtree T(j). 

Next, consider the situation in which demand at node i is satisfied by 
traveling to a nearest node j of the facility. (An example is provided by 
passengers traveling to a station to access a subway network.) It may be 
expected that willingness to travel decreases as the distance d(i, j) between 
i and j increases. In other words, the level of cover yi at i is h(d(i,j)) 
where the attenuation function h may reasonably be assumed to satisfy: 

h(0) = 1; h(x) _> 0, x > 0; h is monotonic decreasing, 

and yi is no longer restricted to being an integer. We now outline the way 
in which population trading can be modified to take account of attenuation. 
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Let rr(i) = i~i2 . . . i t_ l i t  be the unique path from i = il to .4 -- it and 
suppose that  i, ir+l is not in the solution subtree but all arcs from ir+l to 
.4 are. Node i is a distance d(i, i t+l)  from the solution subtree so the level 
of cover at i is h(d(i, i t+l)  ). Upon adding arc irir+l to the subtree, the 
level of cover at i increases to h(d(i, ir)). That  is, the extra level of cover 
provided by adding arc iri~+l is eirir+, = h(d(i,i~)) - h(d(i, ir+l)) >_ O. 
Based on this observation we obtain the constraint  

Yi - ~ i l i 2 x i l i 2  . . . . .  E i t _ l i t X i t _ l i ~  - -  ~i  : 0 (5) 

where 6i = h(d(i, .4)). To see tha t  this is correct, note that  if ili2, i l ia , . . . ,  
is- l is  are no t  in the solution subtree, b u t / s i s + l , . . . ,  i t - l i t  (where it = .4) 
are, then 

Y i  - -  

t - I  

j = s  

t - 1  

Z [ h ( d ( i ,  ij) ) - h(d(i, ij+,) )] + h(d(i, it)) 
j-~8 

[h(d(i, is)) - h(d(i, it))] + h(d(i, it)) 

h(d(i, is)) 

as it should. Adding )~ times the left hand side of (5) to the objective gives 
an equivalent problem and the update  in step 4 of the algorithm above 
becomes: 

Set % = min (ci, min{djk I j k  e q } )  

Set ci = (?i - hi; djk = d j k  - A, Vjk  E Q. 

where Q = { j k l j k  �9 ~r(i) and ejk :/: 0}). If Q = 0 then min { j k l j k  �9 Q} 
is interpreted as zero. The idea of an S-out arc is no longer applicable 
and step 3 is removed from the algorithm. The same effect is obtained for 
the MICTa(w)  by only t rading population for length of those arcs j k  with 
n o n z e r o  r  

Trading as just  specified either results in ci = 0, or ci r 0 but djk = 0 
for some j k  �9 lr(i). In the lat ter  case arc j k  could automatical ly be added 
to the subtree if k is in the subtree. Tha t  is, if k ~ .4 and dkt ~ 0 we have 
the constraint xjk = xkt which may be accounted for by setting 



Covering Tree Problems 219 

e k e = e k e + e j k ,  k : / : A  and 6 i = ~ i + e j k ,  k r  

then resetting ~jk to zero - arc j k  now takes no part in further  population 
trading. This corresponds to the first cascading step - further cascading 
towards .4 can take place as other  reduced lengths become zero. 

When all t rading has taken place ~i = 0 or djk -- 0 for all j k  E 7r(i) 
since if this were not so then fur ther  t rading could take place. The optimal 
subtree is, as before, the subtree on the set of nodes a zero reduced distance 
from .4. The proof of validity of the algorithm is now essentially tha t  of 
theorem 2. 

The reader may note that  the above prescription for population trading 
reduces to tha t  of the algorithm for MICTa(w) by setting h(x) = 1 if x _( S; 
and h(x) = O if x > S. 

While there are clearly applications in which the solution T* should 
be a subtree, it is less clear why the underlying network should be con- 
strained to be a tree. The present author  when studying a generalization 
of the  Hierarchical Network Design Problem (Current et al., 1986) in which 
cover is not mandatory,  developed a Lagrangean relaxation in which one 
subproblem is just  MDCTa(w) over a general network. Since Lagrangean 
techniques typically involve solving many relaxations (corresponding to dif- 
ferent multiplier sets) the solution of these relaxations should be as efficient 
as possible. For these reasons it is appropriate to look briefly at the more 
general version, MDCTGa ,  of M D C T a  where the underlying network need 
not be a tree. 

M D C T G a  is the problem of finding a subtree, T*, of a symmetr ic  net- 
work N = (V, E) containing a given node .4 so as to maximize cover pro- 
vided and to minimize cost involved. (By a ' symmetric  network'  we mean 
tha t  j i  is in the network whenever ij is, and has the same length.) As 
before, yi = 1 if and only if i E T* and xij = 1 if and only if ij is an arc of 
T*. Then we may assert that  yi = ~jlijEEXij which means tha t  population 
trading from node i can be performed by subtract ing the same amount  hi 
from each of the arcs outgoing from i as is subtracted from the  population. 
However, we cannot validly cascade trading towards `4 as before since there 
is no longer a unique path from i to `4. (It is not difficult to construct  an 
example in which cascading would lead to an upper bound to the optimal 
value of M D C T G a ( w )  for which the bound is not exact.) 
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T h e o r e m  5.1. MDCTGa(w) is NP-hard. 

Proof. Let .4 be the anchor node with U a subset of V \ {.A}. Set 
the populations of all nodes in U to be M (a very large number) and the 
populations of all other nodes to be zero. Then it is clear that if M is 
large enough every node in U tO {.A} must be in T* but otherwise all that 
is required is to minimize cost. This is clearly a Steiner Tree problem in 
which the nodes in U U {.A} are to be connected. Since the Steiner tree 
problem is NP-hard then so must be MDCTa(w) over a general network 
(Garey and Johnson, 1979). 

6 C o n c l u s i o n  

An algorithm, similar to that of Church and Current (1993), has been 
given for solving MDCTa(w) in O(n) time and MICWa(w) in O(n 2) time. 
Numerical results were consistent with these complexities though, for the 
data tested, the time required for MICTa(w) grew more nearly linearly. 

We feel that  MDCTf(w) is probably a less practically oriented tree 
covering problem. However, a relatively efficient solution of this is still 
possible. 

The way in which the algorithm may be generalized to the case in 
which cover is attenuated by distance was also outlined. Finally, we have 
proved that MDCTa(w) becomes NP-hard when the underlying network is 
not restricted to being a tree, and consequently so are the other covering 
problems mentioned. It is unlikely, therefore, that any polynomial time 
algorithm exists for their solution. 
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