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A b s t r a c t  

This paper introduces the locally Farkas-Minkowski (LFM)  linear inequality sys- 
tems in a finite dimensional Euclidean space. These systems are those ones that  
satisfy that  any consequence of the system that  is active at some solution point 
is also a consequence of some finite subsystem. This class includes the Farkas- 
Minkowski systems and verifies most of the properties that  these systems possess. 
Moreover, it contains the locally polyhedral systems, which axe the natural external 
representation of quasi-polyhedral sets. The L F M  systems appear to be the natu- 
ral external representation of closed convex sets. A characterization based on their 
properties under the union of systems is provided. In linear semi-infinite program- 
ming, the L F M  property is the more general constraint qualification such that  the 
Karush-Kuhn-Tucker condition characterizes the optimal points. Furthermore, the 
pair of Haar dual problems has no duality gap. 

K e y  W o r d s :  semi-infinite linear inequality systems, Farkas-Minkowski systems, 
locally polyhedral systems, semi-infinite linear programming. 
AMS subject classification: 15A39 90C34. 

1 I n t r o d u c t i o n  

We will deal with consistent systems a = {a~ x > bt, t E T}, of linear in- 
equalities in ~ n  where T is any set (possibly infinite) of indexes. They are 
known as linear semi-infinite inequality systems (LSIS).  Zhu (1966) and 
Fan (1968) provided the first general results based on the geometrical prop- 
erties of certain cones associated to the system. Goberna and L6pez (1988) 
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presented many results about boundedness, dimension and boundary of the 
solution set of L S I S  in a unified treatment. In order to deal with the inte- 
rior, relative interior, boundary, relative boundary, dimension and extreme 
points of the solution set of a LSIS,  some closedness conditions on the cones 
are useful. In this way, various families of systems appear, namely: closed, 
compact, canonically closed, normal, Farkas-Minkowski systems. We will 
deal basically with this last kind of systems. The Farkas-Minkowski (FM) 
systems are those consistent systems for which any inequality that is a con- 
sequence of the system is also a consequence of some finite subsystem. They 
share several good geometrical properties with finite systems (Goberna and 
L6pez (1988). 

Marchi et Al. (1997) have studied some properties about the so called 
p-systems, which have the Weyl property: the extreme points of the solu- 
tion set F are those solution points such that the gradient vectors of the 
active constraints form a complete set. This well known property for finite 
linear systems is due to Weyl (1950). Recently, Anderson et A1. (1997) 
have introduced the locally polyhedral (LOP) systems, which include the 
p-systems. These systems are the natural external representations of the 
quasi-polyhedral sets, introduced by Klee (1959) in the context of sepa- 
ration of convex sets. This class of systems shares various geometrical 
properties with the Farkas-Minkowski systems, namely, the interior of the 
solution set F is the set of the strict solutions of the system (having deleted 
the trivial inequalities); the affine hull of F is the solution set of certain sub- 
system, the boundary of F is the union of all the faces of a, etc. (Anderson 
et A1. (1997), Goberna and L6pez (1988)). 

In this paper we define a new wider class of L S I S  which includes the 
F M  and the LOP systems, as well. These systems will be called locally 
Farkas-Minkowski systems (LFM). The main motivation for the study of 
this kind of systems is the behavior "at infinity" of some closed convex sets 
obtained as solution sets of F M  or LOP systems. These L F M  systems pos- 
sess most of the properties that the F M  systems have. The L F M  class is 
closed under finite union whenever the relative interiors of the correspond- 
ing solution sets have a common point; this is also a property of the F M  
class. These results can be applicable in the field of semi-infinite optimiza- 
tion where some relevant papers (see references in Hettich and Kortanek 
(1993)) have shown many interesting applications related to some families 
of systems, (Goberna and L6pez (1995)). In fact, we show an application to 
the theory of linear semi-infinite programing, namely the L F M  property 
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guarantees that  the sufficient optimality Karush-Kuhn-Tucker condition 
( K K T )  is also necessary. Indeed the L F M  condition is the more general 
constraint qualification for the K K T  property. Furthermore, the L F M  
property yields that  the pair of dual problems, in Haar's sense (Charnes et 
Al. (1962)) has no duality gap whenever the primal problem is solvable. 

The outline of the paper is as follows: in section 2, we state terminology 
and some preliminary results on linear semi-infinite systems. An associated 
homogeneous system in ~ n + l  is introduced, which allows us to control the 
behavior of the points at infinity. In section 3, the L F M  systems are de- 
fined; some of their properties, the scope of the class and the relations with 
the F M  and L O P  systems are argued. Section 4 presents some geometri- 
cal properties and a characterization of the L F M  systems based on their 
properties under the union of systems, that  is analogous to the correspond- 
ing one for the L O P  systems. Lastly, an application to linear semi-infinite 
optimization is discussed in section 5. 

2 Prel iminaries  and Notat ion  

For any non-empty set F C ~ n ,  conv F,  cone F ,  span F,  affF,  F • and F ~ 
stand for the convex hull, the convex cone generated by F ,  the linear span 
of F ,  the affine hull, the orthogonal space and the positive polar cone of F ,  
respectively. Moreover, the interior, closure, boundary, relative interior and 
relative boundary of F are denoted by int F,  cl F ,  bd F ,  ri F ,  and rbd F ,  
respectively. If F is convex, dim F denotes the dimension of a f fF  and lin F 
is the linearity space of F .  The classical reference for all of these concepts 
is the book by Rockafellar (1986). 

Let a be a linear inequality system in the Euclidean space ~ n ,  a = 
{a~ x > bt, t E T} where T is any set of indexes. Henceforth, the systems 
a we consider are always consistent, i.e., the solution set F = F (a) is not 
empty. Its characteristic cone, Zhu (1966), is 

K = K ( a ) =  cone bt ' 1 

A vector (~) E _~n+l where a E ~ n  and b E ~ will also be denoted by 
(a; b). An inequality a% >_ b is a consequence of a if a ~  > b holds for every 

E F.  A system a is Farkas-Minkowski (FM)  if any consequence of a is a 
consequence of a finite subsystem of a. By the generalized Farkas Lemma, 
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a*x >_ b is a consequence of a if, and only if, (a; b) �9 cl K; a system a is 
F M  if, and only if, K is closed. 

The set of active indexes at �9 �9 F is T(~)  = (t �9 T : a ~  = bt} and 
the cone of active constraints of a at the point ~ is 

A (~) --- A (a, ~) = cone ( a t ,  t �9 T (~)}. 

An index t �9 T is carrier for a whenever a~ x = bt for all x �9 F. Tc  denotes 
the set of carrier indices. F contains a Slater-point for a, that  is, a point 
with a~ ~ >  bt, for any t �9 T, if, and only if, Tc  = 0, (Goberna and LSpez 
(1988)). 

A feasible direction of a convex set F at a point �9 �9 F is any non-null 
element of the (convex) cone: 

D (F, 5c) = (u  �9 R:~ n : 5: + Ou �9 F, for some 0 �9 ~R, 0 > 0}. 

It is known that  

A(~.) c D(F,~c) ~ = {a �9 ~Rn: (a;a '~) �9 c l K } .  (2.1) 

A system a is said to be locally polyhedral (LOP)  if D (F, :~) = A (a, :~)o 
for all �9 E F (Anderson et A1. (1997)). A set P C ~ n  is said to be quasi- 
polyhedral if its non-empty intersections with polytopes are polytopes (Klee 
(1959)). 

The recession cone of F is 

0 + F = ( v E ~ t  n : ~ + ) ~ v E F ,  for a n y A E _ ~ , ) ~ > _ 0 , ~ E F } .  

Any non-null v E 0+F  is called a direction of recession of F .  As regards 
the behavior "at infinity" of unbounded closed convex sets, the directions 
of recession of F may be interpreted as ideal points of F lying at infinity. 
If x is any point of F, the half-lines starting at x could be thought  of as the 
segments joining x with those ideal points of F at infinity. To put  these 
ideas in a formal way and following Rockafellar (1986), Section 8, we will 
consider the natural  correspondence between points of ~'~ and points of the 
hyperplane M -- ( ( x ; - 1 )  : x E iR n} in ~,~+t. The ray {)~(x;-1)  : )~ > 0} 
represents the point x E ~'~. Finally, the directions of ~ "  are represented 
by the rays {)~(x;0): A > 0}, x r 0. 
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For a given n-dimensional system a, let us consider the following asso- 
ciated homogeneous ( n q- 1)-dimensional system: 

a * = ( a ~ x + b t x n + l > O ,  t E T } U ( - x n + l > O } ,  (2.2) 

with x � 9  n and xn+l � 9  Its solution set F Ca*) will also be denoted by 
F* and its active cones A (a*, (x;xn+l)) ,  by: A* (x; xn+l).  

L e m m a  2.1. The solution set of a* is the following closed convex cone: 

F* = cone(F x {-1}) U 0+F x {0} 

= cl cone(F  x {-1}) .  

Moreover, 

A*(0;0) = K , and (2.3) 

F* = D (F*, (0; 0)) = A" (0;0) ~ -- K ~ (2.4) 

Proof. It easy to see the first equality through a little manipulation of the 
definition of a* and the fact that v �9 0+F  if, and only if, a~ v >_ 0, for all 
t �9 T. The second equality is a known result (Rockafellax (1986), Theorem 
8.2). Finally, all the equalities in (2.3) and (2.4) follow because a* is a 
homogeneous system. [] 

It is easy to prove that the feasible direction cone at any point y in F* 
is: D (F*, y) = F* + cone ( - y } .  However, the following description shows 
the relationship between the feasible direction cones at points in F and F*. 

L e m m a  2.2. For any �9 �9 F ,  # > 0, the cones of feasible directions satisfy 
that: 

D(F*,~u(~ ; -1) )  = D(F,~.)  x (0} + span ((.~;-1)} . 

Proof. Let (u;z) �9 D ( F * , j u ( ~ ; - 1 ) )  and let 0 > 0 be small enough such 
that ~u (~; - 1 ) + 0  (u; z) �9 cone (F x {-1}) C F*. That is, there exist x �9 F, 
2 > 0 such that 
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Then, 

A ( x - 5 : ) ( A  - /~)  
( : ) = 0  0 + ~ ( ~ 1 ) '  

and (u;z) E D ( F ,  Yc) x {0} + span { ( i ; -1 )} .  

For the reverse inclusion, if (w, 0) E D (F, i )  x {0}, then i + ~Tw E F 
for some 0 > 0, so 

(:1) O(o)C+10 )  + -- _ F*, 

and (w; 0) E D (F*, (~; -1)) .  Moreover, • (~; -1 )  E D (F*, (5:; -1)) .  Thus, 
the union of both cones is included in the convex cone D (F*, (~';-1)). 
Therefore, their sum is included as well. [] 

3 L o c a l l y  F a r k a s - M i n k o w s k i  S y s t e m s  

Recall that the L O P  systems were defined by Anderson et A1. (1997), 
through the property D (F, ~) = A (~)o, for all ~ E F. However, the 
key relation in several proofs that appear there is the following "polar" 
property: A (~) = D (F, 5:)0. Therefore, it is natural to introduce a new 
class of systems that satisfy the latter property. 

Def in i t ion  3.1. A system a is said to be locally Farkas-Minkowski ( L F M )  
a t ~ E F i f  

A (5:) = D (F, (3.1) 

a is L F M  if it is L F M  at every :~ E F. 

It is immediate that A (~') is closed for any L F M  system. The inclusion 
A (~) C D (F, ~)o is valid for any system, so, it is only necessary to ask that 
A (~) D D (F, ~)o to get a L F M  system. 

The following result says that the L F M  systems are precisely those 
systems for which any inequality that is a consequence of it and is active at 
some solution point must be a consequence of some finite subsystem of ac- 
tive constraints at this point. This interpretation justifies the name locally 
Farkas-Minkowski. (Another justification appears in section 4, Theorem 
4.4). 
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T h e o r e m  3.1.  The sys tem a is L F M  at 2 E F if, and only if, whenever  

a~ x > b is a consequence of  a that satisfies a~. = b, then a E A (~,). 

Proof. In view of the characterizat ion of the polar  of the feasible direction 
cone given in (2.1), the  following equality: 

= {a e Rn: e cl K}  (3.2) 

is equivalent to (3.1). Thus,  the assertion follows immediately.  [] 

The  following l emma for homogeneous systems (as a* in (2.2)) shows 
tha t  the L F M  condi t ion at  the origin is crucial. 

L e m m a  3.1.  A homogeneous  sys tem a is L F M  at the point  ~ = 0 if, and 

only if, it is L F M  at any ~ E F ,  Y~ ~ O. 

Proof. Recall tha t  for homogeneous  systems A (0) --- cone {at ,  t E T }  and 
so, F = A (0) ~ . Moreover F = D (F, 0) and thus,  F ~ = clA (0) = D (F,O) ~ . 

Suppose D ( F ,  2) ~ = A(Y~) for every ~ E F ,  �9 ~ 0. To show tha t  
a is L F M  at 0, it is enough to prove tha t  D ( F , O )  ~ C A(0) .  Let a E 
D (F, 0) ~ = cl A (0). If  a e bd  A (0), then,  there is a direction u ~ 0 such 
tha t  a + 9u ~ cl A (0) = F ~ for any 0 > 0. Let {x0} be a sequence in F, 
wi th  9 ~ 0, such tha t  

(a + 0u) '  x0 < 0 . (3.3) 

Since F is a cone, we may  assume by the s t andard  a rgument  of normalizing 
vectors and by passing to a subsequence if necessary tha t  

lim IIx011-1 x0 = ~ ,  (3.4) 
0 ~ 0  

for some ~ E F ,  & ~ 0. We will show tha t  a belongs to A (~) C A (0). The  
key fact here is tha t  a E F ~ which gives tha t  a~2 > 0 for all 2 E F .  Then,  
it is easy to see, by vir tue of (3.3) and (3.4), tha t  a ~  = 0. Theorem 3.1 
yields tha t  a E A (&). 

For the converse, assume tha t  D (F, 0) ~ = A (0). We need to show the 
inclusion D (F, 2) ~ C A (2) ,  for any 2 E F ,  2 ~ 0. Let 0 ~ a E D (F, 2) ~ C 
D (F, O) ~ = A (0) = F ~ From a E D (F, 2) ~ it follows tha t  a ~ (x - 5:) > 0, 
for every x E F. In part icular ,  x = 0 yields tha t  a~2 ___ 0. On the  other  hand,  
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a E F ~ gives tha t  a'x > O, for every x E F;  in part icular ,  a '~ _> 0. Therefore 
a ~  = 0. Moreover, a E A (0),  hence, a = ~ At at for some At > 0, wi th  
t in a n0n :empty  finite set T '  C T (0) . Hence, 

> O, 
t E T  I 

which implies T '  C T (~-) and  so, a E A (~). Therefore, D (F, ~)o C A (5:). 
[] 

The  scope of the L F M  class is discussed in the  sequel of this section. 
Theorem 3.1 suggests tha t  any F M  system is L F M ;  in fact, this is true. 

T h e o r e m  3.2.  I f  a is a Farkas-Minkowski system then a is L F M .  

Proof. Let ~ E F and consider a non trivial active consequence of a, 0 
(a; a'57) E cl K = K .  Then ,  there is a finite set T ~ C T such tha t  

tET' tET' 

for some positive real numbers At. But 

tET '  tET '  

which implies tha t  T '  C T (~) and so, a E A (~).  By Theo rem 3.1, a is 
L F M  at ~, for any .~ E F and  so a is L F M .  [] 

Anderson et A1. (1997) have proved tha t  the  active cones are closed for 
L O P  systems and tha t  their  solut ion sets are quasi-polyhedral .  These two 
propert ies  will be appl ied in the  following theorem.  

T h e o r e m  3.3.  a is a L O P  system if, and only if, a is L F M  and F(a)  is 
quasi-polyhedral. 

Proof. Assume a is a L O P  system, then  D (F, s = A (~)o, for any �9 E F. 
Moreover, F(a)  is quasi-polyhedral  and  the  active cone A (~) is closed 
(Anderson et A1. (1997)). By taking the  polar of these sets, a is L F M .  

Conversely, if a is a L F M  sys tem then  A (5:) = D (F,.~)~ By con- 
sidering the polar  of these cones, the  proposi t ion follows because the  cone 
D (F, ~) is closed when  F is quasi-polyhedral .  [] 
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The  following example  shows tha t  the  L F M  class is bigger t han  bo th  
classes, the  F M  and the L O P .  

E x a m p l e  3.1.  Consider  the sys tem a = {(1 - t) t - i x  + t (1 - t) -1 y > 
2, 0 < t < 1}. The  solution set F is the  convex hull of the set {(x,y)  E 
H:~ 2 : x y  = 1, x > 0, y > 0}. The  sys tem a is nei ther  a F M  system nor a 
L O P  system. However, it is L F M .  

The  following proper ty  shows the  relat ionship between the systems a 
and a* and the  condit ion of being F M  and L F M ,  respectively. 

T h e o r e m  3.4.  a* is a L F M  system if, and only if, a is F M .  

Proof. Assume a* is L F M ;  by (2.3), K = A*(0;0)  = D(F*,(O;O)) ~ is 
closed, which yields the  assert ion about  a. 

Conversely, suppose  a is a F M  system, i.e., cl K = K.  By (2.4), 
(F*) ~ = cl K = K. By recalling tha t  K = A*(0 ;0 ) ,  it follows tha t  
A* (0;0) = D(F*,(O;O)) ~ tha t  is, the  homogeneous  system a* is L F M  
at (0; 0). By L e m m a  3.1, a* is a L F M  system. [] 

T h e o r e m  3.5.  a* is a L O P  system if, and only if, a is F M  and F is 
polyhedral. 

Proof. If  a* is L O P  then  F* is quasi-polyhedral  (Anderson et A1. (1997)). 
Therefore D (F*, y) is a polyhedra l  set for any y E F*. In part icular ,  the 
following sets are polyhedral :  D (F*, (0;0)) = F* by using (2.4), F* V) 
(_~'* x { - 1 } )  = F • { - 1 }  and finally F .  Moreover, if a* is L O P  t hen  a* 
is L F M  (Theorem 3.3), so the  active cone A* (0; 0) is closed. From (2.3), 
K is closed too, which yields tha t  a is F M .  

For the  reverse implication,  assume tha t  a is F M  and F is polyhedral .  
By Theorem 3.4, a* is L F M .  Because F is polyhedral ,  c lcone ( F  x { -1} )  
= F* is a polyhedral  cone (Rockafellar (1986), Theorem 19.7). An appli- 
cat ion of Theorem 3.3 to the sys tem a* yields tha t  a* is L O P .  [] 

T h e o r e m  3.6.  I f  a is a L F M  system with a bounded solution set, then a 
is F M .  
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Proof. There are no directions of recession of the bounded solution set F.  
By Lemma 2.1, F* =cone  (F x {-1}) and by Lemma 2.2, 

D (F*, (~; -1) )  -- D ( F , ~ )  x {0} + span{(~ ; -1 )} .  

The polar of the sum of two non-empty convex cones is the intersection of 
their polars. Hence 

D (F*, (Sc;-1) ) ~ = ( D ( F , ~ ) x  {0} + span{(~;-1)})  ~ 

= (D (F,~) x {0}) ~ n (span {(~;-1)})  ~ 

= A(~) x ~R N {(~;-1)} • 

Therefore, if (a; b) ~ 0 is in this polar then a = ~ At at for finitely many 
at E A (a,~.) and some At >_ 0. Moreover, (a; b)is orthogonal to (~; -1) .  
Thus, 

which implies that b = ~ At bt, and hence (a; b) is in the active cone at 
(~; -1) .  Then, D (F*, (~; -1 ) )  ~ C A* (~; -1) .  Lemma 3.1 and Theorem 3.4 
complete the proof. [] 

For the sake of completeness, we state some results about L O P  systems, 
whose proofs are direct, and others about homogeneous ones. 

T h e o r e m  3.7. For any L O P  system a, it holds that: 

(i) I f  F is bounded then a is F M  and F is polyhedral. 

(ii) I f  F is polyhedral then a is F M .  

T h e o r e m  3.8. I f  a is a homogeneous system, then: 

(i) a is L F M  if, and only if, a is F M .  

(ii) a is L O P  if, and only if, a is F M  and F is polyhedral. 

Proof. (i) By virtue of Theorem 3.4 it only remains to prove that any 
homogeneous L F M  system a is F M .  A (0) is closed for a L F M  system 
because A (0) = D (F, 0) ~ . On the other hand, for a homogeneous system, 
A (0) = cone (at ,  t e T }  which implies that K = A (0) • ( -co ,  0]. Hence, 
K is closed and a is F M .  
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(ii) Any L O P  system a is L F M ,  so part  (i) gives that  a is F M .  More- 
over, its solution set F is quasi-polyhedral. Since a is homogeneous, F is a 
quasi-polyhedral convex cone. Corollary 19.7.1 in Rockafellar (1986) gives 
that  F is polyhedral  because it is the convex cone generated by a polytope, 
namely F = cone (F  fl P) ,  where P is a closed n-dimensional rectangle 
centered at the origin with diameter  one. 1"-1 

R e m a r k  3.1. A natural  external  representation a of any closed convex 
set F is the one consisting of the inequalities that  define all the  supporting 
half-spaces of F.  This kind of representation is L F M ,  by Theorem 3.1. If 
F is quasi-polyhedral, this representation is L O P  by Theorem 3.3. If F is 
either bounded,  polyhedral  or conical, then a is F M  by Theorems 3.6, 3.7 
or 3.8, respectively. 

4 P r o p e r t i e s  o f  L F M  s y s t e m s  

Now, we proceed to establish the main geometrical properties of the solution 
set of  a L F M  system. In doing this, the  following lemma shows useful. 

L e m m a  4.1. I f  (r is a L F M  system and e E F,  then: 

(i) (F - e) j- = l inA (e) . 

(ii) a f f F = e  + s p a n { F - e }  = ~ + { l i n A ( ~ c ) }  •  

(iii) lin A (e) = span {at,  t E Tc  }.  

Proof. (i) Given e E F ,  we have A (e) = D (F, e) ~ = (F  - e) ~ , so that  

l inA (e) = lin ( ( F  - e)  ~ = (F  - e)  • . 

(ii) is an immediate  consequence of (i) above. 

(iii) If a 6 lin A (~) then, 5=a 6 A (e ) .  Assume a # 0 and let At > 0, for 
t in some non-empty finite set T '  C T (e), such that  

a = ~ At at �9 

tET' 

For any x E F ,  (x - e )  e D (F, e) C A (e) ~ C {=l=a} ~ hence 

0 = a '  - e l  = A,  - e l .  

tET I 
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Since a~ ( x -  5:) > 0 for all t E T',  it follows that  a~ x = a~ 5: = bt, for all 
x E F, t E T'. Therefore, T '  C Tc and so, a E span {at, t E T c } .  

Conversely, if t E Tc then + (at ; at 5:) E cl K and by (3.2), +at E A (~,) , 
so that ,  at E lin A (5:). [] 

As it was stated in the introduction, the L F M  systems possess the 
main geometrical properties that  the Farkas-Minkowski systems and the 
L O P  ones share. Theorem 3.2 in Anderson et A1. (1997) and Theorem 3.2, 
Corollary 4.2.1, Theorems 4.1 and 4.2 in Goberna and L6pez (1988), give 
almost identical properties for L O P  and F M  systems, respectively. Indeed 
these properties are valid for the more general class of L F M  systems, as the 
following propositions show (The proofs of the above lemma and the next 
theorem are partially taken from Anderson et A1. (1997) and reproduced 
here for the sake of completeness): 

T h e o r e m  4.1. Let a be a L F M  system, then: 

(i) A (5:) is closed for any 5: E F, 

(ii) d i m F = n - d i m s p a n { a t ,  f E T e } ,  andso 

a f f F =  { x e ~ " :  a ~ x = b t ,  f e T e } ,  

(iii) v i E = { x E K l n :  a ~ x > b t ,  t E T \ T c ,  a ~ x = b t ,  f E T e } .  

Proof. (i) is immediate from the definition of L F M  systems. 

(ii) is a consequence of Lemma 4.1, (ii) and (iii). 

(iii) The inclusion "C" is well known (Goberna and L6pez (1988), Theorem 
3.1). For the other inclusion, it is clear that  if 5: is in the right hand set 
then 5: E F and T (5:) = To. If 5: E rbd F there exists a proper support ing 
hyperplane of F at 5:, i.e., there exists 0 # a E ~'~ such that  a'x > a'5: 
for all x E F and a'y > a~5: for some y E F.  Theorem 3.1 yields that  
a E A(5:) = cone { a t , t E T c } .  Hence, a = ~ A t a t  for finitely many 
at and some At > 0, t E Tc .  A standard argument gives the following 
contradiction: 

a'~ < a'y = ~--" ,\t ' a t y = At a~ 5: = a~5:. 

Therefore, 5: E ri F. [] 
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By recalling that  any system a has a Slater point if, and only if, Tc = 0, 
(Goberna and L6pez (1988)), the following corollary is a consequence of the 
above theorem. 

C o r o l l a r y  4.1. I r a  is a L F M  system, then: 

(i) int F is the set of Slater-points of a (by deleting the trivial inequalities). 

(ii) F is full-dimensional if and only if a has a Slater point. 

In order to describe the boundary and the relative boundary of the 
solution set of a given L F M  system a, recall that  the set Ft = {x E F : 
a~x = bt, t E T} is a face of a, whenever a~x = bt, is not the trivial 
equality. Obviously, Ft = F for any carrier index t. 

C o r o l l a r y  4.2. I f  a is a L F M  system, then 

(i) bdF is the union of all the faces of a, and 

(ii) rbdF is the union of all the faces Ft of a, t E T \ T c .  

Now, we proceed to analyze the properties of the L F M  systems under 
the operation of union of systems. For a system a i we will denote by F i 
its solution set and by K i its characteristic cone. 

L e m m a  4.2. Let (x I and a 2 be any two systems. Then ri F 1 M ri F 2 ~s 0 
if, and only if, c IK  1 n - c l K  2 = - c l K l  n c l K  2 (i.e., it is a linear 
space). 

Proof. The condition ri F i n  ri F 2 ~ 0 is known to be equivalent to the 
non-existence of a hyperplane separating F 1 and F 2 properly. So it is 
enough to show that  cl K 1 n - c l  K 2 -- - c l  K 1 M cl K 2 if and only if there 
is no such hyperplane. Suppose H is a hyperplane with normal vector (a; b) 
that  separates F 1 and F 2 properly, say for instance, 

a'x > b, f o r x E F  1, (4.1) 

alx <_ b, f o r x E F  2 and (4.2) 

a ~  > b, for some �9 E F 1, or, a~& < b, for some & E F 2. (4.3) 

Then, by taking into account that  an inequality a~x > b is a consequence of 
any system if, and only if, (a; b) is an element of the closure of its character- 
istic cone, conditions 4.1-4.3 are equivalent to (a;b) E c l K  1 n - c l K 2 a n d  
( a ; b ) ~ - c l K  l n c l K  2 .  [] 
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T h e o r e m  4.2.  The union of any two F M  systems a t and a s that satisfy 
that r i F  lf3 r i F  2 ~ 0, is another F M  system. 

Proof. It is enough to show tha t  cl (K 1 + K 2) = c l K t + c l K  2 because 
K 1 + K 2 is the  characteristic cone of a 1 U a 2 and each of the cones K 1 
and K 2 is closed. Recall the proper ty  tha t  says tha t  cl ( K t +  K 2) = 
cl K t +  cl K 2, whenever K t and  K 2 are non-empty  convex cones satisfying 
the  following condition: if ai �9 c l K  i, for i = 1,2, and  al  + a 2  ---- 0 ,  t hen  
ai �9 l i n c l K  i, for i = 1, 2 (Rockafellar (1986), Corollary 9.1.3). In our case, 
from the above Lemma,  for any al �9 c l K  1, a2  �9 c l K  2 wi th  at  q-a2 ---- 0,  it 
holds tha t  

al  -- - a 2  �9 c / K  1 M - c / K  2 = - c / K  1 M d K 2, 

which provides the  required condition.  [] 

L e m m a  4.3.  Let a I and a 2 be any two systems with F 1 N F 2 # 0. Then 
r i B  1M r i b  2 ~ 0 if, and only if, r iD  ( f l ,~ . )  M r iD (F2 ,~)  r 0, for any 
�9 , �9 F ~ N F 2. 

Proof. Suppose ri F 1 Iq ri F 2 # 0 and let ~: �9 F 1 M F 2. Then:  

( r i F  1 M r i F  2 ) -  

= ( r i F '  - ~) M ( r i F  2 - ~ )  

= r i ( F  1 - ~ )  N r i ( F  2 - ~ )  

C ri (cone ( F  t - ~)) M ri (cone ( F  2 - ~)) 

= r i D  ( F I , ~ )  M r i D  ( F 2 , ~ ) .  

Conversely, let ~ �9 F 1 M F  2 be such tha t  r i D  ( F I , ~ )  M r i D  (F2 ,~)  
0. Suppose  tha t  r iF1M r i F  2 = 0, then,  there is a hyperplane  H -- 
{ z : a ~ z  = b} separat ing F 1 and F 2 properly, i.e., a~x > b > a~y for all 
x �9 F 1 , y �9 F 2, and a ~  > a~) for some ~ �9 F 1 , ~ �9 F 2. Since .~ �9 F 1 M F  2, 

it follows tha t  a ~  = b. 

Let z E r i D  (FI,:~) M r i D  ( F 2 , ~ ) ,  then  there exist some posit ive numbers  
01 and 02 such tha t  �9 + 01z E F 1 and ~: + 02z E F 2. Hence, 

+ > b > a' + 02 ), 
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which implies that  a~z = 0. Now, suppose that  a ~  > b. Since ~ - ~ is  a 

feasible direction of F 1 at �9 and z E ri D (F  1, ~) ,  there exists/~ > 1 such 
that  

v = (1 - /~)  ( 5 -  ~) +/~z e D ( F I , ~ ) .  

But then, there is a positive/3 for which ~ +/3v E F 1. Hence, 

b <_ a'( 'Y,+/3v) 

= a':~ +/3  (1 - I~) a' (~c - ~c) + /3pa ' z  

= b + / 3  (1  - - b)  

< b , 

which is a contradiction. The case a ~  < b is handled in a similar manner. 
Therefore, ri F 1 n ri F 2 is non empty. [] 

T h e o r e m  4.3. I r a  1 and a 2 are two L F M  systems with r i F  1 n r i F  2 ~ 0 
then a 1 U a s is a L F M  system as well. 

Proof. The facts that  D ( F  1 n F2,~)  = D (F1,5)  ND (F2,5)  and that  the 
polar of the intersection of cones with a common relative interior point (by 
Lemma 4.3) is the sum of their polar cones (Rockafellar (1986), Corollary 
16.4.2), imply that: 

D ( F  1 n F2 ,~ )  ~ = D (F I ,~ )  ~ + D (F2,~)  ~ 

= A (0"1 ,5)  + A (a2,5) 

= A ( a l u a 2 , - Z ) ,  

since a 1 and 0 .2 a r e  both L F M  systems. Therefore a 1 U 0 .2 is L F M .  [] 

N o t e .  The  L F M  systems are closed by aggregation of consequent inequali- 
ties. Moreover, from Theorem 4.3, they are also closed by finite aggregation 
of properly cut t ing inequalities. The same properties hold for the F M  and 
L O P  systems. 

The L O P  systems take their name from the fact that  they are those 
systems whose solution sets satisfy that  the non-empty intersections with 
polytopes are polytopes too (Anderson et Al. (1997)). Since the poly- 
topes are just  the bounded polyhedral sets, the following characterization 
of the L F M  systems is in some sense analog to that  one of the L O P  
systems. Furthermore,  this characterization justifies the name " locally" 
Farkas-Minkowski for L F M  systems. 
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T h e o r e m  4.4. a is a L F M  system if, and only if, a U a  1 is a F M  system 
.for any F M  system a 1 with r i F n  r i F  1 ~ 0 and F 1 bounded. 

Proof. The direct implication follows from Theorems 4.3 and 3.6. For the 
converse, let any �9 �9 F and consider a F M  system a 1 whose solution set 
F l is an n-dimensional bounded set such tha t  �9 �9 int F 1. Then,  ri F n 
ri F 1 r 0 and thus a O a I is F M .  Moreover, the fact that  ~ is an interior 
point of F 1 gives tha t  A ( a l ,~ )  = {0} and D ( F l , ~ )  = Rn; hence, 

A (a ,~)  = A (a U a l , 5 )  = D (F  n F 1 , z )  ~ = D (F,~)  ~ . 

Therefore, a is a L F M  system. [] 

The following two examples show that  the conditions in Theorems 4.2, 
4.3 and 4.4 are not superfluous: 

E x a m p l e  4.1. The  following system (recall Example 3.1) is L F M :  

o "1 - - - -  { (1  - t)  t - i x  + t (1 - t) -1  y > 2 , 0 < t < 1}.  

Consider the F M  system (72 = {x + y ~ 0}, whose solution set F 2 is 
unbounded.  In this case, F 1 n F 2 = F 1, ri F 1 n ri F 2 # q) and a 1 U a 2 is 

not a F M  system. 

E x a m p l e  4.2. o "1 = { - - ( C O S t ) X  - -  (s int)y > - 1 ,  t �9 [0,27r)} and o "2 = 

{y > 1} are both  F M  systems. The solution set F 1 is the uni tary disk in 
_g{2 and F 1MF 2 is the set consisting of the single point (0, 1). The inequality 
x > 0 is a consequence of the system a I O a 2 which is not a consequence 
of only finitely many inequalities in a I O 0 "2.  Hence, a I O (7 2 is not a F M  

system. Notice that  ri F i N  ri F 2 : 0. Furthermore,  it is clear that  we 
may replace the system 0 .2 by any one with a bounded  solution set and still 
having the same features, namely a 3 = {2 >_ y > 1, 1 > x > -1} .  

N o t e .  To close this section, let us remark tha t  besides the obvious relation 
through the polar correspondence in the definitions of the L F M  and the 
L O P  systems, we have shown other analogies: 

(i) Theorems 3.4 and 3.5 show the relations with the (n + 1)-dimensional 
system a*. 

(ii) The characterization of the L F M  systems provided by Theorem 4.4 
and the one given in Corollary 4.1 in Anderson et A1. (1997): "F  ~ 0 is 
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the solution set of some LOP if, and only if, the non-empty intersections 
of F w i th  polytopes is polytope too". 

(iii) Both classes, the L F M  and the LOP, are closed under finite union of 
systems (with the additional condition in Theorem 4.3 for L F M  systems). 

Furthermore, by taking into account Remark 3.1, concerning the natural  
external representation of closed convex sets, one can realize certain analogy 
between quasi-polyhedral sets - LOP systems - on one side, and closed 
convex sets - LFM systems - on the other. There is also a certain duality 
regarding the polytopes as an absorbent class into the quasi-polyhedral sets 
(under the intersection), and the F M  systems with bounded solution sets 
as an absorbent class into the L F M  systems (under the union). 

5 An application to optimization theory 

In this section we apply the L F M  property to the optimization theory in 
linear semi-infinite programming, which can be considered as the natural  
extension of the classical Karush-Kuhn-Tucker (KKT) theory for ordinary 
non-linear programming. 

Consider the following Haar-dual pair, (P) - (D), of problems: 

(P) i n f d x  ( c #  0) (D) supr  = y]~ At bt 
tET 

s.t. a ~ x > b t ,  t E T .  s.t. ~ Atat=-c, A E R  (T), 
tET 

where R(+ T) denotes the space of non-negative generalized finite sequences 
on T. v (P) and v (D) indicate the value of (P) and (D), respectively. The 
defect is 5(P; D) = v (P) - v (D); we say that  there is no duality gap when 
5(P; D) -=- 0. 

Let 5 E F be a feasible point of (P). The (KKT) condition can be 
stated as follows: c E A(F,5) ;  in other words, c is asked to be an element 
of the active cone at 5. This condition is sufficient for the optimality of 

for any (P). However, for the necessity, some constraint qualifications 
are required. (P) is said to be a L F M  problem whenever the correspond- 
ing constraint system is a L F M  system. The following theorem shows 
that  (KKT) condition is sufficient and necessary for optimality for L F M  
problems. 
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T h e o r e m  5.1. Let (P) be a L F M  problem a n d 5  E F.  T h e n 5  is a 
solution of (P) if, and only if, c E A(F, 5) ( K K T  condition). 

Proof. For any LSI problem (P) , if c E A(F, 5) C D (F, ~)o = (F - ~)o, 
then d (y- 5) > 0 for any y E F, which gives the optimality of 5. Now, 
for LFM systems, the equality A (a, ~) = D (F, ~)o holds true; suppose 
that 5 is a solution of (P) and that c ~ A(F, 5). Then c ~ D (F, ~)o and 
there exists some y E F such that d (y- 5) < 0, which contradicts the 
optimality of 5. [] 

It is clear now that  the L F M  property is the more general constraint 
qualification for the K K T  condition. 

T h e o r e m  5.2. Let (P) be a solvable L F M  problem. Then the dual prob- 
lem (D) is solvable and there is no duality gap. 

Proof. Let 5 be a solution of (P). Because of the previous theorem, c E 
A(F, 5) and hence c = ~~teT' -At at for some positive numbers At and some 
finite set T ~ C T (5), which implies that  the dual problem (D) is feasible. 
Let A indicate the so obtained generalized finite sequence, then 

t E T  ~ t E T  t 

Therefore, the weak duality property gives v (P)  = v (D). [] 
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