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The level of  real projective spaces 

STEPHAN STOLZ 

1. Introduction 

In this paper we determine the level of the real projective space RP 2"-1 with 
the Z/2-action induced by multiplication by the complex number i. By definition 
(see [DL]), the level of a topological space X with a free Z/2-action is the number 

s(X) = rain {n :there exists a Z/2-equivariant m a p f  :X--* S"-~}, 

where the sphere S n-1 is equipped with the antipodal Z/2-action. We abbreviate 
s(RP 2m-1) by s(rn). 

The previously known results about s(m) seem to be the following, P. E. 
Conner and E. E. Floyd proved s (1)=  2, s (2)= 3, s (3)=  5 [CF] and A. Pfister 
and the author obtained the estimates rn + 1 <-s(rn) <- �89 + I)'[PS]. 

The main result of this paper is the computation of s(m). * 

THEOREM. Let rn >- 2. Then 

! + 1  ifrn=O, 2mod8 
s ( m ) =  + 2  i f rn=l ,  3 , 4 , 5 , 7 m o d 8  

+ 3  i f m = 6 m o d 8  

Remark. The invariant s(rn) is related to the following purely algebraic 

invariant 

there exists a complex quadratic form q : C'--~ C ~ ] 
r(rn) = rain n : such that im (q) :R 2'~---~ R n is anisotropic 

Here im (q) denotes the imaginary part of q which is a real quadratic form. It is 
called anisotropic if im (q)-~(0)= 0. By normalizing and restricting im (q) it 

* This result was also proved by M. C. Crabb using somewhat different arguments in his preprint 
"Periodicity in Z/4-equivariant stable homotopy theory". 
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induces a Z/4-equivariant map S2"-1---~ S ~-1 where Z/4  acts by multiplication by 
i (resp. - 1 )  on the domain (resp. range). Passing to the quotient we get a 
Z/2-equivariant map RP~- I - -~Sn-1 .  This shows r(m)>-s(m). The 8-periodicity 
of s(m) suggests that there might be a way to use Clifford algebras to construct 
Z/2-equivariant maps RP~-I---~ S "~'~-I or even quadratic forms C'~---~ C ~m~ with 
anisotropic imaginary part. 

The proof of the theorem uses the following reformulation of the level of X. 
Let L be the real line bundle X xz/2 R---~ Y over the quotient space Y = X/Z~2. If 
f:X--~S ~-~ is a Z/2-equivariant map then by passing to the quotient the 
equivariant map id x f  :X--*X x S n-1 gives a nowhere vanishing section of nL. 
Conversely a nowhere vanishing section of nL gives rise to an equivariant map f 
as above. Hence the level of X can equivalently be characterized as the smallest n 
such that nL has a nowhere vanishing section. An obstruction for the existence of 
such a section is the cohomotopy Euler class, which we discuss in section 2. 

In section 3 we use K-theory methods to show the non-vanishing of the 
cohomotopy Euler class of nL for certain n's,  where L is the non-trivial line 
bundle over the Z/4-1ens space L 2m-~, the quotient space of RP zm-~. This implies 
a lower bound for s(m). It should be emphasized that these K-theory restrictions 
are stronger than those imposed by the vanishing of the K-theory Euler class. A 
study of the K-theory Euler  class only leads to the lower bound s(m) -> m + 1, the 
same bound as obtained in [PS]. 

In section 4 we use the Adams spectral sequence and a vanishing result for its 
E2-term to show that the cohomotopy Euler class vanishes in certain cases. That  
leads to an upper bound for s(m) which agrees with the lower bound derived in 
section 3 except for m = 4 mod 8. 

Finally in section 5 we prove the inequality s(m + n) >-s(m) + s(n) and use it 
to compute s(m) for m = 4 rood 8. 

My thanks go to Bill Dwyer and Larry Taylor for helpful comments. 

2. The cohomotopy Euler class 

In this section we discuss the cohomotopy Euler class and its properties and 
recall the definition of the (cohomotopy) Gysin sequence. 

Throughout  this section let X be a finite CW complex and let 0r be an 
n-dimensional vector bundle over X. We choose a metric for te and denote by 
S(tr) (resp. D(tr))  the sphere bundle (resp. disk bundle) of t~. The Thom space 
T(a 0 is by definition the quotient space D(o:)/S(oO. The zero section of tr 
induces a map i:X---~ T(o 0 or, more generally, a map i: T(fl)--~ T(tr~ fl) for a 
vector bundle fl over X. If tr' is an n'-dimensional inverse bundle of a~ then a 
trivialization of  a ~ ) t e '  induces a map t:T(t~or n+n'. For n '  large the 
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vector bundle or' is unique and we define the cohomotopy Euler class e(cr) as the 
composition T(tr')---~ T(oc ~ or')----~ S "+'" of i and t. 

If cr has a nowhere vanishing section s then the zero section can be deformed 
into s and hence i is homotopic to the constant map since we can assume that s is 
a section of S(c~). Thus e(tr) is homotopic to the constant map. 

At this point it is convenient to use the language of Thom spectra. A general 
reference for spectra is [S]. With our assumption that X is a finite CW-complex 
Thom spectra of (virtual) vector bundles over X are easily defined as follows. If cr 
is a n-dimensional vector bundle then its Thom spectrum Mc~ is the n-th 
desuspension of the suspension spectrum of T(a 0. Note that with this definition 
the bottom cell of Ma~ is in dimension 0. The notion of Thom spectrum can be 
extended to virtual vector bundles. For example M ( - c r )  = M(c~'), where a~' is an 
inverse to t~. 

For n'  large the set [T(a~'), S "+"'] of homotopy classes of maps from T(a~') to 
S "+n' is isomorphic to {T(0t) ,  S~+~'}, the group of homotopy classes of maps 
from the suspension spectrum of T(c~') to the suspension spectrum of S "§ Via 
suspension isomorphism {T(cr'), S "+''} can be identified with { M ( - a  0, S n} = 
: t " ( M ( -  or)). 

Using these identifications the cohomotopy Euler class e(t~) is an element of 
: r " ( M ( - a ) ) .  We think of ~r" (M(-~) )  as a "twisted" cohomotopy group of X and 
hence we use the notation l r " ( X ; - a  0. The big advantage of the cohomotopy 
Euler class is the following. 

PROPOSITION 2.1 ([C, Prop. 2.4]). If  ol is an n-dimensional vector bundle 
over a finite CW-complex X and dim X < 2(n - 1) then ol has a nowhere vanishing 
section if and only if its cohomotopy Euler class vanishes. 

The classical obstruction for finding a non-where vanishing section of an 
orientable vector bundle a~ is the usual Euler class of a~ which is an element of 
Hn(X; Z) (see e.g. [MS]). If c~ is a complex vector bundle of dimension k this 
Euler class is the k-th Chern class Ck(O:) �9 HEk(X; Z). The usual Euler class and 
the cohomotopy Euler class are related as follows. Using the notation Hn(X; -r 
for H"(Mol; Z) the Hurewicz homomorphism 

h : ~t"(X; -0 t )  = ~r"(M(-ar H"(Mol; Z) = H"(X; - o  0 (2.2) 

maps e (a )  to a (twisted) cohomology class ez(a0 which we call the cohomology 
Euler class of a~. If a is oriented ez(O~) corresponds to the usual Euler class under 

the Thorn isomorphism H"(X; - a )  =- H(X; Z). 
Replacing Z-cohomology by Z/2-cohomology there is a corresponding Hure- 

wicz map h z a : ~ " ( X ;  - a ) - - * H " ( X ;  Z/2) (note that here we don't  need t~ to be 
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oriented) and 

hza(e(a)) = w.(cr) (the n-th Stiefel Whitney class of re). (2.3) 

The Euler class has the following multiplicative property. Assume that tr and fl 
are n-dimensional (resp. m-dimensional) vector bundles over X. Then 

e(tr ~ fl) = e(oOe(fl), (2.4) 

where the product on the right hand side is the cup product for (twisted) 
cohomotopy 

~"(x; -o0 | ~m(x; --fl)--* ~"+'(X; --(~ e fl)) 

defined as follows. Let  f,  g be elements of :rn(X; - a  0 resp. Zm(x; --fl) which are 
represented by maps of spectra f:M(od)--.->S" resp. g:M(fl')---~S m, where tr' 
resp. fl' are inverse bundles of o: resp. /3. Then their cup product is given by the 
composition 

M(ed~ f l ' )  M--~a M(tr 'Xf l ' )=M(o: ' )AM(fl ' )1^s>S"ASm=Sn+'~,  (2.5) 

where a~' x fl' is the product bundle over X x X whose Thom spectrum can be 
identified canonically with the smash product M(te ')  ^ M(fl'). The diagonal map 
A : X - - * X x X  is covered by a bundle map tr' ~ f l ' - * t r '  x fl' which induces a 
map MA between the Thom spectra. The multiplicative property (2.4) follows 
easily from the definitions of the Euler class and the cup product. 

Another  tool we need is the Gysin sequence. Let a~ be an n-dimensional 
vector bundle over X. Then by definition of the Thom space there is a cofibration 

S(t~) e , X i , T(tr) = X"Mtr, (2.6) 

where p is the projection map and i denotes the inclusion of the zero section. It 
induces long exact sequences 

--~:ti-n(X; oc) i" , :fiX p- , atiS(aO a , z , -n+l(X;  ~)---~and (2.7) 

- ,  H'-"(X; ~) '", H'(X; Z) e ' ,  H'(S(a); Z) d ,  H'-"+'(X; a)--,, (2.8) 
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which we refer to as the cohomotopy (resp. cohomology) Gysin sequence for 
S(cr). If a~ is orientable we can replace the twisted cohomology group 
Hi-n(X; a) = Hi-n(Moc; Z) by Hi-n(X; Z) using the Thom isomorphism and this 
gives the usual Gysin sequence (see e.g. [MS]). More generally, if fl is a vector 
bundle over X then there is a cofibration 

T(p*fl) P--L-> T(fl) i , T ( o ~ f l )  (2.9) 

inducing long exact sequences 

--> sti-'*(X; o: G fl) i-2L-> ~ri(x; fl) P" , ~d(S(ac);p*fl) 

and 

, zr'-n+'(X; r �9 3)  

(2.10) 

_.> Hi-n(X;  tr~) fl) ~__jL_.> Hi(X;  fl) p" H, (S(oO;p, f l )  s ,H,-.+I(x; oc~) fl), 

(2.11) 

which we call the cohomotopy (resp. cohomology) Gysin sequence for S(a 0 with 
coefficients in ft. It follows from the definition of the cohomotopy Euler class that 
the map i* in these sequences .is the multiplication by the cohomotopy (resp. 
cohomology) Euler class. 

3. A lower bound for s (m) 

The goal of this section is the proof of the following. 

PROPOSITION 3.1. Let L be the non-trivial real line bundle over the 
Z/4-lens space L 2"-1 with m>-2. I f  m = 2 k - 2  and k = 0 m o d 4  or m = 2 k - 1  
then the cohomotopy Euler class of  2kL is non-trivial. 

This implies that 2kL does not have a nowhere vanishing section or, 
equivalently, there is no Z/2-equivariant map RP ~-1--'- S 2k-1. Hence we obtain 
the following estimate on s(m). 

COROLLARY 3.2. Let m >- 2. Then 

i + l  i f m = O ,  2 , 4 m o d 8  
s(m)>~ + 2  i f m = l ,  3 , 5 , 7 m o d 8 .  

+ 3  ifm = 6mod8 
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Proof of  Proposition 3.1. We observe that L z~-t can be identified with the 
sphere bundle of H 4, the fourth tensor power of the Hopf bundle H over the 
complex projective space CI ~ -1 .  Moreover the pull back of H 2 under the 
projection map p : L 2~-1 = S(H4)---~ CP m-I is 2L. 

This can be seen as follows. The Hopf bundle H can be written as the vector 
bundle associated to the standard 1-dimensional complex representation of S 1 
given by multiplication by z �9 S 1. Thus H 2 corresponds to the representation 
given by multiplication by z 2 and p*(H 2) corresponds to its restriction to the 
subgroup Z/4 of S 1 generated by i �9 S 1. This representation of Z/4  is the sum of 
two copies of the non-trivial 1-dimensional real representation of Z/4 whose 
assocated vector bundle is L. 

The naturality of the Euler class then implies p*(e(kH2))=e(2kL) .  To 
analyze p*(e(kH2)) we use the Gysin sequence for the sphere bundle S(H4). 
Writing down the Gysin sequences for cohomotopy (resp. cohomology) with 
coefficients in - k H  z (see (2.10) resp. (2.11)) and identifying the twisted 
cohomology groups with untwisted ones using the Thom isomorphism we get the 
following commutative diagram 

~r2k-2(Cpm-l;H4_kH 2) ,* , ~r2~(Cpm-l;_kH2 ) r," , ~r2k(Lem-~;_2kL) 

, Hzk- : (CPm- ' ;Z)  '" , H2k(cpm-t ;Z)  " ' ,  H2k(L 2" ' ; Z )  , 

Here the vertical map h is the Hurewicz map. It maps the cohomotopy Euler class 
of kH 2 to the cohomology Euler class ez(kH2). 

Recall that the cohomology of CP m-1 is a truncated polynomial ring 
H*(CPm-1; Z) ~ Z[x]/(x m) whose generator x �9 H2(cpm-1; Z) is the first Chern 
class of the Hopf bundle. Hence ez(H 2) = cl(H 2) = 2x and ez(kH 2) = (ez(H2)) k = 
2kx k. The induced map i* in cohomology is multiplication by ez(H 4) = Cl(H 4) = 
4x. 

To prove proposition 3.1 assume e (2kL)=0 .  Then the cohomotopy exact 
sequence implies that e(kH 2) is of the form i*(y) for some y � 9  
3r2k-E(El~-l; H a - kHZ) .  The commutativity of the diagram implies i * (h (y ) )=  
h(i*(y)) = h(e(kH2))= ez (kH z) = 2kx k and hence h ( y ) =  2k-2x k-l. But this con- 
tradicts the following proposition. 

PROPOSITION 3.3. Let m >- 2. I f  m = 2k - 2 and k = 0 mod 4 or m = 2k - 1 
then the index o f  the Hurewicz homomorphism h :~2k-2(CI~-l; H4- kH2)--~ 
H2k-2(CI~-~; Z ) ~ z / s  multiple o f  2 k-~. 
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To prove this proposition we first characterize the index of h as the 
"codegree" of some vector bundle and then use the K-theory methods of [CK] of 
obtain estimates for this codegree. If oc is an orientable (virtual) vector bundle 
over a space X then cd(tr), the codegree of oc, is defined as the index of the 
Hurewicz map ~r~ E ~ H~ Z) -~ Z. 

LEMMA 3.4. I f  ol is some (virtual) vector bundle over  CP m-~ then the index 
o f  the Hurewicz  map h : n 2 r ( c p ' - l ;  cr)---~ H2r(cpm-1; Z)  is the codegree o f  tr + rH 

over  CP ~-r-1.  

Proof. Consider the cofibration 

Cpr--1.__>Cpm--1 P" ~ C p ~ - I / C p  r-l.  

It is well known that the cofiber CP'n-1/CP r-1 can be identified with the Thom 
space of the vector bundle rH  over CP m-'-~. Moreover there is a corresponding 
cofibration with "coefficients in od' which induces the "following long exact 
sequence of cohomotopy groups. 

/T2r-l(Cpr-l ;  0f)---) Jg0(cpm--r--1; Of..{. rH)  pr* ) ~.[2r(cpm-1 ; C~') 

--~ :r2r(CP'-l; or) 

The groups n a ' - I ( c p r - i ;  a 0 and :~2"(Cp'-1; a 0 vanish for dimensional reasons 
and hence pr* is an isomorphism. The same argument shows that pr  induces 
an isomorphism in cohomology, too. Hence the index of the Hurewicz map 

h : :r2"(CP m- 1; or) -*  H2"(CP ' ' -  1; Z) 

is equal to the index of 

h : : r~ a + r H ) - - ~ H ~  Z), 

which is the codegree of or + rH. Q.E.D.  

We estimate the codegree of H 4 - k H  2 + (k - 1)H using the K-theory method 
of [CK]. It is based on the fact that the Hurewicz map factors through K-theory. 
More precisely the Hurewicz map h : :r~ --~ H ~  Z) composed with the in- 
clusion i :H~ Z ) - *  H*(Mo~; Q) is the composition of the K-theory Hurewicz 
map h r  : ~r~ ---~ K~ and the Chern character ch:K~ ---~ H*(M~;  Q). 
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The codegree of te is by definition the index of im (h) in H~ Z) or, 
alternatively, the index of im (i oh) in im (i). It is hence a multiple of the index of 
im (i) N im (ch) in im (i) which is called the K-theory codegree of a~ and denoted 
by cdr(oO. 

For computations the following characterization of cdK(tr) is useful. 

LEMMA 3.5 ([CK], Prop. 3.2). Let o: be a complex vector bundle over a finite 
CW complex X with torsion free homology. Then 

cdr(  oO = min {m ~ N I m �9 ch-1 Todd ( -  re) e K ~  @ Q is integral} 

Here Todd (re) e H*(X; Q) is the Todd genus o f  o~. It is multiplicative, i.e. 

Todd (oc + fl) = Todd (a:)- Todd (fl), 

and if  L is a complex line bundle then 

Todd (L) = (exp (cl(L))  - 1)/cffL).  

LEMMA 3.6 ([CK], p. 16). Let L be a complex line bundle. Then 
ch -1 Todd ( - L )  = log (4 + 1)/4 e K ~  ~ Q, where 4 = L - 1 ~ K ~  and 
log (4 + 1) is the standard power series o f  the natural logarithm. 

Proof ch(log (4 + 1)/Z) = log (ch(4 + 1)/ch(4)) = log (ch(L) / (ch(L)  - 1)) = 
Cl(L)/(exp (cI(L)) - I) = Todd (L) -1 = Todd (-L). Q.E.D. 

LEMMA 3.7. The K-theory codegree o f  H 4 - k H  2 + (k - 1)H over CP ~-1 is a 
multiple of 2 ~-1. 

Proof. Recall that K~ k-1 is the truncated polynomial ring Z[r/]/(r/k) where 
r~ = H - 1 .  To compute the highest power of 2 in the denominator of 
c h - l T o d d ( - ( H 4 - k H 2 +  ( k - 1 ) H ) )  it is convenient to rewrite everything in 
terms of the new variable y = r//2. A look at the power series 

~  =1  r / + r / - - r F +  . - .  
T/ - 2  3 4 

shows that it represents an element in Z(2)[y], where Z(2) denotes the integers 
localized at 2, i.e. all rational numbers whose denominator is prime to 2. 
Moreover computing modulo the ideal 2Z(2)[y] we have log ( r /+  1) / r /= 1 - y .  
More generally, if ), is an element of Z[r/] with vanishing constant term then 

( ~ ) 42 x 3 4 log + 1) = 1 - ~ + ~- - ~- + . . . .  1 - ~ mod 2Z(2)[y]. 
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In particular we get 

ch-1 Todd (_H4) = log ( r /+  1) 4 --- l 
( r /+  1) 4 -- 1 

4 r /+  6r/2 + 4/'/3 + 7 4 

2 
= 1 mod 2Zt2)[y ] 

and 

ch - i T o d d ( - H  2) log ((77+1) 2 ) 1 2r /+r /2  
= ( r / + l )  z - 1  - - 2 =lmod2Z~2)[y] .  

Using the multiplicativity of the Todd genus and the fact that the Chern character 
is a ring homomorphism we obtain 

ch - 1  Todd ( - H  4 - k H  2 + (k - 1)H)) = (1 - y)k-1 mod 2Z(2)[y]. 

Expressing (1 - y)*- t  as a power series in r /we see that m = 2 k-1 is the smallest 
power of 2 such that m(1 - y)k-i  e Z~4)[r/]/(~/~). Since 2k-2(2Z~2)[y]) is contained 
in Z~2~[r/]/(r/k) the same conclusion holds for c h - t T o d d  ( - ( H  4 -  k H 2 +  ( k -  
1)H)). It follows from (3.5) that the codegree of n 4 - k H 2 +  ( k - 1 ) H  is a 
multiple of 2 k-1. Q.E.D.  

Together the lemmata 3.4 and 3.7 provide the proof of proposition 3.3 except 
if k = 0 mod 4. In that case we have to show that the codegree of H 4 -  k H 2 +  

(k - 1)H over CP k-2 is a multiple of 2 k-1. This sharper estimate can be obtained 
by considering the KO-theory codegree which is defined analogous to the 
K-theory codegree by replacing the Chern character ch : K~ H*(Ma~; Q) by 
the Pontrjagin character ph:KO~ Q) which is the composition of 
the complexification map KO~ ---~ K~ and the Chern character. The same 
arguments as before show that the codegree is a multiple of the KO-theory 
codegree which in turn is a multiple of the K-theory codegree. Hence the proof of 
proposition 3.3 is completed with the proof of the following lemma. 

LEMMA 3.8. Let k = 0 mod 4. Then the KO-theory codegree o f  H 4 - k H  2 + 

(k - 1)H over CP k-2 is a multiple of  2 k-l. 

Proof. Consider the cofibration CP k-2---~ CP k-1--~ c I b k - I / c p k - 2  = S 2k-2 and 

its induced long exact sequence in KO-theory 

K O  -- 1s2k-  2_.~ g o O c p k  - 1 _.~ KOOCpk - 2 __~ K0os2~-2__~. 

It follows that K O ~ 1 7 6  k-2 is an isomorphism since the other two 
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terms vanish by Bott periodicity. Hence the KO-codegree of H 4 -  kH2+ ( k -  
1)H as a bundle over CP k-2 is the same as its codegree as a bundle over CP k-1 
which is a multiple of 2 k-1 by (3.7). Q.E.D. 

4. An upper bound for s(m) 

The main result of this section is the following. 

PROPOSITION 4.1. Assume m = 2k and k = 0, 1 mod 4 or m = 2k - 1. Then 
the cohomotopy Euler class of  (2k + 1)L o v e r  L 2m-1 vanishes. 

By proposition 2.1 this implies that (2k + 1)L has a nowhere vanishing section 
or, equivalently, that there is a Z/2-equivariant map RP~-I---~s2k. Hence we 
obtain the following upper estimate for s(m). 

COROLLARY4.2 .  

f m + l  

s(m) <~ ~ m  + 2 

I r a + 3  

i f m  =0,  2 m o d 8  

if m =1,  3, 5, 7 mod 8 

i f m  = 4 ,  6 m o d 8  

Proposition 4.1 is proved using the Adams spectral sequence, notably a 
"vanishing line" for its E2-term (see 4.4). We begin by describing the properties 
of the Adams spectral sequence which are relevant to us. General references are 
the books of Adams [A] and Switzer [S]. 

Let X, Y be finite spectra and let p be a fixed prime. We say that a map 
X---~ Y has Z /p -Adams  filtration - s  if it can be written as a composition 

X---> Z1---~." "--~ Zs_I--~ Y 

of s maps which are all trivial in Z/p-cohomology.  This defines a filtration on the 
abelian group [X, Y] of homotopy classes of maps X---> Y or, more generally, on 
IX, Y], ,=[~nX, Y]. We denote by F~[X, Y]n the subgroup of  elements of 
filtration >--s in [X, Y],. Note that in the case where X (resp. Y) is the sphere 
spectrum S o this defines a filtration of the homotopy (resp. cohomotopy) groups 
of spectra. 

This filtration is compatible with the smash product, i.e. if f e F~[X, Y], and 
f '  ~ F~,[X', Y']n, then f ^ f '  E Fs+s,[X A X ' ,  Y ^ Y'],+n'- This follows directly 
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from the definition since if f factors as X---, Z 1 "'4" " " " "-"r Z s -  1 ~ Y and f '  factors as 
X'--~ Z'I--~" �9 �9 Z'_I--~ Y' then there is the following factorization for f ^ f ' .  

X A X'-"~ Z I A X'-"> " " "--~ Z~-r ^ X'--~ Y A X ' - ~  Y A Z't 

t r ~  --~" " "---> Y A Zs,_I---> Y A 

The compatibility of the Adams filtration with the smash product implies its 
compatibility with the cup product (see 2.5), which we state as a lemma for 
further reference. 

LEMMA 4.3. I f  o: and o:' are vector bundles over a space X and f, f '  are 
elements of  :r"(X; o0 (res. :r"'(X; 0c')) of  Adams filtration >-s (resp. >-s') then 
their cup product has filtration >--s + s'. 

Associated to the Adams filtration on IX, Y]n there is a corresponding spectral 
sequence E~'t(X, Y), the Adams spectral sequence. It converges to the p-primary 
part of [X, Y],, i.e. 

E~'(X, Y ) =  F~[X, Ylt-s/Fs+I[X, Y],-,, 

where F,[X, Y]t-s denotes the elements of filtration s in [X, Y],_,. Moreover the 
intersection of all Fs[X, Y],_~ consists of the torsion elements of [X, Y],-s whose 
order is prime to p. Its E2-term is 

E~.t(X, Y) = Ext . '  (H* Y, H ' X ) ,  

where H * X  (resp. H ' Y )  denotes the cohomology of X (resp. Y) with coefficients 
in Z/p,  which is a module over the modp Steenrod algebra A. 'The differentials 

have the form 

d,: E~"(X, Y)---~ E~,+"t+r-t(X, Y). 

For p = 2 let Ao be the subalgebra of A which is generated by Sq I ~ A.  This is an 
exterior algebra since SqlSq 1 = 0. J. F. Adams proved the following homological 

vanishing theorem. 

PROPOSITION 4.4 ([A], Thm. 3, p. 62]). Let M be a graded A-module 
which is free over Ao and (l-1)-connected, i.e. trivial in domensions <l. Then 
ExtOl(M, Z/2) is zero if  t -  s < l + F(s), where F(s) is the numerical function 

defined by F O r  ) = 8r, F(4r + 1) = 8r + 1, F(4r + 2) = 8r + 2 and F(4r + 3) = 8r + 4. 
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C O R O L L A R Y  4.5. Let X be a finite spectrum whose Z/p-cohomology 
vanishes for p odd and whose Z/2-cohomology is free as an Ao-module and trivial 
above dimension d. Let cr �9 ~rnX be an element of  Adams filtration s. Then oc = 0 
provided d - n < F(s). 

Proof of the corollary. Consider the Adams spectral sequence E~'t(X, S ~ 
converging to IX, S~ = ~r~X. For p odd all terms are zero and hence the 
cohomotopy groups of X are torsion groups whose orders are powers of 2. 

E~' (S,  S ~ is Ext~'(Z/2, H ' X )  = From now on let p =2 .  st equal to 
Ext~t(DH*X, Z]2),  where D H * X  is the dual of the graded A-module H*X which 
is defined as follows. If M is a graded A-module and Mi denotes the elements of 
degree i in M then (DMi) = H o m  (M-i, Z/2).  The left A-module structure on M 
induces a right A-module structure on DM = H o m  (M, Z/2)  which is then 
converted into a left A-module structure using the canonical anti-automorphism X 
of the Steenrod algebra. 

Our assumption that H*X vanishes in dimensions bigger than d implies that 
DH*X is ( - d  - 1)-connected. Moreover,  D H * X  is free as A0-module since H * X  
is A0-free and z(Sq ~) = Sq ~. It follows from proposition 4.4 that E~"(X, S ~ and 
hence E~t(X, S ~ vanishes for t - s  + d <  F(s). This means that the filtration 
quotient F~r~X/Fs+l~r~X = E~'(X, S ~ is zero for d - n = d + t - s < F(s), which 
implies that the element cre r~X  is in the intersection of all filtration groups and 
hence a torsion element of odd order. Thus t~ = 0. Q.E.D.  

After these preparations we now prove proposition 4.1. The idea is to use 
corollary 4.5 to prove the vanishing of the cohomotopy Euler class e((2k + 1)L) �9 
~rnM(-(2k + 1)L). We first show that M ( - ( 2 k  + 1)L) satisfies the assumptions of 

(4.5), i.e. that 
i) H * ( M ( - ( 2 k  + 1)L); Z/2) is free as A0-module 

ii) H * ( M ( - ( 2 k  + 1)L); Z/p)  = 0 for p odd 
Ad i) The Z/2-cohomology ring of L ~ - 1  is Z[x]/(x m) | E(y) ,  where x is a 

2-dimensional cohomology class, y = wl(L) is the first Stiefel Whitney class of L 
and E(y )  is the exterior algebra generated by y. As abelian group the 
Z/2-cohomology of the Thom spectrum M ( - ( 2 k  + 1)L) is isomorphic to the 
Z/2-cohomology of L 2''-1 via Thorn isomorphism. It is given by multiplication 
with the Thom class U e H ~  + 1)L); Z/2).  The computation SqlU = 
w ~ ( - ( 2 k + l ) L ) U = y U ,  Sql(xsU)=xSyU for s < m  shows that the Z/2- 
cohomology of the Thom spectrum is a free Ao-module. 

Ad ii) Note that - ( 2 k  + 1)L is non-orientable since its first Stiefel-Whitney 
class is non-trivial and hence there is no Thom isomorphism for Z/p-cohomology.  
Instead we use the Gysin sequence for S(L)  with coefficients in - ( 2 k  + 2)L (see 
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(2.11)) 

----~Hi-l(L2m-l; - ( 2 k  + 1)L)--+ H'(L2m-~; - ( 2 k  + 2)L) 

P", H'(S(L); - ( 2 k  + 2)p = L)--+. 

Here Hi( ) is the cohomology with Z/p-cpefficients. The bundle - ( 2 k  + 2)L is 
orientable and hence p* can be identified with the map induced by p in 
(untwisted) Z/p-cohomology whch is an isomorphism since L 2"-1 and S(L)= 
R P  2m-1 have the Z/p-cohomology of a point. Thus H*(M(-(2k  + 1)L); Z/p) = 
H * ( L ~ - I ;  - ( 2 k  + 1)L) vanishes. 

Next we estimate the Adams filtration of the cohomotopy Euler class of 
(2k + 1)L using the general properties of the Euler class stated in section 2. Note 
that w2(2L)= w~(L)2=y2=O. This implies that e(2L) has at least Adams 
filtration 1, since w2(2L) is the image of e(2L) under the Hurewicz map. Hence 
e(2kL) = e(2L) k has at least filtration k by (2.4) and (4.3). 

Finally we apply (4.5) to the Euler class e((2k + 1)L) ~ :r2k+lM(-(2k + 1)L). 
In this case d = 2m - 1 (the dimension of M ( - ( 2 k  + 1)L)), n = 2k + 1 and s = k 
(the filtration of (2k + 1)L). Thus the inequality d - n < F ( s )  reduces to 
2k - 2 < F(k) (in the case m = 2k, k = 0, 1 rood 4) respectively to 2k - 4 < F(k) 
(in the case m - - - 2 k -  1). Inspection of the numerical function F(k) (see 4.4) 
shows that these inequalities hold. Corollary (4.5) then implies e((2k + 1 )L )=  
O. Q.E.D.  

5. Determination of s(m) 

An inspection of the lower and upper estimates for s(m) obtained in the last 
two sections show that they agree except for m = 4 mod 8 where we have the 

inequalities m + 1 -< s(m) <- m + 3. 

PROPOSITION 5.1. s(m) = m + 2 for m = 4 mod 8. 

The main ingredients of the proof are the knowledges of s(m) for other values 

of m and the following lemma. 

LEMMA 5.2. s(m + n) <- s(m) + s(n) 

Proof of  the lemma. Let f :Rp~-X---~S s(')-x and g:Rp2"-1---~S s(n)-I be 
Z/2-equivariant maps. Denote by f:s2"-l--->S s(")-I resp. ~,:$2~-1---,S s(")-I the 
composition of f resp. g with the projection map from the sphere to projective 
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space. These maps are Z/4-equivariant with respect to the Z/4-action given by 
multiplication by i e C on the domain and multiplication by - 1  on the range. 
Then also their join 

i * g  : s2(m+n)-I = s2m-1 * S2n-1 -~  as(m)-1 * SS(n)-I = SS(m)+s(n)-i 

is a Z/4-equivariant map. Passing to  the quotient we obtain a Z/2-equivariant 
map Rp2t'+")-l--~ S s~')§ showing that s(m + n) <- s(m) + s(n). Q.E.D.  

Proof of the proposition. Let m = 4 mod 8. Then using the lemma and our 
computations of s(m) we obtain the inequalities s(m)-<-s(m-2)+s(2) = 
( m - 1 ) + 3 = m + 2  and m+5=s (m+2)<- s (m)+s (2 )=s (m)+3 .  Thus 
s(m)=m + 2. Q.E.D.  
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