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Link genus and the Conway moves 

MARTIN SCHARLEMANN 1 and ABIGAIL THOMPSON 1'2 

Let L+, L_ and L0 be three links in S 3 related by the standard Conway 
moves: 

L+ L _ L0 
Figure 1 

( 
The Conway potential functions V+(z), V_(z) and V0(z) of the three links are 

related as follows [Co]: 

V§ - V_(z) = zVo(z) 

Hence in particular, at least two of V+, V_, and zV0 have the same degree, 
which is no smaller than the degree of the third. 

A Seifert surface for an oriented link L in a 3-manifold is a compact oriented 
surface none of whose components are closed and whose boundary is the link. 
Define x(L) to be the maximal Euler  characteristic of all Seifert surfaces for L. If 
L is a non-split alternating link in S a then deg (VL) = 1 -- x(L) [Cr]. Hence  if L+,  
L_ and Lo are all non-split alternating links, then two of x(L+), x(L-) and 
X(Lo)- 1 are equal and are no larger than the third. We will show that this 
relation remains true for arbitrary links. Two consequences are: 

a) the height of the Conway skein diagram for a link L is bounded below by 
- x ( L ) .  In particular, this gives an unexpected lower bound for the complexity of 
calculating the new oriented knot polynomials. 

b) doubled knots are precisely those knots whose genus and unknotting 
number  are both 1. 
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1. The main theorem 

1.1. DEFINITIONS.  Following Thurston [Th], define the complexity x - (S )  
of an oriented surface S to be - x ( C ) ,  where C is the union of all non-simply 
connected components of S and x(C) is its Euler characteristic. For M a compact 
oriented 3-manifold and N a (possibly empty) surface in aM, assign to any 
homology class a~ in H2(M, N; Z)  the minimum complexity x(o:) of all oriented 
imbedded surfaces whose fundamental class represents or. The function 
x: H2(M, N; Z)---~ Z§ is called the Thurston norm. An oriented surface (S, aS) c 
(M, aM) is taut if it is incompressible and x - (S )=x ( [S ,  9S]) in H2(M, 71(aS)), 
where r/(aS) is a bicollar neighborhood of aS in aM. 

1.2 LEMMA. A Seifert surface S for a link L is taut if and only if x(S ) = x(L). 

Proof. Let Ld be the maximal sublink of L which bounds an imbedded 
collection of disks Dd with interiors disjoint from L. By an innermost disk 
argument we can take these disks to have interiors disjoint from any given 
incompressible Seifert surface S for L. Any component of Ld must then bound a 
disk in S, since S is incompressible, and any disk component of S must have 
boundary in Ld by maximality of Ld. Hence x - ( S ) = d - x ( S ) .  Then an 
incompressible Seifert surface minimizing X- must maximize X and vice versa. II 

1.3 DEFINITION.  An arbitrary link L is isotopic to the distant union of its 
non-splittable sublinks. The number of such non-splittable sublinks is called the 
splitting number of L. 

1.4 T H E O R E M .  Suppose L§ L_, and Lo are three links related by the 
Conway moves at a crossing. Then two of  x(L+), x ( L - )  and x(Lo) - 1 are equal 
and are no larger than the third. The splitting numbers of the same pair of links are 
equal and are no larger than that of  the third. 

Proof. The proof is a modest variation of ideas in [Ga3] and [ST]. Let D be a 
crossing disk for the crossing, i.e. a disk which intersects L§ in precisely two 
points, of opposite orientation (see [ST, 1.1] or figure 2). Note that the knot in S 3 
obtained by doing - 1  surgery on K = aD is precisely L_.  

Figure 2 
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An innermost circle argument shows that any essential sphere in S 3 -  
(L+ U K )  can be isotoped off of D in S 3 -  L+. Any sphere in S 3 -  (L+ U D )  
which separates a sublink of L+ from K persists in L_ and Lo. Hence,  with no 
loss of generality, we restrict further to the case in which S 3 -  (L+ O D) is 
irreducible. 

Let M = S 3 - ~/(K U L+) and let M+, M_ and Mo be the manifolds obtained 
from M by filling in a torus along aT/(K) with framings ~, - 1 ,  and 0 respectively. 
Then M+ = S  3 -  T/(L+) and M_ = S  3 -  t/(L_). It is not quite true that Mo-- 
S 3 - T/(L0), but there is a close connection (see claim 2 below). Let  S be a Seifert 
surface for L+ in M which has maximal X among all Seifert surfaces for L+ in M. 

CLAIM 1. At  least two of M+, M_ and M0 are irreducible; in those two 
manifolds, S still maximizes X. 

Proof of claim 1. 

CASE 1. L+ lies in a knotted solid torus r in S 3 -  T/(K) whose linking 
number with K is non-trivial and a r  is incompressible in r -  L+ (i.e. r is a 

companion of L+). 

Since L+ pierces D twice, with opposite orientation, in fact r pierces D 
precisely once (in a subdisk of D). Then D - r is an annulus whose boundary 
circle on T/(K) has slope 0. Since ~" is knotted no other slope on aT/(K) can be 
that of a boundary circle of  an essential spanning annulus in M - ~'. Hence T = ~ r  
is incompressible in M§ and M_. 

Subclaim (a) M~ is irreducible. 

Proof. M• - r is irreducible since M• - r is a knot complement.  1: - L+ c M 
is irreducible since M is irreducible and T is incompressible. Since M~ is obtained 
from gluing M+ - 1: to r - L+ along the incompressible T, M~ is irreducible. 

Subclaim (b) S maximizes Z in M~:. 

Proof. The argument is essentially that found in [Sh]: Suppose 27 is a Seifert 
surface for L+ in M• Without decreasing X(~) do 2-surgeries to 27 so that each 
component  of 27 A T is essential in T. Let 27~, = 27 N r and 27x = 27 - r. Since K 
and L+ have trivial linking number,  ,~ N T is homologically trivial in T, hence it is 
possible to cap off the components of a ~ ,  lying in T with annuli near T to get a 
Seifert surface 27' which is disjoint from K. On the other hand, no component  of 
27x is a disk, since T is incompressible in M~:, so each component  of 27x has 
non-positive Euler characteristic. Hence X(27) <- X(27') -< x(S), by definition of S. 

This verifies claim 1 in this case. 

CASE 2. No such torus exists. 
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Then according to [Ga2, Cor. 2.4] there is at most one way of filling in ar/(K) 
to get a manifold which is either reducible or in which S is not taut. This and 1.2 
verify claim 1. 

Next consider the connection between Mo and S 3 -  r/(L0): 
Isotope S so that it intersects D in an arc o~ joining the boundary components 

of r / (L§  Define So to be the surface obtained from S by deleting a 
neighborhood of o~ in S. Then Lo = aSo, i.e. So is a Seifert surface for Lo. 
Equivalently, S 3 -  r/(So) is obtained from S 3 -  rl(S) by attaching a 2-handle to 
ar/(S) along the circle fl = ar/(S) fq D = Or/(o 0 1"3 D (cf. Figure 3). 

s i  

/ 

\ 
K 

Figure 3 

CLAIM 2. If M~ is irreducible and S is taut in Mo then S 3 - r / ( L o )  is 
irreducible and So is a taut Seifert surface for L0. 

Proof of claim 2. D - r/(o 0 is an annulus with boundary components /3 and 
K, and the end of the annulus at K has framing 0. Hence fl bounds in Mo a disk 
D' ,  the union of this annulus and a meridional disk of the solid torus filled in to 
produce Mo from M. Attaching to S 3 -  r/(S) a 2-handle along/3 is equivalent to 
deleting from Mo - rl(S) a neighborhood of the disk D'. Now if Mo is irreducible 
and S is taut in Mo then the induced sutured manifold structure on M o -  r/(S) is 
taut (cf. [Gal], [Sc]). D '  is a disk in M o -  r/(S) whose boundary crosses precisely 
two sutures so it is a product disk. Deleting product disks preserves tautness 
[Gal, 3.12], [Sc, 4.2]. Hence ( M o - r / ( S ) ) -  r / ( D ' ) =  S 3 -  r/(So) is a taut sutured 
manifold. But this implies that S 3 -  r/(Lo) is taut (i.e. irreducible) and that So is 
taut [Gal, 3.6], [Sc, 3.3]. 

The theorem follows from Claims 1 and 2, together with the observation that 
a Seifert surface for L_ in M_ corresponds precisely to a Seifert surface for L_ in 
S 3. II 

2. Application to skein trees 

Any link L can be reduced to unlinks by a series of "skein moves",  that is, 
replacing L+ (resp. L_) with the pair of links L_ (resp. L§ and Lo. To any such 
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process (called a skein decomposition) we can associate a binary tree [Gi, w 
called a skein tree, with a node for each link and edges between a link and the 
pair of links obtained by a skein move. 

2.1 DEFINITIONS.  Let  T be a skein tree for a link L. Then there is one end 
(the root) ~ of T representing L; the other ends (called leaves) {ei} represent 
unlinks. Define the width og(ei) of a leaf to be the number of components in the 
unlink it represents, and its height h(ei) to be the number of edges in a path in T 
from 3. to ei. Define h(T) to be max{h(ei)} and the height h(L) to be 
min {h(T) I T a skein tree for L}. 

Similarly the weight (height-width) /~(e~) of e~ is h(ei)- to(ei), Iz(T)= 
max {/,(e~ I ei in T} and/z(L)  = min {~(T) [ T a skein tree for L}. 

2.2 Remarks. Note that always/z(ei) < h(ei), so/~(L) < h(L). Since any edge 
in a path in T from 3. to e i represents an increase by at most one in the number of 
components of the link, # ( L ) - -  ILl, where ILl denotes the number of 
components of L. 

2.3 PROPOSITION.  /z(L) --- - x ( L ) .  

Proof. The proof is by induction on the pair (IL]+#(T), h(T)), in 
lexicographic order, taken over all skein trees T for L. Note that both entries are 
non-negative, and if both are zero then L is an unlink. For an unlink 

#(L)  = -ILl = - x ( L ) .  
For the inductive step, let T be a tree for which # ( T ) =  #(L) ,  and which, 

among all such trees, has minimum height. With no loss of generality assume 
L = L+. The subtrees T_ and To of T which are skein trees for L_ and Lo, each 
have height strictly less than T; also # ( T _ ) +  [ L _ I < / z ( T ) +  ILl and /z(To) + 
ILoI<-I~(T)+IL[. By induction 2.3 applies to L_ and Lo so # ( L + ) =  
max {#(Lo), #(L_)} + 1 - max {1 - x(L0), 1 - x(L_)}.  Now consider the pos- 
sibilities given by 1.4: Either 

a) - z ( L + )  = - z ( L - )  --- 1 - z(L0) in which case/~(L+) -> 1 - )r > - ; r  
b) - z ( L + )  = 1 - ~r > - z ( L - )  in which case #(L+)  -> 1 - X(Lo) = - x ( L + )  
c) - x ( L - ) = I - X ( L o ) > - x ( L + )  in which case /~ (L+) - - -1 -X(Lo)>  

- x ( L + )  �9 II 

2.4 Remark. For d(L) the degree of the Conway polynomial, it is classical 
[To] that d(L) -< -~r + 1. An argument analogous to that of 2.3 applied to the 
recursion formula for the Conway polynomial shows d(L) <- h(L). Hence 2.2 and 
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2.3 complete the picture: 

d(L)  <- - x ( L )  + 1 <- I~(L) + 1 <-- h(L).  

3. Characterizing doubled knots 

Consider the alternate picture of the Conway moves obtained by giving a 
half-twist to all the diagrams of Figure 1: 

I_. 1__ 

Figure 4 

I_0 

There is the following addendum to 1.4: 

3.1 PROPOSITION. When x ( L + ) =  x ( L o ) -  1 < x ( L - )  there are taut Seifert 
surfaces S' for L+ and S for Lo which appear as in Figure 5 near the crossing, i.e. 
S' is obtained from S by plumbing on a Hopf  band: (An analogous conclusion 

holds when x (L _ )  = g(Lo) - 1 < x(L+).)  

l_§ 1-0 

Figure 5 

Proof. Consider the crossing circle K '  for Lo shown in Figure 6 below (note 
this is not a crossing circle for the crossing above). For the crossing change 
determined by K'  note that L_ is obtained from Lo by smoothing, so the roles of 
Lo and L_ in the ensuing argument are the reverse of those in 1.4. 
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I J 
L0 L_ 

Figure 6 

Let S be a Seifert surface for Lo which is taut in S 3 - -  K'.  Then it appears  as 
shown in Figure 6. 

CLAIM. S is a taut Seifert surface for L0 in S 3. 

Proof of  claim. Claim 1 of 1.4 shows that S remains taut either in S 3 or in the 
manifold obtained by doing 0-surgery to K ' .  In the latter case, it follows from 1.4 
Claim 2 that the surface So for L_ obtained by altering S locally as in Figure 6 is a 
taut Seifert surface for L_ in S 3. Note %(So) = z (S )  + 1. 

Thus if S is not a taut Seifert surface for Lo then x(L0) > x(S)  = X(So) - 1 = 
% ( L _ ) -  1. But our hypothesis includes ;~(L0)< x ( L - ) +  1. Thus x ( L 0 ) =  x(L_).  
But this is impossible, because ,z(L) has the parity of  ILl, and ILol and IL-I  have 
different parity. This verifies the claim. 

Since S is a taut Seifert surface for L0, x ( L + ) =  x ( L 0 ) -  1 = z ( S ) -  1. Then 
the Seifert surface S'  for L§ obtained from that of S by plumbing on a Hopf  band 
as shown in Figure 5 has %(S') = x(S)  - 1 = z(L+) and so is taut. II 

3.2 C O R O L L A R Y .  A knot is a doubled knot if and only if  its genus and 
unknotting number are both 1. 

Proof. It is obvious that a doubled knot has genus and unknotting number  

both 1. 
So suppose K has genus and unknotting number  both 1. Then with no loss of 

generality there is a crossing change for which K = K§ and K_ is the unknot. 
Since - 1  = x ( K §  it follows from 1.4 that X(Ko)= x ( K §  1 = 0. That  
is, an annulus is a Seifert surface for K0 of maximal Euler  characteristic. Then by 
3.1 there is an annulus Seifert surface for Ko whose core, when doubled, gives 

K = K + .  II 

(Remark:  This has since been proven independently by Kobayashi [Ko], using 

similar methods.)  
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3.3 DEFINITION. A knot k is totally knotted, if, for any minimal genus 
Seifert surface of K with regular neighborhood r/(S) in S 3, aT/(S) is incompres- 
sible in S 3 -  r/(S). 

For an example, see [ST, Fig. 1.1]. 

3.4 COROLLARY.  No crossing change can lower the genus of a totally 
knotted knot. 

Proof. Suppose changing a crossing on the knot K reduced it's genus. With no 
loss take K = K+ so ;~(K+) < x(K-) .  Then for the taut Seifert surface S' for K in 
Figure 5, aT/(S') is clearly compressible in S 3 -  T/(S'), so K is not totally 
knotted. I] 

P.P.A: We have shown that links arising from the Conway moves have 
related Euler characteristics. This relation is easily demonstrated for non-split 
alternating links by the simple iteration formula of the Alexander polynomial. 
Here we have demonstrated it for all links using the deep machinery of Gabai. 

For any non-split prime alternating link L the Jones polynomial can be used to 
show that the minimal crossing number c(L) is realized by an alternating 
projection without nugatory crossings [Mu]. It follows that if L§ L_ and Lo are 
all non-split prime alternating links and an alternating projection of L+ is chosen 
for which L0 is irreducible, then c( L§ = c( Lo) + 1 >- c(L_). 

Is there a geometric invariant of arbitrary links, specializing to crossing 
number for alternating links, which satisfies a similar inequality? 
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