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Complete minimal hypersuriaces in hyperbolic n-manitoids 

MICHAEL T. /~xNDERSON 

This paper is concerned with the existence and basic properties of minimal 
hypersurfaces in hyperbolic n-manifolds. A powerful and general method fo 
constructing minimal hypersurfaces in complete Riemannian manifolds N n is 
given by geometric measure theory. For example, it is known that there exists an 
area-minimizing hypersurface, with small singular set, in any codimension one 
homology class of N. More recently, Schoen-Yau [SY] and Sachs-Uhlenbeck 
[SU] have constructed smooth branched minimal immersions of surfaces f: Xg --~ 
N, area-minimizing in a conjugacy class of homomorphisms 7rl(Zg)--~ 7rl(N), 
provided f# is injective on ~rl. In case N is a 3-manifold, these surfaces are 
smooth immersions and in fact embeddings in case f is homotopic to an embed- 
ding (see [FHS]). 

Restricting ourselves to hyperbolic manifolds (or more generally manifolds of 
negative curvature), we prove existence theorems for minimal hypersurfaces 
related to the above results, but distinct in several ways. The method, briefly 
stated, is as follows. Let  N"  be a complete manifold of strictly negative sectional 
curvature c2<~KN<~cl"(O and let /Qn be its universal cover. Using geometric 
measure theory, we produce complete area-minimizing hypersurfaces i n / ~ ,  with 
prescribed behaviour at infinity; if F is a discrete group of isometries of ]Q" whose 
action at infinity is sufficiently tame, we prove the existence of F-invariant 
area-minimizing hypersurfaces in /Qn. Thus when F acts freely, one obtains 
complete immersed minimal hypersurfaces in N", provided F ~  7rl(N~). 

In dimensions greater than three, these existence results are new; however, the 
generality of the result is unclear, since the action at infinity of discrete subgroups 
of isometries is not well understood in these dimensions. 

In dimension three, these results partially overlap with those of [SY] and [SU]; 
in many respects, their results are much stronger. However,  the lifts of least area 
incompressible surfaces to the universal cover are not in general area-minimizing, 
so that there is reason to believe the two methods may produce different surfaces 
in the quotient 3-manfolds.  We show in sections w and w that this is in fact so 
and is related to the non-uniqueness of minimal surfaces in a given homotopy 
class. Previous examples of such non-uniqueness are due to Thurston and 
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discussed in [SU]; see also the interesting work of Uhlenbeck [U] for related 
discussion. 

From a somewhat  different point of view, the results for F-invariant  minimal 
surfaces complement  the construction of Lawson ILl on complete minimal sur- 
faces in S 3 and Nagano-Smyth  INS] on surfaces in ~3 invariant under discrete 
groups of isometries. The construction of surfaces in H 3 and H "  is simpler and 
more  complete than in the other space forms, due to the structure of H "  at 

infinity. 
We now present our results and organization of the paper  in more detail. The 

first section is of a preliminary nature, providing the necessary background in 
geometric measure theory and hyperbolic geometry.  In w we prove a general 
existence theorem for complete area-minimizing hypersurfaces in H "  with pre- 
scribed behavior at infinity; for example, one may choose the boundary at infinity 
in H 3 to be an arbitrary Jordan curve (perhaps non-rectifiable). The constructions 
used in this theorem occur repeatedly throughout the paper. We also remark that 
a similar result holds for manifolds of negative curvature c2<--KN<<-cl<O, al- 
though we do not give a proof here. 

In w we discuss the action of discrete groups F of isometrics on H "  
("Kleinian groups") and prove the existence of F-invariant area-minimizing 
hypersurfaces provided the limit set Ar is sufficiently tame; this class includes in 
particular the case of quasi-Fuchsian groups in all dimensions. This leads to a new 
method of constructing closed minimal hypersurfaces in manifolds of negative 

curvature in dimensions greater than three. 
The last two sections are concerned with dimension 3, where a great deal more 

can be said. We first prove that for any torsion free quasi-Fuchsian group F acting 
on  H 3, there is a complete smoothly embedded F-invariant  minimal disc; when 
/ - ' c  7r l (M 3) for M 3 a hyperbolic 3-manifold, one obtains in this fashion stable 
incompressible minimal surfaces in M 3 in the given homotopy  class. This dupli- 
cates a special case of general results of [SY] and [SU] in the case F has no cusps 
or torsion. (Our method encompasses this case also.) The method of proof relies 
on the work of Almgren-Simon [AS] on embedded solutions to the Plateau 
problem; based on this work, one may prove the existence of curves 7 on S2(ao) in 
H 3 such that any complete absolutely area-minimizing surface 2f asymptotic to 3' 

has genus greater  than a fixed go. 
In w these results are used to prove certain non-uniqueness and non- 

finiteness results. First, we note that there are naturally occurring quasi-circles 
(limit sets of quasi-Fuchsian groups F) for which any F-invariant  area minimizing 
surface asymptotic to 3" at infinity has infinite genus. As corollaries of this, it is 
shown that such curves must bound an infinite number  of complete smoothly 
embedded minimal surfaces at infinity. Second, such groups F have at 
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least two distinct F-invariant minimal discs; thus one finds non-uniqueness of 
incompressible minimal surfaces in a given homotopy class, for a large class of 
quasi-Fuchsian manifolds of a given genus. Further, such manifolds provide 
examples where the least area incompressible surfaces of [SY] are not homologi- 
cally area-minimizing. Finally, we establish a general finiteness result for compact 
area-minimizing surfaces in hyperbolic 3-manifolds, based on the method of Tomi 
[To]. These last results answer some questions of Uhlenbeck in [U]. 

This paper may be viewed as a sequel to [An], which we refer to occasionally. 
A portion of the results in this paper are based on part of the author's Ph.D. 
Thesis at U.C. Berkeley. I wish to thank my advisor, H. Blaine Lawson, for his 
unending guidance and encouragement. Also, I wish to thank Bill Dunbar  for 
helpful conversations on 3-manifolds and orbifolds. 

w Preliminaries 

We discuss briefly in this section basic concepts from geometric measure 
theory and hyperbolic geometry used throughout the paper. 

A natural class of objects in which the Plateau problem admits a solution with 
desired smoothness properties is the class of integral p-currents; these may be 
thought of as suitable generalizations of smooth oriented p-manifolds. Recall that 
given an oriented smooth Riemannian manifold/W', the space of p-currents on N 
is defined to be the space of continuous linear functionals (OP)* on the space of 
p-forms of N, endowed with the weak topology. Clearly, there is a natural 
embedding of the set of smooth oriented p-manifolds S o of finite volume in 
(/]P)*, given by 

[S](a) = f~ a a e a"(N) .  

More generally, a rectifiable p-current is a convergent sum of such currents 
,9' = ~ =  1 ][Si], where {$j}7 is a collection of mutually disjoint oriented p-rectifiable 
sets and 

M(9") = ~ j~P(Sj)<0% 
i = 1  

here ~P is Hausdorff p-measure for the metric on N. There  is a natural mass 
norm on the space ~p(N)  of rectifiable p-currents, given as 

M(Y) '= sup {Y(w) : M(w) --< 1}, 
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where M ( w )  = supx~N Iw~l, Iwxl = sup {wx(~): r a unit simple p-vector}. The sup- 
port of S e = E][Si] is defined as supp 5e = U ~  Si; finally, the boundary operator on 
(/]P)* is given by 

( a ~ e ) ( w )  = S"(dw). 

One now defines the space of integral p-currents ~p(N) on N to be the set of 
currents ~ such that 5e and 05e are rectifiable. One of the deep theorems of 
geometric measure theory is the 

COMPACTNESS T H E O R E M  ([FF]). Let K c N  ~ be a compact set and 
C ~ R +. Then the set 

{See ~r (N) : supp Sr K, M (Se) + M(O~) -< C} 

is compact in the weak topology. 

It follows easily from the definition that the mass norm is lower semi- 
continuous in the weak topology; this, together with the compactness theorem, 
allows one to solve the Plateau problem in the category of integral currents. Thus, 
if  B p-1 is a ( p -  1) manifold (or integral ( p -  1)-current) such that B p - l - -  OSP, for 
some Se E .~p (N), then there is an go ~ ~r satisfying aSe0 = B and 

M(ffo)_<M(ff), VSe s.t. aS~ 

One says that g0 is absolutely area minimizing for the boundary B. We will often 
work with currents of non-compact support. One defines the group ,~o~ of locally 
integral p-currents as the currents Se such that for all x e N, there is a ~" ~ ,r (N) of 
compact support such that x~ supp (Se-,r). We then say ,See,~~ is absolutely 
area-minimizing if, for all compact sets K c N, one has 

M(ffLK) -< M(-r), 

for any ~- c ~p(N) with a(SeLK) = 01-. 
Next, we briefly discuss the regularity properties of area-minimizing currents. 

A point a ~ supp (9') \ supp (OSe) is regular if there is a neighborhood W of p such 
that W n s u p p  (S) is a connected p-dimensional C2-submanifold of N". If a is 
regular, then the manifold B = W f'l supp 5e is oriented by ffe[B and ~e is given by 
integration over B, up to multiplicity. A fundamental theorem in the subject is the 
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R E G U L A R I T Y  T H E O R E M  (c.f. IF]). Let ~ be an absolutely area- 
minimizing integral (n - 1)-current in U c N". Then the interior singular set Z of 6t' 
has codimension >-8, i.e. ~ q ( Z ) = 0 ,  for all q > n - 8 .  

In particular, if n-----7, then any area-minimizing (n--1)-current  5r is the 
standard orientation current over  a smoothly embedded hypersurface. 

For further information and details regarding geometric measure theory, we 
refer to the basic references [A1], IF]. 

Throughout  much of this paper,  the ambient  space N" will be  hyperbolic space 
H n of constant curvature - 1 ,  or a quotient of H ~ by a discrete group of 
isometries. Usually we identify H "  with the unit ball B"(1) of Euclidean space via 
the Poincar6 model. In this model, the unit sphere represents the sphere at infinity 
S"-1(~) of H "  and provides a natural conformal compactification of H " ;  every 
point p e S"-a(~)  represents an asymptote  class of geodesics in H" .  Analogously, 
we define the asymptotic boundary s~ of a locally integral p-current  ,X in H ~ by 

s~ = supp ~ N S "-  a (~), 

where - -  denotes closure in the Euclidean topology. 
Recall that in the Poincar6 model,  geodesics are arcs of circles intersecting the 

sphere at infinity orthogonaUy; similarly, totally geodesic k-planes are domains on 
Euclidean k-spheres having orthogonal intersection with Sn-l(oo). One defines the 
convex hull qg(S) of a set S in H "  as the intersection of all half-spaces containing 
S; a half-space is a component  of H " - P ,  where P is a totally geodesic hyperp-  

lane. 
Finally, we use standard notation and results from Riemannian geometry;  

geodesic balls of radius r are denoted by B," or BP(r), where p is dimension. 

w The boundary-value problem at infinity 

In this section, we will prove the existence of complete area-minimizing 
hypersurfaces in H "  asymptotic to a rather  general class of boundaries in S"-1(oo); 
such boundaries arise naturally as limit sets of discrete groups acting on /-/". 

Given compact  sets A, B in a metric space (X, d), recall that the Hausdorff  
distance between A and B is given by 

p(A, B) = max (pA(B), pB(A)), 

where pX(B) = sup {d(x, B)  : x c A } .  
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We now state the main existence theorem of this section; both the theorem 
and its proof will be used often in the sequel. 

T H E O R E M  2.1. Let ScS"-~(oo) be a closed set such that S"-~(oo)\S has 
exactly 2 connected components. Suppose there are (n-2)-dimensional  smooth, 
closed, connected manifolds ~ c Sn-l(~) such that 

lizn ~ O (1VIj, S) = O. 

Then there exists an absolutely area-minimizing integral ( n -  D-current X asympto- 
tic to S at infinity. 

Proof. The outline of the proof resembles that of Theorem 4 of [An], where 
an analogous theorem was proved for the case of S a k-manifold in S"-l(m). We 
choose O e H "  as an origin and view M / c  Sn-l(]) via geodesic projection from O. 

Let Xj be an integral ( n -  1)-current representing a solution to the Plateau 
problem with boundary Mj; thus we have OX i = M~ and 

M(Xj) --- M(50), 

for 5~ any integral (n - 1)-current with 050 = M/. The proof is based on establishing 
the estimates 

cr -<M(~j t_Br) _< Cr (2.2) 

on the mass of Xj inside the geodesic r-ball Br centered at O. 

[A] Existence of Cr 

We begin with 

L E M M A  2.3. Let ~ be an area-minimizing ( n - 1 )  current in B"(s)  with 
0• = M a connected manifold in Sn-l(s). Then supp X is connected and disconnects 
Bn(s) into two components 0 • 

Proof. We recall that supp X is an analytic submanifold outside a closed subset 
Z of Hausdorff dimension at most n -  8. The work of Hardt -Simon [HS] on 
boundary regularity shows that Z f 'lsupp 0~ = 0 .  Thus the boundary of each 
component  of supp 2~ is M, and so it follows that supp ~ is connected. Since Z is 
of high codimension, it follows that "h-l(Bn(s)-Z)=0; see, e.g., [HP: Theorem 

4.1b]. 
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Suppose B"(s)\supp ~ were connected; choose a regular point x e supp ,~ and 
L a transverse curve so that L tq supp ~ = x. We may join the endpoints OL in 
B" (s) \ supp 2~ and obtain an embedding f:  S 1 ~ B"  (s) such that f(S 1) N supp ,~ = 
x. It follows that [ extends to a map f:DZ-+B"(s); assume w.l.o.g, that f is 
transverse to s u p p ( , ~ - Z ) .  Thus f - l ( s u p p ( ~ - Z ) )  is a 1-manifold with single 
boundary component  x, a contradiction. 

To see there are at most two components of B " ( s ) \ s u p p  2~, let x, L be as 
above and for any y e B " ( s ) \ s u p p ~ ,  let % be a shortest geodesic from y to 
supp ~. If py is the endpoint  of ry, then p is regular and one may join p and x by a 
path ~/in the regular set of ,~. By sliding ~/in the direction normal to supp ~, one 
may join y to one endpoint  of OL by a path in B " ( s ) \ s u p p  ~. �9 

We apply Lemma 2.3 to the current ~i in B"(j)  and see that supp 2i separates 
B" (j) into 2 components. The  current ~j is of multiplicity 1, so that ,~j represents 
a boundary of least area in B"(]) ;  in other words, letting B " ( ] ) \ s u p p ~ j  = 
O~ tO O~-, we have ~j = OD T and 

vol (007 fl K) -----vol (OK fq D;-), 

for any compact K c B"(j) .  Choosing K = B"(r), r <], it follows that 

bl(Xfl_B,) -----�89 vol S(r), (2.4) 

for all ]. This gives the upper bound C, =�89 S(r). 

[B] Existence of c, 

Recall that given a set T c H "  one may define the convex hull qg(T) of T as 
the smallest geodesically convex set containing T. It is not difficult to prove that if 

is a stationary p-current in H",  then 

supp ,~ c C~(supp 0~); (2.5) 

see e.g. [An], [AS]. We note  also the useful fact that for T c  S"-l(oo) 

~r N S"-1(oo) = 'T'. (2.6) 

Now choose points x, y in different components of s n - l ( o o ) \ S  and let ~/be the 
unique geodesic asymptotic to x and y. For ] sufficiently large, it is clear that the 
intersection 3 ,NS"- I ( j )  consists of two points x~, yj with xj ~ x and yj--~ y as 
j - - .  o0 and x~, yj lie in distinct components of S" - l ( j ) \Mi .  Since, by Lemma 2.3 



Complete minimal hypersurfaces in hyperbolic n-manifolds 

again, supp "Yi separates B"(I) into two components, it follows that 
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supp 2~j N ~/# 0 ,  

for all j sufficiently large. Since supp ~ c Cr i) and ~(Mi) converges to %(S) as 
j--~ oo, we see that the sequence 

{supp ~i f3 3'} ~ K, 

for some compact set K c f /" .  In particular, it follows that there is a p e 3, and 
R > 0 such that 

dist(p, supp2~j)<R, for all j. 

Thus, supp Y,i intersects a fixed ball of radius R in H",  for each j. The  
existence of the lower bound cr now follows from standard monotonicity esti- 
mates on the mass of stationary currents in geodesic balls, see e.g., [An], [L2]. 

The proof of Theorem 2.1 is now straightforward. The estimate (2.2) together 
with the compactness theorem for integral currents show that the sequence 
{.~i[-Bi}~=l has a weakly convergent subsequence for each fixed i. Choosing such 
for each i and taking the diagonal subsequence, we find there is a subsequence 
{~r} of {~i} and an integral ( n -  1)-current 2~ such that 

on any compact set, in the weak topology. The current 2~ is absolutely area 
minimizing, being a limit of area-minimizing currents, and is easily seen to have 
asymptotic boundary S, using (2.5) and (2.6) again. �9 

Remark 1. We note that these currents ,~ are smoothly embedded complete 
submanffolds in case n --< 7 and have singular set Z of Hausdorff codimension at 
least 8 in higher dimensions. As examples of boundaries S to which the theorem 
applies, we mention the following. 

E X A M P L E  1. In dimension 3, we may choose S to be an arbitrary Jordan 
curve (not necessarily rectifiable) on $2(oo). This follows from the fact that any 
Jordan curve may be approximated, in the Hausdorff distance, by inscribed 
polygons. 

E X A M P L E  2. In higher dimensions, let S be the image of the equator  
S " - 2 c  S "-1 under a homeomorphism h of S "-1. Then S satisfies the hypothesis of 
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the theorem. In fact, for any e > 0 ,  let T={x:d (x ,  S " - 2 ) < e }  be the e- tubular  
neighborhood of the equator  S n-2. Define 

1 
f :T- - - )~  by f (x)  e2 d(x ,  Sn_2) 2 . 

Then fh = f o  h - I :h (T) - - - )R  is a proper  exhaustion function of h(T). We may 
choose a uniform approximation to fa by a C ~ function fa and, for any regular 
value q, define 

M~ = f~'(q) .  

Thus, p(S, Mq)<e,  as desired. 

Remark 2. It is unknown whether  a result analogous to Theorem 2.1 holds in 
higher codimension; the estimation (2.4) is no longer valid. 

Remark 3. We note that a result analogous to Theorem 2.1 holds in complete 
manifolds of curvature c2~KN ~--c~ < 0 ;  the proof  will appear  elsewhere. 

w Kleinian groups and invariant solutions 

In this section, we will study the existence of area-minimizing hypersurfaces 
invariant under a discrete group of isometries acting on H".  

Let  F be a discrete subgroup of O+(n, 1), the group of orientation-preserving 
isometries of H".  The limit set Ar of F is the set of accumulation points of an 
orbit  F~, x e H "  on S"-l(oo); this turns out to be independent of the choice of 
x ~ H". Ar is a closed set, minimal under the conformal action of F on S" 1(oo); 

we have 

a n - l ( 0 0 )  ~- g2 r U At, 

where Or  is the 'domain of discontinuity' of F; F acts properly discontinuously on 
Or. Or  may  be empty,  or have one, two or infinitely many components.  We will 
call F quasi-Fuchsian if Or  has exactly two components.  In case F acts freely (F 
is torsion free), we see that F is quasi-Fuchsian if and only if the quotient 
manifold cr 

~,. ='~. ] c M ~ 
H ~ U Or 

F F 
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is a 'convex'  hyperbolic manifold with two boundary components  strictly con- 
tained in/V/";  we note that 

~1(M")  ~ ~I (~M) .  

[A manifold N is convex if any path in N is homotopic to a geodesic in N, relative 
to the endpoints.] In H 3, Maskit [M] has shown that if F is finitely generated and 
torsion free, then F is quasi-Fuchsian if and only if F is a quasi-conformal 
deformation of a Fuchsian group, i.e. a discrete subgroup of Isom (H2); in this 
case, Ar is the image of a circle S ~ under a quasi-conformal homeomorphism of 
S 2" 

Remark. In dimension 3, if r is a surface group, i.e. F~Trx(2~) where F is a 
(punctured) surface, g2r has either 0, 1 or 2 components;  it is conjectured that the 
'degenerate '  groups with Or  having 0 or 1 component  are suitable limits of 
quasi-Fuchsian groups. Thus quasi-Fuchsian groups play a central role in dimen- 
sion 3. 

The main result of this section is the following. 

T H E O R E M  3.1. Let F be a quasi-Fuchsian group acting on H n. Then there 
exist complete F-invariant absolutely area-minimizing (n-1)-currents Er in H". 

Proof. Let ~(Ar)  be  the convex hull of Ar and let Mj be a sequence of smooth 
manifolds in the interior of ~(Ar)  eventually lying outside any compact set in H ". 
We may apply Theorem 2.1, since S " - I ( ~ ) \ A r  has exactly two components;  let ,~ 
be a complete area-minimizing hypersufface in H "  asymptotic to Ar. We may 
assume that supp X is connected, since we may replace it by a component  of 
supp,~. Then, by Lemma 2.3, H " \ s u p p ~  has two components  g2 ~ such that 
O•  are the two components of S " - I ( ~ ) \ A r ;  we note these latter are 
F-invariant.  Consider the currents g,~ defined by 

(g,~)(oJ) = ~(g*oJ), for g c F. 

Each g,~ is a minimizing integral (n - 1)-current; in fact gZ is a boundary of least 

area; 

o(gO +) = g~, 

where gO • are the components  of H "  \ s u p p  (g~). Consider 

O 1 =  fq gO + . 
g~r 
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I t  is clear that 121 is F-invariant  and so it follows that 0 0 1  is also F-invariant. 
If  0121 is a boundary of least area, we are done. If not, then we proceed to solve 
the Plateau problem in 121 as follows. Let  Bi be a sequence of smooth connected 
(n - 2) manifolds in 12x f3 qg(Ar), eventually lying outside any compact  set K c H a. 
Let  Se~ be a solution to the Plateau problem with boundary B~. We now claim that 
9~ c 121, for all i. To  see this, one has B~ c 121, so that in particular B~ c g12+, for 
any g ~ F .  Since gO+ has a boundary of least area, it follows that 5e~ c gO +, for 
any g; this gives the claim. Thus there is a sequence of boundaries of least area 
{Se~} in 1"]1, with {05e~} converging to Ar in the sense of Hausdorff  distance. Apply 
the proof  of Theorem 2.1 to {Sei}; it follows there is a convergent subsequence, 
call it {9~ again, such that  

5~i ---> 5e 1 weakly, 

with supp 9~ O1. Now 9 ~ is a boundary of least area with support  ' above '  all 
g$, g e F. In other words, one may define an ordering < on the set of complete 
minimal currents asymptotic to Ar by 

where O + f3S"-1(oo) is the + component  of S"-l(oo)\Ar . We thus have 

g ~ < 5  ~1, for all g � 9  

Now repeat  on 9 ~ the process above. If 5 ~ is not F-invariant,  let 

122 = N g(121) + 
g~l  r" 

where (DO § gives the positive component  of S"-l(oo)\Ar. Continuing in this 
fashion, we produce a sequence of boundaries of least area 9 ~ such that 

~ = 9 0 o < 9 0 1 < . . . < . ~  < .  �9 .. 

and also 

g~  <~+1, 

for all g c F, and for all i. Each 9 ~ is a complete area-minimizing ( n -  1) current 
asymptotic to Ar satisfying 

supp ~ c'~(Ar). 
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One may again apply the proof of Theorem 2.1 to obtain a convergent subsequ- 
ence {b ~ c {Sr k} with 

S r -~r as k --~ oo, weakly. 

It is now clear that 2 r  is a complete area-minimizing integral ( n - 1 ) - c u r r e n t  
asymptotic to At. To see that ~ r  is F-invariant, note that 2~r = limk__~ 9 ~ SO that 
g, Xr = limk_.~ g6e k ; by construction, gSe k <Sr k+~ so that 

for any g ~ F. Replacing g by g-~, it follows that g~r = 2fr, for all g ~ F. �9 

We now discuss some applications to closed minimal hypersurfaces in hyper-  
bolic manifolds. The theory is most complete for surfaces in 3-manifolds, so we 
begin with this. 

Let F be an arbitrary quasi-Fuchsian group (not necessarily finitely generated). 
The orbit space 

M 3 = H3/F 

is a 3-manifold with boundary equal to Or~F; note that M 3 ~  (O~-/ff)X/', where 
D~- are the components of Or. Conversely, recall the simultaneous uniformization 
theorem of Bers [13] which states that, given any pair of homeomorphic Riemann 
surfaces -Y,1, 2~2 (possibly having punctures and branch points), there is a quasi- 
Fuchsian group F such that Or~F= ~1U2~2; F is unique up to conjugation in 
PSL(2,12). In case that F acts freely, M 3, and its boundary Or/F, inherit complete 
hyperbolic metrics. On the other hand, there are, for example, groups F with 
M3/F -~ S2x I topologically; dear ly  F does not act freely, since S2x I does not 
admit any complete hyperbolic metric. 

The following is a simple consequence of Theorem 3.1. 

C O R O L L A R Y  3.2. Let M3=H3/F be a quasi-Fuchsian 3-manifold. Then 
M 3 contains a branched minimal embedding o[ a Riemann surface S satisfying 

Irl(S) ~ 1ri(M 3) --4, 0. 

In case F acts [reely, S is a smoothly embedded complete stable minimal sur[ace 
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with 

0 ~ r e ( S )  ~ 1rl(S) ~ r ~ O, 

where S is the F-covering of S in H a. 

Proof. The first statement follows from Theorem 3.1 by passing to the orbit 
space H3/F; in this context, minimality means vanishing of the mean curvature 
away from the branch points of S. The second statement follows similarly; it a 
consequence of [F-CS, Theorem 1] that the embedded surface S is stable when F 
acts freely. 

Remark 1. It is not necessarily true that zq(S) = 0; in w and w we will prove 
the existence of smoothly embedded minimal surfaces S in certain M 3= H3/F 
with 7ra(S)# 0; in particular, these surfaces are not incompressible. On the other 
hand, in w (see Theorem 4.4), we will also show the existence of embedded 
minimal surfaces S in M 3 with "trx(S)= 7rx(M 3) = F, for every torsion-flee quasi- 
Fuchsian group F. 

Remark 2. In case F acts freely and represents a compact surface, F =  zq(~g), 
Schoen-Yau [SY] and Sachs-Uhlenbeck [SU] have obtained very strong results 
on the existence of incompressible minimal surfaces in Riemannian manifolds. It 
is clear however that in general, the surfaces produced above are inequivalent; in 
particular, the lifts of incompressible minimal surfaces in compact 3 manifolds to 
H 3 are not necessarily area-minimizing. Further, our constructions apply to surfaces 
having cusps and branch points, as well as infinitely generated 7rl. 

For higher dimensions, one obtains the following. 

C O R O L L A R Y  3.3. Let N ~ be a compact convex hyperbolic n-manifold with 
exactly two boundary components. Then there is a closed minimal hypersurface 
(integral ( n -  1)-current) ~ satisfying 

0 ~ "rrl(supp -~r) --> "n'l(supp ~)  ---> 7r1(N~) --> 0 

where ,~r is the F-lift of  ,Y, to H '~. In case n-----7, 2~ is a smoothly embedded stable 
submanifold. 

Proof. Theorem 3.1 gives the existence of complete area-minimizing integral 
(n - 1)-currents S r  invariant under  the action of F = ~rl(N ~) on /4" .  Passing to the 
orbit space gives the desired current .~; stability follows as in Corollary 3.2. 
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Remark 3. Corollary 3.3 proves the existence of closed stable minimal 
hypersurfaces X in compact hyperbolic n-manifolds N"  which are covered by a 
hyperbolic manifold/Q" having two ends and compact  convex hull; furthermore,  
we have 

"n'l(supp X) --+ ~I(N)  c -/rl(N). 

A similar result holds for N"  of pinched negative curvature. However,  the class 
of manifolds satisfying the above conditions is not well understood. 

w Minimal surfaces in hyperbolic 3-manifolds 

In this section, we will work exclusively with hyperbolic 3-manifolds. 
Almgren-Simon in [AS] have proved the existence of embedded minimal discs in 
Riemannian 3-manifolds provided the boundary is constrained to lie on a convex 
set. More precisely, given a C a Jordan curve 3' c aC, for C a convex set, consider 
the space ~ 0  of smooth embeddings 

f :  D 2--'+ M 3 such that f ls '  = 3". 

They show that the area functional achieves a minimum on Ago giving the 
existence of an embedded minimal disc fo(D 2) in M 3 with boundary 3'. The work 
of Meeks-Yau  [MY] actually shows that fo(D 2) realizes the minimum area over 
all branched immersions D 2 - +  M3; however, we shall not be using their techni- 

ques here. 
We begin by using the result and method of proof of Almgren-Simon to 

construct complete embedded minimal discs in H 3. 

T H E O R E M  4.1. Let 3" be a Jordan curve on $2(~). Then there exists a 
complete embedded minimal surface D in H 3 o f  the topological type of the disc, 
asymptotic to 3'. Further, D minimizes area in the category of embedded discs. 

Proof. Let 3'i c $2(i) be a sequence of C2-Jordan curves in H 3 whose limit is 3', 
in the sense of Hausdorff  distance (see w Example 1). Then the work of [AS] 
gives existence of smoothly embedded minimal discs Di with aD~ = % We apply 
the proof  of Theorem 2.1 to {D~} (in place of {'~i} there). The estimate 

M(D~LB~)-<�89 vol S(r), (4.2) 

will follow easily from the following lemma. 
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L E M M A  4.2. Let D 2 be a minimally embedded disc with OD2c S2(r). Then 
D 2 n Ba(s) is a disjoint union of discs, for almost all s <-r. 

Proof. Let j:D2---~ H 3 be the inclusion and let s be a regular value of 
d o j: D2- - .  I~, where d is the distance function from 0. Then ]-1($2(s)) is a disjoint 
collection of circles {S,} i n / 5  2. Consider j - l ( B ( r ) \ B ( s ) ) c D 2 :  this is a compact 
set K in D 2 with boundary  equal to 0D 2 U U S~. I t  follows easily from the convex 
hull proper ty  (2.5) that  K is connected; thus none of the curves S~ are nested and 
so the complement  j - l(B(s))  is a union of discs. �9 

Returning to the proof  of Theorem 4.1, we now have by L e m m a  4.2 that 
D~IB, is a finite collection of discs. The area-minimizing proper ty  of D~ among 
embedded  discs then gives (4.2) immediately. We may now copy the proof of 
Theorem 2.1 for {D,} and produce a stationary integral 2 - cu r r en t /5  such that a 
subsequence converges 

Dv ~ / 5  weakly on compact  sets. 

One sees t h a t / 5  is a complete stationary integral 2-current asymptotic to 7 and 
area minimizing among comparision discs in the following sense: if 3/c  supp /5  is 
a smooth  Jordan curve wtih 0 T =  T, where T is a stationary 2-current and 
supp T ~ supp/5,  then 

M(T)-< vol (V), 

where V is any embedded disc in H 3, a V---T. 
Our  aim is to prove t h a t / 5  is in fact a smoothly embedded disc. Thus, consider 

x ~supp /5 .  The  slices O(ff)LB~(e)) are closed rectifiable 1-currents, for almost all 
e > 0. Similarly, by means of Sard's theorem, the restriction D~ n Bx(e) is a union 
of smoothly embedded  submanifolds with smooth Jordan curves as boundary,  for 
almost all e > 0 .  By L e m m a  4.2, each component  of Dr ABe(e)  is in fact a smooth 

embedded  disc. 
W e  claim there is a 8 > 0 ,  with perhaps 8<<e, such that  at most  four 

components  of D~AB~(e) intersect B~(8), for all i. To  see this, let Ci, j = 
1, 2 . . . . .  K~ denote the components  of D~ n B x ( e )  intersecting Bx(8); by a simple 
area comparison,  we have 

K, 
~. M(C{) < M(a(B~ (e))). 

i = l  
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Further, by the local monotonicity of stationary currents (see [An], [L2]), it 
follows that 

M(C~) -> 1 �9 vol (B2(e - 8)), for each i, j. 

Thus we find 

K i  " vol B2(e - 8) < M(a(Bx (e))) ~ 47re 2, 

for e sufficiently small. Since v o 1 B 2 ( e - 8 )  ~ "tr(e--8) 2, we see that 

Ki--<4, for anyi .  

Thus the limiting current / )LB, (8 )  is the limit of regular currents DiLB,(8)  
having at most four components, each a smoothly embedded disc. By relabelling 
and passing to a subsequence, we may assume the sequence of components 
{CS)7=I converges weakly to a current W ~ 

s = ~ W j. 
i 

The regularity of the c u r r e n t / )  follows from the methods of Almgren-Simon. In 
fact, let ~'~ be the (varifold) tangent cone t o / )  at x: it is known that 27~ either has 
support contained in a plane or is locally a union of half-discs with common 
diameter L (see [AS, Corollary 2]). Let  T~ denote the varifold tangent cones to 
W j at x; we then have 

Y.7 =L. 
i 

For fixed j, we choose a sequence rk--~oo so that the expansions Nk=-- lx ,~(C~)  

converge to the varifold tangent 

~(C~)-- -~T~weakly ,  as k--~oo; 

here ~ denotes geodesic dilation of the ambient space H 3 centered at Xk, Xk ~ X 

as k ~ oo. Now the interior regularity results, Theorems 2 and 3 of [AS], applied 
to the sequence {Nk}, show that T~ is a plane (with multiplicity 1), for each j. 
Since the components C~ for fixed k are disjoint, it follows that the tangent planes 
T~ are identical. We apply the basic regularity theorem of Allard [A1, w to 
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(/5, Tx) and find t h a t / 5  is a regular varifold in a neighborhood of x: 

/SLB(x,  8') = 0" [S], 

for some integer p~<4, where S is an analytic, embedded minimal surface in 
B(x, 8'). Clearly, p is independent  of x and we now see that /5 is a regularly 
embedded  minimal surface in H 3, asymptotic to ~/. 

The Allard regularity result also shows that the convergence D~--~ D is 
smooth. Since for almost all r, D~ n B(r) is a disjoint union of discs, it follows that 
15NB(r)  is as well; we thus find t h a t / 5  is a complete embedded disc. �9 

C O R O L L A R Y  4.3. Let F be a quasi-Fuchsian group acting on  H 3. Then there 
is a complete smoothly embedded F-invariant minimal disc 15 in H 3. As above, 15 
minimizes area among embedded discs. 

Pro@ Let  Ar be the limit set of F on $2(~); since F is quasi-Fuchsian, Ar is a 
Jordan curve. By Theorem 4.1, there exists a complete embedded minimal disc D 
asymptotic to At. We now use the proof  of Theorem 3.1 to construct a F-  
invariant minimal disc. If D is not F-invariant  define gD as in Theorem 3.1 by 

(gD)(~0) = D(g*oJ), g ~ F. 

Then each gD is a smoothly embedded  minimal disc; let 

n ~ =  N g n  § , 
g~F 

where gO + is the component  of H " \ s u p p  (gD) containing the positive compo-  
nent  of S"-I(oo)\Ar in its closure. We  see that /21 and 0/-/1 are F-invariant  
currents; if 01"11 is a smoothly embedded  disc, we are done; if not, choose extreme 
C 2 Jordan curves ~/i in 121Nqg(Ar) eventually lying outside any compact  set in 
H 3. Let Sai be an Almgren-Simon solution with boundary 3'~ : thus 5r is a smoothly 
embedded  minimal disc with boundary 7i, area-minimizing among embedded 
discs with the same boundary.  We see as before that Se~ ~ gO +, for all g ~ F, so 
that 9O, ~/21, for all i. Now repeat  the process carried out in Theorem 3.1, using 
the regularity results of Theorem 4.1. In fact, we see that {goi} subconverges to a 
stationary integral 2-current 9Ol; by the proof of Theorem 4.1, 9 ~ is a smooth 
embedded  disc, asymptotic to At. One thus obtains a sequence {9O~} by repetition 
of the above argument.  It follows that  {goi} will subconverge to a F-invariant  
stat ionary integral 2 -cu r ren t /5 ;  the fact t h a t / 5  is a complete smoothly embedded 
minimizihg disc follows from Theorem 4.1. �9 
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Remark 1. In connection with Remark  1 of w Corollary 4.3 produces 
complete embedded incompressible minimal surfaces ~ in quasi-Fuchsian 3- 
manifolds M3~H3/F,  F~'-Trl(,~ ). For example, there are complete minimal 
embeddings of a k-fold punctured S 2 in certain quasi-Fuchsian 3-manifolds, for 
any k > 3. As far as the author knows, these give the first non-trivial examples of 
non-compact  complete minimal surfaces of finite volume. 

The complete minimal discs constructed in Theorem 4.1 and Corollary 4.3 
need not be absolutely area-minimizing. In case they are not, one may construct 
surfaces in H 3 of higher genus. To  begin, we recall the results of Almgren-Simon 
[AS] in the compact  case. Let  3, be an extreme C2-Jordan curve in n 3. Let d~g(3") 
be the space of connected, oriented embedded C2-surfaces M c n 3 with bound- 
ary 3,, with genus M = g. Let  

ct~(3") = inf {area (M) : M~d~(3 ' )}  

= inf {area (M):M~d~h(3"): h-<g}. 

Then it is proved in [AS] that if ag(3,)<ag-l(3"), there is a surface M~d~g(3,) 
with area ( M ) =  otg(3"). 

For  complete surfaces in H 3, w e  then prove: 

T H E O R E M  4.4. Let ,~g be a complete embedded minimal surface of genus <-g 
in H 3 asymptotic to 3' and area-minimizing among embedded surfaces of genus 
<-g. I f  Zg is not absolutely area-minimizing, then there exists a complete embedded 
minimal surface ~ ,  in H 3, of genus <--g', for some finite g ' >  g, asymptotic to 3'. 
Further, ,Y,g, is area-minimizing among comparison surfaces of genus h <- g'. 

Proof. As in the proof of Theorem 4.1, let 3"~ be a sequence of extreme 
C2-Jordan curves on 2~g, with ,/~ --~ V as i ~ o0. By hypothesis, there is an i0 and 

g' > g such that 

Since we may assume that Zg is an annulus outside of 3'~, it is clear that 
ag,(3"i ) <Otg(3'i), for all i - -  > io. By [AS, Theorem 8], there exists smoothly embed-  
ded surfaces S~, all of genus g', satisfying OS~ = 3"~ and area (Si) = a~,(3"~). Consider 
the sequence of integral 2-currents {S~}. The proof of Theorem 2.1 applies and 
gives, after passage to a subsequence, a weak limit 

Si ----~ ~g,, 

where ~g, is a complete stationary integral 2-current asymptotic to 3'. The 
regularity arguments of Theorem 4.1 apply here and prove that Xg, is a smoothly 
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embedded submanifold. Since Si -~ ~g, in the C2-topology and Si has genus g', it 
follows genus ,~g,--< g'. Finally, the area-minimizing properties of ,~g, follow from 
those of {Si}. 

Remark 2. Of course, the surfaces ~g and 2fg, constructed above are geometri- 
cally distinct, since they have distinct area-minimizing properties. 

Remark 3. The proof above does not show that genus 2~g, = g', or even genus 
~g -- genus ~g, although it is likely that one can find surfaces with these properties. 

In order  to show that such a 'hierarchy' of complete minimal surfaces actually 
occurs, we use the following Proposition. 

PROPOSITION 4.5. There exist Jordan curves 3' on S2(oo) such that any 
absolutely area-minimizing surface 2~ asymptotic to 3" has genus g-> go, for any 
prescribed g o -  0. 

Proof. The proof is a simple modification of work in [AS]; the case go = 1 is 
given below. Let  3'0 be the curve consisting of two concentric circles of radii rl, r2 
centered at the origin in R 2, viewed as infinity in the upper half space model of 
H 3. It is not difficult to see that for �89 r l -  r2, any area-minimizing surface 2~o 
asymptotic to 3, does not intersect the line l~ = {x = y = 0}. To justify this, we note 
that any area-minimizing surface asymptotic to 3'0 is invariant under rotation 
about 11; if ~o intersects 11, it follows ~o is the union of two totally geodesic 
hyperplanes asymptotic to 3'o. Now simple area-comparision with an annulus 
spanning 3"0 shows that ~Zo cannot be area-minimizing, given the bounds on rl, rE 
above. 

Let  3", be the oriented Jordan curve obtained by joining the circles of 3"0 by 
line segments of Euclidean separation e, and let 2~ be an area-minimizing surface 
asymptotic to 3"~ (see Figure 1). As e ~ 0, ~ converges to -~o in the weak 
topology on varifolds. 

Figure 1. 
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Let l 2 be the ray consisting of the negative x-axis; we assume 7~ f-)12 = ~ .  
Choose a ball B such that B is tangent to the plane {z = 0} at a point on 12 but 
B n 2f0 = Q .  It follows from the area-minimizing property and the convergence 
-~ ~ -~0 that for all e sufficiently small, B fq,~ = O .  Thus there is a loop tr in 
/ 4 3 - . ~  such that tr does not bound in / 43_ ,v .  It follows that 2~ is not a disc for 
e sufficiently small. �9 

Remark 4. We note that the curves 7 satisfying the above Proposition are 
stable under small perturbations; thus, if 3,~ $2(~) has only absolutely area- 
minimizing solutions of genus >-go, then any Jordan curve 7'  sufficiently close to 7 
in the Euclidean flat topology (or Hausdorff distance) also has only least area 
solutions of genus >-go. One proves this by contradiction: if {7~} c S2(oo) converge 
to 7 in the flat topology, then after passing to a subsequence, any least area 
solutions s asymptotic to 7~ will converge smoothly to a least area solution ,~ 
asymptotic to 7; thus for i sufficiently large, genus "~i >- genus , ~ -  go. 

w Non-uniqueness, finiteness, and non-finiteness 

In this section, we will continue the study of minimal surfaces in hyperbolic 
3-manifolds, using the results of w in particular. We begin by using Proposition 
4.5 to show that complete area-minimizing surfaces of infinite genus arise 
naturally in H 3. 

T H E O R E M  5.1. There exist torsion-~ree quasi-Fuchsian groups F~ such that any 
complete absolutely area-minimizing F~-invariant su~ace in H 3 has in[inite genus. 

Proof. Let 2~ be a curve as in Proposition 4.5, given explicitly as in Figure 2. 
Then there is a band B around 7, given as in Figure 2 also, with the following 
property:  if ,~ is any area-minimizing surface asymptotic to a Jordan curve 7 '  c B, 
then genus ,~-> 1. This follows by using the arguments of Proposition 4.5. 

Now inscribe successively, within the band B, N Euclidean circles Ci so that C~ 

intersects C~+1 at an angle of 7r/2 and Ci n Ci+k = ~ ,  for all k >- 2. It is not difficult 
to see that this can be done for any N >- No = 30, for example. 

Let  F '  be the Kleinian group acting on H 3 generated by reflections through 
hyperplanes asymptotic to G and let F o c  F '  be the subgroup of orientation 
preserving mappings. It  is well known that Aro is a Jordan curve lying inside the 
circles C~ (see [B]): in particular Aro C B and Fo is quasi-Fuchsian. We now claim 



284 M, T. A N D E R S O N  

Figure 2. 

that Fo has a torsion-free surface subgroup F of index 2 such that 

F = 7r1(.~,), .~g a surface of genus g, where g -~ N. 

To  see this, we note that M 3 --  H3/Fo is a 3-orbifold in the sense of Thurston [T]; 
topologically M ~- S2• where S 2 has 2N elliptic points (branch points) with 
group Z2 determined by the circle intersections at infinity in H 3. In fact, the action 
of F '  on $2(~) has a disc with 2 N  corner angles of 7r/2 on the boundary as 
fundamental  domain; passing to Fo, its fundamental  domain is two copies of this 
disc glued together along the boundary to give the desired S 2. Now such orbifolds 
have a surface 2 ,  of genus g = N as 2-fold orbifold covers. In fact, embed 2g in 
R 3 in such a way that the z-axis L passes through all the "holes"  of ~g and ~g N L 
consists of 2 N +  2 points; assume that ~g is invariant under rotation by 180 ~ in the 
z-axis. Under  this Z2 action on 2g, the quotient space ~,/7/2 is easily seen to be an 
S 2 with 2 N  elliptic points with group 7/2. 

The quasi-Fuchsian group F has limit set Ar =Aro, since F is normal in F0 
([T:8.1.3]). Applying Theorem 3.1, we may construct complete, F-invariant  
area-minimizing surfaces ~ in H3; it is clear that such surfaces have genus either 

0 or ~o. Since ~ is asymptotic to Arc  B, ~ cannot have genus 0. �9 

Remark 1. Define the Bers isomorphism 

T(s • T(s ",QF~ 
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by associating to any pair of points in the Teichmiiller space of a surface of genus 
g the associated quasi-Fuchsian group. Then we have shown that for any g ~-30, 
e.g., there are quasi-Fuchsian groups Fg having Fg-invariant area-minimizing 
surfaces of infinite genus. In the orbit space M 3 = Ha/Fg, these surfaces descend to 
compact  embeded stable minimal surfaces X~ of genus f l>  g; clearly, these 
surfaces are not incompressible. Further examination of the proof shows that for 
any g, there is a lower bound N(g) on the number  of quasi-Fuchisan groups of 
genus g having such surfaces: we have N(g) -~ oo as g --~ oo. In the other direction, 

fixing the genus g, if one takes a sequence in T(Xg) • T ( ~ )  tending to "infinity" 
in both factors (but not diagonally), it seems likely that again the number  of 
area-minimizing surfaces of infinite genus becomes unbounded; see the discussion 

in [U]  and IT, w 
Let  ~3 be the class of quasi-Fuchsian groups such that any F-invariant  

area-minimizing surface is of infinite genus, ~3g the subset of F ~  ~3 such that 
~rl(H3/F) = ~r~(,vg). Thus the above Remark  shows that the cardinatity of ~3~ is 

unbounded in g. 
We may use these surfaces to construct infinitely many geometrically distinct 

complete minimal surfaces asymptotic to a given boundary. 

T H E O R E M  5.2. Let Ar be the limit circle of a quasi-Fuchsian group F ~ ~. 
Then there exist infinitely many complete, smoothly embedded minimal surfaces 
asymptotic to Ar; furthermore, there is a finite bound on the maximal normal 
distance between these surfaces. 

Pro@ By Theorem 4.1, we know there is a complete F-invariant embedded 
minimal disc Xo. By definition of Ar, Xo is not absolutely area-minimizing; thus 
we may choose extreme Jordan curves V~ on Xo and embedded minimal surfaces 
Xi of fixed genus gl > 0 with 0~i = 3'i. By the techniques of Theorems 4.1 and 4.4, 
{X~} will subconverge to a smoothly embedded surface X,, of genus ~-~gl. If 2~,, 
happens to be  area-minimizing, the translates h.  (Xg,), for h a F give an infinite 
family of distinct (but isometric) minimal surfaces asymptotic to Ar. If X,, is not 
area-minimizing, we may repeat  the process on Xg: in either case we obtain an 

infinite family of distinct surfaces. 
To verify the second statement,  note that all surfaces are contained in the 

convex hull qg(Ar): note also that the diameter  of ~(Ar)  

dr = sup {dist (x, O(rg(Ar))} < oo; 
x ~0(~g(Ar.)) 

in particular, there is an upper bound to the distances of all minimal surfaces 

asymptotic to Ar. �9 
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Note. One expects that 2~g, constructed above is not area-minimizing; this 
would then give an infinite sequence of isometrically distinct surfaces. 

Next we prove a non-uniqueness result for incompressible minimal surfaces in 
a given homotopy  class in hyperbolic 3-manifolds. 

T H E O R E M  5.3. Let F be a quasi-Fuchsian group in q3g, so w l ( ~ , ) =  F. Then 
in the homotopy class of the inclusion 

.~  -~ M3 = H3/F, 

there are at least two geometrically distinct compact stable embedded minimal 
surfaces of genus g. 

Proof. Let 2| be  a F-invariant  area-minimizing surface of infinite genus in H 3 

and let 12 • be the F-invariant  components  of H 3 \ ~ :  w e  will construct F-  
invariant stably embedded  minimal discs in 1"2 • It  suffices to work in/2+: let ~/i be 
a sequence of smooth extreme Jordan curves in 12+A Cr converging to Ar as 
i ~ oo. I t  is well known one may solve the Plateau problem for minimal discs in 
O +, see e.g. [MY]. By the work of [AS] or [MY], any solution St is an embedded 
minimal disc, area-minimizing among embedded minimal discs in /2 + . Letting 
i ~ 0% the techniques of Theorem 4.1 show that {Si} subconverges to a complete 
embedded  minimal disc D § in 12 + asymptotic to Ar. If D § is not F-invariant,  we 
may use the methods of Corollary 4.4 to produce a F-invariant  minimal disc, call 
it again D + in O +. (In fact there are at least two such in O + if D + was not 
F-invariant  to begin with.) The quotient surfaces D§ D - / F  are then stable 
minimal surfaces embedded  in M 3, inducing an isomorphism on ~rl. �9 

Remark 2. This result contrasts with the result that harmonic maps f :  M ~ N 
are unique in their homotopy  class, provided KN < 0 and N is compact.  Thurston 
has shown that there are infinitely many  (isometric) minimal surfaces in M 3 =  

Ha~F, where F is a "doubly degenerate  group",  i.e. F = r where 2~g ~ N 3 
S 1 is a smooth fibration over  S 1, N 3 having a hyperbolic structure. In this case, F 
is a suitable ' limit '  of quasi-Fuchsian groups: see [Tw 

The  following theorem shows that least area incompressible surfaces con- 
structed by Schoen-Yau [SY] are not necessarily area-minimizing in their homol-  

ogy class. 

T H E O R E M  5.4. Let ~,g c_~ M 3 be a least area incompressible surface in M 3, 
where M a = H a / r ,  "n'l(,~g)~_ Y'. Then if F E ~g, there exists F 'c~g, ,  with F'<]F of 
finite index such that the lift 

H 2 / [  ~' ~.~g, ~ M '  = H3/F  ' 
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covering i is a least area incompressible embedding, but [Zg,] ~ H2(M', Z) is not of 
least area in its homology claass. 

Proof. Since Z~ ~ M 3 is incompressible, the lift ~g ~ H 3 is a complete 
(embedded) disc, asymptotic to At. Since F e ~ ,  ~g is not absolutely area 
minimizing. Let D be a domain in ,~g such that D is not area-minimizing w.r.t. 
OD. Now choose F'<~F such that D is contained in a fundamental domain of F ' ;  
this is possible since F is residually finite [H]. Let  D ' = ~  N F '  and let S' be an 
area minimizing surface in H a with OS' = OD'; clearly D'  and S' are homologous in 
H 3. It follows that D'/F' = Zg, and S'/F' are homologous in M'  = H3/F ' and since 
area (S') < area (D'),  area (S'/F) < area (Z~). On the other hand, it is not difficult 
to see that Zg, is of least area in its homotopy class; see [FHS] (Lemma 3.3) for 
the details. 

Finally we prove a general finiteness result for stable minimal surfaces in 
compact Riemannian 3-manifolds; this will show in particular that "most"  hyper- 
bolic 3-manifolds admit only finitely many stable minimal surfaces of a given 
genus. 

Define a surface S in N 3 to be R-locally area-minimizing if for any geodesic 
R-ball B(x, R)  in N 3, the surface S t3 B(x, R)  is area-minimizing with respect to 
its boundary. 

T H E O R E M  5.5. Let N 3 be a compact oriented 3-manifold with an analytic 
Riemannian metric. Then for any given R > O, either 

( l )  N 3 contains only finitely many compact stable, oriented, R-locally minimiz- 
ing surfaces of uniformly bounded area, or 

(2) N 3 fibres over S 1 with fibres smooth compact minimal surfaces. 

We expect the added condition of R-locally minimizing may be dropped, but 
have not been able to do so. 

Proof. The proof is based on the method of Tomi [To] on the finite solvability 
of the Plateau problem in R 3. We suppose (1) does not hold; let {M~} be a 
sequence of R-locally area-minimizing surfaces in N 3 with area (Mi)<K.  The 
compactness theorem for integral currents implies that {M~} converges, after 
passing to a subsequence, to an R-locally minimizing integral 2-current ~ .  Since 
each M~ is stable, the regularity theorem of Schoen-Simon [SS] implies that ~ is 
a smooth stable minimal surface; furthermore the fact that ~ is R-locally 
area-minimizing implies that .gg and M~ may be locally graphed over the tangent 
planes of .g~, for i sufficiently large, see e.g. [P]. Thus, in sufficiently small geodesic 
balls, ~ and M~ are embedded discs D, D~, and the convergence D~ ~ D is C 2 (in 

fact analytic). 
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These results show that each M~ may be graphed globally over  24 in the 
following sense: for any f e  C2'~(24), define Mf to be the graph of f over 24, i.e., 

Me = {y: y = expx f (x ) .  E0}, 

where Eo is the unit normal to 24 in N. Thus M~ defines a unique function f~ ~ C 2"c~ 

such that M~ = Mr,, where fi ~ 0 as i ~ oo and 24 = Mo. Define 

H:C2"~(24)-*  C~ by 

H(f)  = mean curvature function of Mr. 

Using the fact that N, 24 and the normal exponential map of 24 in N are 
analytic, it is a straightforward, but  lengthy, computation to show that H is an 
analytic mapping in a neighborhood of 0~  C2'~(24). 

The  arguments of Tomi  [To] then show that H - l ( 0 )  is an analytic 1-manifold 
V in a neighborhood of 24. Using the compactness theorem again, we see V is a 
compact  analytic 1-manifold (diffeomorphic to S a) parametrizing diffeomorphic 
stable minimal surfaces M, in N 3. It now follows that the natural projection 

7r :N 3---~ V 

-rr(x)=t, where x ~ M t  

gives the desired fibration. [] 

C O R O L L A R Y  5.6. A quasi-Fuchsian 3-manifold M = H3/F has only finitely 
many stable, locally area-minimizing compact surfaces of a given genus. 

Proof. The convex hull proper ty  shows that all compact  minimal surfaces in 
M 3 are contained in the convex par t  of M: since this latter does not fiber over S 1 
isometrically, it follows from the proof of  Theorem 5.5 that M contains only 
finitely many R-locally area-minimizing surfaces of bounded area. Now we have, 
for 2~g a minimally immersed surface of genus g in a hyperbolic manifold that, 

vol(~g)=~ l~-Iz K=-2"n'X(~g), 
2 2 

where K is the Gaussian curvature of ~g, X(Zg) = ( 2 -  2g) is the Euler characteris- 
tic. ThU's a bound on genus gives a bound on area, proving the corollary. �9 
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Remark  3. As noted above in Remark  2, the Corollary is false if we drop the 
assumption that F is quasi-Fuchsian. On the other hand, it does hold for any 
compact  hyperbolic 3-manifold which does not fibre over S 1 with fibres being 
minimal surfaces. We conjecture that no hyperbolic 3-manifold has this property:  
more generally, we conjecture that if M 3 is a closed hyperbolic 3-manifold, then 
there does not exist a local 1-parameter  family of closed minimal surfaces in M 3. 

A result of this type, together with Theorem 3.4 would provide a good basis in 
understanding the moduli spaces of minimal surfaces in negatively curved 3- 
manifolds. 

Finally, one obtains a purely topological result from Theorem 5.5. 

C O R O L L A R Y  5.7. Let N 3 be a compact 3-manifold admitting a metric of 

curvature KN <-- c < O. Then for any given g, the set of homotopy classes [X~, N3] i  of  

incompressible surfaces in N 3 is finite, up to conjugacy. 

Proof. It follows from [SY] that in any class of [,~g, N3t ,  there is an immersed 
least area incompressible surface. By the estimate in Corollary 5.6, any such 
surface has a bound on its area. If there was infinitely many such homotopy  
classes, the proof of Theorem 5.5 implies the least area surfaces must subconverge 
to a limiting surface; thus all surfaces will eventually be homotopic. �9 

Corollary 5.7 has been proved by Thurston [T: 8.8.6] by means of pleated 

surfaces. 
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