Cohomology Operations derived from Cyclic Groups*)

by N. E. SteENROD, Princeton (N. J.), and EMERY TrHoMAS, Berkeley (Cal.)

§1. Introduction

In a previous paper {2], STEENROD defined a family of cohomology opera-
tions, called reduced powers, each being associated with some permutation group.
It was also shown that these operations have a basis, in the sense of composi-
tion, consisting of, firstly, four primitive types of operations (which are : addi-
tion, cup-product, homomorphisms induced by coefficient homomorphisms,
and BocKSTEIN-WHITNEY coboundary operators) and, secondly, those reduced
powers associated with cyclic permutation groups having degree p and order p
where p ranges over primes.

In this paper, we shall improve the result by showing that there is a smaller
basis consisting of the same primitive operations and only particular opera-
tions associated with cyclic groups : namely, for each prime p the cyclic redu-
ced powers

i HYK Z,) — Ho¥e-(KZ )y, 1=0,1,...,
and the PoNTRJAGIN pth powers
Pp: H(KZ ) > H¥(K;Z,,,) .

The latter were defined for p = 2 by PoNTRJAGIN [1], and generalized for
p>2 by THOMAS [5]. When p = 2, 7 is usually written Sq?.

Throughout the paper an elementary cohomology operation will mean one
which is a composition of operations of the four primitive types.

§2. Recapitulation

Let p be a prime, and = the cyclic permutation group of order p and degree p.
The reduced power operations based on = are obtained as elements of coho-

mology groups H'(WQ,M*QQ) . (2.1)

In this expression W denotes a n-free acyclic chain complex, G is any coeffi-
cient group, and M is a cochain complex having two free generators u,v of
dimensions ¢,q + 1, respectively, and the coboundary relation
du = v (2.2)
*) Work supported in part by U. 8. Air Force Contract AF 18 (600)~1494.
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where 6 is an integer >1. Finally, z actson M? = M Q--- ® M (p factors)
by cyclic permutations of the factors. Then an element & of the group 2.1
determines a cohomology operation

&: HYK ;Zo) - H"(K ;@) (2.3)

defined for all complexes K.

We refer to Zg,G@ as the tnitial and ferminal coefficient groups respectively.
In a paper by STEENROD [3], it is shown that a basis for cohomology operations
is provided by the four primitive types and those operations whose initial and
terminal coefficient groups are cyclic of infinite or prime power order. Thus
we have only to consider the cases ¢ = 0, 6 = & prime power, and G = Z,,
where m = 0 or m = a prime power. In case § = 0, the cochain complex
M is simplified by setting v = 0; then M? is & cyclic group generated by the
cocycle u?.

Since the group 2.1 is independent of the choice of W, we shall choose the
simplest known n-free acyclic complex W. Let T' denote the generator of =
which moves each factor of M? one step to the right and moves the last factor
to the first position. In the group ring Z(7w) set

p—-1
A=T—~1 and X=X T7. (2.4)
j=0
The group of r-chains (r = 0,1,...) of W is the n-free module having one
generator e, (i. e. as a complex W has a single r-cell and its distinct transforms
in each dimension 7). The boundary operator in W is defined by

Oegsyy = Aey, , Obgg =2y, 1=01,.... (2.5)

Since each of A, 2 generates the annihilator of the other in Z (=), it follows
that W is acyclic.

We have therefore, the problem of computing the cohomology of the specific
cochain complex W®, M?. Speaking roughly our method consists in re-
ducing the complex to normal form and reading off the results. We must
distinguish special cases depending on the integers p, ¢, 8, m, r, principally,
p=2 and p>2, qodd and ¢ even, 6 = 0, § = p* and 0 prime to p. The
case 6 = 0 will be obtained as a subcase of 6 = p* by the device of setting
v =20,

§3. The case 0 prime to p

In case 0 is prime to p, we will show that each e H'(W ®, M?QG) gives an
elementary operation. In all subsequent sections it will be assumed that 0 is a
power of p.
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Let o be the subgroup of z consisting of the unit element. Then W is g-free,
and

g
WR,M =W M?> W, M»

where g is the natural factorization. In [2; 10.4] it is shown that

3.1. Each element of H' (W Q M?QG) defines an elementary operation.
If we now apply the result [2; 3.4], we have

3.2. Each element of the image of
gt: H(WQ M*QG) - H (WQ,M*RG)

defines an elementary operation.
As a corollary we have

3.3. Each cocycle of WQ, M?QG of the form e,®,w, where w is a cocycle
of M*QQ, defines an elementary operation.

Now let t denote the transfer chain transformation defined relative to the
subgroup o of n (see [2; 11.1]

T WM > W M .

Since p is the index of ¢in o, [2; 11.2] gives gt == p where p means multipli-
cation by p. Passing to cohomology with coefficients in @, it follows that
g*v* = p; and therefore

3.4. Each element of H (W Q,M*QG) which is divisible by p defines an
elementary operation.
Assume now that § is prime to p. Then there are integers o, g such that

af+Bp=1.

Consider now the cochain mappings M — M which are multiplications by
af, fp and 1. We construct a cochain homotopy D of 8p into 1 by setting

The relation 8D 4+ D8 = af =1 — Bp follows directly. By [2; 5.2], we
have that
1Q.8p): WR,M* —~ WQ,M?

is cochain homotopic to the identity. If we tensor with G' and pass to coho-
mology, it follows that each element of H"(W ®,M?®G) is divisible by
(Bp)?; and so by 3.4 it defines an elementary operation.
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§4. The case p =2 and ¢ even

We shall give a normal form for the complex W ®,M?2,i. e. we express it as
a direct sum of elementary subcomplexes each with two generators, say x and y,
and a coboundary relation of the form dz = ky.

In M2 we shall abbreviate ¥ ®u by 42, «®v by uv, etc. Then M? has the
four generators %, v, vu and ¢% Since (T¢;)®,w = ¢;®, T 1w, it follows
that WQ, M?* has the generators ¢,®, u% e¢,®, uv, ¢;@,vu and e,®, v?
for all §=0. Recall that the definition of the grading of a tensor product of
a chain and a cochain complex [2; 2.2] gives dim(e;®,w) = dimw — .
Hence, in the highest non-zero dimension 2(g + 1), there is just one genera-
tor, and we set

oy = R, V% . (4.1)

In the dimension 2¢ + 1 there are three generators, and we define a uni-
modular transformation to a new basis ag, 4, yo by the matrix

€ R uv € R, vu e; ®,v?
Bo 1 0 — 310
Yo —1 1 — 0 (4.2)
ay 0 0 1

By virtue of § 3, we are working under the assumption that 6 is a power of
p=2, so — }0 is an integer. The determinant is 1, hence a,, f;, y, form
a basis in this dimension.

In the dimension 2¢, we have four generators, and we define a new basis
bo,€0,%,,0; by the unimodular transformation

€ ®nu2 € ®,,'LI/’D € ®,,1)u €g ®n v?
b, 1 9 0 0
Co 0 1 0 0
(4.3)
4 0 1 1 0
o 0 0 0 1

In the dimensions 2¢ — 24 for ¢ =1, we define new generators b,,c;,8,,,,
®;,; by the unimodular matrix
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€9; ®,u? €311 8, UV €341 R VU €3i42 R, V7
b, 1 0 0 0
c; 0 1 0 0
(4.4)
Oin1 0 1 1 0
Vg1 0 0 0 1

Finally, in dimensions 2¢ — 2¢ 4 1, for ¢=1, we define new generators
Bir Vi, ds, a; by

€gi1 @, u? ey Quv ey, Q0% 9541 ®,V?
3 1 30 30 0
d 0 1 0 0
! b (4.5)
e 0 —1 1 — 0
a, 0 0 0 1

With this new basis the coboundary in W ®,M? takes the normal form

da, = — 20, , i=0, (4.6)
8by = 208, (4.7)
ob, =28, i=1, (4.8)
de; =y, =0, (4.9)
od, =6, , i=1 . (4.10)

As an example, we compute 4.7 in detail.

0(eo®,u?) = (Oe,) ®,u* + €,®, 9 (w?)
= fey®, (vu + uv)
since g is even.
(e, ®,uv) = (0e,) @ uv — €, R, 6(uv)
= (dey) @, uv — Oe; D, 02 .
Nowuse 4 =T — 1, and (Te))®,uv = ¢,Q,T v = ¢,®,vu. Then
(deg) @, uv = e, Q, (v — uv) .
Therefore
0by = 8(e,®,u® -+ Oe;®@,uv)
= 0ey®, (vu + uv) + e, ®, (vu — uv) — 0%¢; ®,v2
= 20¢,Q,uv — 0%, ®,v% = 208, .

10 Commentaril Mathematici Helvetici
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The computations of the other coboundaries are similar. It should be pointed
out that the assumption that ¢ is even is used in obtaining the relations

Tut=w?, Tv®= —0v2, Ou?) =0(vu-+ uv).

Using this normal form, we can now read off the cohomology of W®,M?;
it is the direct sum of the cohomologies of the subcomplexes 4.6 to 4.10.
Obviously 4.9 and 4.10 are acyclic complexes, and their cohomologies are
zero. Before treating the other three, we will prove a lemma which greatly
reduces the task of showing that the cohomology operations corresponding to
the various cocycles are compositions of the operations specified in § 1. In partic-
ular the lemma eliminates the need of considering various terminal coefficient

groups Z,,.

4.11. Lemma. Let N be an elementary subcomplex of W Q, M? generated
by x, y with 8x = ky. Then the cohomology operation which corresponds to any
cocycle of NQG is a composition of elementary operations and the operation
corresponding to the cocycle x mod k.

Let us recall the way in which a cocycle of W ®,M? corresponds to a
cohomology operation on an element %eHY(K ;Zs) (see [2; § 2]). A map-
pingy: M — K* representing % is chosen (i. e. pu is a cocycle of the class %).
Then y determines a mapping

py: W,M? > K*
which induces a cohomology homomorphism
: H(WQR,M*QG) - H" (K ;G) .
If teH"(WQ®,M?®(0), then §(%) is defined to be @(&). Now let
eH (NQZy)

be the class of the cocycle  mod k. Then ¢y(z) is a cocycle of the class
E(m)eH" (K ; Z,). Therefore gp|N: N — K* represents &£(%). Apply now
[2; Lemma 10.1] which asserts that the image H*(N®Q) - H*(K ;() is
generated by &(u) and elementary operations. This proves the lemma.

By virtue of the lemma, it suffices to identify the cohomology operations

corresponding to the cocycle b, mod 26, the cocycles b; mod 2 for 1 =1, and
the cocycles a;, mod 2 for 1=0. Now

by = g ®,u? + e, @, uv
corresponds by definition to the PONTRJAGIN squaring operation P, (see

[5; 3.4]). And b, — ey, ®.ut
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corresponds by definition to the cyclic reduced square Sq,, = Sq?-2¢ (see
[2; p.6]and [4; §4]). If it is felt desirable that Sq,, should operate only on
cocycles mod 2, then the operation represented by b, can be written as
Squmx Where n: Zg — Z, is reduction mod 2. Note that Sq?-% has an even
superscript since ¢ is even.

It remains to identify the operation corresponding to the cocycle @, mod 2.
Let é* denote the BOCKSTEIN coboundary operator corresponding to the exact

0
sequence 0 >Z->2Z —~>Zy—>0. If ueHYK;Zo) and y: M — K* re-
presents %, then y(v) represents 6*%; and finally @w(ey;,; ®,v?) represents

Sqy;41 658 = Sq?-26*u .

Therefore a, corresponds to the cohomology operation Sq?-%é*. Note again
that the upper index is even.
In the special case 0 = 0, we set v = 0, and then W®,M? is in the

normal form dlea®,u?) = 0

0(e3; @, u?) = 2, ,Q,u? 121
The cocycle e,®,u? corresponds to the operation of squaring in the sense of

the cup product (see 3.3 and {2; 10.2]). As before e,;®,u? mod 2 corre-
sponds to Sqa-%.

§5. The case p =2 and ¢ odd

The change in the parity of g affects both the coboundary operator and the
action of 7" in M3. For the latter we have

Tut = —ut, Tuv=vu, Tevu=uv, Tvi=1132,

Starting with the same generators of W®,M? asin § 4, we reduce to normal
form as follows. In the highest dimension 2¢ 4 2, we have one generator,
and we set

Yo = €®,v? .

In the dimension 2q + 1, we define a new basis by the unimodular trans-
formation
e, uv e ®,vu e, ®,v?

Co 1 0
dy -1 1
ag 0 0
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In all dimensions 2g — 2¢ for ¢ =0, we define a new basis by the unimodular
transformation

g ®,u? €541 R, UV €241 Q,0U €242 R, V2
Bit1 1 — 30 30 0
d, 0 1 0 39
Yin 0 1 1 6
a, 0 0 0 1

In all dimension 2¢ — 27 4+ 1 for =1, we define a new basis by the uni-
modular transformation

€91 Q,u? €, Q,uUv €3; Q0% €211 Q42
b, 1 0 0 0
¢ 0 0 0
8 0 - 1 0
oy 0 0 0 1

In the terms of the new basis, the coboundary relations become

dcy = Oy,

8b, = — 28, i=1,
da;, = 2, 1=0,
dd; = ¢, 1=0
de;, =y, =1,

The last two subcomplexes have zero cohomology. By 4.11, we need only
identify the cohomology operations corresponding to the cocycles ¢, mod 8,
a; mod 2, and b, mod 2. Now ¢, = ¢,®,uv defines an elementary operation
by 8.3 (it is in fact the operation # — % v 6*% where ¢* is the obvious Bock-
STEIN).

By definition, b; = e,;_; ®,u? is the cyclic reduced square

Sqg_q = Sqa-¥+t .

Since ¢ is odd, ¢ — 27 4 1 1is even. Again the operation may be written
Sqe-#+1y, where 7 is reduction mod2.
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The cocycle a, = e,;,,®,.v* mod2 can be identified with
Sqw_2 0F = Sqq+1~(zt+z) &%

exactly as the cocycle a; of § 4. Again the upper index of the square is even.
In the special case 6§ =0, we set v =0 and then W®,M? is in the
normal form
0(€211@,%%) = — 2€,,Q,u% , 120 .

As above the cocycle ey;,; ®,%? mod2 corresponds to the operation Sqe-2¢-1,

We may summarize our results in the case p = 2 as follows. The only
operations needed in addition to the elementary operations are the squares
Sq%* (¢>0) when g is odd or 0 == 0. When ¢ is even and 0 == 2*, the PoN-
TRJAGIN square is also needed.

§ 6. The automorphism g, of H(W & ,M?)

We assume henceforth that p is an odd prime. Our analysis must take
account now of a phenomenon not present when p=2, namely : x is a proper
subgroup of the symmetric group <5, of degree p. If acpccS,, and U isa
p-free acyclic complex, then the inclusion mcp induces a homomorphism

hye: H(W® MPQG) ~ H (URM?RG) ; (6.1)

and, for any element £ on the left, the cohomology operations corresponding
to £ and A, (£) coincide (see [2; 3.4]). In particular, if £ is in the kernel of &, ,
the corresponding cohomology operation is zero. The aim of this section is to
show that certain explicit elements belong to kerh, when o is the normalizor of x
in o5,. It is a fact that these elements generate the kernel even for ¢ = o5, ;
but we omit the proof of this since the proof is complicated and the fact is
not needed.

We need at this point of the discussion a special case of a rather general
proposition. Because it is just as easy and less confusing to present the latter,
we shall do so. We shall consider objects (9,4) where p is a group, 4 is a
cochain complex, and g operates as automorphisms of 4. By a mapping f of
(¢,4) into another such (o, B), we mean a homomorphism g —o¢ and a
cochain mapping 4 — B, both denoted by f, such that

f(za) = f(2)f(a) for =zep, aecAd. (6.2)

These objects and mappings form a category. A pair (o, ) where G is a g-mod-
ule may be regarded as an object of the category by treating G' as a cochain
complex having just one non-zero cochain group in the dimension zero. Now
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the ordinary homology theory of groups, developed for this subcategory of
pairs (p,G), can be extended to the entire category in a fairly obvious way.
We shall review this extension briefly.

Let U be a p-free acyclic chain complex. Defining the cochain complex
U®.4 asin [2; 2.2], we proceed to show that H7(U ®,4) is independent
of the choice of U. If f: (p,4) - (0, B) is a mapping, and V is a o-free acyclic
chain complex, let g operate on ¥ through f: ¢ —+ ¢. Then the fundamental
lemma (see [2; 2.7]) gives a chain mapping f, : U — V satisfying the equi-
variance condition

fo(@e) = f@)f4(0) , eq, ceU. (6.3)
It follows that f, ®f: U®A — V® B induces a chain mapping
f¥: UQed > VR,B, (6.4)

and thereby induces homomorphisms of cohomology
fx: H(U®.4) > H (V®,B) . (6.5)

The second part of the fundamental lemma asserts that any two equivariant
chain maps f,, f, of U into V are connected by an equivariant chain homo-
topy D. Then D®,f gives a cochain homotopy of f* into f*’. Therefore f,
is independent of the choice of f, .

An obvious property of f, is

} = identity map of (p,A) implies f, = identity. (6.86)

For f, can be taken as the identity.
Let f: (¢,4) > (0,B) and g: (o,B) — (7,C) be mappings. Then

@« = 91 - (6.7)
For, having chosen g, and f,, we may choose (gf), to be the composition
Gufs-
Now let U,V be two p-free acyclic complexes. Corresponding to the iden-
tity map f of (9,A4), we obtain two induced homomorphisms

HY(UQed) > H(V®,4) > H (UQ.4) ,

whose compositions in either order again correspond to f by the property 6.7.
Then 6 6 asserts that both compositions give identity maps. Therefore the
various choices of the g-free acyclic complex U give a family of cohomology
groups, any two connected by an isomorphism, and the family of these iso-
morphisms is transitive by virtue of 6.7. As is customary in such a case, we
identify this family of groups with a single group. To emphasize its analogy
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with the ordinary homology group of a group, we shall call it the rth homo-
logy group of ¢ with coefficients in 4, thus:

H.(0;4) = H"(U®.4) . (6.8)
If f: (0,4) - (0,B), then 6.5 becomes
fx: Hy(o;4) > H,(0;B) . (6.9)

It is clear that 6.6 and 6.7 continue to hold for the induced homomorphisms
taken in this more general sense.

A mapping f: (¢,A4) > (9,4) is called an automorphism if both mappings
¢ > and A4 - 4 are automorphisms. Then f has an inverse mapping, and
we may apply 6.7 and 6.6 to conclude that f, is an automorphism of H,(g;A4).

The inner automorphism f corresponding to an element yep is defined by

flx) =yzy, fla)=ya, =zepg, acA. (6.10)
Then we have
f = an inner automorphism implies f, = identity. (6.11)

To see this, let f, be the chain mapping U — U defined by f, (¢) = yc. Since
fulze) =yze = yzyye = f(2)f. (c) ,

the equivariance condition 6.3 is fulfilled. Then

(f+ ®f(c®a) = f,c@fa =ycQ®ya = y(cQa) .

This implies that the induced mapping f* of U®,4 into itself is the identity ;
and so f, = identity.

This completes the discussion of the general theory, and we return now to
the special case with which we began this section. In applying the above

results, we take
A=M"QG,;

in this case =, its normalizor ¢, and the symmetric group <5, operate in 4 by
permuting the factors of M? and acting as the identity in G. Let y be any
element of g, let f be the corresponding inner automorphism given by 8.10,
and let ¢ be the automorphism of (x,4) obtained by restricting f. Let A:
(m,4) > (0, A) be the inclusion ncp and the identity on 4. Obviously

hg =fh . (6.12)
If we pass to the induced homomorphisms and apply 6.7 and 6.11, we obtain
hyeOs = fxhye =Ry . (6.13)
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Thus we have proved

6.14 Lemma. If g, is the automorphism of H™(W Q, M?*®G) determined
by any element y of the normalizor o of =, then g, & — & belongs to the kernel of b,
where h s the inclusion mcp and EeH (WQ, M?*QG). Thus, as remarked
after 6.1, the cohomology operation corresponding to g, & — & 1is zero.

In order to use the lemma effectively in computations, we shall choose an
explicit ¥ and a corresponding chain mapping g, . Let the factors of M? be
numbered 0,1,...,p — 1 so that the generator T' of # can be described as
the transformation T(¢) =4 - 1 mod p in terms of integers. Let & be a
primitive root of the prime p (i.e. ¥/ = 1 mod p implies that § is a multiple
of p — 1). Let y be the permutation of 0,1,...,p — 1 defined by

y(Z) =kimodp . (6.15)
Then y~1(¢) = k2% mod p, and this gives
yTy1l= Tk . (6.16)

Thus y belongs to the normalizor ¢ of n. (Since the order of yis p — 1, it is
a generator of g/x.} If we arrange the integers 0 to p — 1 in the order

0,1,k,%k2,...,k"2 modp ,
it is seen that y leaves 0 fixed and permutes the remaining p — 1 elements

cyclically. This shows that y is an odd permutation because p — 1 is even.

Therefore
Yyu? = (— l)q'u,” , Yv¥ = (— 1)e+igyP | (6.17)

Letting W be as in § 2, we define a chain mapping g, : W—>W by speci-
fying first its values on the n-basis {e,}:
k-1

Fuo = k'ey , gutap = X Tmeyyy , 120. (6.18)
m=0
Then, for each s =1,...,p — 1, we set
g, T%e; =T*g,e, , j=0. (6.19)

From this it follows that g, satisfies the equivariance condition 6.3 for the
automorphism 6. 16 of z. It is now an easy matter to verify g, 0 = dg, . Then
the resulting chain transformation g* of W®,M? (see 6.4) is defined by

g*(e®,.0) = (9,¢) Q,yc . (6.20)
These specific calculations will be needed in sections 8, 9, and 10.
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§ 7. The decomposition: W @, M? =L, L+ L,

As a first step in analysing the structure of W®,M? (p odd), we shall
decompose it into a direct sum of three cochain subcomplexes as indicated
above. Of importance is the fact that each is transformed into itself by the
g* of 6.20,

A cochain of W ®,M? is said to be in canonical form if it is written ¥ ,e,®,¢,
where ¢, is a cochain of M?. Since TeQ®,¢c = e®,T-*c, each cochain has one
and only one canonical form.

Recall that M? has all cochain groups equal to zero save in the range pq to
plg + 1) inclusive, C??(M?) has one generator «?, and CP@+D(M?} has one
generator v?. In the dimensions pg 4§ for 0<j<p, M? is generated by
products having p — § factors u and j factors v. Therefore = operates freely
in these dimensions.

Let us adopt the convention that the index § of the canonical cochain
e;®,¢, signifies that ¢, has dimension pg 4 7. Thus ¢, is zero unless 0 <j < p,
Co is a multiple of 47, and ¢, is a multiple of v?. In the highest non-zero dimen-
sion, a canonical cochain has a single term e,®,.c,. In dimensions pg + j
for 0<j<p, a canonical cochain has p — § + 1 terms

€, ®, ¢4 + e &5 11 4+t eD—f®ncp (7'1)
and in all dimensions <pgq, it has p + 1 terms
€,®,C0 F €41 ® 01 T+ €1, C, . (7.2)

We define L; to consist of all cochains having canonical forms of one of the
two following types for some ¢=0:

1
€2;1a®,C0 OF €31 ®,Co + 3112 R, “2; dey . (7.3)

The second type is described explicitly by requiring ¢, =0 for j>1, and
¢y = % dc, (recall that any coboundary in M? is divisible by 0, and 0 is a
power of p). Since Tu? = u?, it follows that Z'¢, = pc,; hence
(€212 ®4Co) = 23110 + €3442Q, 0cy
= €911 R, 2XCo + 3,19, ¢y (7.4)
=P <€z¢+1 R + 3y ®,,%~ 6co> .
This shows that a cochain of the first type has a coboundary of the second

type, and each cochain of the second type is a cocycle. Therefore L, is a cochain
subcomplex. Clearly L; is generated by the cochains e,,,®,4* and
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—;—)—5(83“_, ®,u?) for all =0, and is already in normal form with respect to
these generators. Applying 6.20, 6.18 and 6.17, we obtain
g7 (e2043®,U%) = g4 €012 @, YW?
= (— 1)%k* ey, ®,u” . (7.5)

From this it follows that g* transforms L, into itself,
Define L, to consist of all cochains having canonical forms of the type

€,®,¢, for s>0. (7.6)
It is in normal form:
0(e2; ®,0%) = peg_1 ®, 07, =1 (7.7)

It is obvious from 6.18 and 6.20 that g* maps L, into itself.
We shall describe L by imposing conditions on the initial and final terms of
a cochain in canonical form as follows:

(7.8) If the initial term is ¢,®,c, with s>0, see 7.2, we require that
co = 0.
(7.9) If the final term is ¢,®,¢, witht odd, we require that ¢, = 0.

(7.10) If the final term is e,®,c, with ¢ even and positive, we require that

1

Cp = ; 60,_1 .

Of course, all cochains €,®.c, arein L. The condition 7.8 is obviously stable
under 4. If ¢ is odd and >2

0{e41®,Cp 1) = 2, 3,6, 1 + €,18,0¢, 4
1
= €49 ®nch~1 + e 1R, ;620,,_1

because dc,_, is a multiple of v?. Therefore a cochain satisfying 7.9 has a
coboundary satisfying 7.10. If ¢ is even and >1

o (e,_, ®RnCp1 + €D, —213 5‘%—1)
= de, 3 ®,Cp 1 — €, 1R,0¢, ; + Ze,_, ®,,—11; de, g
e ey ®. (T —1)cy  + €01 ®, ( ~ de, , + z% 60,_1> .
The last term is zero since dc,_; is & multiple of v*. Therefore a cochain satis-

fying 7.10 has a coboundary satisfying 7.9. This proves that L is a cochain
subcomplex.
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The conditions 7.8, 7.9 are obviously stable under the chain mapping g*.
As for 7.10, we have

1
g* (ezi—l RnCp1 T €D, 5 5%-—1>

k—1 1
= (k"1 X T™egy 1) ®,9C,1 + kiey, ®n—5 yoéc, 4

m=0

Ly 1
= €, 1 Q, (k" X TP ™yc, } + e Q, 'ﬁ kyde, , .

m=0

Since dc,_,; is a multiple of v?, 6.17 gives

T7-myde, y = (— 1)2tléde,,
and therefore
L st 'S momyo, 3 = L biysc
P = YCpa T Y0Cyq .
This shows that condition 7.10 is stable under g*. Therefore g* maps L into
itself. ‘
It remains to show that the entire complex is the direct sum of the three
subcomplexes. That L,~L, =0 is clear by comparing 7.3 and 7.6, i.e.
¢, = 0 for any element of L,, and ¢, ¢ 0 for a non-zero element of L,. A
non-zero element of L, + L, has a non-zero c, if its component in L, is non-
zero, or else it lies in L, and then ¢,_; = 0 and ¢, 0. In the first case 7.8
does not hold, in the second neither 7.9 nor 7.10 could hold. Thus

La(Ly+ L) =0 .

Given any cochain in normal form, if it has an initial term e,®_ ¢, with s>0
and ¢, # 0, we may subtract from it an element of L, (the first or second
element of 7.3 according as s is even or odd) and obtain a cochain satisfying
7.8. If the resulting cochain has a final term e,®,c, with ¢ odd and ¢, # 0,
we subtract e,®,c¢, in L,, and obtain a cochain satisfying both 7.8 and 7.9
which is therefore a cochain of L. On the other hand, if the final term e,®,¢,

1 .
has ¢ even and >0, we subtract ¢,®, (c, ~7 dc,_l) in L,, and obtain a

cochain satisfying both 7.8 and 7.10 which is therefore in L. This completes
the proof of the direct sum decomposition.
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§8. Cohomology operations obtained from L, and L,

The subcomplex L, defined in 7.3 is in the normal form
d(ey; ®,4%) = p(e:z,i_1 R,u" + €3, Q, % 6u") , t>1. (8.1)

According to 4.11, we have only to ideuntify the cohomology operation cor-
responding to each of the cocycles e,;®,u? modp. By 6.20, 18 and 17

g* (€2 ®,u%) = gy €0, ®@,yu? = (— 1)7h'ey; Q7 .
Therefore, by 6.4, the cocycle
(9% — 1) (e ®,%%) = [(— 1)2k* — 1]ep; ®,u” (8.2)

belongs to the kernel of k., and therefore is zero as a cohomology operation.

If ¢ is even and 7 is not a multiple of p — 1, the coefficient (— 1)2%* — 1
is non-zero modp because k is a primitive root. Working modp, we may
divide 8.2 by this coefficient, and conclude that e,,®, u” represents zero as
a cohomology operation.

Again let g be even, and suppose % = s(p — 1). In this case the coefficient
in 8.2 is zero modp, so it imposes no relation on the cohomology operation
corresponding to ey, ®,u?. The operation is in fact a suitable multiple of the
cyclic reduced power SP4e—¢, namely :

Dlegyipn) ®nu"} = (— 1) Phaz . (8.3)

In this formula @ is as defined in [2; 2.11], and the braces {} mean to take
the cohomology class of the cocycle enclosed. To prove 8.3, we must recall
the definition [4 ;6.8] of &7 namely

P = (— 1y (m T ez oy - (8.4)

In this formula m = }(p — 1), and the coefficient is computed in the field Z,,.
Also, by [4; 2.8]
‘ (@*fe)-0 = u?-¢'(eQa)

where ¢': WQ®XK — K? has the same meaning as in [2; 2.6]. Comparing
this with [2; 2.8], we obtain

Dleg; R,u} = (— 1)!u®/fey; . (8.5)

In8.4, wetake ¢ — 2¢ = 23 (i.e. £ =1qg — 8), in8.5wetake ¢ = s(p — 1),
then we eliminate #%?/e between the two equations, and obtain 8.3. In the
computation one must use properties of m !, namely, by WiLsox’s theorem,
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m ! is non-zero modyp; if m is even, (m!)2= —1; if mis odd, (m!)2=1;
go in either case (m!)? = (— 1)m+1,

Now let ¢ be odd. The coefficient in 8.2 becomes — (k* + 1). Since k is a
primitive root of p, £* 4+ 1 =0 modp if and only if 7 is an odd multiple of
4(p — 1). If this is not the case, we may divide 8.2 by k* 4 1, and conclude
as before that e,; ®,u® represents zero as a cohomology operation.

Let g be odd, and suppose ¢ = (2s 4 1)}(p — 1). In this case, the cocycle
corresponds again to a suitable &7, namely

D {e(20s1) (1) U7} = (— 1) (m 1) Pha--1g (8.8)
As in the case of 8.3, this is derived from 8.4 and 8.5 by setting

t=14%(g—1) —s
in 8.4, ¢ = (284 1)m in 8.5, and eliminating w®/e. This completes the
analysis of the cohomology operations derived from L, .

The subcomplex L, defined in 7.6 is already in normal form (see 7.7). Let
M' be the subcomplex of M generated by v. Let w: M — K* be a cochain
map representing the class %. Then y| M’ =y': M' — K* represents the
cohomology class 7eH2+(K ; Z) containing the cocycle y’(v). Then % = §*%
where &* is the BocksTEIN coboundary for the coefficient sequence

0
0>Z—24~>2Zy3—>0

(see [2; 10.1]). Define L;in W ®, M'? in the same manneras L, in W, M?,
replacing # by v and ¢ by ¢ -+ 1. It is seen that, under the inclusion mapping
W®, M'?cW®, M?, we have L, = L,. The analysis given above for L,
applies to L] and hence to L,. It follows that each e, ®, v corresponds to a
cohomology operation which is zero or to a suitable multiple of Z7!8*.

In the special case § = 0, we set v = 0. Then W®, M? reduces to the
normal form: é(e,®,%?) = 0 and

O(ey; ®,uP) = pey 1 ®,u% , 1=1.
Now ¢,®,u? corresponds to the pth power operation in the sense of cup
products with integer coefficients (see [2; 10.1-4]). The remaining cocycles

lie in L, and have already been analysed. This concludes the case § = 0, and
we may suppose 0 = p* henceforth.

§9. The equivalence of L and X' M?

The analysis of L (see 7.8-10) is more complicated and devious. The re-
maining two sections are devoted to the task. The conclusion however is not
complicated to state :
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9.1. If q is odd, each cohomology operation derived from L is elementary. If
q 18 even, the only non-elementary operations derivable from L are obtained from
cocycles of the elementary subcomplex

8[eg@,u® + €@, 2 ur1v] = pO[eo®”u”-1v — e ®”E*% 6(u”—1v)J ., (9.2)

where I* in the group ring of n is defined by

-1
D= ¥ kT %, (9.3)
k=1
In checking the formula 9.2, the following identity is useful :
(T-1—1)Z*=—~F+pl . (9.4)

The cochain on the left of 9.2 is a cocycle mod p#, and its corresponding
cohomology operation is the PoNTRJAGIN pth power as defined by THOMAS
[6; 3.3, 3.4]. Once 9.1 is proved the proof of the main result of this paper
will be complete.

Define 2 M” to be the subcomplex of M? consisting of cochains of the
form X¢ where ¢ is a cochain of M?. Define a cochain mapping

f: L>ZM» (9.5)

as follows. If the initial term of a cochain in canonical form is e;®_c, where
§>0, its image under f is 0. If its initial term is e;®,c;, its image is Z'c,:

f(e!®nc(l+"'+el+p®ncy)=0 > j>0 (9.6)

fleo®q0 + -+ e, ;Q,¢,) = 2c, . (9.7)
Clearly f is & homomorphism. To prove §f = f4, we suppose in the first case
j= 21>0. Then the initial term of J(ez;®,co +---) I8 €y 1 ®,.2¢,; and
so its f-image is zero. Suppose next that § = 2¢ 4+ 1>0. Then the initial
term of J(eg 1 ®,€0 +---) I8 €@, (T 71— 1)c,. If ¢>0, 9.8 applies, and
its f-image is zero. If ¢ = 0, 9.7 applies, and its f-image is Z(T'— 1)¢, = 0.
In the second case, the initial term of d(e,®,¢c; +---) is

e ®,[dc, + (T — 1)eypy] -
Thus, its f-image is
’ 2dc; = 02c; = 6f(eg®, ¢, +--+) .

Therefore, 8f = f48 in all cases.

9.8. The automorphism y of M® (defined by 6.15) transforms LM* into
wiself. If g* is the cochain mapping 6.20 restricted to L, then fg* (z) = yf(z) for
all cochains z of L.
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The first assertion follows from y2X = Xy which is an immediate conse-
quence of 6.16. To prove the second, suppose z is such that 9.6 applies. Then
yf(z) =y(0) = 0. By 6.18 and 6.20, g*(2) has the same type of initial
term as z, 80 fg*(z) = 0. Ifzis as in 9.7, then yf(z) = y(2c;) = Zyc,. But
g* (2) has the initial term e, ®,yc, so fg*(2) is Zyc,.

9.9. IfJ denotes the kernel of f, then J is acyclic. This implies

fo: H(LQG) ~ HI( X M*QRG) .

Recall that the cochains of L are defined by conditions 7.8-10. In par-
ticular, then, a cochain of J in canonical form has a first non-zero term of the
form e,;®,c,, where ¢=0, and 0<j<p. If 1 =0, then X¢, =0, since
the cochain is in J. Suppose that ¢ is even and >0, and that the cochain

is a cocycle. This again implies that Xc¢; = 0. Thus, in either case, we must
have ¢, = (I! — 1)d for some d, since M? is free in the dimension j. Then

0(e;110,9) =€,Q,¢; — €;,,8,0d .
Subtracting this from the cocycle gives a cohomologous cocycle whose first

non-zero term has an index >:. If ¢ is odd, then we have (7! — 1)c, = 0.
The freeness of M? implies that ¢; = Xd, and

0(e;41R,9) =€,8,¢;, + €,,,®,6d .
Subtracting this gives again a cohomologous cocycle whose first non-zero
term has an index >s.

Repeating the process we obtain eventually a cohomologous cocycle having
one of the two forms (see 7.9, 10)

1
€3 @nCp1 OF €5 1Q,C, 1 1 €y ®n‘z‘)‘ deyy -

In the first case, we alter the first method of the preceding paragraph by ob-
serving that

1
d (ez¢+1 ®,d + ezi4a ®n; dd) = €3;®,Cp 1 -

In the second case, we apply the second method unaltered, and observe that
dd = —;; dc,_, because T'v? = v®. This shows that every cocycle of J is a

coboundary, and completes the proof of 9.9.

§10. The cohomology ot X M*

By [2; 11.7], each element of H"(W ®,M?) has an order dividing pf. The
same must be true of Hr(L) and, by 9.9, of Hr(ZM?). It follows that a
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normal form for ZM? will consist of elementary subcomplexes whose torsion
numbers divide p0.

10.1. 1If P is an elementary subcomplex of ZM? whose torsion number m
divides 0, then there is a mapping {: P — M? such that X{ is the identity.
Therefore each cohomology operation corresponding to a cohomology class of P is
elementary.

We may denote the generators of P by X'¢c and X'd with 6Zc = mZXd. Since
each coboundary in M? is divisible by 6, we have dc¢ = 64', and d' is a cocycle.
It follows that 02Xd' = mZ2d. If we set

() =c, ((Ed)=—d

we obtain the required {. If w is any cocycle of P®G, then ¢,®,{w is a
cocycle of L®G whose image in SMPQRG under fis w. By 3.3, ¢,®,.{w
and therefore w corresponds to an elementary operation.

Because of this result, we have only to analyse the torsions of order exactly
p0 in XM>, To this end, we define a category IV of cochain complexes having
certain properties of M?. A cochain complex N belongs to IV if

(10.2) = operates as automorphisms of N.

(10.3) CI(N)=0 if j<pg or §>p(g + 1).

(10.4) C*2(N) has a single generator «, fixed under =.
(10.5) C?etD(N) has a single generator o, fixed under =.

(10.8) C?e+(N) is n-free if 0<j<p.

(10.7) An integral cocycle of N is a coboundary if and only if it is divisible
by 6.

A mapping A: N — N’ of the category N is a cochain mapping which is
m-equivariant. Let k) be the integer such that Aa, = kjaf. Under composi-
tions of two mappings A, u, we have

k= k,k) . (10.8)

10.9. If N, N’ arein N, and k 18 an integer, then there exists a mapping A :
N > N' such that k) = k.

This is proved by a downward induction on the dimension. Start by setting
Aa, = kaj,. Suppose A has been properly defined in dimensions >pg -+ j.
If >0, by 10.6 we can choose a =-basis {8} of C?4+/. By 10.7, 68, = 0y,.
Then Ay, is defined. Since 84y, = Ady, =0, Ay, is a cocycle. By 10.7,
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6 2y, is the coboundary of some cochain. We select one such and denote it by
AB;. For any zem, we define Axf; = xA8;. Since A is m-equivariant in the
dimension pg -+ j + 1, it follows that Adzf; = dAxB,. In this fashion the
induction continues down to the dimension pg. To define 1 on «,, we prove
as above that A0, is a cocycle and it is divisible by 6. Hence we may choose
a cochain Ao, such that dAday, = Adx,. By 10.4, C?2(N') has a single genera-
tor fixed under =. Therefore 1o, is fixed and so 4 is equivariant.

10.10. If N,N' arein Nand A, 2, aretwo mappings N — N' of N such
that

k), = k) modp ,
then there exists an equivariant cochain homotopy
D: 6,04, .
1. e. for each §, D is a m-homomorphism of C1(N) into C/-1(N') such that
6Do =040 — O Aga — Db, aeCi(N) . (10.11)

This is also proved by a downward induction. By hypothesis
0Aro, — OAga, = O(ky — ky) o = pria,
for some 7. By 10.7, 6, is a coboundary of some cochain, say y. Then
80Xy = 2ro, = praj .

So we may set Da, =Xy, and D is equivariant and satisfies 10.11 with
&= 0y,

Suppose D has been defined properly in dimensions >pg + 7. Let {8,}
be a n-free basis in dimension pg + § (assuming §>0). Then the right side
of 10.11 is defined for o == §;,. The standard calculation shows that it is a
cocycle. It is also divisible by 6 because 88, is divisible by 0. Hence it is a
coboundary of some cochain, we define D g, to be one such. We extend D to
be a m-homomorphism, and then verify that 10.11 still holds in the dimension
pg -+ 4. When j =0, we set Doy = 0. This is clearly equivariant. Also
the right side of 10.11 with « = o, must be zero. For it is a cocycle divisible
by 0, and hence it is a coboundary ; but by 10.3, CP2-1(N') = 0.

We introduced the category IV for the purpose of studying the subcomplex
ZM?. Now if N and N' are any complexes in N, we compare the cohomology
of XN and ZN' as follows :

10.12. If1: N —> N’ isin N and k) 13 prime to p, then A induces an iso-
morphism A,: 6HI(ZN) ~ 0H/ (EN') .

11 Commentarii Mathematici Helvetici
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By 10.9, there is a u: N’ - N such that k, k) =1modp. By 10.8
and 10.10, there is a cochain homotopy D of 64 into 61, where 1 is the iden-
tity map. Then if 2« is any cocycle of TN, 10.11 gives

DX = 6XDoa=0pila — 60X .

Therefore (ud)y == py A, induces the identity mapping of 0H7(XN). By the
symmetry of the situation, A, pu, induces the identity in 6H7(ZN’'). This
proves 10.12.

By 10.9, there are maps 4 with %, = 1. It follows that 0H?(XN) has the
same structure for all N in IN. To compute these groups we construct a sim-
plest N, in IV as follows. It has a single fixed generator «, for C??¢(N,) and o,
for C?@t)(N,), and has a single zn-free generator «,; for CP2+(N,), 0<j<p.
Define 6 by

Oag; = 0F 05, ,  Ooagyyy = OAag; s (10.13)

for 05i<(p — 1)/2. The conditions 10.2 to 10.6 are trivially true. The
truth of 10.7 follows from the fact that each of A, X generates the annihilator
of the other in the group ring of z.

The complex XN, has a single generator Xo; for each 0<j=<p. The co-
boundary relations are

O0Zap; = pOrag;y , 020y =0 . (10.14)

Thus XN, is in normal form, and it has torsion of order pf in every other
dimension from pg to p(g + 1). Since M?® is in IV, 10.12 implies that the
same conclusion holds for ZM?. These results are summarized in :

10.15. The torsion numbers = p0 of ZMP® occur just once in every other
dimension from pq to p({qg + 1). One obtains elementary subcomplexes of ZM?
containing these torsions by taking the A-image of XN, where 1: Ny —~ M? isan
equivariant mapping such that k) is prime to p.

Cocycles of order p0 obtained in this way are not generally in the image
H(M?) —> H(XM?) under 2. However in all but one exceptional case they
correspond to elementary cohomology operations. To see this we must study
the behavior of such cocycles under the automorphism y of ZM? which, by
9.8, corresponds to the chain mapping g* of L.

Let A: N, — M? be a fixed equivariant mapping such that k) = 1. Now
y Ais a cochain mapping N, — M? but it is not equivariant because y7' = Ty
where k is a primitive root of p. However for each integer ¢ in the range 0 to
}(p — 1) we shall construct an equivariant mapping u depending on ¢ such
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that yA and u coincide on C?+% (X N). Let the integer m be the inverse
mod p of the primitive root k. Set

k—~1 m—1
A=3T1, I'=3XxTi
i=0 i=0
in Z (=). In the group ring of the normalizor of z, we obtain readily the relations
yr=2=2y, yd=A4A4y, Ay=yl4. (10.18)
and therefore
AyAd = A4y, yI"A = Ayl =0 (10.17)

Define an equivariant mapping x: Ny - M? by specifying its values on basis
elements as follows

wlgpes) = A'yA{cges) §=0,1,...,3(p —1— 21),
B(0pipeeer) = A*YA(29i10641) » s§=0,1,....3p—1—21),
ploggg) =yl Ao ag) §=0,1,...,7,
2(ogizai1) = Y1 A(0tgs_9541) §=0,1,...,7.

The relation J8pu = ud follows directly from 10.13, 10.16, 10.17. When
restricted to XN, u takes the form
p(Lagie,) = BYyi(Zasys,)
p(Eazipaepr) = Y AL agy0011)
p(Eog; e} = mYyr(Log; y,)
p(Zag;_se41) = M YA(Lag;_g44) -
The reason for this is that yX =Xy, AX =kX, and I'Y = mZX. Taking
s =4{p — 1) — ¢, we have

p(Za,) = BO-N-ty 1 (Za) |

(10.18)

Now «, and A, = v? are fixed under x ; so, by 6.17
/‘(o‘p) = (— 1)4-}-1]9%(11—1)—1'@11 .
Consider now the mapping x — 4 of N, into M?. It is obviously equi-
variant; and oy [(— LeREe-0— _ 1]ep (10.19)

Because k is a primitive root of p, the only case where the coefficient of v? is
divisible by p is the case ¢ even and ¢ = 0. In any other case, k,_, is prime
to p; and so, by 10.15, u — 4 applied to TN, gives the torsions of order
p0 of ZM>, By 10.18, we have

(4 — N)Za; = (y — 1)AZa, for j=2i and 2i-+1. (10.20)
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For convenience set AZag =B and Aoy, =7 .
Both y and (y — 1)y are cocycles generating torsion of order pf in ZM?,
Since QHP+E+1(ZM?P) is cyclic of order p, we must have 0y ~ b(y — 1)6y
for some integer b prime to p; thus

dw=0y — by —1)6y for weXM* .

Since 8B = pBy, it follows that f— by — 1) — pw is a cocycle. By
10.15, 0 H?et# (X M?) = 0. Therefore there is a cochain w,«XZM?® such that

bw, =60(8 — by — 1) — pw) .

By 10.1, any cocycle of this elementary complex corresponds to an elemen-
tary cohomology operation. Taking Z,, as coefficient group, it follows that
B —bly — 1) is a cocycle and corresponds to an elementary operation.
However (y — 1)8 corresponds to zero as a cohomology operation; this is
seen by assembling 9.8, 6.20, 6.14 and 6.1. It follows that § corresponds to
an elementary operation.

In the case ¢ even and ¢ = 0, it is clear that

8Zu? = pdu? = poXur—lv (10.21)

is an elementary subcomplex giving the torsion of order p# in this case. By
the preceding argument, the only non-elementary cohomology operations
derivable from ZM? are obtained from this subcomplex. If we apply f of 9.5
to 9.2, we obtain 10.21. This completes the proof of 9.1 and, hence, our main
result,
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