
Cohomology Operations derived from Cyclic Groups*) 

by N. E. STEE~ROD, Princeton (N. J.), and EMERY T~OMAS, Berkeley (Cal.) 

w 1. Introduction 

In a previous paper [2], STEE~ROD defined a family of cohomology opera- 
tions, called reduced powers, each being associated with some permutation group. 
I t  was also shown that these operations have a basis, in the sense of composi- 
tion, consisting of, firstly, four primitive types of operations (which are : addi- 
tion, cup-product, homomorphisms induced by coefficient homomorphisms, 
and BOCKSTEr~-WHITNEY coboundary operators) and, secondly, those reduced 
powers associated with cyclic permutation groups having degree p and order p 
where p ranges over primes. 

In this paper, we shall improve the result by  showing that  there is a smaller 
basis consisting of the same primitive operations and only particular opera- 
tions associated with cyclic groups : namely, for each prime p the cyclic redu- 
ced powers 

~ i :  Hq(K;Z~) -~Hq+~c~-I~(K;Z~) , i : 0 , 1 , . . .  , 

and the PONT~ZAGn~ pth  powers 

~ : H2q(K ;Zp~) -> H~q(K ; Z~+I) . 

The latter were defined for p ~-- 2 by PO~TRJAGr~ [ 1 ], and generalized for 
p > 2  by THOMAS [5]. When p -~ 2, ~ is usually written Sq ~~. 

Throughout the paper an elementary cohomology operation will mean one 
which is a composition of operations of the four primitive types. 

w Recapitulation 

Let p be a prime, and ~ the cyclic permutation group of order p and degree p. 
The reduced power operations based on z are obtained as elements of coho- 

mology groups Hr(W | M ~ | G) . (2.1) 

In this expression W denotes a ~-free acyclic chain complex, G is any coeffi- 
cient group, and M is a cochain complex having two free generators u ,v  of 
dimensions q,q ~-1 ,  respectively, and the coboundary relation 

(~u ----- Ov (2.2) 
*) Work supported in part by U. S. Air Force Contract AF 18 (600)-1494. 
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where 0 is an integer > 1. Finally,  x acts on M ~ ---- M |  �9 �9 | M (p factors) 
b y  cyclic permuta t ions  of  the  factors. Then  an element  ~ of the  group 2 .1  
determines a eohomology operat ion 

: Hq(K ;Z0) -~ Hr(K ;G) (2.3) 

defined for all complexes K .  
We refer to  Z0, G as the  initial and terminal coefficient groups respectively.  

In  a paper  b y  ST~.v.~OD [3], i t  is shown t h a t  a basis for  cohomology operat ions 
is provided by  the four pr imit ive types  and  those operat ions whose initial and 
terminal  coefficient groups are cyclic of infinite or pr ime power order.  Thus 
we have only  to  consider the  cases 0 = 0, 0 ~- a prime power, and G = Z m 
where m ---- 0 or m ~- a prime power. In  case 0 ~- 0, the  eochain complex 
M is simplified by  set t ing v ~- 0 ; then  M ~ is a cyclic group generated b y  the  
cocyele u ~ . 

Since the  group 2.1 is independent  of the  choice of W, we shall choose the 
simplest known x-free acyelic complex W. Let  T denote  the generator  of 
which moves each factor  of  M ~ one step to the  right and moves the  last factor  
to  the  first position. In  the group ring Z (x) set 

p--1 

A - - - - T - -  1 and 2:---- ~: T~ . (2.4) 

The group of r-chains (r ---- 0, 1 , . . . )  of  W is the  x-free module having one 
generator  e r (i. e. as a complex W has a single r-cell and its dist inct  t ransforms 
in each dimension r). The  bounda ry  opera tor  in W is defined b y  

Oe,~+l----Ae,~ , ae,~+,=Xe,~+l , i - - - -0 ,1  . . . . .  (2.5) 

Since each of A, 2: generates the annihi lator  of the other  in Z (=), i t  follows 
t ha t  W is acyelic. 

We have therefore,  the  problem of  comput ing the  cohomology of  the  specific 
cochain complex W | M ~. Speaking roughly  our  method  consists in re- 
ducing the  complex to  normal  form and reading off the  results. We must  
distinguish special cases depending on the  integers p ,  q, 0, m, r ,  principally, 
p ----- 2 and  p > 2, q odd and  q even, 0 = 0, 0 ---- pk and 0 prime to  p .  The 
case 0 = 0 will be obta ined as a subcase of  0 -~ pk b y  the device of set t ing 
V = 0 .  

w 3. The case 0 prime to p 

In  case 0 is prime to p, we will show that each $ ~ H r ( W | M" | G) gives an 
elementary operation. In  all subsequent  sections it  will be assumed t h a t  0 is a 
power of  p .  
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Le t  a be the subgroup of  g consisting of the unit  element.  Then W is a-free, 
and 

W| Y :  W| Y~W| Y 

where g is the na tura l  factorizat ion.  In  [2 ; 10.4] it is shown tha t  

3.1. Each element o/ H r (W | M Y | G) de/inca an elementary operation. 
I f  we now apply  the result [2 ; 3.4],  we have 

3.2. Each element o/ the image o/ 

g*: H r ( W |  M~| -~.H~(W|174 

de/ines an elementary operation. 
As a corollary we have 

3.3. Each cocycle of W | Y | G o] the form % | w, where w is a cocycle 
o/ M Y | G, de/ines an elementary operation. 

Now let ~ denote  the  trans/er chain t ransformat ion defined relative to the 
subgroup a of  ~ (see [2 ; 11.1 ] 

: W |  Y - ~ W |  . 

Since p is the index of a in ~, [2 ; 11.2] gives g v = p where p means multipli- 
cation by  p.  Passing to  cohomology with coefficients in G, it  follows tha t  
g* 3" = p ; and therefore 

3.4. Each element o/ H r ( W  | Y @ G) which is divisible by p defines an 
elementary operation. 

Assume now tha t  0 is prime to  p .  Then there  are integers ~, fi such tha t  

s 0  + t i p  = 1 . 

Consider now the  cochain mappings M -+ M which are multiplications by  
sO, tip and 1. We construct  a coehain homotopy  D of  tip into 1 by  setting 

The relat ion 
have t ha t  

D u  ----- 0 , D v  ~ o l u  

8D + D6 = aO ~ 1 - - t i p  follows directly. By  [2; 5.2],  we 

1 |  : W| ~ W |  Y 

is coehain homotopic  to  the  identi ty.  I f  we tensor with G and pass to eoho- 
mology, i t  follows tha t  each element  of Hr(W|174 is divisible b y  
(flp)Y ; and so by  3 .4  it  defines an e lementary  operation.  
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w  The ease p = 2 and q even 

W e  shall give a normal  fo rm for the  complex W |  ~, i. e. we express it  as 
a direct  sum of elementary subcomplexes  each with two generators ,  say x and  y,  
and  a coboundary  re la t ion of the  fo rm Ox = ky.  

I n  M 2 we shall abbrev ia t e  u |  b y  u 2, u |  b y  uv ,  etc. Then  M 2 has  the 
four genera tors  u ~, uv ,  vu  and  v 2. Since (Te~)Q,,w = e j Q ~ T - l w ,  it follows 
t h a t  W Q , , M  ~ has  the  generators  e~| ~, e j |  e~Q.~vu and ej|  ~ 
for all j ~ 0. Recall  t h a t  the  definition of the  grading, o f  a tensor  p roduc t  of  
a chain and  a cochain complex [2;  2 .2]  gives d i m ( e ~ |  ]. 
Hence,  in the  highest  non-zero dimension 2 (q ~- 1), there  is ju s t  one genera-  
tor,  and  we set  

~ 0 = e o |  ~ �9 (4.1) 

I n  the  dimension 2q d- 1 there  are three  generators ,  and  we define a uni- 
modula r  t r ans fo rma t ion  to a new basis  ao, fl0, ?0 b y  the  ma t r ix  

e o |  e o |  el| ~ 

ao 

1 0 - - � 8 9  

- - 1  1 - - 0  

0 0 1 

(4.2) 

B y  v i r tue  of  w 3, we are working under  the  assumpt ion  tha t  0 is a power  of 
p = 2, so - -  �89 0 is an integer.  The  de te rminan t  is 1, hence ao, fl0, ~'o form 
a basis  in this  dimension.  

I n  the  dimension 2g, we have  four  generators ,  and  we define a new basis 
b0, co, a l ,  ~1 b y  the un imodula r  t r ans fo rma t ion  

eo| ~ el |  el | e2| ~ 

Do 

Co 

~x 

Ot 1 

1 0 0 0 

0 1 0 0 

0 1 1 0 

0 0 0 1 

(4.3) 

I n  the  dimensions 2q - -  2 i  for i ~  1, we define new genera tors  b~,e~,~i+t, 
a~+t b y  the  un imodu la r  m a t r i x  
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e2i | uz ez~+l @n uv e~i+l | vu  es~+~ | I 

b~ 1 

c~ 0 

~,+1 0 

a~+ i 0 

Finally,  in dimensions 

fl,, r , ,  d, ,  a~ b y  

e2i_ 1 | ~2 

133 

d, 

a ,  

0 0 0 

1 0 0 
(4 .4)  

1 1 0 

0 0 1 

2q - -  2i + 1, for i > 1, we define new generators  

e2i| e u i ~ v u  e~i+x | 2 

�89 �89 o 

o ~ o �89 

0 - - 1  1 - - 0  

0 0 0 1 

( 4 .~ )  

With this  new basis  the  coboundary  in W |  2 takes  the  normal  fo rm 

(~a t = - 2 a ~  , i > O  , (4.6) 

8b o---  20flo , (4.7) 

~b~ = 2/~, , i_>_ 1 , (4 .8 )  

~c, = ~ , i ~ 0 , (4.9) 

~ d , =  ~, , i > l  . (4.10) 

As an example,  we compute  4 .7  in detail.  

since q is even. 

N o w  ~ o  

~(eo |  ~) = (Oeo) |  + e o |  ~) 

= Oeo |  + u v )  

O ( e l |  = ( a e O |  - -  e~ |  

= ( A e o ) |  - -  Oe~| ~ . 

A = T - - 1 ,  

Therefore  

and  ( T e o ) |  = e o |  = e o |  Then 

(/leo) |  = eo|  - uv) . 

~b o -~- 8(eo|  2 + Oel@nUV) 
= O e o |  + u v )  + O e o |  - u v )  - O~el |  s 

= 2 0 e o |  - -  O~el |  ~ = 20flo �9 

10 Commentarll Mathematici Itelvetici 
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The computations of the other eoboundaries are similar. I t  should be pointed 
out  that  the assumption that q is even is used in obtaining the relations 

Tu~ = u '  , T v  ~ = - v" , ~(u ~) --  O(vu + uv) . 

Using this normal form, we can now read off the cohomology of W | ~ ; 
it  is the direct sum of the cohomologies of the subeomplexes 4.6 to 4.10. 
Obviously 4.9 and 4.10 are acyclic complexes, and their cohomologies are 
zero. Before treating the other three, we will prove a lemma which greatly 
reduces the task of showing that  the cohomology operations corresponding to 
the various cocycles are compositions of the operations specified in w 1. In partic- 
ular the lemma eliminates the need of considering various terminal coefficient 
groups Z~. 

4.11. Lemma. Let N be an elementary subcomplex of W |  ~ generated 
by x ,  y with Ox = k y .  Then the cohomology operation which corresponds to any 
cocycle o/ N |  is a composition o/ elementary operations and the operation 
corresponding to the cocycle x rood k. 

Let us recall the way in which a cocyele of W |  ~ corresponds to a 
cohomology operation on an element ~ H q ( K ; Z e )  (see [2; w 2]). A map- 
ping ~v : M -~ K* representing ~ is chosen (i. e. v/u is a cocycle of the class ~). 
Then ~v determines a mapping 

~:  W |  , 

which induces a eohomology homomorphism 

�9 : H r ( W | 1 7 4  - + H r ( K ; G )  . 

I f  ~ H r ( W | 1 7 4  then ~(~) is defined to be r Now let 

~cH'(N| 

be the class of the cocycle x rood/~. Then ~V(x) is a eoeycle of the class 
~(~),H'(K;Z~). Therefore ~VIN: N-+K* represents ~(~). Apply now 
[2 ; Lemma I0. I] which asserts that the image H'(N| --~ H'(K ; G) is 
generated by ~ (W) and elementary operations. This proves the lemma. 

By virtue of the lemma, it suffices to identify the cohomology operations 
corresponding to the cocycle b o rood 2 0, the cocycles b~ mod 2 for i ~ 1, and 
the coeycles a~ mod 2 for i ~ 0. Now 

bo = eo| ~ + Oe,|  

corresponds by  definition to the PO~T~JAGI~ squaring operation ~s  (see 
[5; 3.4]). And 

b~ = e21 | us 
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corresponds by definition to the cyclic reduced square Sq2~ = Sq q-s~ (see 
[2 ; p. 6] and [4 ; w 41). If it is felt desirable that Squ should operate only on 
eocycles rood 2, then the operation represented by b~ can be written as 
Sqz~, where W : Z0 --~ Zs is reduction mod 2. Note that Sq~ -2~ has an even 
superscript since q is even. 

It remains to identify the operation corresponding to the cocycle a, rood 2. 
Let 5* denote the BOCKSTEn~ coboundary operator corresponding to the exact 

0 
sequence O--+Z--~Z--+Zo--~O. If ~cHq(K;Ze) and VJ: M-+K* re- 
presents ~, then v/(v) represents 5"~; and finally 9~(esi+1| s) represents 

Sqs~+ 15"~ ~ Sqq-S~5*~ . 

Therefore a~ corresponds to the cohomology operation Sqq-2~ 5*. Note again 
that the upper index is even. 

In the special case 0=0, we set v----0, and then W| s is in the 
normal form 

(e0 | 2) = 0 

~ ( e s i |  s) =-: 2 e s i _ l |  s i >  l . 

The cocycle e0| ~ corresponds to the operation of squaring in the sense of 
the cup product (see 3.3 and [2; 10.2]). As before e s t |  s rood 2 corre- 
sponds to Sq q-2~. 

w The case p = 2 and q odd 

The change in the parity of q affects both the coboundary operator and the 
action of T in M s. For the latter we have 

T u  s = - u s , T u v  = v u  , T v u  = u v  , T v  ~ = v s . 

Starting with the same generators of W |  2 as in w 4, we reduce to normal 
form as follows. In the highest dimension 2q + 2, we have one generator, 
and we set 

~o ~-  e o |  v s  �9 

In the dimension 2q + 1, we define a new basis by the unimodular trans- 
formation 

eo| eo| el| 2 

c o 

~o 

o[ o 

1 0 0 

- - 1  1 0 

0 0 1 
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I n  all dimensions 2 q - -  2i  for i ~ 0, we define a new basis by  the  unimodular  
t ransformat ion  

~/+1 

dt 

~t+l 

a t  

e2t@=@ ~ e2i+l @=~Y e2/+l@~V@ e~i+2@=v z 

1 -�89 �89 0 

0 1 0 �89 

0 1 1 0 

0 0 0 1 

I n  all dimension 2q --  2i  + 1 for i ~ 1, we define a new basis b y  the uni- 
modular  t ransformat ion  

e2i_ 1 @~'u 2 e2i @ = u v  e~t @ = v u  eai+l @ n v  2 

b t 

ci 

~t 
OQ 

1 0 0 0 

0 1 0 0 

0 - - 1  1 0 

0 0 0 1 

I n  the te rms of  the  new basis, the  coboundary  relations become 

~Co - -  0~o 

~b~ = - - 2 f l ~  i > l  , 

~a~ = 2 ~  i ~ O  , 

~dt = ~t i ~ O  , 

~c~ : 7t i ~ 1 . 

The  last  two subcomplexes have zero cohomology. By  4.11, we need only  
ident i fy  the  cohomology operations corresponding to  the cocycles Co mod 0, 
a t rood 2, and b t rood 2. Now c o = e o |  defines an e lementary  operat ion 
b y  3.3 (it is in fac t  the  operat ion ~ - - > ~ 5 " ~  where ~* is the  obvious BeCK- 
STEIN). 

By definition, b t = e ~ t _ l |  ~ is the  cyclic reduced square 

Sq2~_1 ---- S q  q - ~ + l  �9 

Since q is odd, q -  2 i  + 1 is even. Again the  operat ion m a y  be wri t ten  
Sq~-S~+l~. where ~ is reduct ion  rood2.  
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The cocycle a s ~ esi+2| ~ rood2 can be identified with 

Sq2~+~ ~* ~- Sq q+l- (~+2) ~, 

exact ly  as the coeycle a s of w 4. Again the upper index of the square is even. 
In  the special case 0 ~ - 0 ,  we set v--~ 0 and  then  W| 2 is in the  

normal form 
~(e2~+l| 2) ~- --  2e2~| ~ , i ~ O  . 

As above the cocycle e2~+~ |  ~ mod2 corresponds to the operation Sqq-2~-l. 
We may  summarize our results in the case p -~ 2 as follows. The only 

operations needed in addit ion to the elementary operations are the squares 
Sq 2~ ( i > 0 )  when q is odd or 0 ~ 0 .  When q is even and 0 ~ - 2  ~, t h e P o ~ -  
~JAGr~ square is also needed. 

w 6. The automorphism g,  of H(W | p) 

We assume henceforth tha t  p is an odd prime. Our analysis must  take 
account now of a phenomenon not  present when p- -  2, namely : ~ is a proper 
subgroup of the symmetric  group cY~ of degree p.  I f  ~ c e c cY~, and U is a 
e-free aeyclic complex, then  the inclusion z c ~ induces a homomorphism 

h , :  H r ( W | 1 7 4  "->Hr(U|174 ; (6.1) 

and, for any  element ~ on the left, the cohomology operations corresponding 
to ~ and h ,  (~) coincide (see [2 ; 3.4]). In  particular, if ~ is in the kernel of h , ,  
the  corresponding cohomology operation is zero. The aim o / t h i s  section is to 
show that certain explicit elements belong to k e r h ,  when Q is the normalizor o] 
in c~,. I t  is a fact  tha t  these elements generate the kernel even for ~ = cfl~ ; 
bu t  we omit  the  proof of this since the proof is complicated and  the fact is 
not  needed. 

We need at  this point of the discussion a special case of a rather  general 
proposition. Because it is just  as easy and less confusing to present the latter, 
we shall do so. We shall consider objects (e ,A) where Q is a group, A is a 
eoehain complex, and Q operates as automorphisms of A.  By  a mapping f of 
(e ,A) into another  such (a ,B) ,  we mean a homomorphism Q --~ a and a 
cochain mapping A -~ B ,  both  denoted by  f ,  such tha t  

l ( x a ) = / ( x ) / ( a )  for x~Q, a ~A .  (6.2) 

These objects and  mappings form a category. A pair (~, G) where (7 is a Q-mod- 
ule m a y  be regarded as an  object of the category by  treat ing (7 as a cochain 
complex having just  one non-zero eochain group in the dimension zero. Now 
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the ordinary homology theory of groups, developed for this subcategory of 
pairs (q,G), can be extended to the entire category in a fairly obvious way. 
We shall review this extension briefly. 

Let U be a q-free acyclic chain complex. Defining the cochain complex 
U| as in [2 ; 2.2], we proceed to show that  Hr(U|  is independent 
of the choice of U. I f ]  : (q,A) --> (a,B) is a mapping, and Vis a a-free aeyclic 
chain complex, let q operate on V through [ : q -+ a. Then the fundamental 
lemma (see [2 ; 2.7]) gives a chain mapping [ .  : U --> V satisfying the equi- 
variance condition 

] . ( x c ) = f ( x ) ] . ( c )  , x~q, ccU.  (6.3) 

I t  follows that  ] .  |  : U |  -+ V |  induces a chain mapping 

[* : U|  --~ V |  , (6.4) 

and thereby induces homomorphisms of cohomology 

[ , :  H ' ( U |  -+ t t , ( V |  . (6.5) 

The second part  of the fundamental lemma asserts that  any two equivariant 
chain maps [ . ,  [~ of U into V axe connected by an equivariant chain homo- 
topy D. Then D | gives a cochain homotopy of ]* into ].t .  Therefore [ ,  
is independent of the choice of [ . .  

An obvious property of [ .  is 

] ---- identity map of (q,A) implies [ .  --~ identity. (6.6) 

For [ .  can be taken as the identity. 
Let [: (q ,A)  -+ (a,B) a n d g :  (a,B) ~ (v,C) be mappings. Then 

(g/). = g . [ .  . (6.7) 

For, having chosen g .  and ] . ,  we may choose (gD. to be the composition 
g . / . .  

Now let U, V be two q-free acyclie complexes. Corresponding to the iden- 
t i ty  map [ of (q,A),  we obtain two induced homomorphisms 

H r ( U |  ~ H , ( V |  -~ H ' ( U |  , 

whose compositions in either order again correspond to [ by the property 6.7. 
Then 6 6 asserts that  both compositions give identity maps. Therefore the 
various choices of the q-free aeyelie complex U give a family of cohomology 
groups, any two connected by an isomorphism, and the family of these iso- 
morphisms is transitive by virtue of 6.7. As is customary in such a ease, we 
identify this family of groups with a single group. To emphasize its analogy 
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with the ordinary homology group of a group, we shall call it the r th homo- 
logy group of 0 with coefficients in A, thus : 

H , ( q  ;A) = H ' ( U  |  . (6.8) 

If  / :  (q,A) -+(a,B), then 6.5 becomes 

/ , :  Hr(~;A) --~U,(a;B) . (6.9) 

I t  is clear that  6.6 and 6.7 continue to hold for the induced homomorphisms 
taken in this more general sense. 

A mapping / : (~,A) -* (o,A) is called an a u t o m o r p h i s m  if both mappings 
-~ Q and A -* A are automorphisms. Then ] has an inverse mapping, and 

we may apply 6.7 and 6.6 to conclude that  ] ,  is an automorphism of H,(~ ;A). 
The i nne r  automorphism ] corresponding to an element y ~ is defined by 

] (x )  = y x y  - I  , ](a) -= y a  , x c Q ,  a ~ A .  (6.10) 
Then we have 

f -=-- an inner automorphJsm implies f .  ---- identity. (6.11) 

To see this, l e t / ,  be the chain mapping U -* U defined by f .  (c) ---- y c .  Since 

/~  (xc)  = y x c  -~ y x y - l y c  -~ ] ( x ) f .  (c) , 

the equivariance condition 6.3 is fulfilled. Then 

(]~ | 1 7 4  : ],, c ~ / a  ----- y c |  -~ y ( c |  . 

This implies that  the induced mapping/~ of U |  into itseff is the identity ; 
and so / .  ---- identity. 

This completes the discussion of the general theory, and we return now to 
the special case with which we began this section. In applying the above 
results, we take 

A -~ M ~ |  ; 

in this case u, its normalizor ~, and the symmetric group cY~ operate in A by 
permuting the factors of M ~ and acting as the identity in G. Let y be any 
element of ~, let / be the corresponding inner automorphism given by 6.10, 
and let g be the automorphism of (~r,A) obtained by restr ict ing/ .  Let h:  
(g,A) -~ (~),A) be the inclusion ~zc Q and the identity on A. Obviously 

h g  = / h  . (6.12) 

I f  we pass to the induced homomorphisms and apply 6.7 and 6.11, we obtain 

h , g .  ---- [ , h .  = h . .  (6.13) 
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Thus  we have  p roved  

6 .14  L e m m a .  I f  g .  is the automorphism of H ~ (W |  ~ | G) determined 
by any  element y o/ the  normalizor Q of ~ ,  then g.  ~ --  ~ belongs to the kernel o / h ,  
where h is the inclusion g c q  and ~ e H ~ ( W | 1 7 4  Thus,  as remarked 
after 6.1,  the cohomology operation corresponding to g .  ~ --  ~ is zero. 

I n  order to  use the  l emma  effectively in computa t ions ,  we shall choose an  
explici t  y and  a corresponding chain mapp ing  g v .  Le t  the  factors  of  M �9 be  
numbered  0, 1 , . . . ,  p - -  1 so t h a t  the  genera tor  T of g can be described as 
the  t r ans fo rma t ion  T( i )  _---- i ~- 1 mod  p in t e rms  of integers. Le t  k be a 
p r imi t ive  roo t  of  the  pr ime p (i. e. /ci --~ 1 mod  p implies t h a t  j is a mult iple  
o f  p - -  1). L e t  y be the  pe rmu ta t i on  of  0, 1 . . . . .  p - -  1 defined b y  

y( i )  _~ k i  m o d  p . (6.15) 

Then  y - l ( i )  - -  I~-~i mod p ,  and  this gives 

y T y  -1 ~ T k (6.16) 

Thus  y belongs to the  normal izor  Q of  ~ .  (Since the  order  of  y is p - -  1, i t  is 
a genera tor  of  ~/g.)  I f  we ar range  the  integers  0 to  p - -  1 in the  order  

0 , 1 , k , k  S , . . . , k  p-~ m o d p  , 

i t  is seen t h a t  y leaves 0 fixed and  pe rmutes  the  remain ing  p - -  1 e lements  
cyclically. This  shows t h a t  y is an odd p e r m u t a t i o n  because p - -  1 is even. 
Therefore  

y u ~ ' =  (- -  1)qu ~ , y v ~ =  ( - -  1)q+lv~ . (6.17) 

Le t t ing  W be as in w 2, we define a chain mapp ing  g .  : W ~  W b y  speci- 
fy ing  first i ts  values on the  z-b~sis {e~} : 

k--1 

g .  es~ = k~e~ , g~ es+ ~ = k~ ~ T m e ~ + l  , i ~ O  . (6.18) 

Then,  for each  s ~ 1 , . . . ,  p - -  1, we set  

F r o m  this i t  follows t h a t  gv satisfies the  equivar iance  condit ion 6 .3  for  the  
a u t o m o r p h i s m  6.16 of g .  I t  is now an  easy  m a t t e r  to ver i fy  g .  a ---- 0 g . .  Then 
the  resul t ing chain  t r ans fo rma t ion  g* of  W |  p (see 6.4) is defined b y  

g* (e | = (g. e) |  . (6.20) 

These  specific calculat ions will be  needed in sections 8, 9, and  10. 
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w 7. The decomposition: W |  p = L 1 + L + L~ 

As a first step in analysing the structure of W |  2' (p odd), we shall 
decompose it into a direct sum of three cochain subcomplexes as indicated 
above. Of importance is the fact that  each is transformed into itself by the 
g~ of 6.20. 

A cochain of W |  r is said to be in canonical form if it is written ~ r ej | c~ 
where cj is a cochain o f M  ~. Since Te |  = e |  each cochain has one 
and only one canonical form. 

Recall that  M r has all cochain groups equal to zero save in the range pq to 
p(q A- 1) inclusive, C ~ ( M  r) has one generator u ~, and Cv~r ~) has one 
generator v v. In the dimensions pq A- ?" for 0 < ] < p ,  M r is generated by 
products having p -- j factors u and j factors v. Therefore ~ operates freely 
in these dimensions. 

Let us adopt the convention that  the index j of the canonical cochain 
e~| signifies that  cj has dimension ~q + j.  Thus cj is zero unless 0 < j < p ,  
Co is a multiple of u v, and % is a multiple of v ~. In the highest non-zero dimen- 
sion, a canonical cochain has a single term Co| In dimensions pq A- ] 
for 0 < j < p ,  a canonical cochain has p -- ] + 1 terms 

e o| + e 1| 1 + . . . +  %_~| (7.1) 

and in all dimensions < p q ,  it has p § 1 terms 

e , |  o + e,+l|  1 + . . . +  e,+~| . (7.2) 

We define L~ to consist of all cochains having canonical forms of one of the 
two following types for some i > 0 : 

e,~+~ | or e2~+1 | 21- e2i+2 |  (~c0 �9 (7. 3) 

The second type is described exphcitly by requiring c~ = 0 for ] > 1, and 
1 

cl = -~ ~co (recall that  any coboundary in M r is divisible by 0, and 0 is a 

power of p). Since T u  ~ = u ~, it follows that  XCo --- pco; hence 

(~ (e2~+2 | ---~ Zesi+l | -~- e2~+2 @. ~co 
= e~+~ | + e2~+~ |  ~c0 (7.4) 

= ,  (e,,+~| + e , , + , |  &o) �9 

This shows that  a cochain of the first type has a eoboundary of the second 
type, and each eoehain of the second type is a cocyele. Therefore L I is a cochain 
subcomplex. Clearly L~ is generated by the cochains e~+~| ~ and 
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l~(em,+2| ) for all i_~0, and is a l ready in normal  form with respect  to  
P 
these generators.  Applying 6.20, 6 .18 and 6.17, we obtain 

g* (e,,+, | = g~ e,,+~ | 

= ( - -  1)ak~+le2t+a| ~ . (7.5) 

F r o m  this it  follows t ha t  g~ t ransforms L1 into itseff. 
Define L2 to  consist of  all cochains having canonical forms of  the type  

e , |  for 8 > 0  . (7.6) 
I t  is in normal  form : 

~(e2,| ~) = pe2~_l| ~ , i ~  1 . (7.7) 

I t  is obvious f rom 6.18 and 6.20 tha t  g* maps L~ into itseff. 
We shall describe L by  imposing conditions on the initial and final terms of 

a cochain in canonical form as follows : 

(7.8) I f  the  initial t e rm is es| o with s > 0 ,  see 7.2, we require t h a t  

Co~O. 
(7.9) I f  the  final t e rm is e~ | with t odd, we require tha t  c~ = 0. 

(7.10) I f  the  final t e rm is e~ |  wi th  t even and positive, we require t h a t  

C~ =-- ~ (~C~__ 1 �9 

Of course, all cochains e 0 | c~ are in L .  The condit ion 7.8 is obviously stable 
under  8. I f  t is odd and > 2 

O(et_l| : Zet_z| 1 -~- et_l| 1 

because 8%_ 1 is a multiple of v ~. Therefore  a cochain satisfying 7 .9  has a 
coboundary  satisfying 7.10. I f  t is even and > 1 

1 
(~(et-l|174 ) 

1 
: Ae~_~ |  -- e~-1| + ~ e t _ l |  ~%-1 

= e'-'i| --1)c~"l + e'-l | (-:- ~c,-l 2f- "~ L ~e,-1) 

The last  t e rm is zero since 8cp_ 1 is a multiple of  v ~. Therefore  a eoehain satis- 
fying 7 .10 has a coboundary  satisfying 7.9.  This proves t h a t  L is a cochain 
suboomplex. 
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The conditions 7.8,  7 .9  are obviously  s table  under  the chain mapp ing  g~ .  
As for 7.10, we have  

1 
g" (s174 e , ,~ .  -~ ~%-1 t 

k - 1  1 
: ( kt-1 X Tme2~-l)| q- k'e,~| Y~%-1 

F 
k-1 1 

: e2~-l| ~-1 .,~ T~-my%-~} "-k e,~| ~ k'y(~c~,_~ . 

Since ~ %-1 is a mult iple  of  v ~, 6 .17 gives 

and  therefore 
~-1 1 

P ~=0 

This shows t h a t  condit ion 7.10 is s table  under  g~.  Therefore g* maps L into 
itself. 

I t  remains  to  show t h a t  the entire complex is the  direct sum of the three  
subcomplexes.  T h a t  L1,-,L,---0 is clear b y  compar ing  7 .3  and 7.6, i . e .  
% - -  0 for a n y  e lement  of  L 1, and  c r r  0 for a non-zero e lement  of  L~. A 
non-zero element  of  L~ + L2 has a non-zero co if its componen t  in L~ is non- 
zero, or else it lies in L 2 and  then  c~_ 1 = 0 and  %~= 0. I n  the  first case 7 .8  
does not  hold, in the  second nei ther  7.9 nor 7 .10  could hold. Thus 

L ~ ( L R 4 - L 2 ) = 0  . 

Given a n y  cochain in normal  form, if  i t  has an initial  t e r m  eo |  o with s > 0 
and  c o :/: 0, we m a y  sub t r ac t  f rom it  an  e lement  of  L 1 (the first or second 
element  of  7.3 according as s is even or odd) and  obta in  a cochain sat isfying 
7.8.  I f  the  result ing cochain has a final t e r m  e~| with t odd and c~ ~ 0, 
we sub t rac t  e~| in La, and obta in  a cochain sat isfying bo th  7.8 and 7.9 
which is therefore  a cochain of L .  On the  other  hand,  if the final t e rm e, | 

has  t even  and  > 0 ,  we sub t rac t  e t |  ~ % - - - ~ d % _ I  in L2, and obtain a 

coehain sat isfying bo th  7 .8  and 7 .10 which is therefore in L .  This completes  
the  p roof  of  the  direct  sum decomposi t ion.  
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w 8. Cohomology operations obtained from L I and L,  

The subcomplex L 1 defined in 7.3 is in the normal form 

8 ( e , , | 1 7 4  r ~ - e 2 i ~ u ~ )  , i > l  . (8.1) 

According to 4.11, we have only to ident ify the cohomology operation cor- 
responding to each of  the cocycles e~| ~ modp .  By  6.20, 18 and 17 

g=~ (e2t |  ~') = g~ e2~ | r = ( - -  1)q~;~e2i @ . u  ~ �9 

Therefore, by  6.4, the  cocycle 

(g* - 1 ) ( e ~ |  = [ ( -  1)qk ~ -  1 ]e~ |  (8.2) 

belongs to the  kernel of h , ,  and therefore is zero as a cohomology operation. 
I f  q is even and i is not a multiple of  p -- 1, the coefficient (-- 1)q~ t -- 1 

is non-zero modp  because k is a primitive root. Working m o d p ,  we m a y  
divide 8.2 by  this coefficient, and conclude tha t  e2~| r represents zero as 
a cohomology operation. 

Again let q be even, and suppose i = s(p -- 1). In  this  case the coefficient 
in 8.2 is zero m o d p ,  so i t  imposes no relation on the cohomology operation 
corresponding to ea~ |  ~. The operation is in fact a suitable multiple of the 
cyclic reduced power ~v�89 namely : 

�9 {e~,(,_l~ |  = ( -  1)',~�89 . (8.3) 

In  this formula ~ is as defined in [2 ; 2.11 ], and the braces { } mean to take  
the cohomology class of the eoeycle enclosed. To prove 8.3, we must  recall 
the  definition [4 ; 6.8] of ~ *  namely  

...~t~ = (__ 1)m,+mq(q-l)l~(m !)2,-q~r/e(q_~,)(r_l ~ . (8.4)  

In  this formula m = �89 -- 1), and the coefficient is computed in the field Z~. 
Also, by  [4 ; 2 .8]  

where ~ ' :  W |  K 2' has the same meaning as in [2; 2.6]. Comparing 
this with [2 ; 2.8], we obtain 

{e,~ Gnu '}  = (--  1)zSr/ez~ . (8.5) 

In  8.4, w e t a k e  q -- 2t = 2s (i. e. t ---- �89 -- s), in 8 . S w e t a k e  i = s (p  - -  1), 
then  we eliminate $~/e between the  two equations, and  obtain 8.3. In  the  
computat ion one must  use properties of m !, namely, b y  WrLso~'s theorem, 
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r e ! i s  non-zero m o d p ; i f m i s  even, (m!) 2 ~ -  1; i f m i s  odd, (mI)2~ .  1; 
so in ei ther  case (m !)2 ~ ( _  1)m+l. 

Now let q be odd. The  coefficient in 8.2 becomes --  (k ~ ~- 1). Since k is a 
pr imit ive root  of p,  k ~ ~- 1 ~_ 0 m o d ?  if  and only  if  i is an odd multiple of  
�89 --  1). I f  this is not  the  case, we may  divide 8 .2  b y  k ~ ~- 1, and conclude 
as before tha t  e~ |  ~ represents zero as a cohomology operation. 

Le t  q be odd, and suppose i ~ (2s ~- 1)�89 --  1). In  this case, the  cocycle 
corresponds again to  a suitable ~ ,  namely  

~5 {e(~+i}(~,_i) | _-- (-- l)~+m(m !) ~(q-1)-~y, . (8.6) 

As in the  case of 8.3, this is derived from 8.4 and 8.5 b y  setting 

t = � 8 9  1 ) - 8  

in 8.4, i ~ - ( 2 s - F  1)m in 8.5, and eliminating ~ / e .  This completes the  
analysis of the cohomology operations derived f rom L 1 . 

The  subcomplex L~ defined in 7 .6  is a l ready in normal  form (see 7.7). Le t  
M '  be the subcomplex of M generated by  v. Le t  ~v : M -* K* be a cochain 
map representing the class ~. Then  ~v I M '  --  ~ ' :  M'  -* K* represents the  
cohomologyclass  ~EHq+I(K; Z) eon ta in ing the  coeycle ~v'(v). Then ~ ~ J*~ 
where 6" is the BOCKSTEIN coboundary  for the coefficient sequence 

0 
0 - * Z - - , Z  --*Zo --> 0 

(see [2 ; 10.1 ]). Define L~ in W | M '  ~ in the same manner  as L 1 in W | M ~, 
replacing u by  v and q by  q ~ 1. I t  is seen that ,  under  the inclusion mapping 
W | M '  ~ c W | M ~, we have L~ ~- L 2. The analysis given above for L 1 
applies to  L~ and hence to  L~. I t  follows t ha t  each e~i| ~ corresponds to a 
eohomology operat ion which is zero or to a suitable multiple of ~ t O . .  

In  the special case 0 ~ 0 ,  we set v - ~ 0 .  Then  W |  ~ reduces to the 
normal  form : ~ (e 0 | u ~) ~ 0 and 

~(e2~| ~) -~ p e ~ _ l |  ~' , i ~ l  . 

Now eo| ~ corresponds to the p th  power operat ion in the sense of cup 
products  with integer coefficients (see [2; 10.1-4]) .  The remaining cocyeles 
lie in L~ and have  already been analysed. This concludes the  case 0 ---- 0, and 
we m a y  suppose 0 ~ pk henceforth.  

w 9. The equivalence of L and I M  p 

The analysis of  L (see 7.8-10)  is more complicated and devious. The re- 
maining two sections are devoted  to the task.  The  conclusion however  is not  
complicated to s ta te  : 
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9.1. 1[ q i ,  odd, each cohomology operation derived ]tom L is elementary. If 
q ks even, the only non-elementary operations derivable/tom L are obtained ]rom 
cocycles o] the elementary subeomplex 

[ ' ] ~[eo| ~ + e~| = pO eo| - e~| ~(u~-~v) , (9.2) 

where X* in the group ring of ~ 48 de / i~d  by 
p--1 

27* = ~ k T  ~-k . (9.3) 

In  checking the formula 9.2, the following iden t i ty  is useful : 

(T  -1 -- 1) X* = --  X q -  p 1 . (9.4) 

The cochain on the  left  of 9 .2  is a eocycle mod p 0, and its corresponding 
cohomology operat ion is the PONraJAO~ p th  power as defined b y  TaOMAS 
[5 ; 3.3,  3.4] .  Once 9.1 is proved the proof  of the main result of  this paper  
will be complete.  

Define 27 M p to  be the  subcomplex of  M r consisting of cochains of  the 
form 27c where c is a cochain of M ~. Define a cochain mapping 

/ :  L - + 2 7 M  ~ (9.5) 

as follows. I f  the initial t e rm  of a cochain in canonical form is ej |  Co where 
j > 0 ,  its image under  / is 0. I f  its initial t e rm is eo| its image is 27cj: 

/ ( e ~ , , c  o + . . . +  ej+p| = 0 , j > 0  (9.6) 

/(eo| + . . . +  %_j|  = Xc  t . (9.7) 

Clearly ] is a homomorphism.  To prove ~ / = / 8 ,  we suppose in the  first case 
~---- 2 i > 0 .  Then  the initial t e rm of  ~(e2~| o + . . . )  is e2~_x| and 
so its /-image is zero. Suppose nex t  t ha t  ] ---- 2i  q- 1 :> 0. Then the initial 
t e rm of  J(eg~+x| + . . . )  is el~| - 1 -  1)c o. I f  i > 0 ,  9 .6  applies, and 
i t s / - image  is zero. I f  i : 0, 9.7 applies, and i t s / - image  is 27(T - ~ -  1)e 0 ---- 0. 
In  the  second case, the initial t e rm  of ~(eo| j q-. �9 .) is 

eo@n[~c ~ q- (T -1 --  1)c~+1] �9 
Thus, i t s / - image  is 

,V,~cj = ~27cj = ~/(eo| + . . . )  �9 

Therefore,  Of ---- f 8 in all cases. 

9.8.  The avl, omorphi~m y o/ M p (de/ined by 6.15) trans/orms 27M p into 
itsel/. I f  g* is the eoehain mapping 6.20 restricted to L ,  then /g* (z) = yl (z)  /or 
all cochains z o / L .  
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The first assertion follows f rom y2: ~ 2:y which is an immediate  conse- 
quence of 6.16. To prove the second, suppose z is such tha t  9 .6  applies. Then 
y f ( z ) - ~  y ( O ) ~  O. By 6.18 and  6.20, g*(z) has the same type  of initial 
t e rm as z, so fg~(z)  ~- O. I f  z is as in 9.7, t hen  y](z) ~ y(~ct)  -~ ~yc~. But  
gV(z) has the  initial t e rm eo| j so ]g~(z) is Xyc~. 

9.9. I f  J denotes the kernel of ], then J is acyclie. This  implies 

f .  : H r ( L |  ~ H r(X M ~| . 

Recall  t ha t  the cochains of  L are defined b y  conditions 7.8-10.  In  par- 
ticular, then,  a cochain of J in canonical form has a first non-zero te rm of the 
form e~| where i ~ 0 ,  and 0 < j < p .  I f  i = 0, then  Xc~-~ O, since 
the  cochain is in J .  Suppose tha t  i is even and > 0, and tha t  the cochain 
is a cocycle. This again implies tha t  Xcj = 0. Thus, in either case, we must  
have cj ~ (T -1 --  1)d for some d, since M ~ is free in the dimension ]. Then 

~(e~+i| = ei| - -  e~+l| . 

Subtract ing this f rom the cocycle gives a cohomologous cocycle whose first 
non-zero t e rm has an index > i .  I f  i is odd, then  we have (T - i  --  1)cj = 0. 
The freeness of  M ~ implies t ha t  cj : l d ,  and 

0(ei+i|  ) = e~| ~ et+l| . 

Subtract ing this gives again a cohomologous cocycle whose first non-zero 
t e rm has an index > i .  

Repeat ing the process we obtain eventual ly  a cohomologous cocycle having 
one of the two forms (see 7.9, 10) 

1 
e2~| 1 or es~_i| l + es,| 8%_ 1 . 

In  the first case, we alter the first me thod  of the  preceding paragraph b y  ob- 
serving t h a t  

~(e , ,+l |  + e,,+,| 1 ~d) - - - e , , |  1 . 

In  the  second case, we apply  the  second method  unaltered,  and observe that 

8d ___ _1 ~%-1 because T v  ~ : v ~. This shows tha t  every  cocycle of J is a 
P 

coboundary,  and completes the  proof  of  9.9. 

w 10. The cohomology of ~M:  

By [2 ; 11.7], each element of Hr(W| ~') has an order dividing pe. The 
same must be true of Hr(L) and, by 9.9, of Hr(,~,M~). It follows that a 
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normal form f o r / : M  ~ will consist of elementary subcomplexes whose torsion 
numbers divide p 8. 

10.1. I /  P is an elementary subcomplex o/ X M  ~ whose torsion number m 
divides O, then there is a mapping ~ : P --> M ~ such that X~  is the identity. 
There]ore each eohomology operation corresponding to a eohomology class o / P  is 
elementary. 

We may denote the generators of P by  Zc  and Xd with (bZc =- m Z d .  Since 
each coboundary in M ~ is divisible by  0, we have 8c = Od ~, and d' is a cocycle. 
I t  follows that OZd' ----- m X d .  I f  we set 

(~rc)=c, ~(~d)= 0d, 
m 

w e  obtain the required ~. I f  w is any cocycle of P |  then % |  is a 
cocycle of L | G whose image in X M  ~ | (7 under / is w. By 3.3, e 0 |  Sw 
and therefore w corresponds to an elementary operation. 

Because of this result, we have only to analyse the torsions of order exactly 
p0 in 2:M ~. To this end, we define a category N of cochain complexes having 
certain properties of M ~. A cochain complex IV belongs to N if 

(10.2) g operates as automorphisms of IV. 

(10.3) C~(IV) = 0 if j < p q  or j > p ( q  + 1). 

(10.4) C~q(_hr) has a single generator a 0 fixed under g. 

(10.5) C~(q+I~(IV) has a single generator % fixed under ~t. 

(10.6) Cvq+~(IV) is ~-free if 0 < ~ < p .  

(10.7) An integral cocycle of IV is a eoboundary if and only ff it is divisible 
by  0. 

A mapping ;t : IV -+ IV' of the category N is a eochain mapping which is 
g-equlvariant. Let bA be the integer such that  2% = hAaS. Under composi- 
tions of  two mappings 2, p,  we have 

kt, ~ ----- kgk~ . (10.8) 

10.9. I / N ,  IV' are in  N ,  and k is an integer, then there exists a mapping 2 : 
N -+ IV' such that k~ -~ k .  

This is proved by  a downward induction on the dimension. Start by  setting 
2% -- k ~ .  Suppose 2 has been properly defined in dimensions ~ p q  ~- ]. 
I f  ~ 0 ,  by  1 0 . 6  w e  c a n  c h o o s e  a u-basis {fl~ o f C ~  +~. By 1 0 . 7 ,  8fl~ ---- 07~.  

Then 27~ is defined. Since 827~ ---- 26F~ ---- 0, 27~ is a eoeyele. By  10.7, 
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0 ~ is the coboundary  of  some eochain. We select one such and denote  i t  by  
~fl~. For  any  xe~r, we define ~xfli -~ x,lfl~. Since 2 is ~r-equivariant in the 
dimension pq + j -]- 1, it follows tha t  2~xfl~ ---- ~ x f l ~ .  In  this fashion the 
induct ion continues down to the  dimension pq. To define 2 on ~o, we prove 
as above tha t  ~ ~ ~0 is a coeycle and it  is divisible by  0. Hence we m ay  choose 
a cochain Jl~o such tha t  ~ o  ~ ~ % .  By  10.4, Crq(N ~) has a single genera- 
to r  fixed under  :r. Therefore ~ ~o is fixed and so 2 is equivariant.  

10.10. I[ N,1V' are i n N a n d  2o,~1 are two mappings N - + N '  o / N s u c h  
that 

k~o ~ k~l mod p , 

then there exists an equivariant cochain homotopy 

D:  0~o~__021 . 

i. e. /or each ], D is a g-homomorphism o/ C t(N) into C j-1 (N') such that 

~DoL = 0 ~  -- 0 2oa -- D~o~ , cx~CJ(N) . (iO.11) 

This is also proved by  a downward induction. B y  hypothesis  

- 0 0% = - = p r O o  4 

for some r .  B y  10.7, rOa~ is a coboundary  of some cochain, say ~. Then 

So we m a y  set D %  = Z~ ,  and D is equivar iant  and satisfies 10.11 wi th  

Suppose D has been defined proper ly  in dimensions > p q  + ~. Let {fl~} 
be a ~-free basis in dimension pq + ~ (assuming ~ > 0). Then the  right side 
of 10.11 is defined for a ---- fl~. The s tandard  calculation shows t h a t  it is a 
cocycle. I t  is also divisible by  0 because ~fl~ is divisible b y  0. Hence it  is a 
eoboundary  of  some coehain, we define Dfl~ to be one such. We extend  D to 
be a g-homomorphism,  and then  ver i fy  t ha t  10.11 still holds in the dimension 
pq + ~. When ~ = 0, we set D a  0 ---- 0. This is clearly equivariant .  Also 
the r ight  side of 10.11 with a ~ ~o must  be zero. For  it  is a eocyele divisible 
by  0, and hence it  is a eoboundary  ; but  by  10.3, G~q-~(N ~) -~ O. 

We int roduced the  category N for the  purpose of  s tudying the subcomplex 
Z M  ~ . Now ff  N and N ~ are any  complexes in N,  we compare the cohomology 
of 27N and 27N ~ as follows : 

10.12. I f  ~ : N .-* N t is in N and k a is prime to p,  then 2 induces an iso- 

morphism A, : OH~(~,N) ~ OH~(XN t) . 

11 Commentarii Mathematici Helvetici 
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By 10.9, there is a # :  N' - ->N such that  lculc~-- l m o d p .  By 10.8 
and 10.10, there is a eochain homotopy D of 0#A into 01, where 1 is the iden- 
t i ty  map. Then if 2:~ is any cocycle of X N ,  10.11 gives 

OD2:a = OXDa = O#t,Y,~ -- 02:~ . 

Therefore (/~t), ---- ~u, 1, induces the identity mapping of 0H~(2:N). By the 
symmetry of the situation, 2 , # ,  induces the identity in OH~(XN'). This 
proves 10.12. 

By 10.9, there are maps t with k~ ---- 1. I t  follows that  OHi(2:N) has the 
same structure for all N in N. To compute these groups we construct a sim- 
plest N O in N as follows. I t  has a single fixed generator ao for CYq(IVo) and % 
for C~(q+I)(No), and has a single g-free generator a t for C~q+J(No), O<]<p .  
Define ~ by 

dO~2i = 0 Z 0 ~ 2 i + l  , ~0f2i+1 : OA a~i+~ , (10.13) 

for O < _ i g ( p -  1)/2. The conditions 10.2 to 10.6 are trivially true. The 
t ru th  of 10.7 follows from the fact that  each of A, X generates the annihilator 
of the other in the group ring of g.  

The complex /:AT o has a single generator 2:%. for each 0 g j_~p. The co- 
boundary relations are 

(10.14) 

Thus 27N 0 is in normal form, and it has torsion of order pO in every other 
dimension from pq to p(q ~ 1). Since M Y is in N, 10.12 implies that  the 
same conclusion holds for 27M ~. These results are summarized in : 

10.15. The torsion numbers --- pO o/ 2:M Y occur just once in every other 
dimension/tom pq to p(q ~ 1). One obtains elementary subcomplexes o / X M  Y 
containing these torsions by talcing the k-image o/Z, No where t : No ---> M Y is an 
equivariant mapping such that k~ is prime to p. 

Cocycles of order p0 obtained in this way are not generally in the image 
H ( M  ~) --> H ( X M  ~') under 2:. However in all but one exceptional case they 
correspond to elementary cohomology operations. To see this we must study 
the behavior of such coeycles under the automorphism y of 27M ~ which, by 
9.8, corresponds to the chain mapping g~ of L.  

Let 1 : N o --> M ~ be a fixed equivariant mapping such tha t  k~ = 1. Now 
y~tis a cochain mapping N o -+ M ~ but it is not equivariant because y T  = Tky 
where k is a primitive root of p. However for each integer i in the range 0 to 
�89 -- 1) we shall construct an equivariant mapping/~ depending on i such 
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t h a t  y~  and  /~ coincide on C ~ + ~ ( X N o ) .  Let  the  in teger  m be the  inverse  
m o d p  o f  the  p r imi t ive  roo t  k.  Set  

k--1 m--1 
A = ~ T 1 , F = ~ T1 

i=o  i~0 

in Z (~). I n  the  g r o u p  r ing o f  t he  normal izor  o f ~ ,  we ob ta in  read i ly  t he  re la t ions  

y X  = X y ,  y A  : z J A y ,  A y  - :  y E A  . (10.16)  
a n d  there fore  

A ' y A  -~ A A , + l y ,  y F S A  • A y P + l ,  s > O  . (10.17)  

Define an  equ iva r i an t  m a p p i n g / ~  : N O -+ M ~ b y  specifying its values  on basis 
e lements  as follows 

t~(a~+,s) = A ' y ~ ( o ~ 2 , + , , )  , 8 =  0 , 1 , .  . ., �89 - -  1 - -  2i) , 

~(a21+e,+l) = A ' y l ( a 2 i + ~ , + l )  , s ~- 0,  1 , . . . ,  �89 - -  1 - -  2i) , 

1~(~2~_~,) -= yF'2(o~2~_~ ) , s --: O, 1, . . . ,  i , 

/.$(O~2i_$s_F1 ) = yF'2(a2,._~,+x ) , s : 0, 1 , . . . ,  i . 

The  re la t ion  ~/~ = / ~ 8  follows d i rec t ly  f r o m  10.13,  10.16,  10.17.  W h e n  
res t r i c ted  to  2 :N0, /~  t akes  the  f o r m  

/ ~ ( I ~ i + 2 , )  : k ' y ~ ( / ~ 2 ~ + 2 , )  , 

/ ~ ( Z ~ 2 i + ~ + l )  = ~'y~(27~2~+~,+1) , 
( lO.18) 

The  r ea son  for  th is  is t h a t  y2 :  ----- X y ,  A 2 :  ---= k2J, and  F 2 :  - -  mJJ.  Tak ing  
a = � 8 9  1 ) - - i ,  we have  

# (Z%)  =/c�89 ;t (X%) . 

N o w  % and  2 %  ----- v ~ are  fixed unde r  ~ ; so, b y  6 .17  

fl((X,) ----- ( - -  1)q+ll~�89 . 

Consider  now the  m a p p i n g  /~ - - 2  o f  N 0 in to  M ~. I t  is obv ious ly  equi-  
va r i an t  ; and  

(/~ - -  , t ) ~ ,  = [ ( - -  1 ) q + l / c ~ [ ~ - x ~ - ,  - -  1 ] v  ~ . ( 1 0 . 1 9 )  

Because  k is a p r imi t ive  roo t  o f  p ,  t he  on ly  case where  the  coefficient o f  v * is 
divisible b y  p is t he  case q even  a n d  i : 0.  I n  a n y  o the r  case, k~_;~ is p r ime  
to  p ; a n d  so, b y  10.15,  /~ - -  A appl ied  to  27N 0 gives t he  tors ions  o f  order  

pO of  2:M~.  B y  10.18,  we h a v e  

( / ~ - - ; ~ ) Z a ~ : ( y - -  1)2Za~ for  ? ' :  2 i  and  2 i +  1 . (10.20) 
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For convenience set 
t27~2~ = fl and ;t2:a2,+l = ~ . 

Both 7/ and (ff -- 1)7/ are cocycles generating torsion of order p0 in 2:ML 
Since OH~+2'+X(XM~)  is cyclic of order 79, we must have 0~ ~-~ b(y  - -  1)0~ 
for some integer b prime to 79 ; thus 

~w = O 7 - b ( y  - 1)0 7 for w ~ Z M  ~' . 

Since dfl-----TOy,  it follows that  f l - - b ( y - -  1 ) f l - - p w  is a cocyele. By 
10.15, OH~q+z ' (XM ~) = O. Therefore there is a cochain w a ~ X ' M  ~' such that 

~W a = O ( f l  - -  b ( y  - -  1)fl -- 79w) . 

By 10.1, any cocycle of this elementary complex corresponds to an elemen- 
tary  cohomology operation. Taking Z~o as coefficient group, i t  follows that 
f l -  b ( y -  1)fl is a eocycle and corresponds to an elementary operation. 
However (y -- 1)fl corresponds to zero as a cohomology operation; this is 
seen by assembling 9.8, 6.20, 6.14 and 6.1. I t  follows that fl corresponds to 
an elementary operation. 

In the ease q even and i ----- 0, it is clear that  

~ Z u  ~ = 79~u ~' ---- pO,Su~ ' - l v  (10.21) 

is an elementary subcomplex giving the torsion of order pO in this case. By 
the preceding argument, the only non-elementary cohomology operations 
derivable from 27M ~ are obtained from this subcomplex. If  we apply [ of  9.5 
to 9.2, we obtain 10.21. This completes the proof of 9.1 and, hence, our main 
result. 
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