
484 

On the Gauss Mapping for Hypersurfaees of Constant Mean 

Curvature in the Sphere* 

By KATSUMI NOMIZU and BRIAN SMYTH 

The proof  of the Bernstein conjecture on minimal hypersurfaces in Euclidean 
space - for those dimensions in which it is known (see [1], [2], [4]) - raises the fol- 
lowing interesting speculation on the geometry of minimal hypersurfaces in the 
Euclidean spheres: 

I f  the Gauss image of  a compact minimal hypersurface M" in the Euclidean sphere 
S "+1 lies in a closedhemisphere of S "+1, then M ~ must be a great hypersphere in S "+1. 

E. de Giorgi [2] and J. Simons [4] have shown that the Gauss image of a minimal 
hypersurface other than a great hypersphere cannot lie in an open hemisphere. We 
prove here that the above speculation is indeed true and generalizes to hypersurfaces 
of constant mean curvature (Theorem 2). 

To prove this result we first obtain a characterization of the hyperspheres (great 
or small) of S "+1 among all complete hypersurfaces of S "+x in terms of their Gauss 
images (Theorem 1). With this preparation the main theorem follows more or less 
directly on using the standard integral formulas for hypersurfaces in the sphere. 

We follow here the terminology and notations of Chapter VII, Volume lI, of 
Kobayashi -Nomizu [3]. 

We should like to acknowledge conversations with W. Fleming which gave the 
motivation for this work. 

w 1. The Gauss Mapping 

In the sequel M will be a complete orientable Riemannian manifold of  dimension 
n andf :M--*S  "+1 is an isometric immersion of  M into the unit sphere S "+1 in the 
Euclidean space E "+2 with centre at the origin. By a hypersphere 2:" in S "+1 we will 
mean the intersection of S" § 1 with a hyperplane in E" § 2. ~f, is called a great (equatorial) 
or small (non-equatorial) hypersphere according as the hyperplane passes through 
the origin of E" + 2 or not. It  may of course degenerate into a single point. 

Since M is orientable we may choose a global field of  unit vectors 4, normal to 
M in S ~+1 with respect to the immersion f.  For vector fields X and Y on M the Rie- 

mannian connections V and V of S "§ and M, respectively, are related by 

~TxY= Vx Y  + g(AX,  Y) ~, 

* This work was supported by National Science Foundation Grants GP-7610, GP-7403. 
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where g is the metric on M and A is the symmetric tensor field of  type (1.1) on M 

defined by 

v x 4  = - A X .  

The Gauss mapping 

~:  M" --* S "+1 

is defined by ~b (p) = ~y(p) ~ S" + 1 for each p ~ M. q5 (M)  is called the Gauss image of  M. 
Depending, as it does, on the choice of  4, the Gauss image is only determined to 
within the antipodal mapping of  S "+~. Thus the statement that the Gauss image of  M 
is contained in a closed hemisphere (or in a hypersphere) of  S "+1 is independent 
of the Gauss mapping selected. We remark that ~b (,r,) is a point (resp. a small hyper- 
sphere) of  S "+~ if E" is a great (resp. small) hypersphere of  S "+~. 

T H E O R E M  1. Let M be a complete orientable Riemannian manifold of  dimension 
n>~2 isometrically immersed in S "+~ and let (~ be the associated Gauss mapping. 

i) I f  c~(M) is contained in a great hypersphere of  S "+~ then M is imbedded as a 
great hypersphere and so r (M)  is a single point. 

ii) I f  gp(M) is contained in a small hypersphere of  S "+a but is not a single point, 
then M is imbedded as a small hypersphere and (D(M) is a full  small hypersphere. 

Proof. We first observe that  either of  the above conditions on the Gauss image 
gives rise to a unit vector a in E "+z for which (4, a )  is a constant on M - ~ say - 
with 0~<:t~<l. Here ( , )  denotes the Euclidean metric on E "+2. With the usual 
identification of  tangent spaces under the immersion f o f  M into S "+1 we define a 
vector field Z on M by 

Zp = a - (4:~p), a)  ~:(p) - (x:(p), a)  x:(p), (1) 

where xi(p) is the position vector o f f ( p ) e S  "+1 in E "+2. Denoting the connection on 
E" + 2 by D and differentiating the equation (4, a )  = ct on M, we obtain, for Xe  T(M) :  

0 = (Dx4 , a)  

= (Vx~ - ( X ,  4) x, a)  

= ( -  AX, a) 

since ~'x4= - A X  and (X,  4 ) = 0 .  In other words g(AX, Z ) = 0  for all X ~ T ( M ) ,  so 
that 

Z ~ Ker A (2) 
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by the symmetry of A. Moreover 

VxZ = Vx Z - g (AX,  Z) 

= Vx Z by (2), 

= DxZ + g(X ,  Z) x 

= -  (~, a)  Dx~ - ( X ,  a)  x -  (x ,  a)  X + g(X, Z) x 

= (4, a)  A X -  ( x , a )  X 

= (otA -7 flI) X ,  

b y ( l ) ,  
(3) 

where I is the identity transformation and the function fl on M is given by fl(p)= 
= (xs(~)', a).  By r easonof  Codazzi's equation and (2) we have 

(Vz A) X = (Vx A) Z 
= Vx (AZ) - AVxZ 
= ( f l A  - 2)  X 

for each X e T ( M ) ,  that is, 

VzA = flA - ~ A  2 . (4) 

In particular 

Z(Tr  A) = Tr(VzA) = fl TrA - ct TrA 2 (5) 

where Tr denotes the trace. 
The zeroes of the vector field Z occur at those points p of M where a is orthogonal 

to f .  (Tp(M)). If Z - 0  on M, f ( M )  lies in one of the hyperspheres determined by the 
system of hyperplanes in E "+z orthogonal to a, and by completeness of M, the set 
f ( M )  is a full hypersphere in S "+1. In particular, when ct= 1 (i.e. ~=a)  we have 
Z-=0 and (x,  a ) = 0 ,  so t h a t f ( M )  is a full great hypersphere. 

We therefore suppose henceforth that Z ~ 0  on M and as remarked above we 
must then have 0 ~ <  1. It will be shown t h a t f ( M )  is then a full great hypersphere, a 
separate argument being necessary for the case ~ = 0. 

By virtue of (2) and (3), V z Z =  - f l Z  on M and therefore z/HZll is a geodesic 
vector field on the open submanifold 

M' = { p e M ;  Zp # 0} 

of  M, where ][Z[[ denotes the length o fZ .  Fix ingpoeM' ,  let 7 be the geodesic (para- 
metrized by arc length s and extended indefinitely in both directions along M) which 
emanates from Po tangent to Zpo. By virtue of the above remarks, the vector field Z 
is tangent to 7 along 7- Consider the real function h defined on R by 

h (s) = g (Y (s), Z,(s) ) " 
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where p(s) is the velocity vector of 7(s). Let (a, b) be the maximal interval (possibly 
semi-infinite or infinite) containing 0 for which .y ((a, b)) lies in the connected compo- 
nent of M '  containing Po. Then 

dh 
= ~ (s) g (9 (s), Ze(~)) 

ds 
= g (9 (s), V~)Z~(s)) (6) 
= g (9 (s), (~zA - flI) ~ (s)) by (3), 
= - [ J o y ( s ) ,  s t ( a , b ) ,  

since ~(s) is a multiple of Z when s~(a, b) and Z t K e r A  by (2). Thus 

d2h d 

ds 2 = - ds (xr(,), a)  

= - <~(s), a> (7) 
=-h(s), s~(a,b). 

The solution of this differential equation with initial conditions dh/ds (0)= - f l  o y (0)= 

= - f lo  and h(O)=x/1 ~--~-2--flo 2 is 

h (s) = , , /S - ~,~ cos (s + so), s t  (a, b), (s) 

where Sot ( -  re/2, rr/2)is determined by sin so =[Jo/x/ i  ~ ~2. Furthermore, it follows 
from (6) that 

flo y (s) = ~ f i  - ~2 sin (s + So), s t  (a, b), (9) 

and from (8) that 

Z,(s ) = x/1 _ e2 cos(s + So) ~(s), se (a ,  b). (10) 

h(0) being positive, it follows that  h is positive on (a, b) and we infer from (8) that 
(a, b) is a finite interval. The maximality condition on the interval (a, b) implies that 
Zr(a)=0 and Zr(b)=0 which means, by virtue of (10) and continuity, that 

cos(a + So) = cos(b + So) = 0 ( l l )  

Letting k(s )= (TrA)o ? (s) we may rewrite 15) as 

dk ~/1 - ~2 sin(s + So) k(s)  - ct(TrA2)r(s) x / i  - a 2 cos(s + So) ds  = 

on (a, b), that is, 

, / i - ~  a (cos(s + So) k(s)) = - ~(TrA2),,~) (12) 
ds 

on (a, b). 
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Consequently the function cos ( s+so)k ( s )  is monotone decreasing on (a, b) and 
vanishes at s=a, b. Thus k = 0  along (a, b) and it follows from (12) that T r A 2 = 0  
along y ((a, b)), if a r 0, and in particular A = 0 at P0 = Y (0). Assuming ~ # 0 we have 
therefore proved that A - 0  on M ' .  However Z = 0  and f12= 1 _~2 on the open set 
M - ) I 4 ' ,  so that A =((1 _~z/a)I there, by virtue of  (3). Since Mis  connected and M '  
is non empty, A - 0  on M. The completeness of M now implies that f ( M )  is a full 
great hypersphere. 

It  remains to attend to the case where Z # 0  and ~=0 .  Here the equation essential 
to our proof  is 

Z (Tr A 2) = Tr Vz A2 = 2fl Tr A 2 , (13) 

which is an easy consequence of (4). Since e = 0 it is readily verified that the equations 
(6)-(10) are valid for all seR.  Using these equations and setting l(s)=(TrA2)oy(S), 
(13) reduces to 

dl 
cos (s + So)ds = 2 sin (s + So) l(s). 

Thus l(s)=e/cos2(s+So) on -~/2<S+So<~/2 for some constant e, and we have a 
contradiction unless c - and therefore l - is zero; thus A = 0  on M' .  Since ~ = 0  and 
Z = 0  on M - M ' ,  we have f12=l on M - M ' ;  by virtue of (4), A = 0  on M - M ' .  
It  now follows as before t h a t f ( M )  is a full great hypersphere. 

In every case it has been shown that f immerses M on a full hypersphere 2;" in 
S "+1. The completeness of M then implies that f : M " ~ 2 ; "  is a covering map (p. 176, 
Volume I, [3]) and since 27 is simply connected if n/> 2, f is an imbedding if n >/2. 
This completes the proof  of the theorem. 

Remark. Theorem 1 remains valid of  course if n =  1, except that f is no longer 
an imbedding in general. 

It  seems appropriate at this point to emphasise that Theorem 1 is a global result, 
that is to say that  there is no local analogue if the assumption of completeness is 
dropped. Indeed the example which follows serves to construct a large class of hyper- 
surfaces in S" + ~ whose Gauss images lie in a great hypersphere. There is even a large 
class of  minimal hypersurfaces having this property. 

Example. Let ~ be an immersion of a connected orientable (n-1)-dimensional 
manifold N into a great hypersphere S" in S "+x With e,+ 2 denoting the unit vecto~ 
orthogonal to the hyperplane of S" in E" + 2 and angle 0 as coordinate on the unit circle 
S 1, the suspension f :  N x S 1--,S" + 1 of the immersion ~0 by geodesics from the north 
and south poles of  S "+x is defined as 

f (p ,  0) = cos0 ~k(p) + sin0 e~+2, 
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where p is any point of N. Choosing local coordinates (xl, . . , ,  x" + 1) on N we see that 

f ,  ffx-xi = c o S 0 ~ x  i, l <~ i <~ n 1, 

f ,  =s inO ~ + c o s O  e.+2. 

Thus f immerses N '  = {(p, 0)~ N • S 1 ; 0 ~ odd multiple of •/2} in S" + 1. We denote 
by M one of the two connected components of N' .  

Let q be a unit vector field normal to N in S" and let B be the matrix of the second 
fundamental form in the coordinates (x 1, ..., x"+l). I f  ~ is a unit vector field normal 
to M in S "+l we observe that ~ is orthogonal to f ( p ,  O), f , (~ /ax  i) andf.(a/OO) and 
therefore to ~ (p), e,+ 2 and O~/Ox i. Consequently, choosing the direction of ~ suitably 
we have ~i(v.o)=~l~,(v) for all (p, O)~M. In particular (4, en+2) =-0 on M, that is, the 
Gauss image of M lies in a great hypersphere of S ~+1. On the other hand it is easily 
seen that 

~2f ~2~/ 

Ox i Ox s - cos 0 c~xi Ox ~ , 

O2J' - sin0O@ 
c~x ~ c~O ~x i' 

c~2f 
~0 2 = -  cos0 r - sin0 e.+2, 

from which it follows that the matrix of  the second fundamental form of M in the 
coordinates (x 1 .. . . .  x "+1, 0) is given by 

1 IBO01 
cos 0 

Consequently, M is totally geodesic (minimal.) i f  and only i f  N is totally geodesic 
(minimal). 

w 2. The Main Theorem 

On an n-dimensional orientable Riemannian manifold isometrically immersed in 
S "+1, the Laplacians of the functions (x, a )  and (4, a )  restricted to M are easily 
computed as 

A (x,  a )  = Tr  A (~, a)  - n ( x ,  a ) ,  (14) 

A (4, a )  = - (grad (Tr A), a )  - TrA 2 (~, a )  + T r A  (x, a ) ,  (15) 
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a bcing any constant unit vector in E "+2. Since we will now be conccrned only with 

hypersurfaces of constant mean curvature (i.e. TrA---constant on M), wc rewrite 

(15) as 

A (4, a )  = - T r A  2 (~, a~ + Tr A (x,  a ) .  (16) 

Combining (14) and (16) we obtain 

A ( n r  + rAx,  a > = - { n T r a  2 - ( T r A )  2 } < ~ , a )  } 

= -- Z ( / ' i -  ,~j)2 (4, a>, / (17) 
i < j  

where 21 . . . . .  2,  denote the characteristic roots  of  A. 
The following result sharpens and generalizes Theorem 5.2.1 of  Simons [4]. 

T H E O R E M  2. Let M be any compact connected orientable manifold of  dimension 

n>~2 immersed in the sphere S "+1 with constant mean curvature. I f  the Gauss image 

of  M lies in a closed hemisphere of S "+1, then M imbeds onto a hypersphere in S n§ 

Proof. The assumption on the Gauss image of  M is equivalent to the existence 
of  a constant  unit vector a in E "+2 for which (4, a)~>0 on M. By virtue of  (17), we 
have A(n~+TrAx ,  a)<<.0 and E. Hopf ' s  lcmma implies that  (n~+TrAx ,  a)  is con- 
stant on M. I f M i s  minimal (~, a )  is constant  on M and the result follows f rom Theo- 
rem 1. We now assume that TrA 50 .  By (17) every point  of  W =  {p~M; (~y(p), a) >0} 
is an umbilic. However  (n~+TrAx ,  a) being constant  on M, it is clear that  (x,  a )  
is constant  on M -  if'. Therefore M -  I~ immerses into a hypersphere of  S "+ a so that 
M - i f "  is also totally umbilic. Thus M immerses totally umbilically in S" § 1 and must 
therefore be an imbedded hypersphere. 
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