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Nodal fines of eigenfunctions of the fixed membrane problem in 
general convex domains 

GIOVANNI ALESSANDRINI 

Abstract. We describe the boundary behavior of the nodal lines of eigenfunctions of the fixed membrane 
problem in convex, possibly nonsmooth, domains. This result is applied to the proof of Payne's 
conjecture on the nodal line of second eigenfunctions [P1], by removing the C ~ smoothness assumption 
which is present in the original proof of Melas [M]. 

Introduction 

In 1967 Payne [PI] conjectured that, in any simply connected bounded domain 
t2 in the plane, any second eigenfunction of the Laplacian with Dirichlet boundary 

condition cannot have a closed nodal line. See also Yau [Y]. 
Quite recently, Melas [M] has proved that this conjecture is true for convex 

domains with C ~ boundary. Previous significant results were obtained by Payne 
[P2], Lin ILl, Pfitter [P/J] and Jerison [J]. 

In the proof  of  Melas, the smoothness of  the boundary is required in order to 
deduce information on the boundary behavior of  the nodal line of eigenfunctions 
[M, Lemma 2.1]. Loosely speaking, the crucial step where the smoothness is needed 
is as follows. One performs a local flattening of the boundary and an odd reflection 
of the eigenfunction across the boundary. In this way, the study of the boundary 
behavior of the nodal line is reduced to the study of the behavior in the interior of  
the nodal line of  the solution of an elliptic equation, which, as a consequence of the 
Har tman  and Wintner formulas (see [H-W] and also Lemma 1.2 below) is, 
asymptotically, the same as the one of an harmonic function. For different 
purposes, this technique has been proven successful in domains with C ~'~ boundary, 
by Alessandrini and Magnanini [A-M, Theorem 3.5]. However, it does not seem to 
be applicable when the regularity of the boundary is less than C ~. 

Our present purpose is to describe the boundary behavior of  the nodal lines of 
eigenfunctions in general convex domains, and to deduce from this study the validity 
of  Payne's conjecture in any convex domain, with no smoothness assumption. 

The main results are stated in the two theorems below. But first we need some 
notation. 
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We denote by f2 a bounded convex domain in the plane. For  any P E 01L we 
denote by F(P) the smallest open infinite sector with vertex at P which contains I2. 

We denote by u an eigenfunction of  the Laplacian in t2 with Darichlet conditions, 
that  is a nonzero W0~'2(t2) function satisfying, for some positive constant  2, 

A u + 2 u = O  i n f L  (1) 

The nodal line N of  the eigenfunction u is given by 

N = {x 6 f2 l u(z) = O}. 

Here, and in the sequel, z = x + iy will denote the complex coordinate  in the plane. 

T H E O R E M  1. I f  the nodal line N intersects the boundary ~12 at a point P, then 

there exists ro > O, such that N c~ Bro(P) is composed by a finite number M,  M > 1, 
o f  C 1 simple arcs which all end in P and whose tangent lines at P divide the sector 

F(P) into M + 1 sectors o f  equal amplitude. 

T H E O R E M  2. Let u be any eigenfunction corresponding to the second eigenvalue 

2 = 22. The nodal line N o f  u intersects the boundary at exactly two points. 

The main body of  this paper is contained in Section 1, where a p r o o f  of  
Theorem 1 is given. The basic idea is to use a local change of  coordinates near 
P e ~f2 which, rather than flattening the boundary  to a line, transforms the 
boundary  into the broken line which bounds F(P). The appropriate  way of  doing 

such a t ransformation is by a conformal  mapping, in fact we shall take advantage 
o f  the conformal  invariance of  elliptic equations in divergence form. On the other 
hand, we need somewhat  delicate asymptotic estimates on such a mapping near the 
point  P, see Lemma t.1. Finally, we make use of  the Har tman  and Wintner 
formulas, in the improved form of  Schulz [S], see Lemmas 1.2-1.3. 

Section 2 contains the p roof  of  Theorem 2. We will follow essentially the same 

track of  the p roo f  of  Melas, and we will refer to it at various steps. However,  some 
technical care, and a different viewpoint are necessary. This is mainly due to two 
facts: the first order derivatives of  u may not  be continuously defined up to the 

boundary,  and the H o p f  lemma may not be applicable on Of 2. 

I. The behavior at the boundary of nodal lines 

With no loss of  generality, we may set P = 0, F(0) = {rei~ C [r > O, 0 < 0 < ~} 
where ct is some number 0 < ct < ft. For  any R > 0, let us define D,,g = F(0) nBR(0)  
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and also A,.R =f2c~D,.R. Let R be small enough, in such a way that 
aD,,R c~ f2 :~ ~ .  Thus OA~,R can be decomposed into three arcs ~'0, ~, and aR which, 
in polar coordinates, are parametrized as follows 

~o " 0 = Oo(r), 0 < r < R, 

7~ : O = O,(r), O < r < R, 

tr R : r = R, Oo(R) < 0 < O,(R); 

here the functions 0o, 0~ are such that 

0 < Oo(r) < O~(r) < ~, for every r, 0 < r < R, 

00 is nondecreasing, 0, is nonincreasing and also we have 

lim Oo(r) = lim [~ - O ~ ( r ) ]  = O.  
r ~ 0  r ~ 0  

Let us recall that there exists a unique conformal mapping z --, ((z) from A,.R onto 
D,.R which maps the corners 0, Re i~ Re i~ into the corners O, R, Re ~ 

respectively. Since A,.R and D,.R are convex domains, they have Lipschitz boundary, 
and hence the mapping ((z) and its inverse are both uniformly H61der continuous. 
It is convenient to introduce logarithmic coordinates 

z = e  t+iO in A,,R, 

: e z + i4a in D,.R. 

We shall represent the mapping ( =  ((z) by the transformation of coordinates 
= T(t, 0), O = r 0). An analogous representation will be used for the inverse 

mapping. We denote by c3(r, r 0), O(t, 0)/~(~, r  the Jacobian matrices of  such 
transformations and by I the 2 x 2 identity matrix. Notice that ~ and ~b are 
conjugate harmonic functions of the variables t, 0 and viceversa. 

The following Lemma says that, in an appropriate sense, the mapping ( = ((z) 
is nearly the identity as z ~ 0 nontangentially in f2. 

LEMMA 1. I. Let  K be any compact subset o f  the interval (0, ~). We have 

lim [r 0) - 0 ]  = 0  uniformly when O ~ K ,  (1.1) 

lim [q~ - 0(~, q~)] = 0 uniformly when r ~ K, (1.2) 
r ~  --~t2 
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uniformly when 0 e K, 

uniformly when c~ e K. 

Proof The function 4' = q~(t, 0) satisfies the following conditions 

dq~ = 0 where t < log R and 00(e t) < 0 < O~(et), 

~b=0 where t < l o g R  and 0=00(el) ,  

~b=ct where t < l o g R  and 0 = 0 , ( e ' ) ,  

145 

(1.3) 

(1.4) 

O-Oo(T ) [ nt ] ~tO [~O~T)] ct A exp < q~(t, 0) < - -  + A exp 
- O o ( T )  ~ - O o ( T )  - O ~ ( T )  

for e v e r y t < T  and 0 e K ,  

By the maximum principle, we have that, in the common domain of definition, 
~b- < ~b < ~b +. We may choose T in such a way that K c (Oo(T), O,(T)), and by 
explicit estimation of the functions q~ , 4' +, we may find a positive constant A such 
that the following inequalities hold 

A ~ b - = 0  where t < T  and Oo(T)<O<e, 

~ b - = 0  where t < T  and 0 = 0 0 ( T ) ,  

~ b - = 0  where t = T  and Oo(T) <O<ot, 

4 ' - = a  where t < T  and O = a ,  

A~b + = 0  where t < T  and 0 < 0 < 0 ~ ( T ) ,  

~b + = 0  where t < T  and 0 = 0 ,  

~b + = ~  where t = T  and O<O<O,(T), 

q~+=~ where t < T  and 0=0~(T) .  

moreover, we have 0 < q~ < a everywhere, and q~(log R, 0) is continuously increas- 
ing from 0 to a as 0 ranges the interval [00(R), 0,(R)]. For any T < log R, let us 
define ~b , q~ + as the bounded solutions of the following Dirichlet problems 
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and (1.1) follows easily. By s tandard interior estimates for harmonic  functions, 
(1.1) implies also 

lim V[dp(t, 0) - 0] = 0 uniformly when 0 e K,  ( 1 . 5 )  

here the gradient  V is taken with respect to the (t, 0) coordinates.  By conjugation,  
we also have 

lim V[T(t, 0) - t] = 0 uniformly when 0 e K, (1.6) 

and hence (1.3) is proven.  
By compar ing  ~b(t, 0) with ~b(t, 0 + h), h > 0, in the c o m m o n  domain  of  defini- 

tion, we obtain,  again by the m a x i m u m  principle, that  q~ is an increasing function 
of  0 for any fixed t. Hence dq~/t~0 > 0  in the interior and every level line 
{~b(t, 0) = ~bo}, 0 < 4o < ct, is the graph of  a function 0 = O~o(t). Let a, b be numbers  
such that  0 < a < b < ~t and also K c [a, b]. By (1.1) and by the monotonic i ty  o f  ~b 
with respect to 0, for any E, 0 < E < min {a, ct - b}, there exists T < log R, such that  
for every t < T we have 

q~(0, t) < a 

4(0, t) > b 

whenever 0 < a - e, 

whenever  0 > b + e. 

Therefore,  for  every 4o ~ K, and for every t < T, if 4(0, t) = ~b0 then it must  be 
a - ~  < 0 < b + c. Consequently,  applying once more  (1.1), we obtain 

lim O~,o(t ) = tko uniformly when 4o e K. (1.7) 

Notice also that  Ooo(t(z, 4 0 ) ) =  0(z, ~b0) for  every z. Next,  let us observe that  the 
H61der continuity of  ( and ( - ~  at 0 implies that  

lim t(z, ~b) = - ~ uniformly in q~. (1.8a) 

lim z(t, 0) = - oo uniformly in 0. (1.8b) 

And now (1.2) follows easily f rom (1.7), (1.8a). Finally, (1.4) can be deduced f rom 
(1.2) by the same procedure  used above  to prove  (1.3) f rom (1.1). [] 

The  following l emma is an appl icat ion of  the H a r t m a n  and Wintner  formulas.  
Quite similar s tatements  are already well known,  see for  instance Cheng [C] and 
Alessandrini [A]. A p r o o f  is sketched, just  for the sake of  completeness.  
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LEMMA 1.2. Let a ~ Ca(BR(0)), 0 < 6 < 1, be a positive function, and let v be a 
nontrivial W 1,z solution of  

div [aVv] = 0 in BR(O ) (1.9) 

and let us set v(O)=O. There exists numbers ro, fl, O < r o < R ,  O< fl <rc, and a 
nonnegative integer M, such that the nodal line 

{z ~ B,o(O) b u(z) = O} 

is given by the union o f 2 ( M  + 1) C 1 arcs ~1 . . . . .  ~2(M + 1), which can be parametrized 
in polar coordinates as follows 

7 j 'O=Oj(r) ,  O < r  <ro, j = I , . . . , 2 ( M + I ) .  (1.10) 

The functions 01 . . . . .  02(M+ ,) satisfy 

~j 
O j ( r ) = f l + ( M + l ~ + O ( 1 ) ,  a s r ~ O ,  f o r e v e r y j = l  . . . . .  2(M + 1), (1.11) 

d 
r-~rOj(r)=o(1 ), a s r ~ O ,  f o r e v e r y j = l  . . . . .  2 ( M + l ) .  (1.12) 

Proof. The Hartman and Wintner theorem, in the version of Schulz, [S, 
Theorem 7.4.1, Corollary 7.4.2], gives us that there exist numbers/~ and M as in the 
statement, and a positive number A, such that 

A 
v(re i~ - - -  r M+I sin [(M + 1)(0 - 3 ) ]  +o(rM+l), a s  r o 0 ,  (1.13) 

M + I  

r~-~v(re i~ = A r  M+l sin [(M + 1)(0 - ~ ) ]  +o(rM+l) ,  as r ~ 0 ,  (1.14) 

O---v(rei~ = A r  M+I cos [(m + 1)(0 - f l ) ]  +o(rM+l) ,  as r--*0, (1.15) 
O0 

the remainders being uniform with respect to 0. Notice that, for sufficiently small r, 
if v(re i~ = 0 then (O/O0)v(re ~~ ~ O. Thus there exist ro > 0, such that, equating v to 
0 in (1.13) we obtain (1.10)-(1.12). [] 

The next lemma is a variant of the previous one, suitable for solutions of (1.9), 
but which are defined in a finite sector and vanish on the flat parts of the boundary. 
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12 L E M M A  1.3. Let  a be as in Lemma 1.2, and let v ~ W �9 (D~.R) satisfy, in the 

weak sense, 

div [aVv] = 0 in D,,R, 

v(re i~ = 0  whenever O < r < R and O = O, a. 

There exist  a nonnegative integer M and a number r0, 0 < ro < R such that the nodal 

line 

{z e D~,, o [ v(z) = 0} 

is empty  when M = O, and, when M > O, it is the union o f  M C 1 arcs 71 . . . . .  VM 

which can be parametrized 

y j : O = O j ( r ) ,  O < r < r o ,  j = l  . . . . .  M, 

and the funct ions  01 . . . . .  OM satisfy 

~j 
Oj(r) (M + 1) + o(1), a s r ~ O ,  f o r e v e r y j = l  . . . . .  M,  (1.11) 

d 
r-z-Oi(r) =o(1) ,  as r--*O, f o r  every j =  1 . . . . .  M.  (1.12) 

a r - -  

Proof. Let us perform the conformal change of variable z--,  w, defined by 
w = z ~/~. Let us set r = a(z), g(w) = v(z), these new functions are defined in a half 
disk centered at the origin and contained in the upper half plane. Let us continue 
such functions to Im w < 0 by reflecting 8 evenly and g oddly, across the line 
Im w = 0. It follows that Lemma 1.2 is applicable to the equation div [~17v'] = 0 
which holds in a full neighborhood of the origin and the proof  is readily completed 
by pulling back to D,.R the parametric representation of the nodal line given in 
Lemma 1.2. [] 

Proo f  o f  Theorem 1. Let Jo(x) be the Bessel function of the first kind and of 
zero order, let Jl be its first positive zero. For any fixed R, 0 < x/~R < Jl, we have 
that ~O(z)=J0(x/~[zl) is positive in BR(0 ) and it satisfies A~b +2~k = 0. Conse- 

W1.ZrA ~ turns out to satisfy in quently, we may factor u = ~Ow in Aa, R where w E t ,.nJ 
the weak sense the equation 

div [r = O, 
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and the boundary  condition 

w = 0  on 7oW7~ =OOnt3A~.R. 

Using now the previously constructed conformal  mapping  z ~ ( z ) ,  we define 

a(~) = ~k2(z), v(~) = w(z), i ~ D,.R. By the conformality,  we have 

div [aVv] = 0 in D~m, 

and Lemma 1.3 is applicable. Consequently, choosing R sufficiently small, the nodal  
line o f  u in A~,R, which is the same as the one o f  w, is given by the union of  M arcs 
~ . . . . .  7M (here M > 0  since the origin is a limit point o f  the nodal line by 

hypothesis). Such arcs can be parametrized, in the if-logarithmic coordinates z, q~ as 
follows 

~j 

~bj (z) M + 1 

d 
~j (~) = o( l ) ,  

z < log R, j = l  . . . . .  M ,  

I- o(1), as ~ --* - - ~ ,  for every j = 1 . . . . .  M, 

a s z ~ - ~ ,  for e v e r y j = l  . . . . .  M. 

By (1.4), (1.1) the angle 0 in the z coordinate is such that 

O(c~j(z),r)=O{M~J+l ) + o ( 1 )  - ~j 
\ M +  ,z  M + I  

Finally, recalling 

parametrized 

~j '  0 = oj (r), 

where 

(1.8), we have that the 

0 < r < R ,  

+ o ( 1 )  as z ~  - ~ z ,  

curves 7j, J = 1 . . . . .  M, can be 

~j 
Og (r) = M + l + o ( 1 ) ,  as  r --* O, 

d 
r ~r Oj(r) = o(1), as r ~ 0 .  
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These formulas show that the curves ~,j a r e  C 1 up to the endpoint P = 0, and that 
their tangent lines at Q are equally spaced in the sector F(P). This concludes the 
proof of  Theorem 1. [] 

2. The  nodal  line o f  second eigenfunctions 

In this section we restrict our attention to the second eigenvalue 22 and we 
consider u to be any corresponding eigenfunction. 

As is well known, the Courant nodal domain theorem, [C-H], implies that Q \ N  

is composed by exactly two connected open sets, nl and Q2. By Theorem 1, we 
obtain that N must have one of the following three configurations 

(I) N is a simple curve, 

(II) N is a Jordan curve and is compactly contained in ~2, 

(III) N is a Jordan curve and intersects On at exactly one point P. N is piecewise 

C l, and its one sided tangents at P divide the sector F(P) in three sectors o f  

equal amplitude. 

In order to prove Payne's conjecture, that is Theorem 2, one has to show that 
cases (II) and (III) cannot occur. 

Without loss of  generality we shall assume that u > 0 in Q1 u < 0 in n 2 and, in 
case (II) or (III) holds, that ~2 is the domain whose boundary is N. We shall denote 
by v the exterior unit normal to 0n. Being n convex, v is defined almost everywhere 
on ~n. 

Let us observe that, as a consequence of the convexity of ~, since u ~ w~.2(n) 
and Au ~ L2(n)  then in fact u e W2'2(~), see [G, Theorem 3.2.1.2.]. In particular, 
the gradient of u has an L 2 trace on 0n. 

LEMMA 2.1. I f  (II) or (III) occurs, then for  any unit vector ~, and for  any arc 

c ~12 such that v �9 ~ > 0 almost everywhere on ~, the following inequality holds in 

the weak sense 

0U 
- -  < 0 on  a. (2 .2)  

Proof. Without loss of  generality we may suppose that ~ is parallel to the x-axis 
and, if (III) occurs, P is not an interior point of  a. The arc a can be represented as 
a concave graph x = x~(y).  We have u(x~(y), y) = 0, u(x, y) > 0 for x < x~(y)  and 
therefore Ou/Ox(x~(y), y) < 0 for almost every y. Recalling that u e W2'2(Q) we have 
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that  Ou/dx is an absolute ly  cont inuous  function on almost  every line, hence [du/~x] + 

can be cont inued to 0 outside 12 as an absolu te  cont inuous  funct ion on a lmost  

every line ~ which is t ransversal  to a. The first par t ia ls  of  [au/dx] + exist a lmost  

everywhere and they belong to L2(12), hence [~u/dx] § has zero trace on a. [] 

The next two lemmas are due, in the smooth  case, to Lin [L, Lemma 2.4, P roo f  

of  Theorem 2.2], see also [M, Theorem 2.1]. We  omit  the proofs ,  since, in view of  

the previous considerat ions ,  it is a s t ra ight forward  mat te r  to modi fy  those in [L] 

and [M] to the present  setting. 

L E M M A  2.2. I f ( I I )  or ( I I I )  holds, then the second eigenvalue 22 has multiplicity 
one. 

L E M M A  2.3. l f ( I I )  holds for  some convex domain 12, then there exists a convex 
domain I2, for  which ( I I I )  holds. 

Proof  o f  Theorem 2. We argue by contradict ion.  In view of  Lemma 2.3, let us 

assume, that  case ( I I I )  occurs. 

Let us choose the coordina tes  in such a way that  P = 0, f2 lies in the upper  half  

plane y > 0, and the y-axis  bisects the sector F(P). The bounda ry  o f  12 can be split 

into four  arcs A, B, C and D. A and B are line segments paral lel  to the x-axis  and 

might  consist of  single points ,  0 E A. The arc C stands to the left hand side o f  D. 

I f  e~ is the unit vector  in the x direction,  then we have v �9 e~ < 0 on C and v �9 e~ > 0 

on D. 

F o r  any real number  t, let us define the fol lowing function 

v, = ~x + tu in 12, 

v, belongs to Wl'2(O) and it satisfies in the weak sense 

Av, + 22vt = 0 in 12. 

By Lemma 2.1 we have 

v , > 0 o n  C, v , < 0 o n D ,  in the weak sense, 

while, in the inter ior  of  A u B, we have v, = 0. 

L E M M A  2.4. There cannot exist two disjoint connected open subsets o f  12 such 
that, on their boundaries, v, = 0 in the weak sense. 
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Proof  I f  there were two o f  such sets, by the variational characterization o f  22, 
and by the analiticity o f  vt in the interior o f  9 ,  it follows that vt is a second 
eigenfunction in 9.  By Lemma 2.2, we obtain that v, is a constant  multiple o f  u 
in 9 .  Therefore 8u/Sx = (Const.)u in 9 ,  which contradicts the zero Dirichlet 
condition. [] 

L E M M A  2.5. There exists exactly one connected open subset 0 t o f  0 such that 
vt = 0 on 80, in the weak sense. 0,  is simply connected. 

Proof  By Theorem 1 we know that there exists R > 0 ,  such that N n B R ( O )  is 
composed by two C ~ arcs 7 +, 7 , whose intersection consists only of  their endpoint  
at 0. Moreover ,  we may choose R sufficiently small, in such a way that  their 
tangents lines are never parallel to the x-axis and 7 +, 7 - lie, respectively, in the half  
planes x > 0, x < 0. F rom now on we shall remove the endpoint  0 from 7 § and 7 - .  

By our previous settings, we have that v, > 0 on 7 + and vt < 0 on 7 - .  We define 
0 ,  + as the connected component  o f  the level set {z ~ O I v,(z) > 0} which contains 

7 +, and, analogously, we define 0 7 .  Now let us suppose that vt Io,- ~ Wo~a(12;-), 
since vt -> 0 on C and v, = 0 on A u B, then 80 ; -  must  have a nonempty  intersection 
with D. Therefore, 0 7  separates O + from C u B ,  consequently 80  + may intersect 
80 on points o f D  u A  only, where we have v, < 0. Since v, > 0 inside Q 7  we obtain 
that v, = 0 weakly on 80  +. Hence we have obtained that either f2, = 9 7  or 
O, = O t + satisfies our  thesis. Uniqueness and simple connectedness are conse- 
quences of  Lemma 2.4. [] 

N o w  we apply the above arguments  to the special case t = 0, that  is vt = 8u/Sx. 

L E M M A  2.6. There exists a nontrivial arc 5 in C and a connected component G 

of  the level set {z ~ f2 I (Su/dx)(z) > 0} such that 8G n C contains 6. 

Proof  First we observe that  C c 8{z ~ 0 I (Su/Sx)(z) ~ 0}, otherwise 8u/Sx = 0 
on an open subset o f  12, which is not  possible by analytic continuation. Next, we see 
that the set C nO{z ~ol(Su/ex)(z) < 0} has empty interior in 09. Were it not  so, 
we would have 8u/Sx = 0 weakly on an open arc y o f  C. Continuing u to 0 to the 
left o f  7, we would obtain a W ~,2 function satisfying, in the weak sense, 

Au + 22u = 0 on a full ne ighborhood of  7, by unique cont inuat ion we would have 
that u should vanish identically. 

Therefore any connected component  6 o f  C\8{z  E 0 I (8u/Ox)(z) < 0} is open in 
C and it is contained in the boundary  o f  one connected component  G o f  the level 

set {z ~ 0 I 8u/Ox > 0}. [] 

Let  us denote by 2~ (Q) the first eigenvalue o f  the Laplacian with Dirichlet data  
in the domain  Q. 
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L E M M A  2.7. There exists T > 0, such that v, > 0 in O, for  every t < - T and 

v, < 0 in f2, for  every t > T. 

Proof  Let us consider  the case when t > 0. Let 6, G be as in Lemma 2.6 and let 

K be a sufficiently small connected  ne ighborhood  o f  6 in G such that  u > 0 in K. 

Therefore,  v, > 0 in K, and K c~ f2, = ~ ,  otherwise,  we would  have K c f2, and  then 

au/Ox = 0 on 6, which is not  possible by the unique con t inua t ion  proper ty ,  as we 

a l ready  observed in the p r o o f  o f  Lemma 2.6. 

By the strict monoton ic i ty  o f  the eigenvalues we have 2 ~ ( O \ ( f 2 : w K ) ) =  

�9 '~I(hQI\/() > 2 1 ( ~ ' ~ 1 ) = 2 2 ,  and by continuity,  we may  find a connected  open set 
E c c ~2 such that  

2 , ( O \ ( E  u K)) > 22. (2.3) 

We may  find T > 0, such that  v, < 0 in E for every t > T. F o r  t > T, we have that  

ei ther E c ~ ,  or  E c~ O, = ~ .  But the second case cannot  occur,  because it would 

imply Q, c f2 \ (E ~ K)  and,  therefore 22 = 2j (Or) > 21 ( f2 \ (E  ~ K))  con t ra ry  to (2.3). 

Therefore  v, < 0 in f2, for every t > T. The case t < - T can be t reated analogously .  
[] 

The p r o o f  o f  Theorem 2 will be completed  by the use of  the fol lowing Lemma,  

which obviously  leads to a cont rad ic t ion  with Lemma 2.7. [] 

L E M M A  2.8. The sign o f  v, in f2, is a continuous function o f  t ~ R. 

Proof  Let us suppose  that ,  for a given t, we have, for instance, O, = 0; - .  We 

can find a smoo th  pa th  t / i n  f2 +,  which jo ins  C with 7 + (the arc const ructed in the 

p r o o f  of  L e m m a  2.5) and such that  

inf  v, > 0. 
q 

Were  it not  so, we would have v, = 0 weakly on 0~  +, which is not  possible.  Hence,  

there  exists E > 0, such that ,  for every h, [h I < E, we have v, + h = V, + hu > 0 on r/, 

tha t  is ~ /u~ + c O++h. Therefore,  for every h, [h I < E, t /w7  + separates  O7+ h f rom 

D, and,  by the arguments  on Lemma 2.5, this implies [2,+ h = t27+ h. [] 
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