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On complex affine surfaces with C+-action 

KARL-HEINZ FIESELER 

O. Introduction 

The subject of this paper is the classification of normal complex affine surfaces 
endowed with a nontrivial action of the additive group C + as well as certain aspects 
of  their topology. Such surfaces have already been studied by Miyanishi in [6] and 
[7]; on the one hand from an algebraic point of view by looking at iterative systems 
of higher order derivations (in arbitrary characteritic) and on the other side by 
investigating "cylinderlike" affine surfaces, i.e. surfaces which admit non-empty 
open subsets of the form Z • C. 

One goal here is to complete that picture in the complex case: As a cylinderlike 
surface a normal affine C +-surface can be constructed from a product Z • C, Z a 
smooth affine curve, and C + acting by translation on the second factor, by 
replacing in the fibration prz : Z • C ~ Z a finite number of  orbits by "exceptional 
fibres". Since there is no twisting over the affine curve Z, the resulting surface V is 
uniquely determined by the germs of C+-invariant neighbourhoods of the glued in 
exceptional fibres. 

But in contrast to the reductive group C* o, those fibres may be non-connected. 
In order to deal with non-connected fibres we replace the base curve Z with a 
nonseparated "connected" quotient X, i.e. the quotient morphism has connected 
fibres. Over X there is nontrivial twisting, and in fact we obtain already non-trivial 
affine C+-principal bundles over X, cf. Prop. 1.4: they are affine whenever they are 
separated. Surfaces of this type have been used by W. Danielewski, to construct his 
counterexample to the Zariski cancellation problem, cf. [1] and Remark 1.5. The 
next step is to investigate the structure near connected exceptional fibres of the 
connected quotient n : V--*X. A first distinction between such fibres n-~(Xo) uses 
two numerical invariants: the multiplicity m > 1 of n l(Xo) as fibre of the mor- 
phism n, and its "fixed point order" /a  > 0, i.e. the vanishing order of the velocity 

1) The situation for the multiplicative group C* has been studied in the papers [2] and [3], 
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vector field associated to the C+-action along that fibre. For m = 1 the morphism 
is near g-~(Xo) a projection, i.e. there is a neighbourhood U of Xo such that 

g -~(U)  = U x C, and /~ = 0 means that this isomorphism is even equivariant. 
For m -> 2 we describe explicitly invariant neighbourhoods ~ -  ~(U) as quotients 

W / C , ,  where W is a smooth affine surface without multiple fibres over a Galois 
cover Y of U with cyclic Galois group Cm and a ramification point Yo of  order m 
over Xo. The neighbourhoods g -~(U)  are determined up to isomorphism by 
Cm-orbits in Q((9r,yo)/h #(QY,Yo' such that the fixed point order # is coprime to the 
order of the isotropy subgroup along that orbit, and the smooth case corresponds 
to principal orbits, i.e. those with rn elements, while otherwise there is exactly one 
singular point. Here h denotes a generator of the maximal ideal my ~ c (gy,y 0. 

In particular for the description of invariant neighbourhoods of connected fibres 
one needs infinite-dimensional "moduli",  another feature that distinguishes the 
additive group C + from the multiplicative group C*. 

Finally the case of nonconnected fibres is as simple as that of C+-principal 
bundles: different models Vi of  invariant neighbourhoods g - z ( U )  of  connected 
fibres can rather arbitrarily be patched together. 

In the second section we construct a minimal equivariant compactification I7 for 
a smooth affine C+-surface V and use the information about the divisor at infinity 
D .'= I?\ V to compute the singular homology of V, as well as the first homology 
group at infinity in the case that no multiple fibres occur. This allows us to 
distinguish the topological types of  the Danielewski surfaces. 

For useful comments and remarks my thanks go to Hanspeter Kraft. 

1. Free C+-act ions  on normal affine surfaces 

Let V = Sp (A) be a connected normal affine surface. Algebraic C+-actions 

C •  V-~V ,  ( t , v ) ~ - ~ t , v  

on V are in one-to-one correspondence with locally nilpotent derivations 
D : A - ~ A :  The comorphisms / z : A - ~ A [ T ]  associated to a C+-action are exactly 
those of the form 

Dna T ~ 

= f=o 

with D as above, cf. [7]. The kernel of  D is the subalgebra Ao,=A e+ of invariant 
regular functions, while D z kills exactly those functions f ,  which are affine linear on 
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every orbit, i.e. f ( t  �9 v) = f l ( v ) t  +fo(v)  for every v ~ V and t ~ C + with f ,  = D"f, 

n = 0 , 1 .  
A normal  affine surface together with a nontrivial algebraic C +-action we shall 

also call an affine C+-surface. Note  that each orbit  is either a fixed point  or the 

complex line; the latter being maximal affine it follows that all orbits are closed. 

1.1. L E M M A .  For an affine C+-surface V = Sp (A) the algebra Ao o f  invariant 

functions is f initely generated, and the natural "quotient" morphism q : V = Sp (A) --* 

Z ,= Sp (Ao) is a surjection onto a smooth curve; furthermore over a nonempty open 

subset Z *  c Z there is an equivariant isomorphism q I(Z*) _~ Z *  x C, where C + 

acts by translation on the second factor. 

Proq f  Since the action is nontrivial, we can find a function 

f ~ K e r  (D2) \Ker (D) .  Let V*'.= V~j be the (invariant) special open set where D f  

does not vanish; set S : = { v  ~ V * ; f ( v ) = 0 } .  Consider the map C x S ~ V * ,  

(t, v) ~ t �9 v. It is obviously bijective and even an isomorphism, since V* is normal. 

In particular S is smooth;  so we may consider the smooth  projective closure S c P ,  

of  S and interpret the projection prs : V* ~ S as rational map from q : V ~ S. We 

want to show that it is in fact a morphism: Otherwise it lifts to a morphism /7-~ S 

with a suitable modification /7 of  V with centre in V \ V * ;  and this lifting restricts 

on some irreducible component  E of  the exceptional fibres to a finite surjective map 
E--* S. 

Every orbit C �9 v, v ~ S, is closed in V and /7. Consequently the generic point in 

E lies isolated in its fibre, which is impossible. 

N o w  let Z : = q ( V ) .  Suppose Z = S .  Then Ao -~ ( 9 ( Z ) =  C; in particular D f i s  a 

constant,  whence V = V * =  Z x C, a contradiction. Consequently Z as proper  

subset o f  S is affine and A0 ~ (9(Z) finitely generated. Finally set Z*..= S c Z. [] 

Denote by z I . . . . .  z s the points zj ~ Z near which the map  q : V-~ Z is not  

equivariantly locally trivial. By replacing each point  zj by as many  points 

Xlj . . . . .  Xrjj as there are connected components  in q -  ~(zj), we obtain an (in general 

non-separated) smooth  prevariety X as well as a factorization q = p  o zc, where 

: V - - X  is C+-invariant  with connected fibres and the "separat ion morphism"  

p : X ~ Z is induced by the isomorphism (9(Z) ~ ~(X). We shall call zr : V ~ X also 

the connected quotient morphism of  V and Z resp. q : V - ,  Z the separated quotient 
(morphism).  

More  precisely, X is constructed in the following manner:  denote by Zj = Z an 

open ne ighbourhood of  zj containing none of  the remaining points zk, k 4 j ,  

consider then copies Xij ~- Zj,  1 < i < rj, and glue them together along X* ~ Z~' .'= 
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Zj \ { z j  }. The resulting spaces Xj project onto Zj via the map Pi, say; now identify 
pj- l(Zj c~ Zk)  and pi, ~ I(Zj c~ Zk)  in the obvious manner.  

1.2. L E M M A .  I f  the fibre z~ l(Xo) o f  xo ~ X is reduced and h e mxo is a generator 

o f  the maximal  ideal m~o c (gx.xo , then there exists a Iz ~ N and an affine open 
neighbourhood U o f  xo, such that h ~ (9(U) and ~ - t ( U )  is equivariantly isomorphic to 

U x C with C + acting by t �9 (x, u ) ,=(x ,  u + th(x)~'). 

1.3. D E F I N I T I O N .  For  a normal  surface V with nontrivial algebraic C+-ac  - 

tion C x V ~ V and an invariant irreducible curve C % V we define the "fixed point 
order"  #..= #(C) as the maximal number  n ~ N such that, over the regular part  of  
V, the velocity vectorfield associated to the C +-action determines a section in J~,O,  

where J c  denotes the ideal sheaf o f  C and 19 the sheaf of  algebraic vectorfields. 

Proof. Let us use the notat ion o f  the p roof  o f  1.1, set X * , = p  ~(Z*). We choose 

an affine neighbourhood U c X* u {Xo} o f  Xo such that h E (9(U) and Xo is the only 
zero o f  h in U and consider its inverse image i t -~(U) ~ Sp (B). 

We use for the induced derivation on B also the symbol D: Let # be the biggest 
natural number  n such that  D ( B ) c h n B ,  where we identify h and h o ~. 

Obviously the der ivat ion/~. .= h ~'D : B ~ B is also locally nilpotent and thus has 
an associated C+-act ion C + • n - ~ ( U )  ~rc -~ (U) ,  (t, v) ~ t o v - note that t o v = 

(th(rffv))-") �9 v for v r n-l(Xo).  Since r r - l (U)  is normal  and n l(Xo) reduced, h (or 
rather h o n) generates the ideal of  the fibre re- ~(x0). Consequently /3(B) contains 
functions which do not vanish identically on the fibre n -  ~(Xo). Hence it contains or, 

being connected, rather equals a nontrivial orbit. In particular, the action o is free 
and n - l ( U )  thus is smooth. 

It remains to prove that there is an equivariant isomorphism n - z ( U )  ~ U x C, 

where on the left hand side we consider the action "o" and on the right hand side 
translation on the second factor. 

This is a well known fact, but  because o f  lack o f  a good reference we sketch the 

argument:  We may assume that X = U. It suffices to construct  a section o f  n. Over 
X* a section a is defined by S c_, V*..=rE I(X*). N o w  choose a function 
a e A  =(_9(V) which restricts to a coordinate  function on r c - l ( x o ) ~ C  with 

yo~r~-~(Xo) as origin, let Y r V denote its set o f  zeros on V. The condit ion 
g(y )  o a(n(y))  = y defines a regular function g ~ (9(Y*) with Y*..= Yc~ V*. Since the 

fibre n-~(Xo) is reduced, nly is 6tale at yo, and we have a surjection 

Q(d)X.xo) ~ Q((gX.xo)/gX.xo-~ Q(~Y,yo)/l~r,y o. We may assume that a preimage b of  
the residue class o f  g e Q(dTr,yo) is regular in X*; then the section X * ~  V*, 
x ~ b(x) o ~(x) extends to a section on the whole o f  X. [] 
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Let us now consider  the case that  W = V is a smooth  affine C+-surface  such 

that  the morph i sm 7r : W ~  X is a submersion.  L e m m a  1.2 tells us what  W looks  

like locally over X, and  it remains  the quest ion,  which equivar iant  gluing proce-  

dures o f  the local models  yield an affine surface. This is a local p rob lem with respect 

to Z ;  hence we may  assume s = 1. We write x~ = xi~, 1 < i < r . '= r l .  Let h ~ (9(Z) be 

a regular  function which vanishes o f  first order  at  z~ and nowhere else. Fu r the rmore  

let C + act on Xg x C ~ Z x C by t �9 (x, u) = (x, u + th(p(x))" , )  with na tura l  num- 

bers #i e ~ .  Fix functions f j  ~ (9(Z*) such that  the cocycle relat ions 

L=0,  7,k=h"  

are satisfied. Cons ider  then 

r 

w =  U x, xc/~ 
i = l  

with the identif icat ion 

X i x C ~ (x, u) ~ (x ' ,  u ' )  e Xj x C ~ x = x '  and u'  = h(p(x))UJ - "'u + f q ( p ( x ) ) .  

1.4. P R O P O S I T I O N .  For a surface W as above the fo l lowing s tatements  are 
equivalent: 

(i) W is affine. 
(ii) W is separated. 

(iii) n,j.'= - o r d z ,  ( f j )  >O fo r  i # j ,  1 < i , j  < r. 

R E M A R K .  The third condi t ion  is equivalent  to the fact tha t  none  o f  the maps  

7J~j : X*  x C --, X* x C, (x, u) ~ (x,  h(p(x))~'J "'u +f~j(p(x)))  can be extended to a 
morph i sm Xi x C--* Xj  x C. 

P r o o f  (i) =~ (ii): Obvious.  

(ii) ~ (iii): Suppose  W i s  separa ted  and ordz, ( fu )  > 0 for some indices i a n d j .  

Then the poin t  ( 0 , f j ( 0 ) ) ~  x C lies in the closure Y , = X i  x {0}; this is a 

cont radic t ion ,  since ql r : Y-- '  Z as a b i ra t ional  m o r p h i s m  on to  a smooth  curve is an 
i somorphism.  

(iii) ~ ( i ) :  In o rder  to prove that  W is affine we use induct ion  on r. The 

case r = 1 being trivial we may  assume r > 1 as well as /~1 > / ~ 2 > ' " # r .  Let  

n . '=max {n~l; 2 < i < r}. Cons ider  the regular  funcion g ~ Cg(W) with 

g(x,  u) = h(p(x) )" (h(p(x) )"J  U'u +f~l (p(x) ) )  for  (x, u) e Xi x C. 
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We have g[~ I(Xl) v-----. O, and g[, l(X,o ) - a for some a ~ C*, if we choose i0 such that 
n = niol. It suffices to show that g : W ~ C  is an affine morphism. But this is clear, 
since by induction hypothesis the union of  at most  r - 1  open subspaces 
Xi x C c W is affine and 

as well as 

i ~ i  0 

Let us for a moment  assume that in addit ion the C+-act ion  is even free. In that 
case ~ : W - o  X is a C+-principal  bundle, and C+-principal  bundles over X are 
classified by elements o f  the cohomotogy  group H i ( X ,  C); so for an affine base 

X ~ Z we find W ~ X x C. But for a nonseparated base space the condit ion given 
in 1.4 provides us with a lot o f  nontrivial C+-surfaces. Danielewski used surfaces o f  

this type to construct his counterexample to the Zariski-cancellation problem, i.e. 
he found non-isomorphic varietie s W, W',  such that forming their cartesian product  
with the complex affine line C one gets isomorphic varieties, cf. [ 1]. The following 

remark is basic for his examples: 

1.5. R E M A R K .  Let 7z" W ~ X ,  rt ':  W ' - - * X  be C+-principal  bundles with 

affine total spaces W, W'. Then we have an isomorphism 

W x C , . ~ W '  x C .  

Proof. In the cartesian square 

p" 

W '  x x W  ~ W 

W'  ) X  

all occuring maps are bundle projections o f  C+-principal  bundles; since W, W'  are 

affine, we have H1(W,  ~) = 0 = I-I1(W ", (9) and thus W x C ~ W'  x x W ~- W'  x C. 
[] 

So it remains to find an invariant by means o f  which we can distinguish between 
surfaces W and W' o f  the above type. That  invariant will be the first homology 
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group at infinity 

H~'~(W)..= lim HI(W\K) (---  

K ~  W 

which we compute  in the second section, cf. Th. 2.4 and 2.5. 

Our  next aim is to describe C-invariant ne ighbourhoods  o f  a connected fibre 
l(x0) o f  multiplicity m-> 2 and fixed point order ~t-> 0 o f  the quotient map  

�9 V - ,  X. Let us first introduce the local models: 

1.6. E X A M P L E .  Let X be a smooth connected affine curve - so in particular X 

is separated here - ,  Xo E X and r : Y ~ X with Y smooth a finite cyclic Galois 
covering of  order m > 2 which is unramified over X * : = X \ { x o }  and has a ramifica- 
tion point Yo of  order m over x0. After removing finitely many poins #Xo from X 
we may assume that Y is of  the form Y = {(x, z) ~ X x C; z m = b(x) } with a regular 

function b e ~Y(X) which generates the maximal ideal mxo c (gX, xo and has no other 
zeros than x0, set h :=prety ~ (9(Y). The Galois group of  Y over X is the group C,, 
of  m-th roots of  unity, which acts by multiplication on the second factor, and on 

Q(C(Y))  by e f (y ) :=f (e  'y). 
For  Y * : = r  '(X*) choose a regular function f ~  (_9(Y*) o f  trace Tr ( f )  = 0 in 

the field extension Q((9(Y)) = Q((9(X)). Denote by n the order o f  the orbit  C m f o f  

the residue class of  f i n  Q(Cy,yo)/h ~'(gy,y o. For  Y c X x C as described above, we 
see, using the isomorphism 

m -  I 

Q(Cr,yo) ~- ~ Q(Ox, xo)h ~ 
v = 0  

that for f =  Zm=olfvhV this means nothing but: f0 = 0 and n = m/l  for l := l ( f ,  #)..= 

gcd (m, v : m ordxo (fv) + v < - #). 
Let Y be the smooth  prevariety obtained from Y by replacing the point  Y0 by n 

points Yl . . . . .  y , ,  set Yi.'= Y* w {yg} c ~ with Y* := Y\{Yo} and e = e z'~/'. 
We define W~ (~b) to be the C-principal bundle over Y defined by the transition 

functions 

j t 

f . /(y) := -h(~ - ' y ) "  ~, f(e, -;'y) 
2 = i  

for 1 < i < j < r  and y E  Yiw Yj = Y*, i.e. 

w~(O) = 0 Y, x c /~ 
/ = 1  
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with Y* x C ~ (y,  u) ~ (y,  u +ft j (Y))  E Y* x C. The fact that  the C, , -orbi t  of  the 
residue class o f f  in Q((gr.yo)/h "(gr.y o has n elements implies that for  j > i, the 
function f j  has a pole at Yo- So, by 1.4, the variety W~ ($) is affine. 

We endow W~ (t#) with the C+-ac t ion  t �9 (y,  u ) . '= (y ,  u + th(y) ~) �9 Yi • C for 
( y , u ) � 9  

Denote  by O : W ~ ( r  Y the separated,  by 0 : W ~ ( O ) ~  I 7 the connected 
quot ient  morphism.  N o w  consider the au tomorph i sm 

~p: W ~ ( O ) =  0 Y i x C - ~ W f ( r  
/ = l  

such that  for  (y,  u) �9 Y~ x C, 1 < / < n with the identification Y~ = Y = Y; 

(p(y, u) = (~y, ~"u) �9 L +  ~ x C, 

while for (y, u) �9 Y. • C we have 

( - ,  ) 
q~(y, u) ".= ey, eUu + h(y) u ~ f (e-2y)  �9 Yl x C. 

2 = 0  / 

We remark  that  h u X~=o " -  * ~ f � 9  d~(Y), since 0 = T r ( f )  = l Z~. 5_ 1 e~f in 
Q(~r.yo)/h-uCr.y o. Fur the rmore  note that  for (y,  u) �9 Y* x C ~ YI x C one has 

~p(y, u) = (~y, e"u + h(y)"f(y))  �9 Y1 x C, 

and  

~pk(y, U) = eky, tk,  u + h(ek- ly)U ~. 
2 =  

Thus,  since Tr  ( f )  = 0, ~o has order  m, such that  we obtain an action of  Cm on 
Wf (~,): let ~ �9 Cm act via the a u t o m o r p h i s m  ~o. This action is C +-equivariant ,  hence 

V~ (r ,=  W~ (O)/Cm 

is an affine C+-surface  as well, and its quotient  morph i sm is 

. : v ;  (0 )  - , x  

[y, u], ~ ~( y), 

where [y, u]i denotes the orbit  C,,,(y, u) for  (y,  u) �9 Yi x C. 
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N o w  suppose that l and # are relatively prime. In that case Cm acts freely on 

W ~ ( ~ ) \ C ~ ( y l , a ( O ) ( 1 - ~  ~ )  ~), where a..=~ 1 ~ h ~ Z ~ = ~  ~f~(9(Y);  hence the 

residue map W~ (qJ) ~ V~ (~) is 6tale outside a finite set, and we can conclude, that  

the fibre r~ ~(Xo) has fixed point order # and multiplicity m: the former is obvious, 

since the fibres ff t(y~) have fixed point order #, while for the multiplicity consider 

the coordinate function b ~mz0 near xo~X.  Obviously the function b o ~ o 0 

vanishes of  order m along {y~} • C for 1 < i < n; now, the residue map 

W~ (~k) ~ V~ (~b) being 6tale outside a finite set, it follows that b o ~ has order m 
along ~ -l(x0). 

Note  that under the assumption (#, l) = 1 the surface V~ (~b) is smooth iff l = 1; 

and this is in particular the case for # ~ m~.  On the other hand, for l > 1 there is 

exactly one singular pont  in V~ (~O), cf. also [6]. 

1.7. T H E O R E M .  Let V be a connected normal affine C+-surface with connected 

quotient morphism ~z : V ~ X ,  and x o G X  a point, such that the fibre ~z-l(xo) has 

multiplicity m > 2 and f ixed point order # > O. Fix a neighbourhood U of  Xo, such 

that there is an equivariant isomorphism ~ - I ( U * ) ~ - U *  x C with U*:=U\{xo} ,  

together with a finite cyclic Galois covering ~ : Y ~ U of  order m as in 1.6. Then there 

is a regular function f ~ (9(Y*), where Y* ,= ~ - l(U,),  o f  trace Tr ( f )  = 0, such that 

1(U) ~- V~ (~) and # is coprime to the order l(f ,  #) o f  the isotropy group of  the 

residue class f o f f  in Q((gr,yo)/mjo ~ (where m~0U,=h--u(gr,yofOr a generator h of  the 

maximal ideal my o ~ (g r,yo). 
Furthermore we have V~ (t~) ~- V~,(~b) i f  and only if  the residue classes o f f  and f '  

in Q((gr,yo)/myo ~' are conjugate under the action o f  Cm. 

Proof  We may  assume U = X and fix b ~ mxo and h ~ my o with h m = b as in 1.6. 

Consider the fibre product  Y x x V. At a generic point  of  {Yo} x z t - ' (x0)  it 

decomposes into m analytic branches. The projection prr  restricts to a submersion 

on each of  these branches, and the group Cm acts transitively on them. Conse- 

quently the normalizat ion W of  the reduction o f  Y •  V is a normal  affine 

C § with a connected quotient 17, which is obtained from Y by replacing Y0 

by n points y~ . . . . .  Yn, and these points, with respect to the induced action of  Cm 

on 17, form one orbit. Thus n t m, and we may assume ey~ = Yi + l for 1 < i < n with 

y,  + ~.'=y~. F rom the above considerations we can also conclude, that there are only 

finitely many non-principal orbits, i.e., orbits with less than m elements; so the 

quotient morphism W ~ W/Cm ~- V is outside a finite set 6tale; in particular, if 

: W--,  I 7 denotes the connected quotient morphism, the fibres ff-~(yi)  have fixed 

point order #. On the other hand ff has only reduced fibres; so, if we set 

Y;.'= I 7* u {y~ } ~- Y, there is by Lemma 1.2, for h ~ (9(Y) as in 1.6, a trivialization 
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z : Y, x C - Y x C ~ O ' (Yl) ,  which is C +-equivar iant  if we consider on Y x C the 
action t �9 (y,  u)..= (y, u + th(y)"). Since 0 - 1 ( Y  *) is Cm-invariant ,  we obtain  via the 
trivialization z on Y* x C a C,n-action commut ing  with the C+-act ion,  which thus 

is necessarily o f  the form e(y, u ) =  (ey, eUu +h(y )Uf (y ) )= . .O(y ,  u) with a regular 

function f e C(Y*). 
N o w  consider the trivializations r~:Y~ x C ~ 0 - 1 ( Y ~ )  defined by z~(y, u)..= 

d - i t ( e l - ; y ,  eu(l-  nu)" Using these trivializations we find 

W =  0 y, xC/~, 
i = l  

where Y* x C ~ (y,  u) ~ (y,  u + fu (Y ) )  e Y* x C with 

j 1 

f . j (y) . '=  - h ( e - ' y )  u ~ f (e  ~y) 
) , = i  

for  1 < i < j - <  n. Now by a reasoning as in 1.6 we find that  Tr  ( f )  = 0 and the 

Cm-orbit of  the residue class of  f i n  Q(Cr,yo)/h -uCgr,y ~ has n elements. Note  that  the 
fact that  the natural  m a p  W ~ V is 6tale outside a finite set implies (#, l) = 1. Thus 

we finally arrive at an i somorphism V g V~(r 

N o w  assume that  the residue classes o f f  and f '  in Q((gr,yo)/h-"(gr,yo are 
conjugate  under  the action of  Cm. Evidently it suffices to discuss the two cases 

f ' - f e h - " C y , y  o and f ' = @  In the first case, since T r ( f ' - f ) = 0 ,  we find a 
function g ~h  #C(Y) with f ' ( y ) - f ( y ) =  g ( s y ) - g ( y )  for y e Y*. Then the m a p  

i = 1  i = 1  

W~ (~k ) ~ Yi x C ~ (y,  u) ~ ( y, u + h(e -'y)~g(81 - iv)) ~ Yi x C c W~,(~b ) 

induces an i somorphism V~ (~b) ~ V~,(qJ). 

Secondly, if f ' =  ~f, then we can apply the m a p  with 

wy (0) = r ,  x c ~ (y,  u) --, (ay, ~"u) e r ,  x c c wy,(0),  

for  1 ~ i < n, which again provides an i somorphism V~ (~) -~ V~,(~k). 

On the other  side every i somorphism V~ (~k) ~ V~,(r lifts to an i somorphism 
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by the naturality of the normalization of the reduction of the fibre product with Y. 
Now it is not difficult to see that 0 is a composition of a morphims of the above 
type and the action of  a suitable power o f s  either on W~ (@) or on Wf,(~); and this 
yields easily the reverse direction of the equivalence. [] 

The next step in order to achieve a global classification of normal affine 
C+-surfaces is to describe the germs of invariant neighbourhoods of a fibre q l(zi) 
of the separated quotient morphism q:=p  o n : V ~ Z .  For this it is enough to 
consider the case where the separation morphism p : X--* Z has only one fibre 
p ~(z0) = {x~ . . . . .  x~} of order r > 1. Again we use the notation Z* = Z\{z0}, 
X* = p  I(Z*) and Xg--X*w{x~}. A generalization of 1.4 is the following 

1.8. THEOREM. Let Vi be affine C+-surfaces with connected quotient 
morphisms ~ : Vt ~ Xi ~- Z, such that there are equivariant isomorphisms 

~u~. V* : = ~ l ( X * ) ~ X * x  C (with C + acting by translation on the second factor) 

and V be the result o f  gluing the V~, 1 < i <r,  over X*  via the maps 

~ f  l o 9F i �9 V* ~ V*. Then V is ajfine i f  and only i f for  no two different indices i , j  the 

transition isomorphism 7J i 1 o 7Ji : V* --* V* extends to a morphism Vi ~ V i. 

REMARK. Note that, if the fixed point orders p~ and ~j of the central fibres 
z:Tl(zo) resp. nj~(Zo) coincide, then every extension of T / l  o ~g~ is necessarily an 
isomorphism. Hence our condition is satisfied if the Vi are pairwise non-isomorphic 
with the same fixed point orders #i of nT~(Zo). 

Proof. As in 1.4 the nontrivial part is to show that the condition is sufficient: 
Denote by m~ the multiplicity of the fibre 7:i I(Zo) and by p~ its fixed point order. As 
above choose a function b E (9(Z) which generates the maximal ideal in the local 
ring (gZ, zo and has no other zeros than Zo; let Y.'= {(z, 0 e Z  x C; ~" = b(z)} with 
m-'=lcm(ml . . . . .  m~) and r~,={(z, O e Z x C ; ~ " , = b ( z ) } ,  denote by O : Y - - * Z  

and ~ : Y~--. Z the morphisms @(z, ~) = z resp. O~(z, ~) = z. Then according to Th. 
1.7 there is a representation V~ ~- W~/Cm, where Wi is an affine C+-surface lying 
submersively over its separated quotient Y~. We shall construct a global representa- 
tion V ~- W / C , ,  where W is an affine C+-surface with separated quotient Y. We 
have 

//i 

IV, .~W~(@,)= U Yk x C ,  
k = l  

where the Y~,l <k -<n i ,  are copies of yi, ni is the order of the orbit 
C,,,f~ ~ Q((griyo)/hi",(gr,y ~ for the regular function f.  on ( r i ) .  and hi:=prc[ri. 
Denote by 0~ : Y-* Y~ the covering 0~(z, ~) = (z, ~xi) with 2i,=m/m~. 
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Consider now f iei '=O*(Wi) ' = Y  x r ,  W i = ~ ' = l  Yk x C  with copies Yk, 
1 < k < n~, o f  Y. In this situation the group Cm acts on fie~ such that e ..= e 2€ 
induces on fiei the fibre product  of  the maps Y--, Y, y ~-. ey and ~0~: IV,.--, 14/,., 

which both cover the t ransformation yi_.. y~ y ~ ea,y. In local coordinates it is 
given by 

Yk x C ~ (y, u) ~ (ey, e"'X'u) e Irk+ 1 x C, 

for 1 < k < n~ and 

t n i -- 1 I Yni x C ~ (y, u) ~ 8y, g~'X'u -t- hi(tgi(y))~'i Z fi(oi(g ~y)) E Yl x c ,  
2 = 0  

while on fie* = Y* x C - Y* x C this action is nothing but 

Y* x C ~ (y, u) ~ (ey, e~";"u + h,(~(y))",f , .( ,9,(y))) ~ Y* x C. 

Then we have Vi ~- if'i/C,,. N o w  let us try to cover the trivializations 
~ : V* --*X* x C --- Z* • C by Cm-equivariant trivializations ~i �9 fie. ~ y .  x C 

where Cm acts only on Y*. To that end choose g ~ ( 9 ( Y  ~*) such that 

f j ( y )  = g i ( e ; , y ) - g ~ ( y )  for y ~ W* - t h i s  is possible (at least after shrinking Z a 

little bit) with an argument  analogous to that in the p roof  o f  Theorem 1.7. Then the 
map 

@i: Y * x C ~ Y * x C  

(y, u) ~ (y, h~(1)~(y))-~',u - g~(gi(Y))) 

intertwines the two actions o f  Cm. 
NOW since gi ~ (9(Yi*) is determined only up to a pull back of  a regular function 

on Z*,  we can choose the 4~ in order to cover the given trivializations ~ .  

Then patch together the Wg, 1 <- i < r, to W via the respective ~ and ~j: 
I 

fie, = if'* = Y* x C , Y * x C <  Y* x C = W* = fiej. 

We want  to show that W is affine. As a consequence o f  1.4 and the remark 

thereafter it is enough to show that no map 
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extends to a morphism 

x c--., r ,  • c 

for s o m e k ,  lwi th  1 - < k < n i a n d  1 < l ~ n j .  
Using the action of Cm and the fact that Cm " Yk • C = ff'i we may extend it once 

more to a morphism I~,. c~ I~/. Obviously this extension respects both the action of 
C and Cm and thus induces a morphism V,. ~ I/1. contrary to our hypothesis. [] 

As a consequence of the vanishing of the cohomology group H~(Z, (9) we have 
eventually: 

1.9. THEOREM.  Let V be a normal affine C+-surface, denote by q : V ~ Z the 
separated quotient morphism, let Z l , .  � 9  zs be the points in Z,  near which q is not 
equivariantly locally trivial. Then V is determined up to equivariant isomorphism over 

Z by the germs VI . . . . .  Vs o f  invariant neighbourhoods o f  the exceptional f ibres 
rc l(zj), 1 <-j <- s. 

On the other hand for  every finite set o f  points z ~ , . . . ,  zs E Z and prescribed 
germs ~ ,  1 < j <<- s, o f  invariant neighbourhoods, there is an affine C+-surface realiz- 
ing these data and being locally trivial elsewhere. [] 

2. Equivariant compactification and homology for smooth surfaces 

Let Z denote the smooth projective closure of  the smooth affine curve Z, fix a 
line bundle L on Z" together with a nontrivial section tr : Z ~ L. 

We use a in order to define a C+-action on L: 

C + • L ~ (t, x) ~ t * x , = x  + ta(prL(x)) EL;  

and this action extends to the projectivization M..= P(L x C) of  the line bundle L, 
which is obtained from L ~ P ( L  x C*) by adding the section at infinity 
P(L* x {0}), where L* is L with the zero section removed. The fixed point set M c+ 
is the union of the section at infinity and f -~(N~) ,  w h e r e f :  M--* Z is the projection 
of the P~ -bundle M over 2 and N~ denotes the zero set of  tr. Note that the invariant 
curve f - l ( z )  has fixed point order ordz (a). 

Now an algebraic C+-action on a complex algebraic surface carries over to its 
blow up in a fixed point. Let 3~t be the result of successively applying this procedure 
to M, with the restriction, that the "modified points" (i.e. which have a positive 
dimensional fibre with respect to the modification map A~t ~ M) are contained in 
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L c§ = L c ~ f - I ( N , ) .  In order to control  the above process consider a C§ - 
ant modification ~0 : M0 ~ M of  the above type. To each irreducible component  Di 

o f  ( f o  cp) - I (N, )  we can associate three numbers:  its self intersection number  
a~:=D 2 ~ Z~o, the multiplicity mi ~ 1~1~ 1 of  D, as irreducible component  o f  a fibre 
o f  the morphism f o ~p : M0 ~ Z, and the fixed point  o rde r /~  e NI. 

Suppose that  M0 contains no isolated fixed points and consider the blow up 
% : M~ ~ M0 of  M0 in a fixed point  Xo. It is contained in an irreducible component  
D1 o f  ( f  o tp) - I(N,)  with fixed point order/~1 > 0. I f  Xo is not a crossing point of  
irreducible components  of  ( f o  r 1(N,), then for D2: - - -qgo l (xo )  we  have a2 = - l ,  
m 2 = m 1 and /~2 = #1 - 1. Note  that for /~1 = 1 and the strict t ransform /~l of  O 1 

the difference D 2 \ / ~  1 is one orbit. As data  for/~1 we find ti I = a I --  1, ff / l----ml as 
well as /~1 =/~l- 

I f  x0 is contained in two irreducible components ,  say D1 and D2, o f  

( f o  ~p)-l(N~) and D3 = t p o l ( x 0 ) ,  then a3 = - 1 ,  m3 = m l  + m 2  and # 3 = # 1  + # 2 ,  
while for the strict transforms /)~ o f  the Di, i = 1, 2, we have again ti~ = a~ - 1, 
th~ = m~ a n d / ~  = /~ .  Note  that no isolated fixed points have been created in M I ,  so 

we may go on with M1 instead of  M 0. 

2.1. T H E O R E M .  Let V be a smooth affine C+-surface and Z. '=  Sp ((9(V) c~ ) its 
separated quotient. Then V admits a smooth C+-equivariant compactification ~" _~ )171, 
where ff'I is an equivariant modification of  a C+-surface M = P(L • C) of the above 
type, and the divisor at infinity D ,= f f \ V  contains all irreducible components o f  
~o- I (P(L  • { 0 } ) w f  I(N~)), which are not terminal in the dual graph of  that system 
of  curves. 

Proof. Choose a function f ~  Ker (D2) \Ker  (D) as in the p roof  o f  Lemma 1.1, 
and define a ~ C(Z)  to be the regular function on Z with a o q = Df. Then the zero 
set Na includes the points zl . . . . .  z~ ~ Z  with exceptional fibre q-l (z j ) ,  i.e. q- l ( z j )  
is either unconnected or  has multiplicity > 1 or consists entirely of  fixed points. 

N o w  consider the line bundle L .'= (_9 D over ,T, for the divisor D ..= Z}_ ~ ordzj (a)zj 
together with the section a ~ C o ( Z )  c J / / (Z)  corresponding to the rational func- 

tion - 1. Then the equivariant map Vt~T~L n f  1(Z), v ~--~f(v)(tr(q(v))/a(q(v))) 
extends to Vo,=q-l(Zo),  where Zo:=Zak.){Zl,...,Zs}', and as a consequence 
o f  the vanishing of  Hi(Z,  (9) there is a function b e(9(Zo) such that v 
(b(q(v))+f(v))(tr(q(v))/a(q(v))) extends even to an equivariant morphism 
g : V - * L  c M, which restricts to an isomorphism g - l ( Z * ) ~ L n f  l(Z*) for 
Z * , = Z \ { z l  . . . .  , z~}. 

Let us now turn to the construct ion o f  an equivariant modification ~o : )Q ~ M, 
such that  g factors through h~r via an open embedding ~ : V ~ )Q. The centres o f  the 
sequence o f  blow ups ~o is composed of  will lie over L n f - I ( N ~ ) ;  so we may  replace 
M with f - ~ ( Z )  n L and since the problem then is local with respect to the separated 



On complex affine surfaces with C +-action 19 

quot ient  Z,  we may  assume that  there is only one except ional  fibre q-~(Zo) and V 

has a representa t ion  V ~ W / C ,  as in the p roo f  o f  Th. 1.8, where W is a smooth  

affine C+-surface  wi thout  mul t ip le  fibres and with a separa ted  quot ient  Y which can 

be realized as an m-sheeted  cyclic Galo is  cover ~ : Y - ,  Z having only one ramifica- 

t ion po in t  Y0, s i tuated above  z0 and of  order  m. 
Let  us first consider  the case m = 1, i.e. V = IV. We h a t e  W = ~7= i Xi X C /  

as in the discussion preceding Prop.  1.4 and m a y  assume f - ~ ( Z ) c ~ L  ~ - Z  x C 
where t e C  + acts by t , ( z , u ) ' . = ( z , u + t h ( z ) " ) .  Then we have g ( x , u ) =  
(p(x),  h(p(x))  ~ U~u + bi(p(x))) for (x, u) e X~ x C and funct ions b~ ~ (9(Z) satisfying 

the relat ions 

where of  course pj -<- n for 1 -<j < r. We have the fol lowing two possibili t ies:  Ei ther  

n = p j  for some j ,  in which case fv  = b ~ -  bj ~ C(Z)  implies r = 1, cf. Prop.  1.4, and  

g a l ready  is an i somorphism,  or n > #j for every j :  Then g(q l(z0)) is finite and  we 

have g({x~} • C) = g({x~ } x C) if  and  only i fn  - pj - n~j > 0 with n~j.'= -ord~o(f~. ) .  

Denote  by ~ : B~ ~ B o : = Z  • C the blow up of  Bo in all the points  ofg(q-~(zo) ) ,  let 
F be the strict t ransform of  {Zo} x C in B, and E ~ , = ~ ( ' ( g ( { x i }  x C)), the excep- 

t ional  fibre over g({x~ } • C), set Bg~ ,= B~ \ F  w E~ w.  �9 �9 w /~  u .  �9 �9 w E~. Since the pull  

back o f  the reduced ideal sheaf  

go:= g : W ~ Bo = Z x C lifts to 
l < i < r .  

N o w  an easy compu ta t ion  

of  g(q--1 (Z0)) is an invertible sheaf, the m o r p h i s m  

a morph i sm gl : W - ,  B1 with g~ (Xe • C) c B] for  

shows B~ ~ Z • C equivar iant ly  with the ac t ion 

t ,  (z, u ) =  (z, u + th(z) n -  l) on Z • C, so we come across the same al ternat ive:  

either gl[gll(B~):g(I(B~)~B~ is an i somorphism or  we may  apply  the same 

procedure  as previously.  Doing  this where ever it is possible we obta in  a second b low 

up B2 --* B1 such tha t  gl factors th rough  a morph i sm g2 : W - ,  B 2. Af ter  at  least n 

steps this process becomes s ta t ionary,  and  gn : W - ,  Bn is an open embedding.  

Let  us ment ion  some details  we will need later: 

The images gk({xi} x C) and gk({xj} x C) are either equal  (iff k < n - p j  - n i j )  

or dis joint  (iff k >- n - #j - nij); and  gk({xi } • C) is a curve iff k ~ n - Iz~ iffgk IX, • e 
is an open embedding.  Consequent ly  the dual  g raph  o f  the system of  i r reducible  

curves lying over {zo} • C is a tree emanat ing  from Co, the vertex cor responding  to 

F, the strict t ransform of  {z0} • C, and having the vertices ei, 1 < i -< r, co r respond-  

ing to the closures gn({x~} x C) as terminal  points.  No te  that  the pa th  f rom e~ to eo 

consists of  n - 1[2 i edges and after exactly nj~ = n a - Pi + I~j edges it joins  the pa th  

f rom ej to Co. 

Let us now deal  with the general  case: The morph i sm g : V ~  Z • C induces 

a Cm-equivar iant  morph i sm ~ : W ~  Y • C, which is the compos i t ion  o f  

~b*(g) : I?..= Y x z V--* Y x C g Y • z (Z  • C) and  the reduc t ion-normal iza t ion  
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morphism W---* 17. Now let us carry out the above construction for ~ : W ~ Y x C. 
We obtain modifications/~k : /~k ~ Y x C and liftings gk : W ~/~k. The blow ups/~k 
inherit a natural C,,-action, and the morphisms gk are necessarily C,,-equivariant. 
Now take the quotient mod Cm of the final step gn : W---,/~, and obtain thus an 
open embedding g,  : V _~ W/Cm ~ B n  ' = B , / C m ,  where Bn in every case is a normal 
analytic or rather algebraic space. Since V is smooth, the singular points of  B, lie 
outside gn(V) and being isolated they are fixed point of  the C § Now choose 

as the minimal C+-equivariant resolution of B,, and take ~ : V ~ / ~  to be the 
lifting of gn. The composed morphism B ~ Bn ~ Z x C is as a modification of 
smooth surfaces a sequence of blow ups, and from the construction it is clear that 
/~\~(V) consists of  all non-terminal irreducible curves lying over {z0 } x C together 
with the terminal curves in the linear subchains of  the dual graph of that system of 
curves which result from resolving the singularities of  Bn. [] 

Let us return to the general situation we started with in the beginning of this 
section. Denote by 17 = ~Q an equivariant compactification of the above type and let 
Bij, 1 < i < rj, 1 <-j < s denote the closures in 17 of the irreducible curves in V above 
zj ~ Z ,  1 <-j <- s. Let S be the strict transform with respect to ~o : 17 = ~r ~ ~(L • C) 
of  the section at infinity P(L • {0}), F1 . . . . .  Ft the fibres of  points in Z \ Z  with 
respect to the map f o ~o : I 7 --* Z, while ~ is the strict transform of f -  1 (zj) in I 7. 

Let us denote by Ekj, k ~ Ij, the irreducible components of  ( f o  q~) l(zj)  different 
from ~ and the Bij, 1 < i < rj. 

The following diagram shows the weighted dual graph of (17\ V)  u ~)i,j Bij for a 
surface V with one exceptional fibre q l(Zl) = (B~ c~ V) u ( B 2 n  V), B~..=Bi~ and 
separated quotient Z = C*. The triples (m,/~, a) indicate the multiplicity, fixed point 
order and self intersection number of  the corresponding curve. 

F,(1, O, O) F2(I, O, O) B,(1, O, - 1 )  

P~(1, 1, --3) 

B2(2, 0, - 1) E,(1, 0, - 2 )  

E~(2, 1, -2) 
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Let us now as a first application compute the singular homology of V: Denote 
by mij resp. n~j the multiplicity of Bij resp. Ekj in the fibre ( f o  ~o)-l(zj), set 
mj ,= gcd (m u . . . . .  m~jj). 

2.2. THEOREM. With the above notation the integral singular homology groups 
o f  a connected smooth affine C+-surface V are given by 

t 2~ H q = 0; 
Hq(V)~ 1 ( Z )  O (~)J= 1 '~mJ' q = l ;  

with r : Y ~ } = l ( r j - 1 ) ,  q : 2 ;  
L 0 ,  q > 2 .  

The following corollary is a generalization of a result of Rentschler, which 
describes algebraic C+-actions on the affine plane, cf. [5]: 

2.3. COROLLARY. Every acyclic affine C+-surface V is equivariantly iso- 
morphic to C 2 endowed with an action t �9 (z, w) = (z, w + p(z)t) for  some nonzero 
polynomial p(z) ~ C[z]. 

Proof  The vanishing of H2(V) yields that q : V ~ Z  has connected fibres, while 
H I ( V )  = 0 means that they all have multiplicity 1. On the other hand, H~(Z)  = 0 
implies Z -  C. Thus, by 1.2 and 1.9, V is determined up to equivariant isomor- 
phism by the fixed point orders /~j of the fibres q-~(zj) ,  1 < j  < s. Hence V is as 
given with p(z) .'= l-I)= ~ (z - zj)~J. [] 

Proof  o f  2.3. Since V is Stein, we have H q ( V ) =  {0} for q >2 .  Denote by 
D := 17\ V the divisor at infinity. 

Relative Poincar6 duality applied to the pair (I 7, D) yields Hq(V) ~- H 4-  q(17, D); 
so we have to consider the following part of the long exact cohomology sequence 
of (17, D): 

H2(17, D) q H2(17) --*H2(D) -o H3(I 7, D) ~ H S ( l  y) ~ 0 ,  

where we have used H I ( V )  ~- HI(D) and H3(D) = {0}. 
Furthermore H2(17) _-__ H2(ff)* as well as H2(D) ~ H2(D)*; and//2(17) is freely 

generated by the homology classes of the curves S, F~, Ekj, k ~ Ij, Bij, 1 < i < rj, 
l < j < s ,  while H2(D) has as a base the homology classes of S, F1 . . . . .  Ft, 
ffl . . . .  , L , E , j ,  k ~Ij ,  l < j  < s. 

Now replace [4]  ~ H2 (D) with Cj ..= [L] - [F~ ] + Zk ~ 6 nk j [EJ  in order to obtain 
a new base of H2(D). Then for the image ~* ~ H2(D)* of a linear form ~ ~/-/2(I7)* 
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we find 
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a*([S]) = u([S]), a*([Fk]) = ~([F1]), 

9 

a*(~j) = -- ~" mi]a([Bq]), ~ * ( [ e j )  = ~( [Ej ) ,  

where the third row is a consequence of the fact that the fibre F~ is homologous in 
17 to 4 + Ek ~ lj nkjEkj + E~= I mqBq. 

Since H3(17)~ H1(17)~- H~(Z) is free, we thus obtain 

H3(I 7, D) ~ H 1 (2) (~) Z l - 1  (~ + 7/mi ~ H, (Z) G + Zmj, 
j = l  j = l  

and HZ(I 7, D) is free of  rank rk H2(I 7) - (rk H2(D) - l + 1) = E}= 1 rj - s. [] 

For the computation of the first homology group at infinity we recall some 
general facts: For a "good" neighbourhood (with respect to the complex topology) 
U of the divisor at infinity D = UT,= 1Dk we have H ~ ( V )  = H~(U\D), and D is a 
strong deformation retract of U. 

Thus the exact sequence 

H2(U) , Ha(U, U\D) , H , (U\D)  , H , (U)  , H,(U, U\D) 

H2(D ) H2(V , V\D) H,(D) H,(V,  V\D)  

H2(D) H l (Z) H3(D) = {0} 

H2(D)* 

together with the fact, that the first homomorphism identifies elements of H2(D) 
with linear forms on it using the intersection product on I 7, leads to the isomor- 
phism 

H ~ ( V )  ~ H , ( Z )  O ~_"/((Dk " D,) ), 

where for a matrix A e 7/(",") we denote by ( A )  the submodule of Y" generated 
by the row vectors of  the matrix A. Let Aj denote the intersection matrix of 
[ ~ q ; [ E j ,  k e / j  and arrange a base of Hz(D) in the form [S],[F1] . . . . .  [Ft], 
[P,], [E~,], k e / ,  . . . . .  [Ps], [EM, k els.  
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With respect to that  base the intersection matr ix  ((Dk ' D r ) }  takes the form 

1 0 

3 

1 0 

3 

0 

0 

1 1 

0 

0 

0 

0 

. . . 

0 

AI 

0 

0 1 
0 

0 

. . . 

0 

A2 

0 

where a = S S = - E]= 1 ordz, (tr) is the self-intersection number  of  S. 
Now we can easily prove 

2.4. T H E O R E M .  Every connected affine C+surface V is connected at infinity 
and its first homology group at infinity is of  the form 

H ~ ( V ) _ ~ H ~ ( Z ) O  + Tj 
j - - 1  

with a torsion module Tj associated to every fibre q-~(zj), 1 <-j <-s, near which the 
separated quotient q : V-~ Z is not an equivariant product. 

Proof. V is connected at infinity, since the divisor at infinity D = 12\ V for an 
equivariant  compactif icat ion as above is connected. 

An easy exercise in linear algebra using the shape of  the intersection matr ix  
given above shows that  

s 

o,)} ' e  |  -rkAJ/(Aj}; 
j = l  

since H l (Z)  ~ H1 (Z)  @ U -  1, it remains to show that  Tj ..= 7/rk Ai/(Aj ) is a torsion 
module  for 1 -< j -< s. 
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Consider for fixed j the submodule M c H2(I 7) generated by the (linearly 
independent) homology classes of fig.; Ekj, k e l j ;  Bo, 1 < i < rj. We have M = 
~'r ~ ) M o, where ~ = [ff~ + Zk~ 6 nkjEkj + Z ~ l m o B  o] and M0 is generated by the 
[Ekj], k e Ij and [Bo], 1 < i < rj. 

The intersection form is negative definite on M o and ~ �9 M = 0. So the intersec- 
tion form is negative definite on every submodule M~ of M, which does not contain 
a non-zero multiple of  ~. That applies in particular to the submodule M~ generated 
by [~] ;  [Ekj], k e Ij. Since Aj is the associated intersection matrix, the claim follows 
immediately. [] 

Finally we want to compute the torsion module T- -  ~ more explicitly in case 
that all the components B o n V, 1 < i < r ..= rj, of the fibre q -  ~(zj) have multiplicity 
mij : 1. Let Bt::Bij  and p-~(z j )  = {xt ,=xij;  1 < i < r}. 

For a first discussion of T we deal with the general case of arbitrary multiplic: 
ities and consider the tree in the dual graph of D u B~ w- �9 �9 ,J Br emanating from 

Let ( f o q ~ ) - l ( z j )  = f f w B I W . . . w B , . L )  E r + l W . . . w E q  and denote by 
eo, el . . . . .  er, er+~ . . . . .  eq the corresponding vertices in that tree. 

As in the introduction denote by at the self-intersection number of  the curve 
represented by e~ (so ai is the weight of  the vertex et in the weighted dual graph of 
the fibre ( f  o q~)- ~(zj) ~ I7), by mi its multiplicity as irreducible component of the 
fibre ( f o  ~o)-~(zj) ~ p and by/~e its fixed point order. For  k e l , =  {0 . . . . .  q} let 
Ik "= {i e I \ { k } ;  et and ek are the common end points of an edge}, and set 

q 

L .'= {~) ~_ei, 
i = 0  

Vk:=akek+ ~ e t 6 L  
ielk 

for k ~ I. Then T ~ L/L~ with the submodule 
q 

LI ,= ~ 7let ~) 7/Vo ~ ~ ~_v i. 
i = l  t = r + l  

Furthermore, the fact that [FI] �9 [C] = 0 for every irreducible component C of  the 
fibre ( f o  ~o)-~(zj) together with the homology F~ "., ff + Y'ri-- i miBi + ~'qt=r+ l mtEi 
yields the following relation for the self intersection numbers ai' 

mkak "q- E mi = O. 
i e l  k 

We turn now to the special situation that the fibres n-~(x t )  = Btc'~ V, 1 < i < r, are 
reduced. Then by the construction of  Jhr according to the proof of Th. 2.1 all 
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multiplicities mi equal 1, so the weight ak of ek is up to sign the valency of  the vertex 
ek in the dual graph. 

Let us write i _>j for i , j  e I, iff ej lies on the (unique) path from ei to e 0, and for 
i ~ I\{0} denote by i(1) the unique index such that e~o) is the immediate successor 
of  e~ on that path; define i(v) by induction: i(v + 1) = i(v)(1) so far as it makes 
sense. Denote by aq ~ ~ the number of  edges in the path from ei to eo one has to 
pass before reaching the junction point with the path from ej to eo. 

I f  V =  Wis  of  the form 

r 

w =  U x , •  
i = l  

with the identification 

Xi x C ~ (x, u) ~ (x' ,  u') ~ X; x C "r x = x '  and u' = h(p(x))UJ -~iu +f iy(p(x))  

as in Prop. 1.4, then, according to the proof  of  Th. 2.1, we have 

aq =nji  = nq -- ]'~i "9U #j 

for i # j .  Using that notation we arrive eventually at 

2.5. THEORE M.  l f  zj is a regular value o f  q, then the torsion module T =  Tj is 
o f  the form T _~ 7Z r+ 1/(A ~ with the matrix  

A I i l l  
a k l  

& particular, i fakt = a ~ ~ ~ t for  every pair (k, l) with k # l, there is an isomorphism 

T~_Z,a@Z'~  -2.  

Proof. We consider the homomorphism 

I/J " -~r + 1 --* L / L1, 

(Co . . . . .  Cr) ~--~ Coeo + s civi + L1; 
i = 1  

since ~b obviously is onto, it suffices to prove Ker ($) = ( A ) .  
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For Lo,= {Y'i~ i c i e  i ; ~'ie ,t Ci = 0} we have L = 7/eo ~ Lo and Lo = Zk ~ 1 7/v~, where 
the only relation for the generators vk is Ek~lVk = 0 .  So we find 

(0, 1 . . . . .  1) ~ Ker (~k). Furthermore for i ~ I \ { 0 }  we have 

e i ( 1 ) - e l  = ~ Vk, 
k_>i 

such that for i ~ {1 . . . . .  r} one finds with n as in the proof  o f  Th. 2.1: 

eo - -  ei = 
n- - l z  i - 1 

E ei(v + 1) - -  ei(v) 
v = O  

v = 0 k (v) 

• (1"1 - -  ]A i - -  aik)Vk m o d  L1 
k = l  

= - -  ~ a i k V  k mod L~; 
k = l  

since ei ~ L~ for 1 -< i < r, this gives ( 1, ai~ . . . . .  air) ~ Ker (qJ). 
N o w  let us turn to the other inclusion Ker (~)  c ( A ) :  For  (Co . . . . .  cr) ~ Ker (~b) 

there exist % . . . . .  c% ~ 7/ with 

Coeo + CkVk = O~oVo + ~ @ E 
k = l  i = 1  k = r + l  

~ k U k  

or equivalently 

Coeo - ~ i  e i  = ~OUO - -  CkUk -~- Z 
i = 1  k = l  k = r + l  

~ k V k ~  

where the coefficients ~t o, - c l  . . . . .  - c r ,  ~r+l  . . . . .  (~q are determined by the left 
hand side up to a c o m m o n  summand.  On the other hand, since the right hand side 

is in Lo, we have C o -  Y~= i cti = 0; so we can write 

Coeo-- ~ O ~ i e i =  ~ ~i(eo--ei) 
i = l  i = l  

) = ~ (n - #i - aik)Vk + ~oVo + 
i = 1  k 1 i = r + l  

= ~i( rl - - ] l i - -aik)Vk + ~ 0  v o +  Z 
k = l  i = 1  i = r + l  

~iVi 

~iUi ,  
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so by comparing coefficients one finds 

ck = ~ cq (a~ +/a~ - n) + 0t 
i -  I 

for some ct ~2~ and 1 < k -< r. In the whole 

(c 0 . . . . .  c,) = ~. o~,(l,ai, . . . . .  a,~)+;'.(O, 1 . . . . .  1) e ( A )  
i ~ l  

with ; . = ~ + Z L  ~ ( / a ~ - n ) .  The explicit formula for the case a , t = a  for 
every k, l �9 {1 . . . .  , r}, k 4: l now follows easily with elementary methods of  linear 
algebra. 

Addendum: While proofreading I learnt about the papers o f  J. Bertin, which are 
closely related to our subject; they are listed in the references without numbering. 
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