The spherical derivative of integral and
meromorphic functions

by J. CLuniE and W. K. Haymaw

1. Introduction

In a recent paper LEHTO and VIRTANEN [2] introduced the spherical deri-
vative

If' (2]
e(t@) =1 roE

as a measure of the growth of f(z) near an isolated singularity. This point of
view was further pursued by LEerTO0 [1]. If the singularity is taken to be at
z = oo then LEHTO obtained the following results.

Theorem A. Suppose that f(z) is meromorphic for R < |z| < oo, and has an
essential singularity at 2 = oo. Then

lim sup [2] ¢ (f(2)) = }. (1.2)
Equality holds for functions of the form

o) =11 22—

. 1.3
APy (1.3)
where a, s a sequence of complex numbers such that
Lon1) , o (v — o). (1.4)
a‘v

Theorem B. If f(z) satisfies the hypotheses of Theorem A and in addition
f(2) is regular near z = oo, then (1.2) can be replaced by

ligsgp |z] e(f(2)) = oo. (1.5)

Following Lknro, we denote by h(r) a positive function such that
h(r) = o(r) (r - oo). The connection between g (f(z)) and Prcarp’s Theorem is
strikingly brought out by the following result of LerTO [1].
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Theorem C. Let f(z) be meromorphic for R << |z| < oo. If for a sequence
{z,}, im 2z, = oo and
e lim (e, e (/(z)) = oo (1.6)

then Proarp’s Theorem holds for f(z) in the union of any infinite subsequence of the
discs
CVZ{ZZIZ—ZVl<€h(|ZVl)} (17)
for each e > 0.
Conversely if there exist discs (1.7) such that Prcarp’s Theorem is true in every

union \J O, for every € > 0 then (1.6) is satisfied. (V. Gavrirov has pointed out
E=1
to us that the converse must be modified here. (1.6) i3 satisfied for a sequence z,
instead of z,, where |z, —z,| = o {h (|2,])}. This condition is also sufficient
for the existence of the disks (1.7)).

In particular it follows that if f(z) has an essential singularity at z = oo then
f(z) possesses a JULIA direction provided that

li:n_fgplzw(f(z)) = oo. (1.8)

From Theorem B we see that every transcendental integral function possesses
a JuLria direction. If (1.8) is not satisfied there is not, in general, a JULIA
direction as the examples (1.3) show if @, > 0.

2, Some further results for meromorphic tunctions

Our aim in this paper is to obtain some extensions of Theorems 4 and B. We
may suppose without loss of generality that f(z) is meromorphic in the whole
plane. First we consider whether or not a restriction on the growth of f(z) as
defined by its order imposes any restriction on p(f(2)), or conversely. For
meromorphic funetions no restriction on p (f(z)) is implied by a restriction on
the growth of the characteristic 7' (r, f). Consider, for instance,

Q —z/a,)
f2) = —
(1 —2b,)

where X |a,|, X |b,|* converge. Since f(a,) = 0, f(b,) = oo it follows that

Je(f@) |dz] = =,

where the integral is taken along the segment I', joining a,, to b,. In particular
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24
‘bn _anl

o (f(z,)) =

for some point z, on I',. By choosing a,,, b, close enough together we can make
the right hand side bigger than any preassigned function of |z,]|.

On the other hand a result in the opposite direction is possible. It is convenient

to set
0 88 ulr, f) = Sup ¢ (f(2) .

Suppose that for » > r, we have

ulr, )y < Kre. 2.1)

By Theorem A this is only possible when ¢ > — 1 or when ¢ = — 1 and
K > 4. In the usual notation of NEvANLINNA Theory,

7y, f) = [ 28l a

where 1 ”Z
S0, f) = — [ f e*(f(te)) tdtdg
00
< 2fy=(t,f)tdt.
1]
Thus if 6 = — 1in (2.1),

S(r, f) = O(logr), Ty(r, f) = O(log*r). (2.2)

The examples (1.3) with @, = 4”(4 > 1) show that the order of magnitude in
(2.2) cannot be sharpened.
If (2.1) is satisfied with ¢ > — 1 we obtain

S(T, f) = 0(,.204—2)’ To(r’ f) = 0(720+2)' (23)

Hence a meromorphic function of proper order k > 0 cannot satisfy (2.1) for

any g < k_ 1. The implication from (2. 1) to (2. 3) is sharp as our first theorem
) p

shows.
Theorem 1. Suppose that 0 << A < oo and that

f@) = 2 A ne 2.4)

n=1 nkn ~— 2"

Then f(z) has perfectly regular growth of order 2/A and satisfies (2.1) with

1
7——1.

g =—
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The function f(z) has poles at the points z = n"e‘zl;;ﬂ »=0,1,...,n —1;
n > 1). The number of poles in [z| < r is {p(p + 1) where p is the largest
integer such that p* <r, i.e. p = [r*A]. Thus n(r, f), the number of poles of
f(2)in z < r, satisfies

n(r, f) ~3p? ~ 22 (r—> o),
and so
N(r,f)=f1%—’—,—)—dt~%r’/"(r—>oo). (2.5)

We now estimate |f(z)]. Assume that
P—P <zl <(p+ P, (2.6)

where p is a positive integer. 4 (1) denotes a positive constant depending only
on 1 and is not necessarily the same at each occurrence. Let n be an integer
satisfying n > p and put n = p + v so that v > 1. We have, in the range (2.6),

i"g(ﬁ:_v_t;%_)‘"s <v~g>
"Iax n Q
Se‘("“i)"_
Hence, when z lies in the range (2. 6),
2 (—=1pzr| 2 e (-2
n=§+1 nAn — g flm—A(M- (2.7)

When 1 < n < p and z lies in the range (2.6) then, if n = p — v with» > 1,

_z_"z(n'*'”_%)h (1+ v___i_)ku

n* n

2( 1’;g)”‘(nzlc). (2.8)
Now
— 1)nzn — 1) pin
e =y T

and so if we choose % in (2.8) to be [ ZJ -+ 1 so that Ak > 2, assuming that
p> [1] + 1, we find that in the range (2.6)
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p—1 (_ l)n 2n p—1 (__ l)nnln
nml n)\n I = 1 + n2=:1 nln —2n
TS P S ! AQ
S +"=1 —l_z—ll”—l +’u1 1+‘V—2 2—1'—' ()
n k
From this and (2.7) we obtain
(— 1per

in the range (2.6) for p > [—ii] + 1. It is easy to see that consequently (2.9)

holds in the range (2.6) for p > 1.
If |2| =t and (2.6) is satisfied then using (2.9) we see, in the notation of
NevanLinNa Theory, that

m(t, f) = 5 § log* |{(te)| 9

l 2n tp
< 3o | log* ‘W a9 + A(2)
<L Tiogt |-l d0 + 4@
273 %8 gin pd +

= A(4).
From this and (2.5) we deduce that

T(r,f) = mir, )+ N, f) ~ 5 5, (1> o0)

so that f(z) is of perfectly regular growth, order % and type :i'— .
It remains to be proved that f(z) satisfies (2.1) with ¢ = % — 1.
We have
, . © pintiyn-1
f'(2) ——”ﬁ(—‘ 1" (i )

Ap+1
pp+ ¥y

— (1 B ),

where f,(2) is defined by the series for f(z) with the pth term omitted. Now, by
the above, f,(z) is regular and bounded by 4 (4)in (p — 3[4} < [2]| < (p + 3/4)A
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and each point in (p — 1/2)* < |z| < ( + 1/2)* is the centre of a disc which

lies in the larger annulus with radius Hence, from CavucHY’s integral,

A(l)

lfp(2)] < A(A)p2 < A(A)]2|1A1,
for
p—122 <zl <(p+1/20 (p=1). (2.10)

Therefore in the range (2.10),

@ < | o] + A3
p+1 P\ 1,
- B s

p)‘p+l l -1
< A(4) TeP 1+ [f@)+ 4(4)]2]%
by (2.9). Consequently, in the range (2.10),

|f' (2)] r 1/A-1
T+ 1f@F <4 fp + 4D

< A(A)) 2|1,

Since the ranges (2.10) cover all the plane apart from a disc, the proof of the
theorem is complete.

3. Positive theorems for integral functions

The remainder of the paper will be devoted to obtaining improvements of
Theorem B and to showing that these are best possible. We assume without
loss of generality that f(z) is an integral function. It will also be assumed that
f(2) is always transcendental. In this section we state our positive theorems.

Theorem 2. If f(z) i8 an integral function of proper order ¢ (0 < @ < o), then

. ru(r, f)
h:n_fgp—la‘gm 2 4o(o + 1), 3.1
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where A, 18 an absolute constant. In particular

]_imsup_r.ﬂ_(r.’_f.).:oo

r>w logr

(3.2)
Inequality (3.2) sharpens (1.5) which is equivalent to

lim sup ru(r, f) = oo.
r—>

Theorem 3. If f(z) is an integral function satisfying (2.1) for all large r with
— 1 << 6 << oo, then for large r

AlK o+1
10gM(T,f)<'a—_*_l‘r ’ (3.3)
where 4, = 25e log 2.
It follows from (1.5) that the restriction ¢ > — 1 is necessary in Theorem 3.

The theorem shows that for integral functions (2.1) implies that
T(r,f) = O0(r"t).

This is significantly stronger than (2.3) which is the best possible result for
meromorphic functions by Theorem 1. Note that if f(z) is of perfectly regular
growth then Theorem 3 is a consequence of Theorem 2.

As we shall see later, if f(z) is an integral function such that the growth of
log M (r, f) is properly of the order of log?r in the sense that

0<limsup~1—0—g1£/—f—,("—’ﬁ<oo
r—> o og*r

then no improvement of (3.2) is possible. On the other hand our next theorems
show that if log M (r, [) # O(log?r) or log M(r, f) = o(log?r) then we can
logM(r,})
log?r
becomes respectively. However, there is no sharp difference in the behaviour of
u(r, f) as we pass from one of the above classes of functions to another. By this
we mean that if ¢ (r) —> oo(r — o), then there is an f(z) from each of the above
classes such that

improve (3. 2), the improvement depending on how large or how small

. ru(r, f)
lim Sup ) Tog 7

Before stating our next theorem we give an indication of how one arrives at
an improvement of (3.2) if log M(r, f) # O(log&r) for K suitably large. If
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3
pir, fy < K 8T

u(r, f) in § 2, it follows that
To(r, f) = Oflog®r).

for large r then, from the inequality involving Ty (r, f) and

Hence if log M (r, f) # O(log®r) we see that (3.2) can be improved to

. ru(r,f)
Hm S “ogir

Our next result gives the improvement of (3.2) for functions f(z) such that
log M (r, f) # O(log?r), but log M (r, f) = O(log®r).

Theorem 4. If f(z) is an integral function and ¢ (r) /" o (r /' o) and

lim sup log M(r,f)

— a4+l
1 8UP = ) Toger > 0, log M (r, f) = O(log™+ir), (3.4)

where 2 < & << oo, then

. ru(r, f)
hfn:gp () log®ir > 0. (3.5)

When « = 2 in (3.4) then (3.5) is the improved form of (3.2). For func-
tions such that log M (r, f) # O (log®r), log M (r, f) = O (log®r) take

@(r) = {log (r + 1)}'? and choose « so that both conditions (3.4) are satisfied
and x > 2-5. The improved form of (3.2) is then

hEm sup .M

mSUP gy~ °

To deal with functions such that log M (r, f) = o(log’r) we have the fol-
lowing result.

Theorem 5. Ifq(r)isincreasing and f(2) 18 an integral function such that

| log?r

—» 0o .8
[ o(r) (r=> ) @.9)

log M(r,fy=0
then

. rur,f) _ 3.7)
Hm suP Sy logr — = (
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4, Proofs of the positive theorems

4.1. We require a number of preliminary lemmas.

Lemmal. Let f(z) =ay+ a,(z—2) + ... be regular in |z —z,| < &
and satisfy |f(z)| =1 there. Then
2 1
|a1| < l“ol dogla’o‘ , (41)
and for |z —z| <r <9
L Lad
6| 377 < |(2)] < ago—r. (4.2)
If further {f(z,){ = 1 for some z; with |z, — zy| = & then for some 2z on the
segment joining z, to z,
log |a,| ||
e(f) = 15510g2 = 20 7ag| log 2 (4.3)
(4.1) and (4.2) are classical,
Suppose that
floo+ 8e')| =1 (2 = 2 + 8ei7).
If
|1z + ee)| <2 (0< o< ) (4.4)

then Ja,| < 2 and
8
lao] —1 < |f(z + de%) — f(z)] Sof |f' (20 + te®)| dt

< & max |f' (s + 1))

0 t< 8

If ¢ = 2y + t,¢%* is a point where the maximum on the right is attained then,

and so
_ 1)l (O] _ log|a]
e(f() = T+ JOF 2~ 5 2 86

Hence the first inequality of (4.3) is true in this case.

If (4.4) is false let ¢ be the largest number with 0 < ¢ < & such that
|f(2g + @e'®)| = 2. Take ¢ = z, -+ t,e’* to be a point for which |f'(z)| is
greatest when z = z, + te®(p <t < 6). Then |f({)| < 2 and s0

1O _ Q)
T+I/OF = 5
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Also s
1 <|f(zo + 0€®) — f(z + 0€®)| < J|f (2 + te'®)| dt

14
< (06— [f (D).
Further, by (4.2) and the fact that |f(z, -+ ¢e*)| = 2, we have

8—¢

laglote < 2,

and hence
§—g < (8 + o) log 2 < 26 log 2 .

log |a,| log | a,|

From the above it follows that
_ 1@l ()] 1 log |a,|
VO =T TioE 275 256 —g = 100log?

This completes the proof of the first inequality of (4.3). The second follows

immediately from (4.1).

Lemma 2. Suppose that f(z) 13 an integral function such that for somer, > 0

min |f()] = 1,
[g] =71

and that
[f(2)] > 1{ry <|z| <3m).

Then for some r satisfying r, << r < 2r, we have

e*mlog M(r, f)
pir,f)> 107 log 2

In particular if the conditions are satisfied for arbitrarily large r; then,

: ru(r,f) et
h,m_fgp log M(r,f) = 10log 2 ~

Let 7, = 2r, and let z, = r,¢'® be such that
[f(z0)| = M (1o, f).
There is a &, with |#;, — 9| < n such that

”(7'19“1” = 1.

(4.5)

(4.6)

(4.7)

(4.8)
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For each {, with |{| = 7r,, |f(z)] > 1 for |z — {| < ry = % and so (4.1) gives

17(0)] 4
F@[log [FO] =70

Thus

a 6
oy log 1og I (roe)| < 4

and so

i9,
Ilo log'«f(rﬂe' )l £47t,

log | f(rye?)|

from which it follows that

log |f(roe’™)| = e log |f(rse'™)| = e~4"log M (1, f).
In the closed disc |z — ryet®| < % we have |f(z)] > 1 and, at the point

2z, = r,€®1 on the boundary, |f(z;)| = 1. Consequently, by (4.3) with & = To

there is a point ¢ on the segment joining r,¢*®* to z, for which

log |f(roe*®)] _ e™*"log M (ry, f)
e(f(€)) = 574 log 2 = 57, log 2 )

If || = r, then % <r <r, and hence we deduce that

e log M(r, f)
107 log 2

plr, f) =

This proves Lemma 2.

The next lemma is required to cope with possible irregularities in the growth
of log M (r, f).

Lemma 3. Suppose that ¢(r)(r, < r < o) is continuous, positive and strictly
increasing with a sectionally continuous locally bounded derivative ¢’ (r). [At points
of discontinuity we define ¢’ (r) as the limit from the left.] Suppose that for positive
o, B

limsup%%)*>ﬂ. (4.9)

T—>®

Then given «' (0 < &' < ) there exist arbitrarily large r for which the following are
satisfied :
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L2 pes; (4.10)
-——'f;((:)) > f‘; ; (4.11)

@(r) |
P r+2-$,(7)s<e‘¢p(r). (4.12)

We assume that ¢’ (r) is never zero. This really involves no loss of generality.
First of all we show that there are arbitrarily large values of » such that (4.11)
and

@(r) /
T =B (4.10)

@(r)

are satisfied. Now o is unbounded as r — oo and so for arbitrarily large r

it must be locally nondecreasing. For such r,

dien)|_eM (e o|_,

dr{ ) eln)  riT
and so (4.11) is satisfied. If for all large 7, ¢ (r) = fr* then we obtain the desired
result. Otherwise there are arbitrarily large values of r such that ¢(r) < fr*.

From (4.9) there is a smallest R > r such that ¢(R) = fR*. But then tp( )

LAt

is nondecreasing at R and so -~
g ¢(R)

p(R)
R=

Nowset h = Fh(r) = 2 (p,(r) and note that
¢'(r)

R , a8 in the previous argument, and

= fB. Hence the result.

b o) 7 )
o) % =h max -y

r4
log ¢(r + k) —log ¢(r) = 'f

Consequently if (4. 12) is false for » =17, there is an r, such that r,<r, <7, + h(ro)
and

P 4 o)

@ (r1) b (ro) plry)

Suppose that r,, 7y, ..., 7, have been defined in this way so that (4.12) is false
for r=r,(0 <v <n) and
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@(r,
@'(r,)
@' (r,41) ¢'(r,)
olra) = 2 gl

rv<rv+l STV+2

(OS’VS’IL-——I),

<y <n—1).
Then we can define r,,, so that

@(rs)

(pl (rn+1) 2 (PI (’rn)
9'(r.)

‘P (rn+l) (P (Tn)

’ T"<T,,+1£Tn+2

If this process continued indefinitely then we should have

¥ (ra)
@(r,)

—> oo {r—> oo)

and
5 3 pl(r)
P — 2 X
,.=o(r"+‘ ) < n=0 @' (7,)

<2 20 7o
‘P' (ro) o
_ @ (7o)
* @' (ro) ~
¢'rn)

@(r,)

shows that the construction of the r, must terminate after a finite number of
steps.

Take now as r, a value such that (4.10)" and (4.11) are satisfied for r = 7,.
If (4.12) is not satisfied for r = r, then there is a sequence rq, r1, ..., ¥y 88
above such that it is not satisfied for r = 7, (0 < n < N — 1) but it is satisfied
for r = ry. Then for 0 <n < N,

Thus Tn would tend to a finite limit and so co. This contradiction

@' (Tni1) @' (r,) a1 @ (7o)
o) = 2ol =0 gn)

and so

N-1 N-1
h oy <2 2l 1
L To = %‘ (1‘”+1 Tn) 2 (p/ (ro) "fo 9n

@ (7o)

< 4
@' (ro)

7\
<4;‘)—

9 CMH vol. 40
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by (4.11). Hence if ' is near enough to «,
4
N < r.,(l + 7) < 1ol + B/w).

Since (4.10) holds for r = 7,,

@(rv) = @(re) = Brg = Bry (1 + 5/a)™*> febry.

Also
Pow) P o &
@(rn) @ (7o) To ™~

Hence the proof of Lemma 3 is complete.

4.2, Proofs of Theorems 2 and 3 for ¢ > 6.

Suppose now that f(z) is an integral function of order o > 6. We apply
Lemma 3 with 0 > «' > 5 to ¢(r) = log M (r, f) so that for some arbitrarily
large r, (4.10), (4.11) and (4.12) hold simultaneously. For such an r there

is a point z, = re*® so that [see e.g.3, Lemma 2, p. 136.]

el = M5, ),
| = o

It now follows from Lemma 1 that if 6 = d(r) is the radius of the largest disc

with centre 2z, in which |f(z)| > 1 then, by (4.1),

|f(zo)| log |f(z0)] _ , @lr) _ 2r 2
=2 FRENT =2 @(r) " & B

By (4.3) there is a point z with |z — 2| << é(r) and
log | f(z)|
e(fz) = T06(r) log 2

_ p(r)
104(r) log 2

«'g(r)
20rlog 2 °

If |z| = R, then R < r + §(r) and so, by (4.12),

@(r) .
eR)<gp(r+d(r) <¢ (r + 2 (p'(’l‘)) < eto(r).

S—F<=<r.

(4.13)
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Hence, since also R >r — d(r) > 3/57,
o' et (R)
R — - T AT
#E,f) 2 e(f@) = 555100 2

_ oa'etlog M(R, f)
o 40 R log 2

From R > %— r it follows that as r — co then R —+ o and so we arrive at

. Ru(R, ) ce™*
lim SUp 1o 3 (B, /) = 20iog 2’

since o’ can be taken as near to ¢ as we please. This proves (3.1) and so
Theorem 2.

We next prove Theorem 3 for ¢ = 5. Suppose in fact that (3.3) is false for
some arbitrarily large r where A, is some positive constant. We may apply
Lemma 3 as before with « = ¢ 4 1, &’ = ¢ and any quantity g such that

A K
0<p< A7~ (4.14)
Then (4.13) yields for some z with |z| = R
—b pU
0 (f2) = 522 ofer (4.15)

207 log 2 20 log 2
Also

_ @(r) 2
2| =R<r+ 6(r) <r+ 2 e Sr<l+ 0)

by (4.11). Therefore
Re gr"(l + —i—)a < €,

Then (4.15) shows that
gfe’

20 log 2 B

(R, f) =

for arbitrarily large values of R. From (4.14) we see that

oA, K e?

s+1 20igz =%
and so
4, < a-l—l 20 ¢ log 2 < 26 €7 log 2.

Consequently it is only for such A4, that the result of the theorem is false.
Hence it must be true with 4, = 25 ¢” log 2. This proves (3.3) for ¢ > 5.
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4.3. Completion of proof of Theorem 3

Suppose that the hypotheses of Theorem 3 hold with — 1 <o < 5. Let n
be a positive integer such that

nic+1) =6 (4.16)
and consider F(z) = f(2"). Then for all large » we have

F' n—1 | §/ (41
e W@ = T Trg = T < Knme (s =n

by (2.1). Hence F (z) satisfies (2.1) with K= in place of K and n(c + 1) — 1
in place of o. In view of (4.16) we can apply the previous result to F(z) and
obtain
AIK'I'H‘" (o+1) . AIK (041)
log M(r, F) < no 1) —0+1r“ .

As M(r, F) = M (r™, f) this completes the proof of Theorem 3.

4.4. Completion of proof of Theorem 2

We assume that f(z) is of order o < 6 and consider F(z) = f(21?). Since, as
above,

o(F(z)) = 12]z|" o (f(="))

and F (z) is of order 120 it follows that if (3.1) holds for F (z) then

lim sup 1r/t(r,f)

1
mSUP 1og 3 (r, ) = 1z Ae1Ze+ 1)

and this is the result for f(z) if 4, is adjusted. Consequently it is sufficient for
g < 6 to prove the theorem for F (z).
Now for some constant 4, we have
log M(4r, F) < Aylog M(r, F) (4.17)

for arbitrarily large values of r. Otherwise for some r, we find that

log M{4n 7y, F) = Ajlog M (1,, F) (n=>1)
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so that the order of F(z) is at least lfog iz . This is impossible if 4, > 47 as
F(2) is of order less than 72. g

We consider arbitrarily large r for which (4.17) is true. If for an infinite
sequence of such r, |f(2)| = 1(r < |z} < 3r) then the result follows from Lem-
ma 2. Hence we assume always that for some Rin r < R < 3r thereis a z on
|z| = R where {f(z)| < 1. From the periodic nature of ¥ (z) we see that there
is a disc S(R) centred on { where [{| = R, |F({)| = M (R, F) such that
|F(z)] =1 in S(R), |F(z)] = 1 at some boundary point and the radius of

S(R) does not exceed % By Lemma 1 it follows that

12 log M(R, F)

pit, F) = 10zRlog2 °
for some ¢ satisfying R—ﬂ <t< B+ LR—, so that -2—R <t <1R. If
12 12 3 3
t < R then we get
12 log M (¢, F)
# B) =2 5 4 og 2
__dlogM(t, F)
~ batlog 2

If ¢t > R then, since R < 37, t < 4r and so, using (4.17) we have

12 log M (¢, F)
A,107¢ log 2

_ Blog M(t, F)
" b5Agmtlog2

pit, F) =

As t> 3R > §r it follows that one of the above inequalities must hold for
arbitrarily large ¢. Hence the proof of Theorem 2 is complete.

4.5. Proof of Theorem 4

For any function f(z) of order less than 1 with f(0) = 0 we have the well
known inequalities [see e.g. 4, p. 28]

r

f-"—gﬂdt < log (—-—J:If((ro’){)) sfr—n—é—tldt + rf "t(:)

0

dt, (4.18)

where n(t) is the number of zeros of f(2) in |z| < t. The restriction f(0) # 0
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clearly involves no loss of generality. From the second condition of (3.4) and
the left hand inequality of (4.18) it follows that

n(r) = O (log®r). (4.19)
From (4.19) we find that

w

r f "t(:) dt = O (log>r). (4.20)

r

Hence for r such that log M(r, f) > ne(r) log*r, where n is some positive
constant implied in the first condition of (3.4), we obtain, from (4.18) and
(4.20),

log M(r, f) = {1 + o(1)}fl’-§.tldt. (4.21)

Assume now that we are dealing with values r of the above kind. By a known
result we have for some R in (Z 2) log [f(2)] > Hlog M(R, ) (|z]| = R)

where, here and elsewhere, H depends only on f(z) [5, pp. 64~65]. For suffi-
ciently large r let R’ be the smallest number such that |f(z)| > 1 (R’ < |z| < R).

We deal with two cases: a) R’ > ; b) R' < 12

of R'. It is clear that in fact R’ does take arbitrarily large values.

for arbitrarily large values

Case a). If |f()] = 1(¢ = R'e®) we consider the largest disc D centred

on Re in which |f( z)] > 1. The radius of D is at most %_T%zﬁ

80 D lies in |z| < = +12r<r By Lemma 1, (4. 3),forsometm—1-2-<t<r
we have

r and

1
iy > TR MR

From (4.18), (4.19) and (4.21) it follows that

logM<l2,f)>HlogM(r,f) —fﬁf—)dur 0 (log*r)

> Hlog M(r,f) + O(log>r)

= H(1 + o(1)) log M(r, ).
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Hence we see that 0> H o (r) logor
AW r

N KA ;og“t ,
for arbitrarily large values of £. This proves the theorem in this case.

Case b). In this case |f(z)] > 1(R' < |z] < 3R') and |f(&)| = 1({ == R’e'?).
We see from the proof of Lemma 2 that
logM (2R, f)
R’
for some ¢ satisfying R’ <t < 2R’. Now from (4.19) and (4.21)

w(t, f)>H (4.22)

r

n(alogr>H]I41§th=ﬂ(fr@dt—f@dt>

r/4
> Hep(r) log®r — H log*r
and so

n (—;—) > He(r) log=1r.
But (R’, %) is free from zeros and so

n(R') > Hep (r) log*r.
Hence, by (4.18),
2R’
log M(2R,f) ") g — n(RY1
7)1 Z,,,f g nlhes

> He(r) log=r.

Therefore we find that in (4.22),

uit, fy> HPO BT

Since this holds for arbitrarily large values of ¢ the theorem is proved in this
case.

4.6. Proof of Theorem 5
From the left hand inequality of (4.18) we get

n(r) 10grsfl'—£tldtslogM(r”, f)
r _ glogarQ
= 0|
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and so, since ¢(r) is increasing,

_ {logr |
n(r) O( PERE (4.23)
Using (4.23) we obtain
. n(t) { 1 r logt . |
r/ 7 dt_oltp(r) : 2 dts
_olloer| ‘
- O! ek (4.24)

. log r
Hence if we put B(r) = ——2____ where n > 0 and depends on
put f(r) =7 I/ () Tog M () U P

f(2), then, by a known result [5, pp. 64-65],in r(1 —B(r)) <|z| <r(1 4 (r))
log |f(2)| > H log M (||, f)

outside a set of circles the sum of whose radii is at most Hrf2(r).

Consider now values of r such that f(z) has a zero on |z| = r. Let z, = re'®
be such a zero. Then from the above, if r is large enough, for some R satisfying
r— Hrf(r) < R <r we have

log |f(Re'%)| > Hlog M (R, {).

Let D be the disc with centre Re'® in which | f(z)| > 1, assuming r is sufficiently
large, with |f(z)| = 1 somewhere on the boundary. Then, by Lemma 1 and
the above for some z in this disc

o(f(e)) > L8R (4.25)

Now as B(r) > 0 a8 r - oo it follows that for large r,—;—< R < r andso
R
log M(R, f) = {1 + 0(1)}f lﬂ:‘—) dt
0

> {1+ o(L} |log M (r, f _fl’_:Q at|
R
= {1 + o(1)} {log M(r, f) + O(log r)}

= {1 + o(1)} log M (r, ),
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where we have used (4.23), (4.24), (4.18) and the obvious result that
log r = o(log M (r, {)). Hence, from (4.25),

Hlog M(r,f)
R)) > ——
e (f(2)) TR )
_ Heo(r)logr | log M(r,f) )?
- ”r ) logr {°
Now in (4.25), % < |z| < r for large r and so if [z| = ¢ then for large r we

find that

s®)logt (log M(r.f) |?
pie,fy> 1 POZEL (T B )

since @ (t) is increasing. As the final factor above tends to - with r and the
inequality holds for some arbitrarily large ¢ this proves Theorem 5.

5. Counter examples

The first theorem shows that (3. 2) is best possible and that the properties of
f(2) referred to in §3 preceding Theorem 4 do in fact hold.

Theorem 6. Given ¢(r) /oo (r /' oo) there is a sequence of increasing integers
k, such that if

2

=1 (1 —55) " e =11 (1 — 55",

© kn
fa(z) = ?(1 - 2:;In)
then for g(z) = {(2), f,(2) or f,(2)

. ru(r,g)
hfn.f:p @(r)logr

The sequence {k,} will be seen later to satisfyl‘%i1~ > 4 and in this case
it is easy to verify that "

0 < limsup ].Og——_MM

maup BT < oo, log M (7, ) = o(log?r), log M(r, ) # O(log?r).

The next theorem shows that Theorem 2 is best possible
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Theorem 7. Given o(0 < o < o) there is an integral function of proper order
o and very regular growth when o > O such that

h:n_)sgp—l——gﬁlé{—(r% <Co+1)

for some absolute constant C .

5.1. Proof of Theorem 6

The proof of the theorem requires a number of lemmas. We assume that
besides any other conditions that the integers k, will be required to satisfy,
that they will always satisfy

1“,’%‘24(n>1),k122. (5.1)

We confine our attention to f(z). The proofs for f, () and f,(z) are similar.

Lemma 4. On |z| = 28 and on |2| = 21,

|H(2)] > H|z].
On |z| = 2*»*! we have

@1 =it (Tt ) (1 By

men+1l

From (5.1) each factor in the first product is at least 1 and so

” 2k”+l km 2k”+1 k1
A (=)= ()

>H . 2+l = H|z| . (5.2)

Also, from (5.1),

- 2hn+1 km
H(l— )>H(1—2 yem

M1 2km My 41

> H. (5.3)

From (5.2) and (5.3) the lemma follows for |z| = 2*»+1,
In dealing with |z| = 2*»~! we assume for convenience that n > 1. This
clearly involves no loss of generality. On |z| = 2*¥»~* we have

kn km @© / 2ku km
|f(z)|2[I (2,“”1 —-1) . 2-kn JT (1 _W> .

Mem-1
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By (5.1) each factor in the first product is at least 1 and so

n-1 okn km 2kn Ey
”{_Il ( 2km+1 1) >( ok +1 1)

> H . 2%n—1 (5.4)
since k, > 2. As before
o 2kn km
n=I,Z+1(1 —W) > H. (55)

Hence on |z| = 2*¥*~! by (5.4) and (5.5),
@) > H - 201 g=kn
= H2k ' — H|z|.

Hence the lemma follows for |z| = 2¥»~!,

We see from Lemma 4 that when z is large the regions in which |f(z)]| < 1
are disjoint, with one in each annulus 2¥»~! < |z| < 2*¥»+! Denote these by
D,. Clearly D, contains the zero at z = 2%»,

Lemma b. If the k, increase suffictently rapidly then on the boundary of D,
when n 18 large

H2kn—k1—-k’—...kn_1<lz_zknl<H2kn—k1—,..kn_1.

We have
n—1 z km lz ____2kn| kn ) 2 km
= 1 — . 1 — %
lf(z)l mIZI ’ 2km < 2k” > m==InI+1 2km
Now on the boundary of D,
n—1 z km |zlk1+...+kn_1 n—-1 2km km
mlzl 1 — 2km = k1 + ket + ... + kn_1? =1 1 — 2 (5'6)

When 7 is large then 2¥7~! < |2| < 2*»+! by Lemma 4 and so, if the k, increase

sufficiently rapidly to ensure that the final product in (5.6) lies between %
and H, we obtain on the boundary of D, ,

2(kn—1)(k1+...+kn_1) n—1
k1% + ...+ kn13 < I

Mme=l

km 2(kn+1)(k1+...+ kn—1)
k1t + ... +kn_1?

4
—— ——Mzkm

H.

(5.7)
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Again, from Lemma 4, it follows that on boundary of D, when = is large,

km

<H. (5.8)

1 ——2

H< I Sm

n=m+1

From (5.6), (5.7) and (5.8) we find that on the boundary of D, when n is large

SEI0 S TR Y Y ST WIS T
2 kn 2k
H - 2kn 5 <|z——2""|<H2"" 1
2(I+W) (Ky+...+kn_y) I 2(1——ﬁ)(k1+...+kn_1)

From these inequalities the lemma follows provided the k, increase sufficiently
rapidly to ensure that
B4 ...+ Kk, =0k, (n—>o). (5.9)

Lemma 6. Forlarge n we havein 2887 < |z| < 28%*1 but outside D, , provided
that k,, increases quickly enough,
fl (z) k,,, 2k1+...+kn_1

f 2]
@ _ 5

f@)  mer z-—2km

We have

If the k, increase sufficiently rapidly then, for 28271 < |z| < 2kn*2

fn-—-1 km ”2‘1 km
oy T S, ghT gie
2 rn-1
< “GEasT m€1 k,,
k
< H 5. (5.10)
Also,
® kp, ® ko,
m—zr—t:+1 lz _2kml = m—zn'+1 Ekm — 2kn+1
2 k
<H ¥ -
ment1 2EM
H ® k
< Zin z i
mmn+1 2—2——
< H (5.11)

% -
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From Lemma 5 it follows that if the k, increase rapidly enough then

kn2k1+...+kn_1

k,
(2= 2] <H 3 . (5.12)

From (5.10), (5.11) and (5.12) the lemma follows.

Lemma 7. Ifthe k, increase sufficiently rapidly then for 28241 < |z| < 2%n+171

we have i
(/=) =0 (7).
If the k, increase quickly enough then on |z| = 2¥**! we obtain
|f’l 2k1+...+kn_1
<H-**———
1f® |2 [?
H
2]
by Lemmas 4 and 6. The same inequality is also true for |z| = 2*¥»+1~! Now
!
*zfé(—(:)l is subharmonic in 2¥#*! < |z| < 2¥»+171 and since it is bounded

by H on the boundary it is bounded by H inside the annulus. Therefore in

2kn+1 < lzl < 2kn+1-1’
@l (L
(@) <fg) 0“ﬂ)'

Lemma 8. In 28771 < |z| < 28+ ye have

o) < B BT

provided the k, increase quickly enough.

In 2801 < 2| < 2kn+1 hut outside D, it follows, if the k, increase quickly
enough, that
zf'(2)
f*(2)

by Lemmas 4 and 6 and the use of subharmonicity as before. Hence the lemma
is true in this region.
On the boundary of D, we get

< Hk,2k1+- -t kny (5.13)

|2f' (2)| < Hk, 251+ + ks (5.14)
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and so, by the maximum modulus principle, this also holds inside D,. From
(5.13) and (5.14) the lemma follows.

Given ¢(r) as in the theorem choose an increasing sequence of integers k,
so that the above results hold and also

2k; +...+kn1 < @ (21'1;-1) .

Then from Lemmas 7 and 8 we see that

: el f)
B St Tog r <
since ¢ (r) is increasing.

This completes the proof of the theorem. In should perhaps be pointed out
that given @ (r) where @ (r) — oo(r —> o) it is not difficult to find a y (r) such that
p(r) = oo(r — o), @(r) = y(r) and y(r) is increasing. Consequently ¢(r) was
assumed to be increasing in the theorem only for convenience.

5.2. Proof of Theorem 7
A number of lemmas are required.

o [ {4n)
Lemma9. If A>1 and f(z) = IT (1 + %) then f(z) is a function of
logd !
Bz

For e"4 < |z| < e+)4 we have

very regular growth and order

log M(r, f) = log | f(e"4)|

> (4" — 1) log 2. (5.15)
Also, in this range,

log M(r, f) < log M (eln+)4 f)

S 2 Am log {1 + e‘"“*’”“} + z‘ Am log {1 + e(n+1—m)A}

Mu=n-2

< 2 Am{log2 + (n + 1 —m)A} + E’ A™ g~ (m-n-1)4

Moo=l Mmomn+2
n+2
< At 10g2 +A"+12—+A"'+12A" ~vA
A —_ yml yal
< K(A)Aﬂ. (5.18)

From (5.15) and (5.186) it follows that for e”4 < |z| < elntD)4
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A — 1) log 2 log M K(4)- -4~
( Jlog2  log M(r.f) _ K(4)

An+t y(log 4)/4 An ’

and so the result follows.

Lemma 10. If ¢pn(z)-—(2+2)[A’"]log‘l+—m; then for
end
- < lz] < 2em4,

— 4" < ,(2) < nd”

where n == n(d) > 0 and n— 0(4 — ); n 18 not necessarily the same at each
occurrence.
We have, in the range of the lemma,

n—2
Z [4™]log
1

z
1+e'mA

nA
<"z A""log(l 42 )

g"z—‘zA’"{log 4 4 (n —m)4}
1

n—1 —3
Ar1llog 4 +A"12 v+2

S A —‘1 y=0

<n(d)-4». (5.17)
Also, in the above range,

2‘ [A™] log
n+1

z2
1+em4

ena
< Z'A’"log(1+ )

n+1

<2 Z’ Amen-m 4
n+1

— 247 5 (Ae-ay
y=]1
< 5(d)An, (5.18)

From (5.17) and (5. 18) the right hand inequality of the lemma follows.
In the range of the lemma we also have, if €24 > 4,

n— 'nA
1A log |1 + ——’ > 2 [A™] log<2 - 1)
1

>0, (5.19)

and, if e4 > 4,
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K4
1+ em4

:‘3 [A™] log
n+l

@ A
> X A4Am log(l _ 2 )
nil

emA

«w
> — 42 Amen-mA
n+1

—— 44T (Ae—a)y
ye=1

> — n(4)An, (5.20)

From (5.19) and (5. 20) the left hand inequality of the lemma follows.

end
Lemma 11. For |z| = —5- and |z| = 2en4,

3 —n) 4" <log|f(z)| < (3 4 n) 4™

enA
If |z]| = 5 we have
-1 2 n—1 e4
< 4" 1(log 2 4 A4)
< (1 + ) A~ (5.21)
end
Also for |z| = —
[4"] log (1 + e:A < A*log 3/2
< 4. (5.22)
From (5.21) and (5.22) and Lemma 10, the right hand inequality of Lemma 11
4
follows for |z| = %— .
4
We have for |z| = i’;_ , if e4> 4,
n-1 ol An11 1 ed 1
4 ]1081—*'?(,;—1)7 > ]08“2*—

> (A"t —1) (4 —log 4)

> (1 —n)d™; (6.23)
and
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2
[A"] log ‘1 + ond | > — A" log 2
> — 3An. (5.24)
From (5.23) and (5.24) and Lemma 10, the left hand inequality of the Lemma 11
enA
follows for |z| = -
The result for |z| = 2em4 follows in a similar manner to the above.

nA nA
Lemma 12. If z satisfies |z + en4| > = and - < |2| < 2en4 then
l f'(2)
1(2)
[ _5_[4m

f(z) 1 24 em4

end
For |z| > —5 if e4 >4,

An
] < (4 "r"])*e;; .
We have

n—1 m n-1 Am
z [A ;lnA = 2 nA
1 z+4+e 1 €  gma
2
4 n—1
< e'nA );“Am
< 4 An
(A—1)er4
Aﬂ
SN g (6.25)
and for |z| < 2en4, if e4 > 4,
o m @ m
5 _[4m A
ne1 2+ eMm4 nt1 €MA—2en4
o0 Am
32”{‘1 emd
An © _
= 2 ond El (Ae4)y
An
<7 ond (5.26)

10 CMH vol. 40
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end

Finally, if |z + en4| = 1

, then

[47]  _ 44r
lz—}—e’“‘] = end '

(5.27)
From (5.25), (5.26) and (5.27) the lemma follows.

end

Lemma 13. For 5

< |z| < 2em4,

wir = K@) 27,

provided A is sufficiently large.
When A4 is large enough we see from Lemma 11 that the set |f(z)| <1
splits into a number of components. Each zero e”4 is contained in a component

.o.oend
D,, say, and D, lies in <|z] < 2en4,

nA
First of all we show that when A is large the disc |z -+ e”4| < ¢ is con-
tained in D ,. From Lemma 10 it follows that in this disc,
z z
log |f(2)] < [A""] log |1 + =i (A"} log |1 + —% | 4 n4"

< 47 log (1 + g eA> — (A" —1)log4 4 n4~

< An1 (log % + A) — (A" —1)log4 4+ A"
<0,

provided A4 is large enough, independently of n. Hence we arrive at the desired
conclusion.

From Lemma 12 and the above it follows that when 4 is large then on the
boundary of D,,

! A,n
el =L s wrn iy
Therefore in D,, and on its boundary,
(@) <11 @) < (4 +m) Ay . (5.28)

enAd

5 < |z| < 2en4 outside D, it follows that when 4 is large

In the annulus
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f'(2) A4r
e(fx) < ) =@+n 7 (5.29)
by Lemma 12.
4
Since — — < % for e; < r < 2em4 the lemma follows from (5.28) and
(5.29).

en+)4

Lemma 14. Forlarge A, if 274 < r < then

wir, )< XA

r

From Lemmas 11 and 12 it follows that

zf'(2)
=

< K(4)

e {(n+1) 4

on the boundary of 2em4 < |z| < . Since the function on the left above

is subharmonic in the annulus it follows that the inequality holds throughout

1)

the annulus. Hence the lemma follows because ¢ (f(z)) <

@R

5.3. Before completihg the proof of Theorem 7, we observe that the
constants K (A) appearing in Lemmas 13 and 14 remain bounded as 4 — oo.
From Lemmas 11, 13 and 14 it follows that

; ru(r, f)
TR g ) <

where B is an absolute constant for all f(z) for which 4 > A4,, 4, being some
fixed value.
We proceed to prove Theorem 7.

If 0<o< ]OiA° in Theorem 7 we take f(z) as above with A given
0
by ¢ = _12%4 o> l(%{l’— we proceed as follows. Let 4, > 4, be
0
defined by 2 loiAl = loiA" . Let n be the smallest positive inte-
1 ¢
log 4
ger such that % < —10%4% . Then, since n > 2, nil > Oio % and so
o _n—1 logA, log 4, o logd
" > P 4 >3 4, Therefore =4 where 4, < A < 4,.



148 J. CrunNiE and W. K. HAyMAN

We now take, as a function for Theorem 7, F (z) = f(z*) where f(2) is constructed
as in Lemma 9 with this value of 4. Then

im sup 20 F) iy gup RIRAEN D)
Hm SUP Tog M(r, F) — o2 S0P Tog M, f)
<nB
_log 4 B-A
=74 " g4
_ 24,B
~ log A, ?

Thus the theorem is proved for 0 < ¢ < oo.
It can be shown by the same methods as above that if K is large enough then

F(z) = ﬁ (1 + ze-Knyn®
1

is a function of order 0 satisfying the conclusion of the theorem.
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