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1. Introduction 

In a recent paper LEHTO and VIRTANEN [2] introduced the spherical deri- 
vative 

I/'(z)l 
eft(z)) - 1 + I/(z)l' 

as a measure of the growth of [(z) near  an isolated singularity. This point of 
view was fur ther  pursued by L~.HTO [1]. I f  the singulari ty is taken to be at  
z ---- ~ then  L~HTO obtained the following results. 

Theorem A. Suppose that f(z) is meromorphic /or R < I zl < ~o, and has an 
essential singularity at z ~ ~ .  Then 

limsup Izl 0ff(z)) ~ ~. 0.2) 
z ---~ ao 

Equality holds/or/unctions o/the [orm 

f ( z )  = ~ I  a v  - z , (1.3) 
1 av'ql-z 

where a v is a sequence o/complex numbers such that 

av+1 -.oo ( ~ - ~ ) .  (1.4) 

Theorem B. I /  /(z) satisfies the hypotheses of Theorem A and in addition 
/ (z) is regular near z = co, then (1.2) can be replaced by 

lira sup Izl @ i f ( z ) )  = o o .  (1.5) 
z ---)- ~ 

Following LEaTO, we denote by  h(r) a positive function such tha t  
h (r) -~ o (r) (r ~ oo). The connection between e (t (z)) and Pma_~n's Theorem is 
strikingly brought  out  by  the following result of L~HTO [1]. 
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Theorem C. Let [(z) be meromorphic [or R <  Izl < ~ .  I[  [or a sequence 
{zv} , lim z v =  oo and 

" ~  ~ lira h(Izvl)O(](zv) ) = oo (1.6) 

then Pw~m~' s Theorem holds for / (z) in the union o /any  infinite subsequeuce o/the 
discs 

= {z: Iz --z l <  h(Iz L)} (1.7) 
/or each �9 > 0. 

Conversely i[ there exist discs (1.7) such that Pw~xw' s Theorem is true in every 
r 

union U Cv k /or  every ~ > 0 then ( I .  6) is satisfied. ( E G~vwr~r has pointed out 
k = l  

to us that the converse must be modified here. (1.6) is satisfied/or a sequence z', 
instead o[ z, ,  where [ z ~, - -  z, ] = o { h ( I z, I ) }. This condition is also sulficient 
[or the existence o / the  disks (1 .7) ) .  

In  par t icu lar  it  follows t ha t  i f / ( z )  has an essential s ingulari ty a t  z = co then 
[ (z) possesses a JULIA direct ion provided t ha t  

lim sup [ z l 0 ([ (z)) = oo. (1.8) 

F r o m  Theorem B we see t h a t  every  t ranscendenta l  integral  funct ion possesses 
a JULIA direction. I f  (1.8) is no t  satisfied there  is not,  in general, a JULIA 
direct ion as the  examples (1.3) show if a~ > 0. 

2. Some further results for meromorphie  functions 

Our aim in this paper  is to  obta in  some extensions of  Theorems A and B .  We 
m a y  suppose wi thout  loss of  general i ty  t h a t  /(z) is meromorphic  in the whole 
plane. Firs t  we consider whether  or no t  a restr ict ion on the  growth of /(z) as 
defined by  its order  imposes any  restr ict ion on ~ (/(z)),  or conversely. For 
meromorphic  funct ions no restr ict ion on Q (/(z)) is implied b y  a restr ic t ion on 
the  growth  of  the character is t ic  T (r, [). Consider, for instance,  

/~(I - -  z/a.) 
, 

oo 

H ( 1  - -  z/b.) 
1 

where Z t a~ 1-1, X I b~ t -1 converge. Since f (a~) = 0, [ (b,) = ~o it  follows tha t  

f e ([ (z)) J dz I > 

where the integral  is t aken  along the  segment  F .  joining a .  to  b. .  In  part icular  
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Y~ 
e if(z.)) >_ 

lb. --a. l  
for some point  z, on F~. By  choosing a~, b, close enough together  we can make 
the r ight  hand  side bigger than  any  preassigned funct ion of  ] z~ I. 

On the  other  hand  a result  in the  opposite direction is possible. I t  is convenient  
to set 

~(r, t) = sup ~( t ( z ) ) .  
Izl =r  

Suppose tha t  for r ~ r o we have 

# ( r , / )  < K r  ~'. (2.1) 

By Theorem A this is only possible when a > -  1 or when a ~ -  1 and 
K > �89 In the usual nota t ion  of NEVANLINNA Theory ,  

To (r, I) = f S(t, /)  dt 
t 

where o 
1 r 2~ 

~- -- S S Q2(f(te")) tdtdq~ S(r ,  [) ~ o o 
I" 

< 2 S t ;  ( t , / )  td t .  
0 

Thus if  a --~ - -  1 in (2.1),  

S(r ,  /) ~-- O(log r), To(r , / )  = O(log2r). (2.2) 

The examples (1.3) with a v = Av(A  > 1) show th a t  the order  of magni tude  in 
(2.2) cannot  be sharpened.  

I f  (2.1) is satisfied with a > - -  1 we obtain 

S(r ,  /) : O(r~+2), To(r , / )  -~ O(r2"+~). (2.3) 

Hence a meromorphie  funct ion of  proper  order  k > 0 cannot  satisfy (2.1) for 
k 

any a < ~ - -  1. The implicat ion from (2.1) to  (2.3) is sharp as our first theorem 

shows. 

T h e o r e m  1. 

Then ](z) 
1 

Suppose that 0 ~ ~ ~ ~ and that 

/ (z)  = ~ ( -  a) , , z .  (2.4)  

has per/eetly regular growth o[ order 2/4 and satisfies (2.1) with 
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The func t ion / (z )  has poles a t  the  points z ~- n ~ e - ~  (v --- O, 1 . . . . .  n - -  1 ; 

n ~ 1). The number  of  poles in Iz] _< r is ~ p ( p  + 1) where p is the largest 
integer such t h a t  p~ < r ,  i.e. p = [rl/a]. Thus n ( r , / ) ,  the number  of poles of 
/ ( z )  i n  z ~ r ,  satisfies 

n ( r ,  1) ~ �89 ~ �89 r ~l~ (r-+ oo), 

and so 
F 

N (r , /) = f n ( t ,  /) dt ,.- T u r~a(r-~ ~)" (2.5) 
0 

We now est imate  I / (z) I. Assume tha t  

(2.6) 

where p is a positive integer. A (4) denotes a positive constant  depending only 
on 2 and  is no t  necessarily the same at  each occurrence. Le t  n be an integer 
satisfying n > p and pu t  n ~ p + v so t ha t  v ~ 1. We have, in the range (2.6), 

n = 1 

Hence, when z lies in the range ( 2 . 6 ) ,  

,~7,n - -  zn ~ p - 1  

(9 --n ~) I ~" 
<e-( , -D~ 

e-('-D~ 
1 - -  e - ( ' - ~ )  x = A ( ; t ) .  ( 2 . 7 )  

When 1 __% n < p and  z lies in the  range (2.6) then,  if  n ---- p - -  v with v _> 1, 

Now 
>(1 + ~ ) X ~ ( n  ~ k). 

( - -  1)'~z n l)n+1 ( - -  l )nn  ~'~ 
n ~" - -  z" - -  ( -  + n ~" - -  z" 

( 2 . 8 )  

a n d s o i f w e c h o o s e k i n ( 2 . 8 )  t o b e  I ~  [ + 1  

p > [ ~ ] + l ,  w e f i n d t h a t i n t h e r a n g e ( 2 . 6 )  

so t h a t  2k > 2, assuming that  
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~ i  ( _  i)- ~- ~ '  ( -  1)-n~- I n= l  *t x n - z  n < I -~- ,tX~ - z  n In=l  

k-1 1 1 
~ 1 + 2 7  + ~  

From this and (2.7) we obtain 

121 

= A (~t). 

/(z) (--1)PzV [ 
pXV__zV < A ( ~ )  (2.9) 

p > [ ~ ]  + 1. I t  is easy to see that  consequently (2.9) in the range (2.6) for 

holds in the range (2.6) for p > 1. 
I f  [z I ----- t and (2.6) is satisfied then using (2.9) we see, in the notat ion of 

/(tO~ dO 

pXv __tVeO, O dO + A(;r 

~ n ~  gO + A(~) 

NEVANLINNA Theory, tha t  

2 9  
1 S l~  + re(t, 1) = ~- o 

I 2n 

< ~ oJ" log + 

1 ~=log + ~2-~o 
= A (~). 

From this and (2.5) we deduce tha t  

r ~/~, (r ~ oo) T (r , /) = re(r,~) + N (r , /) ,~ ~ 

so that  [ (z) is of perfectly regular growth, order ~ and type ~ .  

1 
I t  remains to be proved tha t / ( z )  satisfies (2.1) with a -- 

We have 
~),n +1 Z~--I 

1'(0 =.-l"r ( _  1p (n~"--z")' 

pkp +1 z~ -1 
= (--  1)P (pX~__z~), -{- ]~(z), say, 

- - - - - - 1 .  

where/~(z) is defined by the series for/(z) with the p th  term omitted. Now, by 
the above, [~(z) is regular and bounded by A (2) in (p - -  3/4) ~ ~ [z I ~ (p + 3/4) ~ 
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and each point in (p - -  1/2) ~ _< Iz[ < (p + 1/2) ~ is the centre of a disc which 
p~.-1 

lies in the larger annulus with radius ~ .  Hence, from CAUCHY'S integral, 

[/'p (z) J <_ A (2)p1-~ < A (2) ]z [1/~--1, 
for 

(p - -  1/2) ~ < [zt --< (P -4- 1/2) ~ (p ~ 1). (2.10) 

Therefore in the range (2.10), 

t v~,+lz,_, 1 I/'(z)l < (~v--z~,), + A(~t)Iz[-~ - 1  

~d~+l ( Zl0 )2 1 
- Izl ~+1 v ~  - - z V  § A ( 2 ) [ z [ ~  -x 

pXv+l 1 
< A(~I) ~ (1 + I/(z)l ~) + h(a)lzlT --1 

by (2.9). Consequently, in the range (2.10), 

I/'(z)l < a ( 2 )  p Izl 1/;~-1 
1 + I/(z)l ~ ~ + A(2) 

< A(2)Izl  x/~-l. 

Since the ranges (2.10) cover all the plane apart from a disc, the proof of the 
theorem is complete. 

3. Posit ive theorems for integral functions 

The remainder of the paper will be devoted to obtaining improvements of 
Theorem B and to showing that  these are best possible. We assume without 
loss of generality that  [ (z) is an integral function. I t  will also be assumed that 
] (z) is always transcendental. In this section we state our positive theorems. 

Theorem 2. 1] t(z) is an integral ]unction o/ trtoper order a (0 ~ a ~ ~) ,  then 

rp(r ,  /) 
lim sup ~ Ao(a -4- 1), (3.1) 

r ~ | log M (r, [) 
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where A o is an  absolute constant. I n  particular 

r p ( r , / )  
lim s u p  - -  - -  co. 

, ~ |  log r 
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(3.2) 

Inequality (3.2) sharpens (1.5) which is equivalent to 

lim sup r p ( r ,  /) = ~ .  

T h e o r e m  3. I] ] (z) is an  in tegra l /unc t ion  sat is /ying (2. l ) /o r  all large r with 
- -  1 < a < oo, t hen /or  large r 

A 1 K  
log M (r, ]) < - - r  ~+1 (3.3) 

a ~ l  
where A 1 = 25e log 2. 

I t  follows from (1.5) that  the restriction a > - -  1 is necessary in Theorem 3. 
The theorem shows that  for integral functions (2. l) implies that  

T ( r ,  /) : O(r"+l).  

This is significantly stronger than (2.3) which is the best possible result for 
meromorphic functions by Theorem 1. Note that  if /(z) is of perfectly regular 
growth then Theorem 3 is a consequence of Theorem 2. 

As we shall see later, if /(z) is an integral function such that  the growth of 
log M ( r , / )  is properly of the order of log2r in the sense that  

0 < lim sup log M (r,/)  
r ~ | l o g  2 r < ~ o ,  

then no improvement of (3.2) is possible. On the other hand our next theorems 
show that  if log M ( r , / )  # O(log*r) or log M ( r ,  ]) -= o(log2r) then we can 

log M (r,/)  
improve (3.2), the improvement depending on how large or how small log ~ r 

becomes respectively. However, there is no sharp difference in the behaviour of 
(r , / )  as we pass from one of the above classes of functions to another. By this 

we mean that  if ~ (r)-~ ~ (r-> ~ ) ,  then there is an /(z) from each of the above 
classes such that  

lim s u p  r# (r,/) 
, _ +  | ~ ( r )  l o g  r < o o .  

Before stating our next theorem we give an indication of how one arrives at 
an improvement of (3.2) if log M ( r , / )  # O(logKr) for K suitably large. I f  
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~( r , / )  < K l~ for large r then, from the inequality involving To(r , / )  and 
r 

# (r, [) in w 2, it follows that  

To(r,  [) = O(loger). 

Hence if log M ( r , / )  ~: O(log'r) we see that  (3.2) can be improved to 

lim sup - -  
, _~  | l o g '  r 

r # (r  , [) 
- - 0 0 ~  

Our next result gives the improvement of (3.2) for functions /(z) such that  
log M ( r , / )  # O(log~r), but  log M ( r , / )  ----- O(logSr). 

T h e o r e m  4. I / / ( z )  i8 an integral/unction and ~ (r) / ~  oo (r / ~  oo) and 

lim sup log M ( r ,  [) ,--~| ~(r) log~r > O, l o g M ( r , / )  = O(logn+*r), (3.4) 

where 2 ~ ~ < co, then 

lim sup r/~ (r, [) 
,_~| 9(r) loga-lr > O. (3.5) 

When a -~ 2 in (3.4) then (3.5) is the improved form of (3.2). For func- 
tions such that  l o g M ( r , / )  ~ O(log a r ) ,  l o g M ( r , ] )  ---- O(log s t )  take 
r ---- {log (r + 1)} 1~ and choose ~ so that  both conditions (3.4) are satisfied 
and ~ ~ 2 .5 .  The improved form of (3.2) is then 

r ~ (r, 1) 
lim,~| (log r) - - - - - i -  > 0. 

To deal with functions such that  log M ( r , / )  ---: o(log2r) we have the fol- 
lowing result. 

T h e o r e m  5. I l ~ (r) is increasing and / (z) is an integral/unction such that 

t l~ 2r I (r-+ oo) log M ( r ,  [) ~- 0 t - ~ t  

then 

( 3 . 6 )  

r ta(r , f) (3.7) 
Um,__~| ~ log r ---- ~"  
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4. Proots ol the positive theorems 
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4 .1 .  We require a number  of prel iminary lemmas. 

L e m m a l .  L e t  [(z)  = a o -4- a l ( z  - zo) -F . . .  

and  sa t i s l y  II(z)l ~> 1 there. T h e n  

and/or Iz--zol  < r <  

be regular  i n  Iz - -zo l  -< a 

laxl ~ 21aol loglaol (4.1) 
a 

a - r  a+r 

l a o t ~  ~ I1(~)1 ~ aoa-'- (4.2) 

I I  lur ther  t / (z0t - - -  1 /or s o m e  z 1 w i t h  Izl - -  z01 z ~ t h e n / o r  s o m e  z on the 

segment  j o i n i n g  z o to z~ 

log laol 
e ( I (~))  > 10a log 2 

(4. l) and (4.2) are classical. 
Suppose t ha t  

I f  

then I aol ~ 2 and 

la~l (4.3) 
> 20 laol log 2 

t/(zo + ,~e;~)l = 1 (z~ = zo -F ae'~). 

I/(zo + ee'~)l _< 2 (0 < e -< ~) (4.4) 

laol - -  1 < II(zo + ae'~) - -  l(zo)l -< j" II'(zo + te'~)tdt 
o 

,5 m a x  I 1 ' ( ~  + te '~ ) l .  

I f  ~ = z o + toet~ is a point where the max imum on the right is a t ta ined then, 

I/'(~)1 > laola-- 1 ~ ~ l ~  la.I 

and so 

I f ' ( r  lf(~)l ~ log laol 

Hence the first inequal i ty  of (4.3) is true in this ease. 
I f  (4.4) is false let ~ be the largest number  with 0 _ _ ~ <  ~ such t h a t  

If(z0 -F ~ei~)l : 2. Take ~ = z o -F txe ~ to be a point for which If(z)[  is 
greatest when z ~ z o Jr- t e ~ ( ~  <- t < (~). Then t/(~)1 -< 2 and so 

I1'(r II'(~)1 : > - -  
1 + I I ( r  5 
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Also a 
1 ~_ t/(Zo + 5e '~) - - l (Zo + ee'~)l <_ Sll'(zo + te'~)[dt 

e 

<_ (8  - -  e ) [ I ' ( ~ ) [ .  

Further ,  by  (4.2) and the fact  tha t  I/(z0 -Jr- qe~)[ = 2, we have 
O--q 

l a . l ~ _ <  2, 
and hence 

(~ 4- e) log 2 2 ~ log 2 0 - - s  _< 
log I ao[ log [ aol 

From the above  it follows tha t  

I1'(':)1 I1'(~)1 ~ 1 log laol 
e( / (~ ) ) -  l+ l l (Z: ) l "  ~ - - ~ -  5(,~--e) > 1 0 # 1 o g 2  " 

This completes the proof  of  the first inequali ty of  (4.3). The second follows 
immedia te ly  from (4.1). 

Lemma  2. Suppose that / (z) is an integral/unction such that/or some r 1 > 0 

and that 

rain II(z) l = 1, 
Izl = r l  

I I(z)l > 1 (rl < Izl < 3rl). 

(4.5) 

(4.6) 

Then /or  some r satis/yinq rl < r < 2 r 1 we have 

(r, t) > 
e -4" log  M ( r , / )  

10r log 2 
(4.7) 

I n  particular i / the  conditions are satisfied/or arbitrarily large r 1 then, 

r # (r,  [) e -4" 
lim,_~sup l o g M { r , [ )  > lO l o g ~  " 

Le t  r 0 = 2r  1 and let z o = ro e~~176 be such tha t  

(4. s) 

II(zo)l = M (ro, 1). 

There is a #1 with I #1 - -  #01 -~ ~r such tha t  
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r~ and so (4.1) gives For e a c h ~ , w i t h [ ~ [  = r o ,  I / ( z ) ]>  l f o r l z - - ~ [ < r  x = ~ -  

Thus 

and so 

I f ( ~ ) [  4 

I/(C)I log If(C)] ro 

a--~ log log 1/(roei~ _< 4 

log log I/(roei~ < 4n ,  
log [ f (roe~~ ) l - 

from which it follows that  

log I/(roei~ >_ e -l" log l/(roei~176 ---- e -l" log M(ro, /). 

�9 ro In the closed disc ] z - - r  oe ~~ _<~- we have [/(z)] _>1 and, at the point 

zl = rl ei~ on the boundary, ]/(zl)[ = 1. Consequently, by (4.3) with 5 -- r~ 
2 '  

there is a point $ on the segment joining ro ei~ to zl for which 

log [/(roei~ e -t= log M(ro, I) 
e (1(~)) >- >- 5 ro log 2 5 ro log 2 

r 0 If I~1 = r, then ~- < r <_ ro and hence we deduce that 

e -l= log M (r , / )  
~ ( r , / )  

10r log 2 

This proves Lemma 2. 
The next lemma is required to cope with possible irregularities in the growth 

of log M ( r , / ) .  

Lemma 3. Suppose that qJ (r)(r o <_ r < ~)  is continuous, positive and strictly 
increasing with a sectionally continuous locally bounded derivative ~' (r). [At points 
o/discontinuity we define ~p' (r) as the l imi t / rom the left.] Suppose that/or positive 
a , f l  

lim sup ~(r) ,-+| - ~ > f l .  (4.9) 

Then given ~' (0 < ~' < ~) there exist arbitrarily large r /or  which the/ollowing are 
satisfied : 
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9(r__)_) > / ~ e - S ;  (4. lo)  
ra 

9' (r) o,' 
- -  - -  ; (4 .11)  
9 ( 0  > r 

9 I r + 2  9(r )  I < e49(r).  (4.12) 

We assume tha t  9'  (r) is never  zero. This really involves no loss of generality.  
Firs t  of  all we show tha t  there  are arbi t rar i ly  large values of  r such t h a t  (4.1 l) 
and 

9 ( 0  > ~ (4.10)'  
ra 

are satisfied. Now 9 (r) is unbounded  as r - ~  ~ and so for arbi t rar i ly  large r 

it  mus t  be locally nondecreasing.  Fo r  such r ,  

d t 9(r)  I -- 9 ( r )  t ~' (r) o,' I >_ 0 
d r  r r ~" ~ - -  r ~" i q~(r) r i 

and so (4.11) is satisfied. I f  for  all large r,  9 (r) >_ fi rs then  we obta in  the desired 
result.  Otherwise there  are arb i t rar i ly  large values of  r such t h a t  9(r)  < fir ~. 

F r o m  (4.9) there  is a smallest  R > r such t h a t  9(R)  = fi R s .  Bu t  then  ~(r)  
r a 

is nondecreasing at  R and so 9'  (R) c~ _> ~ , as in the previous a rgument ,  and 
9 ( R )  

R~ --  ft. Hence  the  result .  

Now set h ~ h (r) ---- 2 ~(r)  and no te  t h a t  

,+h ~,  (0 9' (0 log 9 (r + h) - -  log 9 (r) = ,S ~ dt < h,<_t<_,+hmax ~o(t) " 

Consequent ly  if  (4.12) is false for r = ro there  is an r 1 such t h a t  r o < r  I < r o + h (ro) 
and 

~'(r___A ) > 4 - -  2 ~ ' (r . )  
(r~) h(ro) ~ ( r d  " 

Suppose t h a t  ro, rl . . . . .  r~ have  been defined in this w ay  so t h a t  (4.12) is false 
for  r = r v ( 0 _ < v _ < n )  and 
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r ~ < r ~ +  1 ~ r ~ +  2 9(r~) ( O < ~ , ~ n - - 1 )  

9'(r~+x) > 2 9 ' ( rv )  ( 0 - < ~  < n - - l ) .  
9(r~+1 ) -- ~ -- _ 
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Then  we can  def ine  r .+  1 so t h a t  

9 '  (r ,)  9 (r .)  9 ' ( r .+1)  > 2  r , <  < r . + 2  9 '  
9 (r .+O 9 (r . )  ' r .+ l  _ ( r . )  " 

I f  th is  p rocess  c o n t i n u e d  indef in i te ly  t h e n  we shou ld  h a v e  

and  

9' (r.) 
~ ( r - +  ~ )  

9 ( r . )  

~" ( r . + l - - r . )  g 2  ~. 9 ( r " )  
.=o .=o 9' (r.) 

9(re) ~ 2--  
g 2 ~ o  

---- 4 9 ( r ~  
9 '  Cro) " 

9 '  (r .)  ~ oo. This  c o n t r a d i c t i o n  Thus  r :  wou ld  t e n d  to  a f inite l imi t  a n d  so 9 (r.----~- 

shows t h a t  t he  c o n s t r u c t i o n  o f  t h e  r .  m u s t  t e r m i n a t e  a f t e r  a f inite n u m b e r  o f  
steps.  

T a k e  n o w  as r 0 a va lue  such  t h a t  (4 .10 ) '  a n d  (4. l l )  a re  sa t is f ied for  r ~ r o. 
I f  (4 .12)  is n o t  sa t i s f ied  for  r -~ r o t h e n  t h e r e  is a s equence  re, rl . . . . .  rtr as 
above  such  t h a t  i t  is n o t  sa t i s f ied  for  r ~- r~ (0 ~ n ~ N - -  1) b u t  i t  is sat isf ied 
for r ~ rtr T h e n  for  0 ~ n < N ,  

and so 

' r 9 ' ( r . )  9 ( . + 1 )  :> 2 
9 ( r . + 0  9 ( r . )  

_ _  ~ 2~+1 9 ' ( re )  
9 (re) 

zr ~ 2  9 r )  ~2~ I 1 
rN --re----- o ( r ~ + , -  r ~ ) 9 . ( ( ~  ~=o 2"  

< 4 9(r~ 
9' (re) 

r0 
~ 4 o~-7 

9 CMH vol. 40 
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by (4.11). Hence i f~ '  is near  enough to a ,  

r2c<ro 1 + ~-7 <to (1  + 5/o0. 

Since (4.10)' holds for r ----- r o, 

Also 
~(r2v) ~ 9(ro) > flr~ > flr~ (1 + 5/o~)-a > f le-~r~.  

9' (rN) ~' (to) a' a' 
(rN) ~ (to) ro ru 

Hence the proof of L e m m a  3 is complete. 

4 . 2 .  P roo f s  of  T h e o r e m s  2 and 3 for a ~ 6.  

Suppose now t h a t  ] (z) is an integral funct ion of order a >_ 6. We apply 
L e m m a  3 with a > ~' > 5 to ~(r) ---- log M ( r , / )  so t ha t  for some arbitrarily 
large r ,  (4.10), (4.11) and (4.12) hold simultaneously.  For  such an r there 
is a point z o = re ia so t ha t  [see e.g.3,  L e m m a  2, p. 136.] 

I/(~)1 = M(r,/), 
/'(zo) 
!(zo) = ~'(r)" 

I t  now follows from L e m m a  1 t h a t  if  ~ ~ ~ (r) is the radius of the largest disc 
with centre z o in which I/(z)[ > 1 then,  by  (4.1), 

8(r) g 2 II(Zo)l log [/(zo)[ = 2 9(r) 2r  2 
I/'(zo)l ~ < - -  < - ~ r  

By (4.3) there is a point z with [z --Zo[ < 6(r) and  

log I / (~) I 
0ff(z)) > 10 ~ (r) log 2 

~(r) 
10 ~(r) log 2 

~'~o (r) > 
20r log 2 " 

I f  }z I = R ,  t h e n  R < r + ~(r)  and so, by  ( 4 . 1 2 ) ,  

~(r) 
(R) < ~ (r + ~(r)) < ~ ~ + 2 ~ - - r ~ /  < Oq~(r). 

(4.1~1 
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Hence,  since also R > r - -  ~ (r) > 3/5 r ,  

~ '  e -4 ~ (R) 
/~ ( R ,  [) ~ e (1 (z))  

20 (2R) log 2 

o~'e -4 log  M(R, ]) 
40 R log 2 

3 
From R > ~ r i t  follows t h a t  as r -~ oo then  R -+ oo and  so we ar r ive  a t  

R I ~ ( R ,  l) a e ~  
lim sup 

R-+ | l og  M ( R ,  ]) 40 log 2 ' 

since ~ '  can be t aken  as near  to a as we please. This proves  (3.1) and  so 
Theorem 2. 

We n e x t  p rove  Theo rem  3 for a ~ 5. Suppose in fact  t h a t  (3.3) is false for 
some a rb i t ra r i ly  large r where Aa is some posi t ive  constant .  We  m a y  app ly  
L e m m a  3 as before wi th  ~ --~ a + 1, a '  ----- a and  a n y  quan t i t y  fl such t h a t  

A ~ K  
0 < ~ < - -  . (4.14) 

a + l  

Then (4.13) yields for some z wi th  Izl ~- R 

  e-6r 
> (4.15) 

20r  log 2 20 log 2 
Also 

I z l = R ,< r + O ( r ) ,< r + 2 cP ( r ) ( 2 ,< r 1-+- 

by (4. l l ) .  Therefore  

Then (4.15) shows t h a t  

R a K r ~ 1 + ~ e s r ~.  

# (R, [) ~ 20 log-----2 

for a rb i t ra r i ly  large values  of  R .  F r o m  (4.14) we see t h a t  

and so 

a A 1 K  e -~ 
a + 1 20 log 2 

~ K ,  

A x ~  a + l  20e ~ l o g 2 < 2 5 e  7 l o g 2 .  
a 

Consequently i t  is only  for such A 1 t h a t  the  resul t  of  the  t heo rem is false. 

Hence i t  m u s t  be  t rue  wi th  A1 = 25 e 7 log 2. This  proves  (3.3) for a ~ 5. 



132 J .  CLU'~r~ and W. K. HAYMA~ 

4 . 3 .  Completion of proof of Theorem 3 

Suppose t h a t  the hypotheses of Theorem 3 hold with - -  1 < a < 5. Let  n 
be a positive integer such t h a t  

n (a + 1) _> 6 (4 .16 )  

and consider F (z) = [ (z"). Then for all large r we have 

Q ( F ( z ) )  = 
IF' (z ) l  n r=-I I/'(z~)l  

1 -4-IF(z)I ~ 1 + l/(zn)I l 
< K n r n - l r  n~' ( I z l  = r )  

by  (2.1). Hence F(z) satisfies (2.1) with K n  in place of K and n(a + l) - -  1 
in place of a.  In view of (4.16) we can apply  the previous result to F(z) and 
obtain 

A1Knr  "*(~+1) A1K 
log M ( r ,  F)  < - -  r n (~+~) 

- -  n(a -~- 1) a -}- 1 

As M (r, F)  ~ M (r n, [) this completes the proof of Theorem 3. 

4 .4 .  Completion of proof of Theorem 2 

We assume tha t  [ (z) is of  order a < 6 and consider F (z) = /(zl~). Since, as 
a b o v e ,  

~(F(z))  ---- 12 [~I H ~(/(zli)) 

and F(z) is of order 12a it follows t h a t  if (3.1) holds for F(z) then  

r~  ( r , / )  1 
limsupr__>| l o g M ( r , / )  ~ 1-2 A~ + 1) 

and  this  is the result  for [(z) if A 0 is adjusted.  Consequently it  is sufficient for 
a < 6 to prove the theorem for F (z). 

Now for some constant  A,  we have 

log M(4r,  F) g A 2 log M(r,  F) (4.17) 

for arbi trar i ly large values of  r.  Otherwise for some r o we find tha t  

log M ( 4 "  r0, F)  > A~ log M (r0, F)  (n > 1) 
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so tha t  the  order  of F(z)  is a t  least log A 2 This is impossible if A2 >_ 472 as 
F(z) is of  order less t han  72. log 4 " 

We consider arbi t rar i ly  large r for which (4.17) is true. I f  for an infinite 
sequence of such r ,  [/(z)[ > 1 (r _ [z[ < 3r) then  the result  follows f rom Lem- 
ma 2. Hence  we assume always t ha t  for some R in r _< R <_ 3 r there  is a z on 
I z[ ~-- R where [[(z)] < 1. F rom the periodic na ture  of  F(z) we see t h a t  there  
is a disc S(R) centred on ~ where [~[ ~ - R ,  [ F ( ~ ) ] - ~ M ( R , F )  such t h a t  
[F(z)] ~ 1 in S(R), IF(z)[ = 1 a t  some boundary  point  and  the radius of 

~ R  
S (R) does not  exceed 1 2 - "  By  L e m m a  1 it  follows t h a t  

for some t satisfying 
t _ R then  we get 

/~(t, F )  
12 log M (R, F) 

10zrR log 2 

R _ u  
~ R  zrR 2 4 
12 < t < R q- 1 2 - '  so t h a t  ~ R <: t < ~ R.  I f  

12 log M (t, F) 
#(t ,  R) 

10n �9 St log  2 

4 log M (t, F )  
5zrt log 2 

I f  t > R then,  since R ~ 3 r ,  t < 4r  and so, using (4.17) we have  

~(t, F) > 
12 log M (t, F) 
A, 10z~t log 2 

6 log M (t, F) 
5A2zct log 2 

As t > ] R  > ] r  it  follows tha t  one of the above  inequalit ies mus t  hold for 
arbi t rar i ly  large t. Hence the  proof  of Theorem 2 is complete.  

4 .5 .  Proof of Theorem 4 

For a ny  funct ion f (z) of  order  less t han  1 with /(0) :/: 0 we have  the well 
known inequalities [see e.g. 4, p. 28] 

J - - 7 -  dt ~ log i](-O-)i ~ t 
0 0 r 

where n(t)  is the  number  of  zeros of [(z) in [z] _ t. The  restr ict ion [(0) ~ 0 
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clearly involves no loss of generali ty.  F rom the second condition of (3.4) and 
the left  hand inequal i ty  of (4.18) i t  follows tha t  

F rom (4.19) we find tha t  

n(r) = 0 (log~r). (4.19) 

O0 

f n(t) r ~ dt = O (log~r). (4.20) 

r 

Hence for r such t h a t  log M ( r , / )  > ~9(r ) log~r ,  where ~ is some positive 
constant  implied in the first condition of  (3.4), we obtain, from (4.18) and 
(4.20), 

n(t) 
log M ( r ,  [) = {1 + o(1)} - - F d t .  (4.21) 

0 

Assume now tha t  we are dealing with values r of the above kind. By  a known 
/ 

, , , , . ,  : . ,  result we have for some R in 
/ 

where, here and elsewhere, H depends on ly  on /(z) [5, pp. 64-65]. For  suffi- 
ciently large r let R '  be the smallest number  such tha t  ]] (z) I > 1 (R' < I z l < R). 

We deal with two cases: a) R' r . b) R '  r > ~ - '  --<12- for arbitrari ly large values 

of R'.  I t  is clear t ha t  in fact  R' does take arbi t rar i ly  large values. 

Case a). If  I/($)1 = 1(~ = R'e  i~) we consider the largest disc D centred 
r r 5 

on Re~r which I](z)l > 1. The radius o f  D is a t  most  2 12 -- 12 r and 

r 5 . r 
so D ties in [ z[ < ~ + ] ~  r < r .  By  L e m m a  1, (4.3), for some t m 12- < t < r 
we have 

H log M (R, [) ~,(t,/) > 
r 

From (4.18), (4.19) and (4.21) i t  follows tha t  

( .)  /-,,, l o g M  -f-2 , [ > H log M (r , /) - ---i-- dr + O (log~r) 
7' I t l |  

> H l o g  M ( r ,  ]) + O(logxr) 

= H(1  + o(1)) log M ( r , / ) .  
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Hence we see tha t  
#( t ,  [) > H H(r) l~ 

r 

> H H (t) log ~ t 
t 

for arbitrari ly large values of t. This proves the  theorem in this case. 
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Case b). In  this case I[(z)l > l { R ' <  Izl < 3R') and I[($)1 = 1($ = R'dr 
We see from the  proof of L e m m a  2 tha t  

log M (2 R', [) 
# (t, [) > H R' (4.22) 

for some t satisfying R' < t < 2R' .  Now from (4.19) and  (4.21) 
r 

r.,,,"' ) 
\ j  t J t  

0 0 r]4 

> HH(r ) log~r - -  H log~r 
and so 

n ( 4 ) >  H H (r) log a-lr.  

n(R') > II H (r) log~-lr.  
Hence, by (4.18), 

2 R '  

logM(2R' , [ )  f n(O 
I/(0)l > J ----t-- dt = n(R') log 2 

R' 
> HH(r) log~-lr.  

Therefore we find tha t  in (4.22), 

H H ( t  ) l o g ~ - t  t 
(t, l )  > 

t 

Since this holds for arbi trar i ly large values of t the theorem is proved in this 
case .  

4 . 6 .  Proof of Theorem 5 

From the left hand  inequal i ty  of (4.18) we get  
� 9  

f n(0 n {r) log r < T dt ~ log M {r ~, [) 

�9 I log~r I 
= o t i 
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and so, since ~ (r) is increasing, 

I log r 
n(r)  = 0 - - ~  (4.23) 

t ~ ( r )  t " 
Using (4.23) we obtain  

O0 O0 

r-(,) I ' r lo , I r j t~ - ~ - ~ . r  j t '  d t  

= 01  l o g r  I (4.24) ~-~"  

V log r 
Hence  if we pu t  fl(r) = ~ ~v (r) log M (r) ' where ~/ > 0 and depends on 

/ (z), then,  b y  a known result  [5, pp. 64-65], in r (1 - -  fl (r)) < I z ] < r (1 + fl (r)) 

log I/(z)l > H l o g  M ( l z l , / )  

outside a set  of  circles the sum of whose radii is a t  most  H r f l  ~ (r). 
Consider now values of r such tha t  ](z) has a zero on I zl = r. L e t  z o z rei~ 

be such a zero. Then from the above,  if  r is large enough, for some R satisfying 
r - -  Hrfl~(r) < R < r we have 

log I / (RelO') l  > H log M ( R , / ) .  

Let  D be the disc with centre R e  ~* in wMch I/(z)t > 1, assuming r is sufficiently 
large, with I[(z)l = 1 somewhere on the boundary .  Then, by L e m m a  1 and 
the above  for some z in this disc 

O (] (z)) > H log M (R, ]) (4.25) 
r~a(r) 

r 
Now as fl (r) ~ 0 as r ~ ~ it follows tha t  for large r, -~ < R < r and so 

N 

f n(O log M ( R ,  [) = {1 + o(1)} - - ~  dt 

0 
f 

>{1 +o(1)} llogM(r,/) -- f n(O-7- dt f 
R 

= {1 + o(1)} {log M ( r ,  ]) + O(log r)} 

= {1 + o(1)} log M ( r ,  ]), 
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where we have used (4.23), (4.24), (4.18) and the obvious result t ha t  
log r = o(log M(r , / ) ) .  Hence, from (4.25), 

H log M (r , / )  
e ( / (z))  > r~(r) 

_ Hq~(r) logr i l o g M ( r , / )  ~2 
~2r ! log  r t " 

r 
Now in (4.25), ~ < I zi < r for large r and so if [z I ~ t then for large r we 
find tha t  

~ t ( t , / ) > H  qJ(t) logt ( l o g r  )2 

since ~0 (t) is increasing. As the final factor above tends to oo with r and the 
inequali ty holds for some arbitrari ly large t this proves Theorem 5. 

5. Counter  e x a m p l e s  

The first theorem shows t h a t  (3.2) is best possible and tha t  the properties of 
/(z) referred to in w 3 preceding Theorem 4 do in fact  hold. 

T h e o r e m  6. ' Given qJ (r) ,7  oo (r / z  oo) there is a sequence o/increasing integers 
k n such that i/ 

then/or g(z) : / ( z ) ,  h(z) or /2(z) 

lim sup r ~  (r, g) < co. 
,__> | q (r) log  r 

kn+l The sequence {kn) will be seen later to s a t i s f y ~  > 4 and  in this ease 
it is easy to verify t h a t  ~ n  

0 < lim sup log M (r , / )  ~ |  log2r < o~, log M(r,  h) = o(log2r), log M(r,/2) # O(log2r) �9 

The nex t  theorem shows t h a t  Theorem 2 is best possible 
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Theorem 7. Given a (0 ~ a < ~ )  there is an integral/unction o /proper  order 
a and very regular growth when a > 0 such that 

lim sup rg (r ,  1) 
,_+| l o g M ( r , / )  < C(a + 1) 

/or some absolute constant C.  

5.1. Proof of Theorem 6 
The proof of the theorem requires a number  of lemmas. We assume tha t  

besides any  other conditions t ha t  the integers kn will be required to satisfy, 
t ha t  t h e y  will always satisfy 

k,,+, > 4 ( n >  1 ) , / 6  >_ 2. ( 5 . U  
k.  

We confine our a t ten t ion  to / (z). The proofs for / I  (z) and [~ (z) are similar. 

Lemma 4. On Izl = 2 k'+' andon  Izl = 2 k' - ` ,  

I I(z)l  > H l z l .  
On Izl = 2k"+1 we have 

m - n + 1  2 k m  " 

From (5.1) each factor  in the first product  is a t  least 1 and so 

m=/~1 ( 2'"+12'" 1) 'm> ( 2''+12'' 1) '1 
> H �9 2 ~-+1 = Hlz l  �9 (5.2) 

Also, from (5.1),  
| ( 2 , . + 1 ) , .  -.. 

H 1 2k. > ~ ( 1 - -  2--~--)k" 
m B n + l  m s . + l  

> H .  (5.3) 

From (5.2) and  (5.3) the lemma follows for [z I ----- 2 kn+l . 
In  dealing with I zl = 2 k.-1 we assume for convenience tha t  n > 1. This 

clearly involves no loss of generali ty.  On I z] =- 2 kn-x we have  

II(z)[ > / /  2~m+l 1 . 2 - k .  H 1 2 ~ + 1  �9 
m~l m s m + l  



n_i( 

since k I ~ 2. As before 
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By (5.1) each factor  in the first p roduc t  is a t  least 1 and  so 

2km+l 

> H �9 2 2 k n - 1  

139 

(5.4) 

2kn )kin 
/~ 1 2kin+ 1 > H .  (5 .5 )  n=~ttA-1 

Hence on ]z[ = 2 kn-1, by (5.4) and (5.5) ,  

I/(z)l  > H .  2 2 k n - 1  �9 2 - k n  

: H 2  kn-1 : Hlz[. 

Hence the  lemma follows for I z[ : 2 ~n-1. 
We see from L e m m a  4 t ha t  when z is large the regions in which [/(z) l < 1 

are disjoint, with one in each annulus 2kn-1 < [z[ < 2 kn+l. Denote  these by  
D . .  Clearly D .  contains the zero at  z : 2 r" .  

Le m ma  5. I [  the k~, increase su[f iciently  rapid ly  then on the boundary  o / D n  
when n is large 

H 2 k n - k l - k s - . . . ~ n - l <  Z - - 2 k n  I < H 2  k n - k l - ' ' ' k n - 1  

We have 

I ( ) L • = __zz  k,,, [ z__2k , , i  k,, ~ 1 -  2~,n . I/(Z)I .-1~1 1 - -  2k" ~k-ff " "ra-n+l 

Now on the bounda ry  of  Dn 

/ I  1 - -  = 1 - -  ( 5 . 6 )  
ram1 ml 

When n is large then  2 kn-1 < I z[ < 2 kn+l by  L e m m a  4 and so, if  the k n increase 
l 

sufficiently rapidly  to  ensure t ha t  the  final p roduc t  in (5.6) lies between 
and H ,  we obta in  on the  bounda ry  of  Dn,  

2(kn-1)(kl+...+kn_l) n-1 __ ~ k r a  2(knq-1)(kl-l-'"q- kn-1} (5 .7)  
H .  2kxS+...+kn_x s < 1-1 1 H . 2kxs+...+kn_x s 

roll 
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Again, from Lemma 4, it follows that  on boundary of D.  when n is large, 

H <  /~ 1 - -  z km .=~+1 ~ < H .  (5.8) 

From (5.6), (5.7) and (5.8) we find that  on the boundary of D,  when n is large 

H .  2 k- 
2 1 (kll  4- . . .  --b kn-1 ~t) t 2 ~ (k~ + ... + J~,l-1 | )  

1 1 2(-~) ( k l A - "  " " - ; - k n - l )  

From these inequalities the lemma follows provided the k. increase sufficiently 
rapidly to ensure that  

k[  -t- . . .  + k 2,,_~ == 0 (k,,) ( n - ~  oo) . (5 .9 )  

Lemma 6. For large n we have in 2 ~"-1 <_ [ z[ < 2 k"+l, but outside D . ,  provided 
that k .  increases quickly enough, 

We have 

t' (z) k .  2 k' +'-'  + ~"-' 
l(z) < H  lz l  

1 ' (~)  _ ~. k,,, 
l(z) ,,,_~ z - - 2 k =  " 

I f  the k. increase sufficiently rapidly then, for 2 k"-I < l z] ~ 2 ~"+1 

Also, 

n -- 1 k ~  
27 2k ~ 

m = l  Z -  

m - - n + l  IZ - -  2kml 

I't-- 1 k~ a 

~m~l~" 2 k n _  1 _ _  2kin 

2 n - 1  
< 2k ._  1 1 k~ 

rt~ml 

< H  k. 
2/~n �9 

X 
m - - n + l  2km ~ 2 k"+~ 

m u n + l  2 k ~  

H ,~  k .  
< 2kn km rt;un-b 1 

2 2 
H 

< 2~. �9 

(5.10) 

(5.11) 
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F r o m  L e m m a  5 it follows t ha t  if the  k. increase rapidly  enough then  

k~ k~ 2 kl +"" +/~n-1 
iz__2kn I < H  2~ ~ (5.12) 

F rom (5.10), (5.11) and (5.12) the lemma follows. 

Lemma 7. I / t h e  k ~ increase su/ficiently rapidly then for 2k'~ + ~ <_ ] z I <-- 2k€ + 1- 
we have 

I f  the k. increase quiekly enough then  on I zl = 2 k~+~ we obtain 

II'__[_l < H k*2k'+'"+kn- '  
l ip  Izl' 

H 
< - -  

Izl 
by Lemmas  4 and  6. The  same inequal i ty  is also t rue  for I=l - 2 ~ " + ' - L  Now 

zl' (z) 
is subharmonie  in 2 k*+l < Izl < 2 k*+1-1 and since it  is bounded 

by  H on the bounda ry  it is bounded  by  H inside the  annulus.  Therefore  in 
2 kn+l < [z I _< 2~"+~ -1, 

' f '(z)' - o ( 1 )  
( ! (~) )  < I ?(~)1 N V  " 

Lemma 8. I n  2 kn-~ < I zl <_ 2 k"+~ we have 

kn2 kl +"" + kn-1 

O(/(z))  <_ H [z I 

provided the k ,  increase quickly enough. 
In  2 rn-1 ~ ]z] < 2 k"+l bu t  outside D,  it  follows, if the k,, increase quickly 

enough, t ha t  

z / ' ( z )  Hk,2k l  +...+ kn_ 1 (5 13) 
p(z) < 

by Lemmas  4 and  6 and  the use of subharmonic i ty  as before. Hence the  lemma 
is t rue  in this region. 

On the  bounda ry  of  D,, we get 

[zf ' (z)l  < Hk~2 k~+'''+kn-~ (5.14) 
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and so, by  the max imum modulus principle, this also holds inside D, .  F rom 
(5.13) and  (5.14) the lemma follows. 

Given q (r) as in the theorem choose an increasing sequence of integers k, 
so tha t  the above results hold and also 

2 k, +... + k,-1 < q (2k~-1). 

Then from Lemmas  7 and 8 we see t ha t  

lim sup r /~( r , / )  < oo 
,_+ | ~v (r) log r 

since q (r) is increasing. 
This completes the proof of the theorem. In  should perhaps be pointed out  

tha t  given ~ (r) where ~ (r) ~ oo (r -+ ~ )  it  is no t  difficult to find a ~v (r) such tha t  
(r) -+ ~ (r -+ r q (r) ~ ~ (r) and ~ (r) is increasing. Consequently q (r) was 

assumed to be increasing in the theorem only for convenience. 

5 .2 .  Proof of Theorem 7 

A number  of lemmas are required. 

( z ~[""J 
Lemma 9. I /  A > 1 and /(z) = ~I 1 + --e-~] then /(z) is a/unction o/ 

very regular growth and order log A 1 
A 

For  e =a _< Iz[ g e (n+l)d we have 

log M(r,  f) >_ log [/(end)[ 

> (A s - -  1) log 2. (5.15) 
Also, in this range, 

log M (r, /) ~ log M (e ~n+l~A, /) 
n + l  

g 27 A m log {1 + e {n+l-m)A} --~ 27 A m log {1 + e (~+l-m)A) 
m--I mln-~2 

n + l  
< 2 :Am{log2  + (n + 1 - - re )A}  + X A'~e -(m-n-l~A 

m ~  l m - - n - i - 2  

A,'+2 log 2 A~+I ~ v A,~+ 1 ,~ AVe_V. 4 
g A 1 -~- - ~ - +  

< K I A ) A " .  

From (5.15) and  (5.16) it  follows t h a t  for e ~A < Iz[ _< e (~+I)A 

(5.16) 
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(A n - -  1) log 2 log M ( r , / )  K ( A )  �9 A "  
An+~ < r(~Og a)/a < A ~ 

and so the result follows. 
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. - - 2  Z Lemmal0. I/ ~.(z)= ( 2 : + ~ ) [ A  re]log 1% 
enA 1 n+l 
- ~ - <  Izl  < 2e "A, 

- -  nA n < ~o.(z) < ~TA" 

then /or 

where ~ ~-- ~ (A)  ~ 0 and ~7 --> 0 (A ~ oo); ~7 i s  not necessari ly  the same  at each 

occurrence. 

We have, in the range of the lemma, 

. - - 2  Z 

2: [A"] log 1 + e--~ 
1 

<_ X~ A ~log 1-t- e ~ -  ] 

. - - 2  
_< 2: Am{log 4 + (n - -  m ) A }  

1 

. - 3  A "-1 log 4 A,_I �9 A- 2 
A - -  1 ,=0 A ~ 

Also, in the above range, 
< v ( A )  . A - .  

Z [A m] log 1 q- 
n §  

2enA 
_<.+,}A '~log 1 + ~ ]  

< 2 1: A m e  (n-'n)A 
. + 1  

= 2A-  ~. (Ae-")" 

~ ~(A)A". 

From (5.17) and (5.18) the right hand inequality of the lemma follows. 
In the range of  the lemma we also have, if e zA > 4, 

n- -2  
1: [A m] log 
1 

and, if e a > 4 ,  

. 2  

1 - + - ~ z  :> ~ [ A  re]log 2emA 1 

> 0 ,  

(5.17) 

(5.18) 

(5.19) 
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, ~ [ A m ] l o g l l +  e-~X 
n+* 

2ena ) 
~ A  ~ l o g  1 e,~A 

n+* 

:~ - -  4 ~_, A m e  (n-mlA 
n+l 

QO 

= - -  4A n 2: (A e-a) v 

- - v ( A ) A ' * ,  

From (5.19) and (5.20) the left hand inequality of the lemma follows. 

(5 .2o)  

enA 
Lemma11 .  For I z l ~ - - ~  and Izl = 2e "~, 

(�88 - -~)A" _< logl/(z) l _< (3 + v)A". 

I f  I z [ -  
enA 

we have 
2 

[An-*] log 1 --}- eln_,) a 

enA 
Also for ]z I -- 2 ' 

< An-* (log 2 + A) 

~ ( 1  + V) A". 

ZIA,, [A n]log I-f -  e~ X ~ log3/2 

A n . 

(5.21) 

(5.22) 

From (5.21) and (5.22) and Lemma 10, the right hand inequality of Lemma 11 
enA 

follows for I z] = 2 

enA 
We have for [z] - - ~ ,  if e a > 4 ,  

and 

[A n-l] log I + e(n_x) A ~ JAn-l] log ( ~ -  - -  1) 

(A n-x - -  1) (A - -  log 4) 

> (1 - -  ~ )A-;  (5.23)  
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[A'*] log 1 + ~ - -  A'* > l o g  2 

> - -  ] A " .  
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(5.24) 

From (5.23) and (5.24) and L e m m a  10, the left hand inequal i ty  of the L e m m a  11 
e n A  

follows for I zl - -  
2 

The result  for I z I ---- 2 e "~A follows in a similar manner  to the above.  

e n A  e n A  
L e m m a 1 2 .  I /  z satisfies [z + e"a I >_ ~ and ~ <_ lzl <_ 2e '*a then 

A n 

(4 ~- 7)  e .  A �9 

We have  
r ( z )  
/(z) 

e n A  
For I zl ~ ~ ,  if e A ~ 4 ,  

EA=1 
1 Z -t- e m A  

and for [z[ ~ 2 e  hA, if  e A ~ 4 ,  

ta"l 
1 Z -Jr- e m A  

n --1 A ftg 
< 2 ,  
- -  I __s _ _  e m  A 

2 

4 n--1 
< T4-  i ~ A "  

4 A ~, 
<" (A  - -  I) e '*A 

A - 
r/ en A ; (5.25) 

n + l  

[A'~]  [ 
Z - ~  e m A  

| A ~ 
~n~++l e m A  - -  2 e n A  

K 2 X  A'n 
n + l  s  

A'+ ~_, (Ae -a )  v = 2 - - ~ - ~ 1  

A "  
~ e~,a �9 

(5.2e) 

10 CMH vol. 4.0 
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enA 
Finally,  if  I z + enA I ~ - ~ - ,  then  

[A n ] 4A n 
_< - -  ( 5 . 2 v )  

Iz + enal e na 

From (5.25), (5.26) and (5.27) the  lemma follows. 

enA 
Lemma 13. For  - -~-  _< ] z I <: 2 e hA, 

A n  
/~.(r, l) --< K (A) ---- , 

r 

provided A is su/fieiently large. 
When A is large enough we see from L e m m a  l l  t h a t  the set II(z) l ~ 1 

splits into a number  of components.  Each zero e nA is contained in a component 
enA 

D, ,  say, and Dn lies i n - y -  g l z l  -<2e hA. 
enA 

First  of all we show tha t  when A is large the disc I z -F enAI ~ ~ - -  is con- 
tained in D . .  From L e m m a  10 it follows t h a t  in this disc, 

z [ e ~ + v A n  log II(z)l -< [A n-l] log 1 + e(n_~)------ G + [A n] log 1 ~L Z 

( ~  A n-1 log 1 + ~ e A - -  (A n - -  1) log 4 -F v A  n 

A ~-1 l o g ~ + A  - - ( A  ~ - l ) l o g 4 + v A  n 

.<0 ,  

provided A is large enough, independent ly  of n.  Hence we arrive at  the desired 
conclusion. 

F rom L e m m a  12 and the above i t  follows tha t  when A is large then on the 
boundary  of D,,, 

1' (z) (4 A n 
I I ' ( z ) l  = l (z )  ~ + ~ )  e n'~ " 

Therefore in D n and  on its boundary,  

A n  ( 5 . 2 s )  
e ( l ( z ) )  ~ I I '  (~)1 ~ (4 + ,7) en.~ �9 

enA 
In  the  annulus ~ <_ I zl -< 2e nA outside D~ it follows tha t  when A is large 
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A ~ Q(/(z))  ~ f '(z) ~ ( 4 ~ / )  (5 29) 
- / ( z )  - e , ~ A '  

by  L e m m a  12. 
1 2 e nA 

Since e ~ X - < - r  for ~ _< r g 2e  nA the  l e m m a  follows f rom (5.28) and  
(5.29). 

L e m m a  14. For  large A ,  i /  2 e nA ~_ r <_ - -  
e (n+l) A 

K ( A )  
( r , / )  < 

r 

then 

F r o m  L e m m a s  11 and  12 it  follows t h a t  

z/'(z) 
/ ( z )  ~ < K ( A )  

(n+l)A 
on the  b o u n d a r y  of 2e nA <_ [z I ~_ ~ - - - .  Since the  funct ion on the left above  

is subharmonic  in the  annulus  it follows t h a t  the  inequal i ty  holds t h r o u g h o u t  

It'(z)l the annulus.  Hence  the  l e m m a  follows because Q (/(z)) _< I / (z) L~ " 

5 . 3 .  Before complet ing the  proof  of  Theorem 7, we observe t ha t  the  
constants  K ( A )  appear ing  in L e m m a s  13 and  14 remain  bounded  as A -~ ~o. 
F rom L e m m a s  I l, 13 and  14 it  follows t h a t  

l im s u p  r/~ ( r , / )  
r - ~  l o g M ( r , [ )  < B ,  

where B is an  absolute  cons tan t  for all [ (z) for which A _> A o, A o being some 
fixed value.  

We proceed to  prove  Theo rem  7. 
log Ao 

I f  0 ~ a ~ - -  in Theo rem  7 we t ake  [(z)  as above  with  A given 
A0 

log A 0 
by  a - -  lOgAA . I f  a > - - - A o  we proceed as follows. L e t  A1 > A0 be 

log A 1 log A o Le t  n be the  smal les t  posi t ive inte-  defined b y  2 A1 - -  A0 

__ log Ao a log Ao 
ger such t h a t  a ~ . Then,  since n >  2 , - - > - -  and  so 

n A 0 - n - -  1 - Ao 
a n - -  1 log A 0 log Ao a log A 

- -  > - -  >_ �89 - - .  Therefore  - -  where  A1 ~ A _< Ao. 
n - n Ao Ao n A 
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We now take, as a function for Theorem 7, F (z) = ] (z n) where [ (z) is constructed 
as in Lemma 9 with this value of A.  Then 

l imsup r j u ( r , F )  
r--> | log M (r, F)  

nr"#  (r n, ]) 
- -  limr_~| log M (r", l) 

< n B  

log A B-  A 
- -  - -  , n ~ - -  

A log A 

2AoB 
log Ao 

Thus the theorem is proved for 0 < a < ~ .  

. i T .  

I t  can be shown by  the same methods as above that  if K is large enough then 

F(z) = / / ( 1  q- ze-X'~') "*n 
1 

is a function of order 0 satisfying the conclusion of the theorem. 
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