The spherical derivative of integral and meromorphic functions

by J. CLUNIE and W. K. HAYMAN

1. Introduction

In a recent paper LEHTO and VIRTANEN [2] introduced the spherical derivative

$$
\varrho(f(z)) = \frac{|f'(z)|}{1+|f(z)|^2}
$$

as a measure of the growth of $f(z)$ near an isolated singularity. This point of view was further pursued by LEHTO $[1]$. If the singularity is taken to be at $z = \infty$ then LEHTO obtained the following results.

Theorem A. *Suppose that* $f(z)$ *is meromorphic for* $R < |z| < \infty$ *, and has an essential singularity at* $z = \infty$. Then

$$
\limsup_{z\to\infty} |z| \varrho(f(z)) \geq \tfrac{1}{2}.
$$
 (1.2)

Equality holds for functions of the form

$$
f(z) = \prod_{1}^{\infty} \frac{a_{\nu} - z}{a_{\nu} + z} , \qquad (1.3)
$$

where a_v *is a sequence of complex numbers such that*

$$
\left|\frac{a_{\nu+1}}{a_{\nu}}\right|\to\infty \quad (\nu\to\infty). \tag{1.4}
$$

Theorem *B. I/ /(z) satisfies the hypotheses of Theorem A and in addition* $f(z)$ *is regular near* $z = \infty$, *then* (1.2) *can be replaced by*

$$
\limsup_{z\to\infty}|z| \varrho(f(z))=\infty. \qquad (1.5)
$$

Following LEHTO, we denote by $h(r)$ a positive function such that $h(r) = o(r)$ ($r \to \infty$). The connection between $\rho(f(z))$ and PICARD's Theorem is strikingly brought out by the following result of LEHTO [1].

Theorem C. Let $f(z)$ be meromorphic for $R < |z| < \infty$. If for a sequence ${z_v}, \lim_{\nu \to \infty} z_{\nu} = \infty$ and

$$
\lim_{\nu \to \infty} h(|z_{\nu}|) \varrho(f(z_{\nu})) = \infty \qquad (1.6)
$$

then PICARD's Theorem holds for $f(z)$ *in the union of any infinite subsequence of the discs*

$$
C_{\nu} = \{z : |z - z_{\nu}| < \epsilon \, h\left(|z_{\nu}|\right)\} \tag{1.7}
$$

for each $\epsilon > 0$.

Conversely if there exist discs (1.7) *such that PICARD's Theorem is true in every r union* $\bigcup_{k=1}^{\infty} C_{\nu_k}$ for every $\epsilon > 0$ then (1.6) is satisfied. (*V. GAVRILOV has pointed out* to us that the converse must be modified here. (1.6) is satisfied for a sequence z'_n *instead of z_v, where* $|z_n'-z_n| = o \{ h(|z_n|) \}$ *. This condition is also sufficient*

for the existence of the disks (1.7) . In particular it follows that if $f(z)$ has an essential singularity at $z = \infty$ then $f(z)$ possesses a JULIA direction provided that

$$
\limsup_{z\to\infty}|z|\varrho(f(z))=\infty.
$$
 (1.8)

From Theorem B we see that every transcendental integral function possesses a JULIA direction. If (1.8) is not satisfied there is not, in general, a JULIA direction as the examples (1.3) show if $a_v > 0$.

2. Some further results for meromorphie functions

Our aim in this paper is to obtain some extensions of Theorems A and B . We may suppose without loss of generality that $f(z)$ is meromorphic in the whole plane. First we consider whether or not a restriction on the growth of $f(z)$ as defined by its order imposes any restriction on $\rho(f(z))$, or conversely. For meromorphic functions no restriction on $\rho(f(z))$ is implied by a restriction on the growth of the characteristic $T(r, f)$. Consider, for instance,

$$
f(z) = \frac{\prod_{1}^{n}(1 - z/a_n)}{\prod_{1}^{n}(1 - z/b_n)}
$$

where $\sum |a_n|^{-1}$, $\sum |b_n|^{-1}$ converge. Since $f(a_n) = 0$, $f(b_n) = \infty$ it follows that

 $\int \rho(f(z)) |dz| \geq \pi$,

where the integral is taken along the segment Γ_n joining a_n to b_n . In particular

The spherical derivative of integral and meromorphic functions 119

$$
\varrho\left(f(z_n)\right) \geq \frac{\pi}{|b_n - a_n|}
$$

for some point z_n on Γ_n . By choosing a_n , b_n close enough together we can make the right hand side bigger than any preassigned function of $|z_n|$.

On the other hand a result in the opposite direction is possible. It is convenient to set

$$
\mu(r, f) = \sup_{|z|=r} \varrho(f(z)).
$$

Suppose that for $r > r_0$ we have

$$
\mu(r, f) < K r^{\sigma}.\tag{2.1}
$$

By Theorem A this is only possible when $\sigma > -1$ or when $\sigma = -1$ and $K \geq \frac{1}{2}$. In the usual notation of NEVANLINNA Theory,

$$
T_0(r, f) = \int_0^r \frac{S(t, f)}{t} dt
$$

$$
T_0(r, f) = \frac{1}{r} \int_0^{2\pi} \int_0^r \frac{S(t, f)}{s^2} dt
$$

where

$$
S(r, f) = \frac{1}{\pi} \int_{0}^{r} \int_{0}^{\pi} \varrho^{2} (f(te^{i\varphi})) t dt d\varphi
$$

$$
\leq 2 \int_{0}^{r} \mu^{2} (t, f) t dt.
$$

Thus if $\sigma = -1$ in (2.1),

$$
S(r, f) = O(\log r), T_0(r, f) = O(\log^2 r).
$$
 (2.2)

The examples (1.3) with $a_{\nu} = A^{\nu}(A > 1)$ show that the order of magnitude in (2.2) cannot be sharpened.

If (2.1) is satisfied with $\sigma > -1$ we obtain

$$
S(r, f) = O(r^{2\sigma+2}), T_0(r, f) = O(r^{2\sigma+2}).
$$
\n(2.3)

Hence a meromorphic function of proper order $k > 0$ cannot satisfy (2.1) for k any $\sigma < \frac{\pi}{2} - 1$. The implication from (2.1) to (2.3) is sharp as our first theorem shows.

Theorem 1. Suppose that $0 < \lambda < \infty$ and that

$$
f(z) = \sum_{n=1}^{\infty} \frac{(-1)^n z^n}{n^{\lambda n} - z^n} \ . \tag{2.4}
$$

Then $f(z)$ *has perfectly regular growth of order* $2/\lambda$ *and satisfies* (2.1) *with* $\sigma = \frac{1}{\lambda} - 1.$

The function $f(z)$ has poles at the points $z = n^{\lambda} e^{\frac{2 \pi n i}{n}}$ $(\nu = 0, 1, ..., n - 1)$; $n \geq 1$). The number of poles in $|z| \leq r$ is $\frac{1}{2}p(p + 1)$ where p is the largest integer such that $p^{\lambda} \leq r$, i.e. $p = [r^{1/\lambda}]$. Thus $n(r, f)$, the number of poles of $f(z)$ in $z \leq r$, satisfies

$$
n(r, f) \sim \frac{1}{2} p^2 \sim \frac{1}{2} r^{2/\lambda} (r \to \infty),
$$

and so

$$
N(r, f) = \int\limits_0^r \frac{n(t, f)}{t} dt \sim \frac{\lambda}{4} r^{2/\lambda} (r \to \infty).
$$
 (2.5)

We now estimate $|f(z)|$. Assume that

$$
(p-\tfrac{3}{4})^{\lambda} \leq |z| \leq (p+\tfrac{3}{4})^{\lambda}, \qquad (2.6)
$$

where p is a positive integer. $A(\lambda)$ denotes a positive constant depending only on λ and is not necessarily the same at each occurrence. Let n be an integer satisfying $n > p$ and put $n = p + v$ so that $v \ge 1$. We have, in the range (2.6),

$$
\left|\frac{z}{n^{\lambda}}\right|^n \le \left(\frac{n-\nu+\frac{3}{4}}{n}\right)^{\lambda n} = \left\{1-\frac{(\nu-\frac{3}{4})}{n}\right\}^{\lambda n}
$$

$$
\le e^{-(\nu-\frac{3}{4})\lambda}.
$$

Hence, when z lies in the range **(2.6),**

$$
\left|\sum_{n=p+1}^{\infty}\frac{(-1)^{n}z^{n}}{n^{\lambda n}-z^{n}}\right|\leq \sum_{r=1}^{\infty}\frac{e^{-\left(r-\frac{3}{4}\right)\lambda}}{1-e^{-\left(r-\frac{3}{4}\right)\lambda}}=A\left(\lambda\right).
$$
 (2.7)

When $1 \le n < p$ and z lies in the range (2.6) then, if $n = p - v$ with $v \ge 1$,

$$
\left|\frac{z}{n^{\lambda}}\right|^{n} \ge \left(\frac{n+\nu-\frac{3}{4}}{n}\right)^{\lambda n} \ge \left(1+\frac{\nu-\frac{3}{4}}{n}\right)^{\lambda n} \ge \left(1+\frac{\nu-\frac{3}{4}}{k}\right)^{\lambda k} (n \ge k).
$$
 (2.8)

Now

$$
\frac{(-1)^n z^n}{n^{\lambda n} - z^n} = (-1)^{n+1} + \frac{(-1)^n n^{\lambda n}}{n^{\lambda n} - z^n}
$$

and so if we choose k in (2.8) to be $|\frac{1}{2}|+1$ $p>\lfloor \frac{n}{2} \rfloor+1$, we find that in the range (2. so that $\lambda k > 2$, assuming that

The spherical derivative of integral and meromorphic functions

$$
\left|\sum_{n=1}^{p-1}\frac{(-1)^{n}z^{n}}{n^{\lambda n}-z^{n}}\right| \leq 1 + \left|\sum_{n=1}^{p-1}\frac{(-1)^{n}n^{\lambda n}}{n^{\lambda n}-z^{n}}\right|
$$

$$
\leq 1 + \sum_{n=1}^{k-1}\frac{1}{\left(\frac{|z|}{n}\right)^{\lambda n}-1} + \sum_{\nu=1}^{\infty}\frac{1}{\left(1+\frac{\nu-\frac{3}{4}}{k}\right)^{2}-1} = A(\lambda).
$$

From this and (2.7) we obtain

$$
\left|f(z) - \frac{(-1)^p z^p}{p^{\lambda p} - z^p}\right| \leq A(\lambda) \tag{2.9}
$$

in the range (2.6) for $p > \left[\frac{2}{\lambda}\right] + 1$. It is easy to see that consequently (2.9) holds in the range (2.6) for $p \geq 1$.

If $|z| = t$ and (2.6) is satisfied then using (2.9) we see, in the notation of NEVANLINNA Theory, that

$$
m(t, f) = \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |f(te^{i\theta})| d\theta
$$

\n
$$
\leq \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \left| \frac{t^{p}}{p^{\lambda p} - t^{p}e^{ip\theta}} \right| d\theta + A(\lambda)
$$

\n
$$
\leq \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \left| \frac{1}{\sin p\theta} \right| d\theta + A(\lambda)
$$

\n
$$
= A(\lambda).
$$

From this and (2.5) we deduce that

$$
T(r, f) = m(r, f) + N(r, f) \sim \frac{\lambda}{4} r^{2/\lambda}, (r \to \infty)
$$

so that $f(z)$ is of perfectly regular growth, order $\frac{2}{\lambda}$ and type $\frac{\lambda}{4}$.

It remains to be proved that $f(z)$ satisfies (2.1) with $\sigma = \frac{1}{\sigma}$ - $W_{\mathbf{a}}$ ha

$$
\mathbf{v}\mathbf{e}\mathbf{n}\mathbf{a}\mathbf{v}\mathbf{e}
$$

$$
f'(z) = \sum_{n=1}^{\infty} (-1)^n \frac{n^{\lambda n+1} z^{n-1}}{(n^{\lambda n} - z^n)^2}
$$

= $(-1)^p \frac{p^{\lambda p+1} z^{p-1}}{(p^{\lambda p} - z^p)^2} + f'_p(z), \text{ say,}$

where $f_{\mathbf{z}}(z)$ is defined by the series for $f(z)$ with the *pth* term omitted. Now, by the above, $f_n(z)$ is regular and bounded by $A(\lambda)$ in $(p-3/4)^{x} \leq |z| \leq (p+3/4)^{x}$

121

and each point in $(p-1/2)^{\lambda} \leq |z| \leq (p+1/2)^{\lambda}$ is the centre of a disc which $n^{\lambda-1}$ lies in the larger annulus with radius $\frac{r}{4\sqrt{N}}$. Hence, from CAUCHY's integral,

$$
|f'_{p}(z)| \leq A(\lambda)p^{1-\lambda} < A(\lambda)|z|^{1/\lambda-1},
$$

for

$$
(p-1/2)^{\lambda} \le |z| \le (p+1/2)^{\lambda} \qquad (p \ge 1).
$$
 (2.10)

Therefore in the range (2.10),

$$
|f'(z)| \leq \left| \frac{p^{\lambda p+1} z^{p-1}}{(p^{\lambda p} - z^p)^2} \right| + A(\lambda) |z|^{\frac{1}{\lambda} - 1}
$$

=
$$
\frac{p^{\lambda p+1}}{|z|^{p+1}} \left| \left(\frac{z^p}{p^{\lambda p} - z^p} \right)^2 \right| + A(\lambda) |z|^{\frac{1}{\lambda} - 1}
$$

$$
\leq A(\lambda) \frac{p^{\lambda p+1}}{|z|^{p+1}} (1 + |f(z)|^2) + A(\lambda) |z|^{\frac{1}{\lambda} - 1}
$$

by (2.9) . Consequently, in the range (2.10) ,

$$
\frac{|f'(z)|}{1+|f(z)|^2} \le A(\lambda) \frac{p}{|z|} + A(\lambda) |z|^{1/\lambda - 1} < A(\lambda) |z|^{1/\lambda - 1}.
$$

Since the ranges (2.10) cover all the plane apart from a disc, the proof of the theorem is complete.

3. Positive theorems for integral functions

The remainder of the paper will be devoted to obtaining improvements of Theorem B and to showing that these are best possible. We assume without loss of generality that $f(z)$ is an integral function. It will also be assumed that $f(z)$ is always transcendental. In this section we state our positive theorems.

Theorem 2. *If* $f(z)$ *is an integral function of proper order* σ $(0 \leq \sigma \leq \infty)$, then

$$
\limsup_{r\to\infty}\frac{r\mu(r,f)}{\log M(r,f)}\geq A_0(\sigma+1),\qquad \qquad (3.1)
$$

where A_0 is an absolute constant. In particular

$$
\limsup_{r \to \infty} \frac{r\mu(r, f)}{\log r} = \infty. \tag{3.2}
$$

Inequality (3.2) sharpens (1.5) which is equivalent to

$$
\limsup_{r\to\infty}r\mu(r,f)=\infty.
$$

Theorem 3. If $f(z)$ is an integral function satisfying (2.1) for all large r with $-1 < \sigma < \infty$, then for large r

$$
\log M(r, f) < \frac{A_1 K}{\sigma + 1} r^{\sigma+1}, \qquad (3.3)
$$

where $A_1 = 25e$ log 2.

It follows from (1.5) that the restriction $\sigma > -1$ is necessary in Theorem 3. The theorem shows that for integral functions (2. l) implies that

$$
T(r, f) = O(r^{\sigma+1}).
$$

This is significantly stronger than (2.3) which is the best possible result for meromorphic functions by Theorem 1. Note that if $f(z)$ is of perfectly regular growth then Theorem 3 is a consequence of Theorem 2.

As we shall see later, if $f(z)$ is an integral function such that the growth of $\log M(r, f)$ is properly of the order of $\log^2 r$ in the sense that

$$
0<\limsup_{r\,\to\,\infty}\,\frac{\log\,M(r,f)}{\log^2r}<\infty\,,
$$

then no improvement of (3.2) is possible. On the other hand our next theorems show that if $\log M(r, f) \neq O(\log^2 r)$ or $\log M(r, f) = o(\log^2 r)$ then we can improve (3.2), the improvement depending on how large or how small $\frac{\log M(r, f)}{\log^2 r}$ becomes respectively. However, there is no sharp difference in the behaviour of $\mu(r, f)$ as we pass from one of the above classes of functions to another. By this we mean that if $\varphi(r) \to \infty(r \to \infty)$, then there is an $f(z)$ from each of the above classes such that

$$
\limsup_{r\to\infty}\frac{r\,\mu(r,f)}{\varphi(r)\log r}<\infty.
$$

Before stating our next theorem we give an indication of how one arrives at an improvement of (3.2) if $\log M(r, f) \neq O(\log K r)$ for K suitably large. If

123

 $\mu(r, f) < K \frac{r \omega_0^2 r}{r}$ for large r then, from the inequality involving $T_0(r, f)$ and $\mu(r, f)$ in § 2, it follows that

$$
T_{\mathbf{0}}(r, f) = O(\log^6 r).
$$

Hence if $\log M(r, f) \neq O(\log^6 r)$ we see that (3.2) can be improved to

$$
\limsup_{r\to\infty}\frac{r\mu(r,f)}{\log^2r}=\infty.
$$

Our next result gives the improvement of (3.2) for functions $f(z)$ such that $\log M(r, f) \neq O(\log^2 r)$, but $\log M(r, f) = O(\log^6 r)$.

Theorem 4. *If* $f(z)$ *is an integral function and* $\varphi(r) \nearrow \infty$ *(r* $\nearrow \infty$ *) and*

$$
\limsup_{r\to\infty}\frac{\log M(r,f)}{\varphi(r)\log^{\alpha}r}>0,\ \log M(r,f)=O(\log^{\alpha+1}r),\qquad \qquad (3.4)
$$

where $2 \leq \alpha \leq \infty$ *, then*

$$
\limsup_{r\to\infty}\frac{r\mu(r,f)}{\varphi(r)\log^{\alpha-1}r}>0.
$$
\n(3.5)

When $\alpha = 2$ in (3.4) then (3.5) is the improved form of (3.2). For functions such that $\log M(r, f) \neq O(\log^3 r)$, $\log M(r, f) = O(\log^6 r)$ take $\varphi(r) = \{\log (r + 1)\}^{1/2}$ and choose α so that both conditions (3.4) are satisfied and $\alpha \geq 2.5$. The improved form of (3.2) is then

$$
\limsup_{r\to\infty}\frac{r\mu\left(r,f\right)}{(\log r)^{2}}>0.
$$

To deal with functions such that $\log M(r, f) = o(\log^2 r)$ we have the following result.

Theorem 5. *If* φ (r) is increasing and $f(z)$ is an integral function such that

$$
\log M(r, f) = O\left\{\frac{\log^2 r}{\varphi(r)}\right\} (r \to \infty) \tag{3.6}
$$

then

$$
\limsup_{r \to \infty} \frac{r\mu(r, f)}{\varphi(r) \log r} = \infty. \tag{3.7}
$$

4. Proots ol the positive theorems

4.1. We require a number of preliminary lemmas.

Lemma 1. Let $f(z) = a_0 + a_1(z - z_0) + \dots$ be regular in $|z - z_0| \le \delta$ *and satisfy* $|f(z)| \geq 1$ *there. Then*

$$
|a_1| \leq \frac{2|a_0| \log |a_0|}{\delta} , \qquad (4.1)
$$

and for $|z-z_0| \leq r < \delta$

$$
|a_0|^{\frac{\delta-r}{\delta+r}} \le |f(z)| \le a_0^{\frac{\delta+r}{\delta-r}}.\tag{4.2}
$$

II further $|f(z_1)| = 1$ *for some* z_1 *with* $|z_1 - z_0| = \delta$ *then for some* z *on the segment joining* z_0 to z_1

$$
\varrho(f(z)) \geq \frac{\log |a_0|}{10 \delta \log 2} \geq \frac{|a_1|}{20 |a_0| \log 2} \ . \tag{4.3}
$$

(4. l) and (4.2) are classical.

Suppose that

$$
|f(z_0+\delta e^{i\varphi})|=1 \quad (z_1=z_0+\delta e^{i\varphi}).
$$

If

$$
|f(z_0 + \varrho e^{i\varphi})| \leq 2 \quad (0 \leq \varrho \leq \delta) \tag{4.4}
$$

then $|a_0| \leq 2$ and

$$
|a_0| - 1 \leq |f(z_0 + \delta e^{i\varphi}) - f(z_0)| \leq \int_0^s |f'(z_0 + t e^{i\varphi})| dt
$$

$$
\leq \delta \max_{0 \leq t \leq \delta} |f'(z_0 + t e^{i\varphi})|.
$$

If $\zeta = z_0 + t_0 e^{i\varphi}$ is a point where the maximum on the right is attained then,

$$
|f'(\zeta)| \geq \frac{|a_0|-1}{\delta} \geq \frac{\log |a_0|}{\delta}
$$

and so

$$
\varrho(f(\zeta)) = \frac{|f'(\zeta)|}{1+|f(\zeta)|^2} \ge \frac{|f'(\zeta)|}{5} \ge \frac{\log |a_0|}{5 \delta}.
$$

Hence the first inequality of (4.3) is true in this ease.

If (4.4) is false let ϱ be the largest number with $0 \leq \varrho < \delta$ such that $|f(z_0 + \varrho e^{i\varphi})| = 2$. Take $\zeta = z_0 + t_1 e^{i\varphi}$ to be a point for which $|f'(z)|$ is greatest when $z = z_0 + t e^{i\varphi} (\varrho \le t \le \delta)$. Then $|f(\zeta)| \le 2$ and so

$$
\frac{|f'(\zeta)|}{1+|f(\zeta)|^2} \ge \frac{|f'(\zeta)|}{5}.
$$

126 J. CLUNIE and W. K. HAYMAN

Also
\n
$$
1 \leq |f(z_0 + \delta e^{i\varphi}) - f(z_0 + \varrho e^{i\varphi})| \leq \int_{\varrho}^{\delta} |f'(z_0 + t e^{i\varphi})| dt
$$
\n
$$
\leq (\delta - \varrho) |f'(\zeta)|.
$$

Further, by (4.2) and the fact that $|f(z_0 + \varrho e^{i\varphi})| = 2$, we have

$$
|a_0|^{\frac{\delta-\varrho}{\delta+\varrho}}\leq 2\,,
$$

and hence

$$
\delta-\varrho\leq \frac{(\delta+\varrho)\log 2}{\log|a_0|}\leq \frac{2\delta\log 2}{\log|a_0|}
$$

From the above it follows that

$$
\varrho(f(\zeta)) = \frac{|f'(\zeta)|}{1+|f(\zeta)|^2} \ge \frac{|f'(\zeta)|}{5} \ge \frac{1}{5(\delta-\varrho)} \ge \frac{\log |a_0|}{10 \delta \log 2}.
$$

This completes the proof of the first inequality of (4.3). The second follows immediately from (4.1).

Lemma 2. Suppose that $f(z)$ is an integral function such that for some $r_1 > 0$

$$
\min_{|z|=r_1} |f(z)| = 1, \tag{4.5}
$$

and that

$$
|f(z)| > 1 (r_1 < |z| < 3r_1). \tag{4.6}
$$

Then for some r satisfying $r_1 < r < 2r_1$ we have

$$
\mu(r, f) > \frac{e^{-4\pi} \log M(r, f)}{10 r \log 2} \,. \tag{4.7}
$$

In particular if the conditions are satisfied for arbitrarily large r_1 *then,*

$$
\limsup_{r \to \infty} \frac{r \mu(r, f)}{\log M(r, f)} \geq \frac{e^{-4\pi}}{10 \log 2} . \qquad (4.8)
$$

Let $r_0 = 2r_1$ and let $z_0 = r_0 e^{i\theta_0}$ be such that

$$
|f(z_0)|=M(r_0,f).
$$

There is a ϑ_1 with $|\vartheta_1 - \vartheta_0| \leq \pi$ such that

$$
|f(r_1e^{i\vartheta_1})|=1.
$$

For each ζ , with $|\zeta| = r_0$, $|f(z)| > 1$ for $|z - \zeta| < r_1 = \frac{r_0}{2}$ and so (4.1) gives **If(~)[4**

$$
\frac{|f'(\zeta)|}{|f(\zeta)| \log |f(\zeta)|} \leq \frac{4}{r_0}.
$$

Thus

$$
\left|\frac{\partial}{\partial \vartheta}\log\log\left|f(r_0\,e^{i\vartheta})\right|\right|\leq 4
$$

and so

$$
\log \frac{\log |f(r_0e^{i\theta_1})|}{\log |f(r_0e^{i\theta_0})|}\bigg| \leq 4\pi,
$$

from which it follows that

$$
\log |f(r_0e^{i\theta_1})| \geq e^{-4\pi} \log |f(r_0e^{i\theta_0})| = e^{-4\pi} \log M(r_0, f).
$$

In the closed disc $|z-r_0 e^{i\theta_0}| \leq \frac{r_0}{2}$ we have $|f(z)| \geq 1$ and, at the point $z_1 = r_1 e^{i\theta_1}$ on the boundary, $|f(z_1)| = 1$. Consequently, by (4.3) with $\delta = \frac{r_0}{2}$, there is a point ξ on the segment joining $r_0 e^{i\theta_1}$ to z_1 for which

$$
\varrho(f(\xi)) \, \geq \, \frac{\log |f(r_0 e^{i\theta_1})|}{5 r_0 \log 2} \, \geq \, \frac{e^{-4\pi} \log M(r_0, f)}{5 r_0 \log 2}
$$

If $|\xi| = r$, then $\frac{r_0}{2} \le r \le r_0$ and hence we deduce that

$$
\mu(r, f) \geq \frac{e^{-4\pi} \log M(r, f)}{10r \log 2}
$$

This proves Lemma 2.

The next lemma is required to cope with possible irregularities in the growth of $\log M(r, f)$.

Lemma 3. Suppose that $\varphi(r)(r_0 \leq r < \infty)$ is continuous, positive and strictly *increasing with a sectionally continuous locally bounded derivative* $\varphi'(r)$ *. [At points of discontinuity we define* $\varphi'(r)$ *as the limit from the left.] Suppose that for positive* α , β

$$
\limsup_{r\to\infty}\frac{\varphi(r)}{r^{\alpha}}>\beta.
$$
 (4.9)

Then given $\alpha'(0<\alpha'<\alpha)$ there exist arbitrarily large r for which the following are *satisfied :*

128 J. CLUNIE and W. K. HAYMAN

$$
\frac{\varphi(r)}{r^{\alpha}} \ge \beta e^{-5}; \tag{4.10}
$$

$$
\frac{\varphi'(r)}{\varphi(r)}\geq \frac{\alpha'}{r} \, ; \tag{4.11}
$$

$$
\varphi\left\{r+2\frac{\varphi(r)}{\varphi'(r)}\right\}
$$

We assume that $\varphi'(r)$ is never zero. This really involves no loss of generality. First of all we show that there are arbitrarily large values of r such that (4.11) and

$$
\frac{\varphi(r)}{r^{\alpha}} \geq \beta \tag{4.10'}
$$

are satisfied. Now $\frac{\varphi(r)}{r^{\alpha'}}$ is unbounded as $r \to \infty$ and so for arbitrarily large r it must be locally nondecreasing. For such r ,

$$
\frac{d}{dr}\left\{\frac{\varphi(r)}{r^{\alpha'}}\right\} = \frac{\varphi(r)}{r^{\alpha'}}\left\{\frac{\varphi'(r)}{\varphi(r)} - \frac{\alpha'}{r}\right\} \geq 0
$$

and so (4.11) is satisfied. If for all large $r, \varphi(r) \geq \beta r^{\alpha}$ then we obtain the desired result. Otherwise there are arbitrarily large values of r such that $\varphi(r) < \beta r^{\alpha}$. From (4.9) there is a smallest $R > r$ such that $\varphi(R) = \beta R^{\alpha}$. But then $\frac{\varphi(r)}{r^{\alpha}}$ r^{α} is nondecreasing at R and so $\frac{\sqrt{N}}{2N} \geq \frac{1}{R}$, as in the previous argument, and $\frac{\varphi(R)}{R\alpha} = \beta$. Hence the result.

Now set $h = h(r) = 2 \frac{\varphi(r)}{\varphi'(r)}$ and note that

$$
\log \varphi(r+h) - \log \varphi(r) = \int_{r}^{r+h} \frac{\varphi'(t)}{\varphi(t)} dt \leq h \max_{r \leq t \leq r+h} \frac{\varphi'(t)}{\varphi(t)}.
$$

Consequently if (4.12) is false for $r = r_0$ there is an r_1 such that $r_0 < r_1 \le r_0 + h(r_0)$ and

$$
\frac{\varphi'(r_1)}{\varphi(r_1)} \ge \frac{4}{h(r_0)} = 2 \frac{\varphi'(r_0)}{\varphi(r_0)}.
$$

Suppose that r_0, r_1, \ldots, r_n have been defined in this way so that (4.12) is false for $r=r_v(0\leq v\leq n)$ and

The spherical derivative of integral and meromorphic functions

$$
r_{\nu} < r_{\nu+1} \le r_{\nu} + 2 \frac{\varphi(r_{\nu})}{\varphi'(r_{\nu})} \ (0 \le \nu \le n-1),
$$
\n
$$
\frac{\varphi'(r_{\nu+1})}{\varphi(r_{\nu+1})} \ge 2 \frac{\varphi'(r_{\nu})}{\varphi(r_{\nu})} \ (0 \le \nu \le n-1).
$$

Then we can define r_{n+1} so that

$$
\frac{\varphi'(r_{n+1})}{\varphi(r_{n+1})} \geq 2 \frac{\varphi'(r_n)}{\varphi(r_n)}, \ \ r_n < r_{n+1} \leq r_n + 2 \frac{\varphi(r_n)}{\varphi'(r_n)}.
$$

If this process continued indefinitely then we should have

$$
\frac{\varphi'(r_n)}{\varphi(r_n)}\to\infty \quad (r\to\infty)
$$

and

$$
\sum_{n=0}^{\infty} (r_{n+1} - r_n) \leq 2 \sum_{n=0}^{\infty} \frac{\varphi(r_n)}{\varphi'(r_n)}
$$

$$
\leq 2 \frac{\varphi(r_0)}{\varphi'(r_0)} \sum_{0}^{\infty} 2^{-n}
$$

$$
= 4 \frac{\varphi(r_0)}{\varphi'(r_0)}.
$$

Thus r_n would tend to a finite limit and so $\frac{\varphi'(r_n)}{\varphi(r_n)} \to \infty$. This contradiction shows that the construction of the r_n must terminate after a finite number of steps.

Take now as r_0 a value such that $(4.10)'$ and (4.11) are satisfied for $r = r_0$. If (4.12) is not satisfied for $r = r_0$ then there is a sequence r_0, r_1, \ldots, r_N as above such that it is not satisfied for $r = r_n (0 \le n \le N - 1)$ but it is satisfied for $r = r_N$. Then for $0 \le n \le N$,

$$
\frac{\varphi'(r_{n+1})}{\varphi(r_{n+1})} \geq 2 \frac{\varphi'(r_n)}{\varphi(r_n)} \geq 2^{n+1} \frac{\varphi'(r_0)}{\varphi(r_0)}
$$

and so

$$
r_N - r_0 = \sum_{0}^{N-1} (r_{n+1} - r_n) \leq 2 \frac{\varphi(r_0)}{\varphi'(r_0)} \sum_{n=0}^{N-1} \frac{1}{2^n}
$$

< 4 $\frac{\varphi(r_0)}{\varphi'(r_0)}$
< 4 $\frac{r_0}{\alpha'}$

9 CMH vol. 40

129

130 J. CLUNITE and W. K. HAYWAN

by (4.11). Hence if α' is near enough to α ,

$$
r_N < r_0 \left(1 + \frac{4}{\alpha'}\right) \leq r_0 \left(1 + 5/\alpha\right).
$$

Since $(4.10)'$ holds for $r = r_0$,

$$
\varphi(r_N) \geq \varphi(r_0) \geq \beta r_0^{\alpha} \geq \beta r_N^{\alpha} (1 + 5/\alpha)^{-\alpha} > \beta e^{-5} r_N^{\alpha}.
$$

Also

$$
\frac{\varphi'(r_N)}{\varphi(r_N)} \geq \frac{\varphi'(r_0)}{\varphi(r_0)} \geq \frac{\alpha'}{r_0} \geq \frac{\alpha'}{r_N}.
$$

Hence the proof of Lemma 3 is complete.

4.2. Proofs of Theorems 2 and 3 for $\sigma \ge 6$ **.**

Suppose now that $f(z)$ is an integral function of order $\sigma \geq 6$. We apply Lemma 3 with $\sigma > \alpha' > 5$ to $\varphi(r) = \log M(r, f)$ so that for some arbitrarily large r , (4.10), (4.11) and (4.12) hold simultaneously. For such an r there is a point $z_0 = re^{i\theta}$ so that [see e.g. 3, Lemma 2, p. 136.]

$$
|f(z_0)| = M(r, f),
$$

$$
\left| \frac{f'(z_0)}{f(z_0)} \right| = \varphi'(r).
$$

It now follows from Lemma 1 that if $\delta = \delta(r)$ is the radius of the largest disc with centre z_0 in which $|f(z)| > 1$ then, by (4.1),

$$
\delta(r) \leq 2 \, \frac{|f(z_0)| \, \log |f(z_0)|}{|f'(z_0)|} = 2 \, \frac{\varphi(r)}{\varphi'(r)} \leq \frac{2 \, r}{\alpha'} < \frac{2}{5} \, r \, .
$$

By (4.3) there is a point z with $|z - z_0| < \delta(r)$ and

$$
\varrho(f(z)) \ge \frac{\log |f(z_0)|}{10 \delta(r) \log 2}
$$

=
$$
\frac{\varphi(r)}{10 \delta(r) \log 2}
$$

$$
\ge \frac{\alpha' \varphi(r)}{20 r \log 2} .
$$
 (4.13)

If $|z| = R$, then $R < r + \delta(r)$ and so, by (4.12),

$$
\varphi(R) \leq \varphi(r + \delta(r)) \leq \varphi\left(r + 2 \frac{\varphi(r)}{\varphi'(r)}\right) \leq e^4 \varphi(r).
$$

Hence, since also $R > r - \delta(r) > 3/5 r$,

$$
\mu(R, f) \ge \varrho(f(z)) \ge \frac{\alpha' e^{-4} \varphi(R)}{20 (2R) \log 2}
$$

$$
= \frac{\alpha' e^{-4} \log M(R, f)}{40 R \log 2}.
$$

From $R > \frac{3}{5}r$ it follows that as $r \to \infty$ then $R \to \infty$ and so we arrive at

$$
\limsup_{R\to\infty}\frac{R\,\mu(R,f)}{\log M(R,f)}\geq \frac{\sigma e^{-4}}{40\log 2}\;,
$$

since α' can be taken as near to σ as we please. This proves (3.1) and so Theorem 2.

We next prove Theorem 3 for $\sigma \geq 5$. Suppose in fact that (3.3) is false for some arbitrarily large r where A_1 is some positive constant. We may apply Lemma 3 as before with $\alpha = \sigma + 1$, $\alpha' = \sigma$ and any quantity β such that

$$
0<\beta<\frac{A_1K}{\sigma+1}.
$$
\n(4.14)

Then (4.13) yields for some z with $|z| = R$

$$
\varrho(f(z)) \geq \frac{\sigma \varphi(r)}{20r \log 2} \geq \frac{\sigma \beta e^{-5r^{\sigma}}}{20 \log 2} \ . \tag{4.15}
$$

Also

$$
|z| = R < r + \delta(r) \leq r + 2 \frac{\varphi(r)}{\varphi'(r)} \leq r \left(1 + \frac{2}{\sigma}\right)
$$

by (4. ll). Therefore

$$
R^{\sigma} \leq r^{\sigma} \left(1 + \frac{2}{\sigma}\right)^{\sigma} \leq e^2 r^{\sigma}.
$$

Then (4.15) shows that

$$
\mu(R, f) \geq \frac{\sigma \beta e^{-7}}{20 \log 2} R^{\sigma}
$$

for arbitrarily large values of R . From (4.14) we see that

$$
\frac{\sigma A_1 K}{\sigma+1}\ \frac{e^{-7}}{20\log 2}\le K,
$$

and so

$$
A_1 \leq \frac{\sigma+1}{\sigma} \; 20 \, e^7 \log \, 2 < 25 \, e^7 \log \, 2 \, .
$$

Consequently it is only for such A_1 that the result of the theorem is false. Hence it must be true with $A_1 = 25 e^7 \log 2$. This proves (3.3) for $\sigma \ge 5$.

4.3. Completion of proof of Theorem 3

Suppose that the hypotheses of Theorem 3 hold with $-1 < \sigma < 5$. Let n be a positive integer such that

$$
n(\sigma+1)\geq 6 \qquad (4.16)
$$

and consider $F(z) = f(z^n)$. Then for all large r we have

$$
\varrho\left(F(z)\right) = \frac{|F'(z)|}{1+|F(z)|^2} = \frac{n r^{n-1} |f'(z^n)|}{1+|f(z^n)|^2} < K n r^{n-1} r^{n\sigma} \quad (|z| = r)
$$

by (2.1). Hence $F(z)$ satisfies (2.1) with Kn in place of K and $n(\sigma + 1) - 1$ in place of σ . In view of (4.16) we can apply the previous result to $F(z)$ and obtain

$$
\log M(r, F) \leq \frac{A_1 K n r^{n(\sigma+1)}}{n(\sigma+1)} = \frac{A_1 K}{\sigma+1} r^{n(\sigma+1)}.
$$

As $M(r, F) = M(r^n, f)$ this completes the proof of Theorem 3.

4.4. Completion of proof of Theorem 2

We assume that $f(z)$ is of order $\sigma < 6$ and consider $F(z) = f(z^{12})$. Since, as above,

$$
\varrho(F(z)) = 12 |z|^{11} \varrho(f(z^{11}))
$$

and $F(z)$ is of order 12σ it follows that if (3.1) holds for $F(z)$ then

$$
\limsup_{r\to\infty}\frac{r\mu(r,f)}{\log M(r,f)}\geq\frac{1}{12}A_0(12\sigma+1)
$$

and this is the result for $f(z)$ if A_0 is adjusted. Consequently it is sufficient for $\sigma < 6$ to prove the theorem for $F(z)$.

Now for some constant A_2 we have

$$
\log M(4r, F) \le A_2 \log M(r, F) \tag{4.17}
$$

for arbitrarily large values of r . Otherwise for some r_0 we find that

$$
\log M (4^n r_0, F) \geq A_2^n \log M (r_0, F) \quad (n \geq 1)
$$

so that the order of $F(z)$ is at least $\frac{\log A_2}{\log 4}$. This is impossible if $A_2 \ge 4^{72}$ as $F(z)$ is of order less than 72.

We consider arbitrarily large r for which (4.17) is true. If for an infinite sequence of such r, $|f(z)| \geq 1$ ($r \leq |z| \leq 3r$) then the result follows from Lemma 2. Hence we assume always that for some R in $r \leq R \leq 3r$ there is a z on $|z| = R$ where $|f(z)| < 1$. From the periodic nature of $F(z)$ we see that there is a disc $S(R)$ centred on ζ where $|\zeta| = R$, $|F(\zeta)| = M(R, F)$ such that $|F(z)| \geq 1$ in $S(R)$, $|F(z)| = 1$ at some boundary point and the radius of $S(R)$ does not exceed $\frac{\pi R}{12}$. By Lemma 1 it follows that

$$
\mu(t, F) \geq \frac{12 \log M(R, F)}{10 \pi R \log 2}
$$

for some t satisfying $R = \frac{\pi R}{12} < t < R + \frac{\pi R}{12}$, so that $\frac{2}{3} R < t < \frac{4}{3} R$. If $t \leq R$ then we get

$$
\mu(t, R) \ge \frac{12 \log M(t, F)}{10 \pi \cdot \frac{3}{2} t \log 2}
$$

$$
= \frac{4 \log M(t, F)}{5 \pi t \log 2}.
$$

If $t > R$ then, since $R \leq 3r$, $t < 4r$ and so, using (4.17) we have

$$
\mu(t, F) \geq \frac{12 \log M(t, F)}{A_2 10 \pi t \log 2}
$$

$$
= \frac{6 \log M(t, F)}{5 A_2 \pi t \log 2}.
$$

As $t > \frac{2}{3}R \geq \frac{2}{3}r$ it follows that one of the above inequalities must hold for arbitrarily large t . Hence the proof of Theorem 2 is complete.

4.5. Proof of Theorem 4

For any function $f(z)$ of order less than 1 with $f(0) \neq 0$ we have the well known inequalities [see e.g. 4, p. 28]

$$
\int_{0}^{r} \frac{n(t)}{t} dt \leq \log \left(\frac{M(r, f)}{|f(0)|} \right) \leq \int_{0}^{r} \frac{n(t)}{t} dt + r \int_{r}^{\infty} \frac{n(t)}{t^{2}} dt , \qquad (4.18)
$$

where $n(t)$ is the number of zeros of $f(z)$ in $|z| \leq t$. The restriction $f(0) \neq 0$

clearly involves no loss of generality. From the second condition of (3.4) and the left hand inequality of (4.18) it follows that

$$
n(r) = O(\log^{\alpha} r). \tag{4.19}
$$

From (4.19) we find that

$$
r \int\limits_{\tau}^{\infty} \frac{n(t)}{t^2} \, dt = O(\log^{\alpha} r). \tag{4.20}
$$

Hence for r such that $\log M(r, f) > \eta \varphi(r) \log^{\alpha} r$, where η is some positive constant implied in the first condition of (3.4), we obtain, from (4.18) and **(4.20),**

$$
\log M(r, f) = \{1 + o(1)\} \int_{0}^{r} \frac{n(t)}{t} dt. \tag{4.21}
$$

Assume now that we are dealing with values r of the above kind. By a known result we have for some R in $\left(\frac{r}{4},\frac{r}{2}\right)$, $\log |f(z)| > H \log M(R, f)$ ($|z| = H$ where, here and elsewhere, H depends only on $f(z)$ [5, pp. 64-65]. For sufficiently large r let R' be the smallest number such that $|f(z)| > 1 (R' < |z| < R)$. We deal with two cases: a) $R' > \frac{r}{12}$; b) $R' \leq \frac{r}{12}$ for arbitrarily large values of R' . It is clear that in fact R' does take arbitrarily large values.

Case a). If $|f(\zeta)| = 1(\zeta = R'e^{i\varphi})$ we consider the largest disc D centred on $Re^{i\varphi}$ in which $|f(z)| > 1$. The radius of D is at most $\frac{r}{2} - \frac{r}{12} = \frac{5}{12}r$ and so D lies in $|z| < \frac{r}{2} + \frac{5}{12}r < r$. By Lemma 1, (4.3), for some t in $\frac{r}{12} < t < r$ we have

$$
\mu(t,f) > \frac{H \log M(R,f)}{r}.
$$

From (4.18) , (4.19) and (4.21) it follows that

$$
\log M\left(\frac{r}{12},f\right) > H \log M(r,f) - \int_{r^{1/12}}^{r} \frac{n(t)}{t} dr + O(\log^{\alpha}r)
$$

> H log M(r,f) + O(log^{\alpha}r)
= H(1+o(1)) log M(r,f).

Hence we see that

$$
\mu(t, f) > H \frac{\varphi(r) \log^{\alpha} r}{r}
$$

$$
> H \frac{\varphi(t) \log^{\alpha} t}{t},
$$

for arbitrarily large values of t . This proves the theorem in this case.

Case b). In this case $|f(z)| > 1(R' < |z| < 3R')$ and $|f(\zeta)| = 1(\zeta = R'e^{i\varphi})$. We see from the proof of Lemma 2 that

$$
\mu(t, f) > H \frac{\log M(2R', f)}{R'} \tag{4.22}
$$

for some t satisfying $R' < t < 2R'$. Now from (4.19) and (4.21)

$$
n\left(\frac{r}{4}\right)\log r > H\int\limits_{0}^{\frac{r}{4}}\frac{n(t)}{t}\,dt = H\left(\int\limits_{0}^{\frac{r}{4}}\frac{n(t)}{t}\,dt - \int\limits_{r/4}^{\frac{r}{4}}\frac{n(t)}{t}\,dt\right) > H\varphi(r)\log^{\alpha}r - H\log^{\alpha}r
$$

and so

$$
n\left(\frac{r}{4}\right) > H\varphi\left(r\right)\log^{\alpha-1}r.
$$

But $\left(R', \frac{r}{4}\right)$ is free from zeros and so

$$
n(R') > H\varphi(r) \log^{\alpha-1} r.
$$

Hence, by (4.18),

$$
\frac{\log M(2R',f)}{|f(0)|} \geq \int\limits_{R'}^{2R'} \frac{n(t)}{t} dt = n(R') \log 2
$$

> $H \varphi(r) \log^{\alpha-1} r$.

Therefore we find that in (4.22),

$$
\mu(t,f) > \frac{H\varphi(t)\log^{\alpha-1}t}{t}
$$

Since this holds for arbitrarily large values of t the theorem is proved in this case.

4.6. Proof of Theorem 5

From the left hand inequality of (4.18) we get

$$
n(r) \log r \leq \int_{r}^{r^2} \frac{n(t)}{t} dt \leq \log M(r^2, f)
$$

= $O\left\{\frac{\log^2 r}{\varphi(r^2)}\right\}$

135

and so, since $\varphi(r)$ is increasing,

$$
n(r) = O\left(\frac{\log r}{\varphi(r)}\right). \tag{4.23}
$$

Using (4.23) we obtain

$$
r \int\limits_{r}^{\infty} \frac{n(t)}{t^2} dt = O\left\{\frac{1}{\varphi(r)} \cdot r \int\limits_{r}^{\infty} \frac{\log t}{t^2} dt\right\}
$$

$$
= O\left\{\frac{\log r}{\varphi(r)}\right\}.
$$
(4.24)

Hence if we put $\beta(r) = \eta \left[\frac{\log r}{\pi(r) \log M(r)}\right]$, where $\eta > 0$ and depends on $f(z)$, then, by a known result [5, pp. 64–65], in $r(1 - \beta(r)) < |z| < r(1 + \beta(r))$

$$
\log |f(z)| > H \log M(|z|, f)
$$

outside a set of circles the sum of whose radii is at most $H r \beta^2(r)$.

Consider now values of r such that $f(z)$ has a zero on $|z| = r$. Let $z_0 = re^{i\theta_0}$ be such a zero. Then from the above, if r is large enough, for some R satisfying $r - H r \beta^{2}(r) < R < r$ we have

$$
\log |f(Re^{i\theta_0})| > H \log M(R, f).
$$

Let D be the disc with centre $Re^{i\theta_0}$ in which $|f(z)| > 1$, assuming r is sufficiently large, with $|f(z)| = 1$ somewhere on the boundary. Then, by Lemma 1 and the above for some z in this disc

$$
\varrho\left(f(z)\right) > \frac{H \log M(R, f)}{r \beta^2(r)} \ . \tag{4.25}
$$

Now as $\beta(r) \to 0$ as $r \to \infty$ it follows that for large $r, \frac{r}{2} < R < r$ and so

$$
\log M(R, f) = \{1 + o(1)\} \int_{0}^{R} \frac{n(t)}{t} dt
$$

> $\{1 + o(1)\} \left\{ \log M(r, f) - \int_{R}^{r} \frac{n(t)}{t} dt \right\}$
= $\{1 + o(1)\} \left\{ \log M(r, f) + O(\log r) \right\}$
= $\{1 + o(1)\} \log M(r, f),$

where we have used (4.23) , (4.24) , (4.18) and the obvious result that $\log r = o(\log M(r, f))$. Hence, from (4.25),

$$
\varrho(f(z)) > \frac{H \log M(r, f)}{r \beta^{2}(r)}
$$

=
$$
\frac{H \varphi(r) \log r}{\eta^{2} r} \left\{ \frac{\log M(r, f)}{\log r} \right\}^{2}.
$$

Now in (4.25), $\frac{r}{2} < |z| < r$ for large r and so if $|z| = t$ then for large r we find that

$$
\mu(t, f) > H \frac{\varphi(t) \log t}{\eta^2 t} \left(\frac{\log M(r, f)}{\log r} \right)^2
$$

since $\varphi(t)$ is increasing. As the final factor above tends to ∞ with r and the inequality holds for some arbitrarily large t this proves Theorem 5.

5. Counter examples

The first theorem shows that (3.2) is best possible and that the properties of $f(z)$ referred to in §3 preceding Theorem 4 do in fact hold.

Theorem 6. Given $\varphi(r) \nearrow \infty$ ($r \nearrow \infty$) there is a sequence of increasing integers k_n such that if

$$
f(z) = \prod_{1}^{\infty} \left(1 - \frac{z}{2^{kn}}\right)^{kn}, \ f_1(z) = \prod_{1}^{\infty} \left(1 - \frac{z}{2^{nkn}}\right)^{kn},
$$

$$
f_2(z) = \prod_{1}^{\infty} \left(1 - \frac{z}{2^{kn/n}}\right)^{kn}
$$

then for $g(z) = f(z)$, $f_1(z)$ *or* $f_2(z)$

 \sim \sim \sim

 \overline{a}

$$
\limsup_{r\to\infty}\frac{r\mu(r,g)}{\varphi(r)\log r}<\infty.
$$

The sequence ${k_n}$ will be seen later to satisfy $\frac{k_{n+1}}{k_n} \geq 4$ and in this case it is easy to verify that

$$
0<\limsup_{r\to\infty}\frac{\log M(r,f)}{\log^2r}<\infty,\log M(r,f_1)=o(\log^2r),\log M(r,f_2)\neq O(\log^2r).
$$

The next theorem shows that Theorem 2 is best possible

Theorem 7. *Given* $\sigma(0 \leq \sigma < \infty)$ *there is an integral function of proper order* σ and very regular growth when $\sigma > 0$ such that

$$
\limsup_{r\to\infty}\frac{r\mu(r,f)}{\log M(r,f)} < C(\sigma+1)
$$

/or some absolute constant C.

5.1. Proof of Theorem 6

The proof of the theorem requires a number of lemmas. We assume that besides any other conditions that the integers k_n will be required to satisfy, that they will always satisfy

$$
\frac{k_{n+1}}{k_n} \ge 4 (n > 1), k_1 \ge 2.
$$
 (5.1)

We confine our attention to $f(z)$. The proofs for $f_1(z)$ and $f_2(z)$ are similar.

Lemma 4. $On |z| = 2^{kn+1}$ and $on |z| = 2^{kn-1}$,

$$
|f(z)| > H|z|.
$$

On $|z| = 2^{k_{n+1}}$ we have

$$
|f(z)| \geq \prod_{m=1}^n \left(\frac{2^{kn+1}}{2^{km}} - 1 \right)^{km} \cdot \prod_{m=n+1}^\infty \left(1 - \frac{2^{kn+1}}{2^{km}} \right)^{km}.
$$

From (5.1) each factor in the first product is at least 1 and so

$$
\prod_{m=1}^{n} \left(\frac{2^{k_n+1}}{2^{k_m}} - 1 \right)^{k_m} \ge \left(\frac{2^{k_n+1}}{2^{k_1}} - 1 \right)^{k_1} \\
> H \cdot 2^{k_n+1} = H|z| \ . \tag{5.2}
$$

Also, from (5.1),

$$
\prod_{m=n+1}^{\infty} \left(1 - \frac{2^{k_n+1}}{2^{k_m}}\right)^{k_m} > \prod_{m=n+1}^{\infty} \left(1 - 2^{-\frac{k_m}{2}}\right)^{k_m} \\
 > H. \tag{5.3}
$$

From (5.2) and (5.3) the lemma follows for $|z| = 2^{k_n+1}$.

In dealing with $|z| = 2^{kn-1}$ we assume for convenience that $n > 1$. This clearly involves no loss of generality. On $|z| = 2^{k_n-1}$ we have

$$
|f(z)| \geq \prod_{m=1}^{n-1} \left(\frac{2^{k_n}}{2^{k_{m+1}}} - 1 \right)^{k_m} \cdot 2^{-k_n} \prod_{m=m+1}^{\infty} \left(1 - \frac{2^{k_n}}{2^{k_{m+1}}} \right)^{k_m}.
$$

By (5.1) each factor in the first product is at least 1 and so

$$
\prod_{m=1}^{n-1} \left(\frac{2^{k_n}}{2^{k_{m+1}}} - 1 \right)^{k_m} > \left(\frac{2^{k_n}}{2^{k_1+1}} - 1 \right)^{k_1} \\
 > H \cdot 2^{2k_n-1} \tag{5.4}
$$

since $k_1 \geq 2$. As before

$$
\prod_{n=m+1}^{\infty} \left(1 - \frac{2^{k_n}}{2^{k_m+1}}\right)^{k_m} > H. \tag{5.5}
$$

Hence on $|z| = 2^{k_n-1}$, by (5.4) and (5.5),

$$
|f(z)| > H \cdot 2^{2kn-1} \cdot 2^{-kn}
$$

= $H 2^{kn-1} = H |z|$.

Hence the lemma follows for $|z| = 2^{k_n-1}$.

We see from Lemma 4 that when z is large the regions in which $|f(z)| < 1$ are disjoint, with one in each annulus $2^{kn-1} < |z| < 2^{kn+1}$. Denote these by D_n . Clearly D_n contains the zero at $z = 2^{kn}$.

Lemma 5. If the k_n increase sufficiently rapidly then on the boundary of D_n *when n is large*

$$
H 2^{k_{n}-k_{1}-k_{2}-...k_{n-1}} < |z - 2^{k_{n}}| < H 2^{k_{n}-k_{1}-...k_{n-1}}
$$

We have

$$
|f(z)| = \frac{n-1}{M} \left| 1 - \frac{z}{2^{km}} \right|^{km} \left(\frac{|z-2^{kn}|}{2^{kn}} \right)^{kn} \cdot \prod_{m=n+1}^{\infty} \left| 1 - \frac{z}{2^{km}} \right|^{km}.
$$

Now on the boundary of D_n

$$
\prod_{m=1}^{n-1} \left| 1 - \frac{z}{2^{km}} \right|^{km} = \frac{|z|^{k_1} + \dots + k_{n-1}}{2^{k_1 + k_2 + \dots + k_{n-1}^2}} \prod_{m=1}^{n-1} \left| 1 - \frac{2^{km}}{z} \right|^{km}.
$$
 (5.6)

When *n* is large then $2^{k_n-1} < |z| < 2^{k_n+1}$ by Lemma 4 and so, if the k_n increase sufficiently rapidly to ensure that the final product in (5.6) lies between $\frac{1}{1}$ and H, we obtain on the boundary of D_n ,

$$
H\cdot \frac{2^{(k_{n}-1)(k_{1}+\ldots+k_{n-1})}}{2^{k_{1}+ \ldots+k_{n-1}+k_{n-1}+1}}<\frac{n-1}{M}\bigg|1-\frac{z}{2^{k_{m}}}\bigg|^{k_{m}}
$$

139

Again, from Lemma 4, it follows that on boundary of D_n when n is large,

$$
H<\prod_{n=m+1}^{\infty}\left|1-\frac{z}{2^{km}}\right|^{km}\n(5.8)
$$

From (5.6), (5.7) and (5.8) we find that on the boundary of D_n when n is large

$$
H \cdot 2^{k_n} \left\{ \frac{2^{\frac{1}{k_n}(k_1^2 + \ldots + k_{n-1}^2)}}{2^{\left(1 + \frac{1}{k_n}\right)(k_1 + \ldots + k_{n-1})}} \right\} < |z - 2^{k_n}| < H 2^{k_n} \left\{ \frac{2^{\frac{1}{k_n}(k_1^2 + \ldots + k_{n-1}^2)}}{2^{\left(1 - \frac{1}{k_n}\right)(k_1 + \ldots + k_{n-1})}} \right\} \; .
$$

From these inequalities the lemma follows provided the k_n increase sufficiently rapidly to ensure that

$$
k_1^2 + \ldots + k_{n-1}^2 = O(k_n) \quad (n \to \infty).
$$
 (5.9)

Lemma 6. For large n we have in $2^{k_n-1} \leq |z| \leq 2^{k_n+1}$, *but outside* D_n , *provided that k. increases quickly enough,*

$$
\left|\frac{f'(z)}{f(z)}\right|
$$

We have

$$
\frac{f'(z)}{f(z)}=\sum_{m=1}^{\infty}\frac{k_m}{z-2^{k_m}}.
$$

If the k_n increase sufficiently rapidly then, for $2^{k_n-1} \leq |z| \leq 2^{k_n+1}$

$$
\sum_{m=1}^{n-1} \frac{k_m}{z - 2^{km}} \leq \sum_{m=1}^{n-1} \frac{k_m}{2^{kn-1} - 2^{km}}
$$

< $\leq \frac{2}{2^{kn-1}} \sum_{m=1}^{n-1} k_m$
< $\leq H \frac{k_n}{2^{kn}}$ (5.10)

Also,

$$
\sum_{m=n+1}^{\infty} \frac{k_m}{|z - 2^{km}|} \leq \sum_{m=n+1}^{\infty} \frac{k_m}{2^{km} - 2^{km}}
$$

$$
< H \sum_{m=n+1}^{\infty} \frac{k_m}{2^{km}}
$$

$$
< \frac{H}{2^{kn}} \sum_{m=n+1}^{\infty} \frac{k_m}{2^{\frac{km}{2}}}
$$

$$
< \frac{H}{2^{kn}}.
$$
 (5.11)

From Lemma 5 it follows that if the k_n increase rapidly enough then

$$
\frac{k_n}{|z-2^{k_n}|} < H \frac{k_n 2^{k_1+\ldots+k_{n-1}}}{2^{k_n}} \ . \tag{5.12}
$$

From (5.10) , (5.11) and (5.12) the lemma follows.

Lemma 7. *If the k_n increase sufficiently rapidly then for* $2^{kn+1} \leq |z| \leq 2^{kn+1-1}$ *we have*

$$
\varrho(f(z)) = O\left(\frac{1}{|z|}\right).
$$

If the k_n increase quickly enough then on $|z| = 2^{k_n+1}$ we obtain

$$
\frac{|f'|}{|f|^2} < H \frac{k_n 2^{k_1 + \ldots + k_{n-1}}}{|z|^2} < \frac{H}{|z|}
$$

by Lemmas 4 and 6. The same inequality is also true for $|z| = 2^{kn+1-1}$. Now $\left| \frac{zf'(z)}{f^2(z)} \right|$ is subharmonic in $2^{kn+1} \leq |z| \leq 2^{kn+1-1}$ and since it is bounded by H on the boundary it is bounded by H inside the annulus. Therefore in $2^{k_{n+1}} \leq |z| \leq 2^{k_{n+1}-1},$

$$
\varrho(f(z))<\frac{|f'(z)|}{|f^2(z)|}=O\left(\frac{1}{|z|}\right).
$$

Lemma 8. *In* $2^{k_n-1} \leq |z| \leq 2^{k_n+1}$ *we have*

$$
\varrho(f(z))\leq H\frac{k_n2^{k_1+\ldots+k_{n-1}}}{|z|}
$$

provided the k, increase quickly enough.

In $2^{kn-1} \leq |z| \leq 2^{kn+1}$ but outside D_n it follows, if the k_n increase quickly enough, that

$$
\left|\frac{zf'(z)}{f^2(z)}\right| < H k_n 2^{k_1+\ldots+k_{n-1}} \tag{5.13}
$$

by Lemmas 4 and 6 and the use of subharmonicity as before. Hence the lemma is true in this region.

On the boundary of D_n we get

$$
|zf'(z)| < H k_n 2^{k_1 + \ldots + k_{n-1}} \tag{5.14}
$$

and so, by the maximum modulus principle, this also holds inside D_n . From (5.13) and (5.14) the lemma follows.

Given $\varphi(r)$ as in the theorem choose an increasing sequence of integers k_n so that the above results hold and also

$$
2^{k_1+\ldots+k_{n-1}} < \varphi(2^{k_n-1}).
$$

Then from Lemmas 7 and 8 we see that

$$
\limsup_{r\to\infty}\frac{r\,\mu(r,f)}{\varphi(r)\log r}<\infty\,,
$$

since $\varphi(r)$ is increasing.

This completes the proof of the theorem. In should perhaps be pointed out that given $\varphi(r)$ where $\varphi(r) \to \infty$ ($r \to \infty$) it is not difficult to find a $\psi(r)$ such that $\psi(r) \to \infty$ ($r \to \infty$), $\varphi(r) \geq \psi(r)$ and $\psi(r)$ is increasing. Consequently $\varphi(r)$ was assumed to be increasing in the theorem only for convenience.

5.2. Proof of Theorem 7

A number of lemmas are required.

Lemma 9. If $A > 1$ and $f(z) = \prod_{r=1}^{\infty} \left(1 + \frac{z}{z-2r^2}\right)^{[A^n]}$ then $f(z)$ is a function of *very regular growth and order* $\frac{16 \text{ g} \cdot \text{A}}{A}$. For $e^{nA} \leq |z| \leq e^{(n+1)A}$ we have

$$
\log M(r, f) \ge \log |f(e^{nA})|
$$

$$
\ge (A^n - 1) \log 2.
$$
 (5.15)

Also, in this range,

 $\log M(r, f) \leq \log M(e^{(n+1)A}, f)$ $\leq \sum_{k=1}^{n+1} A^m \log \{1 + e^{(n+1-m)A}\} + \sum_{k=1}^{\infty} A^m \log \{1 + e^{(n+1-m)A}\}$ $m=1$ $m=n+2$ $\leq \sum_{m=1}^{n+1} A^m \{\log 2 + (n+1-m)A\} + \sum_{m=n+2}^{\infty} A^m e^{-(m-n-1)A}$ $A^{n+2} \log 2$ + $An+1 \sum_{r=1}^{n} 1 + An+1 \sum_{r=1}^{n} 1$ $A-1$ \cdots \cdots A^{ν} $\langle K(A)A^n\rangle$ **(5.16)**

From (5.15) and (5.16) it follows that for $e^{nA} \leq |z| \leq e^{(n+1)A}$

The spherical derivative of integral and meromorphie functions

$$
\frac{(A^n-1)\log 2}{A^{n+1}} < \frac{\log M(r,f)}{r^{(\log A)/A}} < \frac{K(A)\cdot A^n}{A^n} \,,
$$

and so the result follows.

Lemma 10. If
$$
\varphi_n(z) = \left(\sum_{1}^{n-2} + \sum_{n+1}^{\infty} \right) [A^m] \log \left| 1 + \frac{z}{e^{mA}} \right|
$$
 then for
 $\frac{e^{nA}}{2} \leq |z| \leq 2 e^{nA},$
 $-\eta A^n \leq \varphi_n(z) \leq \eta A^n$

where $\eta = \eta(A) > 0$ and $\eta \to 0$ ($A \to \infty$); η is not necessarily the same at each *occurrence.*

We have, in the range of the lemma,

$$
\sum_{1}^{n-2} [A^{m}] \log \left| 1 + \frac{z}{e^{mA}} \right| \leq \sum_{1}^{n-2} A^{m} \log \left(1 + \frac{2e^{n}A}{e^{mA}} \right)
$$

$$
\leq \sum_{1}^{n-2} A^{m} \{ \log 4 + (n-m)A \}
$$

$$
\leq \frac{A^{n-1} \log 4}{A-1} + A^{n-1} \sum_{r=0}^{n-3} \frac{v+2}{A^{r}}
$$

$$
\leq \eta(A) \cdot A^{n}.
$$
 (5.17)

Also, in the above range,

$$
\sum_{n+1}^{\infty} [A^m] \log \left| 1 + \frac{z}{e^{mA}} \right| \leq \sum_{n+1}^{\infty} A^m \log \left(1 + \frac{2e^{nA}}{e^{mA}} \right)
$$

$$
\leq 2 \sum_{n+1}^{\infty} A^m e^{(n-m)A}
$$

$$
= 2 A^n \sum_{n=1}^{\infty} (A e^{-A})^n
$$

$$
\leq \eta (A) A^n. \tag{5.18}
$$

From (5.17) and (5.18) the right hand inequality of the lemma follows.

In the range of the lemma we also have, if $e^{2A} \ge 4$,

$$
\sum_{1}^{n-2} [A^m] \log \left| 1 + \frac{z}{e^{mA}} \right| \geq \sum_{1}^{n-2} [A^m] \log \left(\frac{e^{nA}}{2e^{mA}} - 1 \right)
$$

 $\geq 0,$ (5.19)

and, if $e^A>4$,

143

144 J. CLUNTE and W. K. HAYMAN

$$
\sum_{n+1}^{\infty} [A^m] \log \left| 1 + \frac{z}{e^{mA}} \right| \geq \sum_{n+1}^{\infty} A^m \log \left(1 - \frac{2e^{nA}}{e^{mA}} \right)
$$

>
$$
- 4 \sum_{n+1}^{\infty} A^m e^{(n-m)A}
$$

=
$$
- 4 A^n \sum_{\nu=1}^{\infty} (A e^{-A})^{\nu}
$$

$$
\geq - \eta(A) A^n, \qquad (5.20)
$$

From (5.19) and (5.20) the left hand inequality of the lemma follows.

Lemma 11. For
$$
|z| = \frac{e^{nA}}{2}
$$
 and $|z| = 2e^{nA}$,
\n
$$
(\frac{1}{4} - \eta)A^n \le \log |f(z)| \le (3 + \eta)A^n.
$$
\nIf $|z| = \frac{e^{nA}}{2}$ we have\n
$$
[A^{n-1}] \log |1 + \frac{z}{e^{(n-1)A}}| \le A^{n-1} \log \left(1 + \frac{e^A}{2}\right)
$$
\n
$$
\le A^{n-1} (\log 2 + A)
$$
\nAlso for $|z| = \frac{e^{nA}}{2}$, (5.21)

$$
[An] \log \left| 1 + \frac{z}{e^{nA}} \right| \le An \log 3/2
$$

\n
$$
\le An.
$$
 (5.22)

From (5.21) and (5.22) and Lemma 10, the right hand inequality of Lemma 11 follows for $|z| = \frac{e^{nA}}{2}$

We have for
$$
|z| = \frac{e^{nA}}{2}
$$
, if $e^A > 4$,
\n
$$
[A^{n-1}] \log |1 + \frac{z}{e^{(n-1)A}}| \ge [A^{n-1}] \log \left(\frac{e^A}{2} - 1\right)
$$
\n
$$
\ge (A^{n-1} - 1) (A - \log 4)
$$
\n
$$
\ge (1 - \eta) A^n; \qquad (5.23)
$$

and

The spherical derivative of integral and meromorphie functions

$$
[An] \log |1 + \frac{z}{e^{n}A}| > -An \log 2
$$

> $-\frac{3}{4}An$. (5.24)

From (5.23) and (5.24) and Lemma 10, the left hand inequality of the Lemma 11 $\text{follows for} \hspace{0.1cm} |z| = \frac{e^{n\textbf{\textit{A}}}}{2}$

The result for $|z| = 2e^{nA}$ follows in a similar manner to the above.

Lemma 12. *If z satisfies* $|z + e^{nA}| \geq \frac{e^{nA}}{4}$ and $\frac{e^{nA}}{2} \leq |z| \leq 2e^{nA}$ then *A n* $(4 + 7)$ eⁿA \cdot We have r(z) */(z)* $[A^m]$ $1 \quad z + e^{mA}$

 $|\text{For} \ \ |z| \geq \frac{e^{nA}}{2}$, if $e^{A} \geq 4$

$$
\left|\sum_{1}^{n-1} \frac{[A^m]}{z + e^{mA}}\right| \leq \sum_{1}^{n-1} \frac{A^m}{\frac{e^n A}{2} - e^{mA}}
$$

$$
\leq \frac{4}{e^n A} \sum_{1}^{n-1} A^m
$$

$$
< \frac{4 A^n}{(A-1) e^{nA}}
$$

$$
\leq \eta \frac{A^n}{e^n A} ; \qquad (5.25)
$$

and for $|z| \leq 2e^{nA}$, if $e^{A} \geq 4$,

$$
\sum_{n+1}^{\infty} \frac{[A^m]}{z + e^{mA}} \leq \sum_{n+1}^{\infty} \frac{A^m}{e^m A - 2e^{nA}}
$$

$$
\leq 2 \sum_{n+1}^{\infty} \frac{A^m}{e^m A}
$$

$$
= 2 \frac{A^n}{e^{nA}} \sum_{n=1}^{\infty} (Ae^{-A})^p
$$

$$
\leq \eta \frac{A^n}{e^{nA}}.
$$
 (5.26)

10 CMH vol. 4.0

 146 J. CLUNIE and W. K. HAYMAN

Finally, if $|z + e^{nA}| \geq \frac{e^{nA}}{4}$, then

$$
\frac{[A^n]}{|z+e^{nA}|} \leq \frac{4 A^n}{e^{nA}} \,. \tag{5.27}
$$

From (5.25) , (5.26) and (5.27) the lemma follows.

Lemma 13. For
$$
\frac{e^{nA}}{2} \leq |z| \leq 2e^{nA}
$$
,

$$
\mu(r, f) \leq K(A) \frac{A^n}{r},
$$

provided A is su/fieiently large.

When A is large enough we see from Lemma 11 that the set $|f(z)| < 1$ splits into a number of components. Each zero e^{nA} is contained in a component D_n , say, and D_n lies in $\frac{e^{nA}}{2} \leq |z| \leq 2e^{nA}$.

First of all we show that when A is large the disc $|z + e^{nA}| \leq \frac{e^{nA}}{4}$ is contained in D_n . From Lemma 10 it follows that in this disc,

$$
\log |f(z)| \le [A^{n-1}] \log \left| 1 + \frac{z}{e^{(n-1)A}} \right| + [A^n] \log \left| 1 + \frac{z}{e^{nA}} \right| + \eta A^n
$$

$$
\le A^{n-1} \log \left(1 + \frac{5}{4} e^{A} \right) - (A^n - 1) \log 4 + \eta A^n
$$

$$
\le A^{n-1} \left(\log \frac{5}{2} + A \right) - (A^n - 1) \log 4 + \eta A^n
$$

$$
< 0,
$$

provided A is large enough, independently of n . Hence we arrive at the desired conclusion.

From Lemma 12 and the above it follows that when A is large then on the boundary of D_n ,

$$
|f'(z)| = \left|\frac{f'(z)}{f(z)}\right| \leq (4+\eta)\frac{A^n}{e^{nA}}.
$$

Therefore in D_n and on its boundary,

$$
\varrho(f(z)) \le |f'(z)| \le (4+\eta) \frac{A^n}{e^{nA}} \ . \tag{5.28}
$$

In the annulus $\frac{e^{nA}}{2} \leq |z| \leq 2e^{nA}$ outside D_n it follows that when A is large

The spherical derivative of integral and meromorphic functions 147

$$
\varrho(f(z)) \leq \left|\frac{f'(z)}{f(z)}\right| \leq (4+\eta)\,\frac{A^n}{e^{nA}}\,,\tag{5.29}
$$

by Lemma 12.

Since $\frac{1}{\sqrt{nA}} \leq \frac{2}{\pi}$ for $\frac{e^{nA}}{2} \leq r \leq 2e^{nA}$ the lemma follows from (5.28) and (5.29).

Lemma 14. For large A, if $2e^{nA} \leq r \leq \frac{e^{(n+1)A}}{2}$ then

$$
\mu(r,f)<\frac{K(A)}{r}.
$$

From Lemmas 11 and 12 it follows that

$$
\left|\frac{zf^{\prime}\left(z\right)}{f(z)^{2}}\right|
$$

on the boundary of $2e^{nA} \leq |z| \leq \frac{e^{(n+1)A}}{2}$. Since the function on the left above is subharmonic in the annulus it follows that the inequality holds throughout the annulus. Hence the lemma follows because $\rho(f(z)) \leq \frac{|f'(z)|}{|f(z)|^2}$.

5.3. Before completing the proof of Theorem 7, we observe that the constants $K(A)$ appearing in Lemmas 13 and 14 remain bounded as $A \rightarrow \infty$. From Lemmas 11, 13 and 14 it follows that

$$
\limsup_{r\,\to\,\infty} \frac{r\,\mu\,(r,\,f)}{\log\,M\,(r,\,f)}<\,B\,,
$$

where B is an absolute constant for all $f(z)$ for which $A \geq A_0$, A_0 being some fixed value.

We proceed to prove Theorem 7.

If $0<\sigma<\frac{\log A_0}{\sqrt{2}}$ in Theorem 7 we take $f(z)$ as above with A given A_{0} by $\sigma = \frac{\log A}{A}$. If $\sigma > \frac{\log A_0}{A_0}$ we proceed as follows. Let $A_1 > A_0$ be defined by $2 \frac{\log A_1}{A_1} = \frac{\log A_0}{A_0}$. Let n be the smallest positive integer such that $\frac{\sigma}{n} \le \frac{\log A_0}{A_0}$. Then, since $n \ge 2$, $\frac{\sigma}{n-1} \ge \frac{\log A_0}{A_0}$ and so $\frac{\sigma}{n} \ge \frac{n-1}{n} \frac{\log A_0}{A_0} \ge \frac{1}{2} \frac{\log A_0}{A_0}$. Therefore $\frac{\sigma}{n} = \frac{\log A}{A}$ where $A_1 \le A \le A_0$.

We now take, as a function for Theorem 7, $F(z) = f(z^n)$ where $f(z)$ is constructed as in Lemma 9 with this value of A. Then

$$
\limsup_{r \to \infty} \frac{r\mu(r, F)}{\log M(r, F)} = \limsup_{r \to \infty} \frac{n r^n \mu(r^n, f)}{\log M(r^n, f)}
$$

\n
$$
\leq n B
$$

\n
$$
= \frac{\log A}{A} \cdot n \cdot \frac{B \cdot A}{\log A}
$$

\n
$$
\leq \frac{2 A_0 B}{\log A_0} \cdot \sigma.
$$

Thus the theorem is proved for $0 < \sigma < \infty$.

It can be shown by the same methods as above that if K is large enough then

$$
F(z) = \prod_1^{\infty} (1 + z e^{-Kn^2})^{n^2}
$$

is a function of order 0 satisfying the conclusion of the theorem.

BIBLIOGRAPHY

- [1] LEHTO O.: *The spherical derivative of a meromorphic function in the neighbourhood of an isolated singularity.* Comment. Math. Helv. *33,* 196-205 (1959}.
- [2] LEHTO O. and VIRTANEN K.: On the behaviour of meromorphic functions in the neighbourhood *of an isolated singularity. Ann.* Acad. Sei. Fenn. A. I. No. 240 {1947}.
- [3] HAYMAN W. K.: A characterisation of the maximum modulus of functions regular at the origin. g. Analyse Math. 1, 135-154 (1951).
- [4] HAYMAN W. K.: *Meromorphic Functions.* (Oxford, 1964).
- [5] VALIRON G.: *Fonctions entières d'ordre fini et fonctions méromorphes.* (Geneva, 1960).

(Received April 28, 1965)