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SU/VlMARY 

The problem considered in this paper is that of evaluating the performance 
of a forecaster who predicts the intensity of a point process or the drift and 
diffusion rates of a continuous process. It is shown that we can evaluate 
this performance in a "prequential" manner, without the usual assumption 
that the forecasts are generated in accordance with some probability dis- 
tribution. Technically, the results in this paper are prequential counterparts 
of the Dambis-Dubins-Schwarz reduction of a continuous martingale, via a 
change of time, to a Wiener process, and the Papangelou-Meyer reduction 
of a counting process to a Poisson process. 
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PREQUENTIAL PRINCIPLE. 

1. PROBLEM 

Suppose we observe a point process (i.e., a sequence of point events of 
some kind). Let Nt, t > O, be the number of the point events that have 
occurred in the time interval ]0, t]. (In order words, Nt is the counting 
process corresponding to our point process.) We are interested in the 
trend At of Nt. Of course, At must be nondecreasing. We are primarily 
interested in the case where 

At = )~ds (1) 
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for some intensity function At >_ O. We assume that A0 = 0 and At is 
continuous throughout the paper. 

How, then, do we interpret the assertion that At is the trend of Nt? 
Let us consider two examples. 

Example 1. Consider a chandelier with controllable brightness 
level A E [0, 1] (when A = O, the chandelier is off, and A = 1 
corresponds to maximum brightness). Let At be the level of  bright- 
ness at time t > 0 and Nt be the total number of electric bulbs in the 
chandelier that burned out during the time period ]0, t]. Consider 
the hypothesis that At is the intensity of Nt, i.e., that the process At 
defined by (1) is the trend of  Nt. What does this hypothesis lead us 
to believe about the world? (alternatively, what future observations 
will make us reject this hypothesis ?) 

Example 2. Let Nt be the number of  major earthquakes in the time 
interval ]0, t]. For each t >__ O, the forecaster specifies, prior to 
time t, some number At and claims that the function At (which is 
assumed to be continuous) is the trend of Nt,. We cannot utilise these 
forecasts until we understand the full meaning of this claim. 

One possible interpretation of At being the trend of Nt is that both 
At and Nt are stochastic processes governed by some global probability 
distribution and that At is the compensator of Nt in the sense of the 
standard theory of martingales (see e.g., Dellacherie and Meyer, 1982; 
Elliott, 1982; Jacod and Shiryaev, 1987). This interpretation is not 
completely satisfactory since it presupposes that, in Example 1, an event 
such as A10 = 0 (at time 10, the chandelier is off), which depends on 
deliberate actions taken by people, can be ascribed some probability. 

The following interpretation of the claim that At is the trend of Nt 
seems more satisfactory: the difference #t := Nt - At is a martingale 
in the sense that, for any two time points t < s, #t is the fair price at time 
t for the uncertain future value #s. (Martingales are usually defined via 
probability, but we shall move in the opposite direction.) 
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Remark 1. Considering a situation which essentially includes Example 2 
as a special case, Dawid (1984, 1985) (see also Seillier-Moiseiwitsch and 
Dawid, 1993) puts forward the prequential principle, which requires that 
our conclusions should depend only on the realized paths Nt and At. 
The approach proposed in this paper is compatible with the prequential 
principle and the underlying ideas are due to Dawid (1985, Section 13.2), 
who suggests exploiting the fact that some processes are martingales (for 
details, see Vovk, 1993, Section 3). 

2. IDEAL PICTURE, I 

We consider here the foundations of the mathematical theory of mar- 
tingales. Of course, no mathematical theory can adequately describe 
reality but, instead, allows analysis of an "ideal picture" (e.g., Euclidean 
geometry describes not real points but fictitious points without size). 
Moreover, there may be more than one way of relating the ideal pic- 
ture of a mathematical theory to reality (or to the ideal pictures of other 
mathematical theories). Thus, as an introduction, we give an informal 
outline of the ideal picture of martingale theory and its possible relations 
to reality (exact definitions will be given in the later Sections). 

Time is continuous and has an origin, which can be represented by 
the interval [0, oe[. We consider a set of stochastic processes, called 
martingales, and an infinitely rich guarantor who, at each time t, for 
each real (possibly negative) constant c, and for each martingale M, 
allows us to stake c units on M,  i.e., is willing to abide by the following 
agreement with us: at each future time point s > t, his debt to us is 
c(M8 - Mr) provided the agreement is still valid at time s; we can al- 
ways end the agreement by settling the debt. (The phrase "the guarantor 
owes us c units" for c < 0 may be interpreted to mean that we owe him 
Icl units; as usual, money is assumed to be infinitely divisible.) The 
guarantor is willing, as soon as we need it, to lend us any amount of 
money without charging interest. Strategies for staking on the martin- 
gales and borrowing money are called gambling strategies. No money is 
spent on consumption. Our success is measured by our terminal wealth 
(our wealth being the amount of money that we hold, less our debt to the 
guarantor). 

The notion of the ideal picture allows us to define the meaning of 
the forecaster's claim that At is the trend of Nt. First, the forecaster may 
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mean that he is willing to play a role analogous to that of the guarantor 
in the ideal picture with the martingale Nt - At. This interpretation will 
be called the E-interpretation. Second, the forecaster can refuse to play 
such a role (e.g., because he is insufficiently rich) but can assert instead 
that it is practically impossible to make much money out of 1 using a 
predefined "honest" gambling strategy (i.e., ensuring that the debt to the 
guarantor, if any, is eventually paid off) against the (maybe, imaginary) 
guarantor for the martingale N t -  At. This is the P-interpretation. Under 
the E-interpretation, our aim is to win as much money as possible; under 
the P-interpretation, we try to falsify the forecaster's claim. 

The E-interpretation is closely connected with such notions as value 
(or fair price) and mathematical expectation; the P-interpretation is 
connected with belief and probability. A discrete-time variant of the 
P-interpretation is treated in Vovk (1993). 

Consider a contract whose future value r / =  r/(w) is uncertain (i.e., 
depends on the unknown "state of the the world" w); we are interested 
in its current value. If, for some constant c, some gambling strategy 
enables us, starting with c, to win no less than r/(a;), whatever the true 
value of w, we can say that now the contract is worth no more than c. 
The infimum of such numbers c is called the upper value of the contract. 
Under the E-interpretation, this is virtually the minimal price for which, 
in the absence of additional information or opportunities, we can safely 
sell the contract. We may define the lower value of 77 in an analogous 
way. In those cases where the upper value of 77 coincides with its lower 
value, we call this common value the fair price for r/. 

Now consider a prespecified uncertain event E.  Suppose that, for 
some very large constant c, there exists a gambling strategy which, when 
applied to the initial capital 1, never incurs a debt and wins no less than 
c i fw E E. Then, under the P-interpretation, we can be sure that E will 
not occur, provided that we believe the forecaster. 

Remark 2. This idea of the ideal picture was borrowed from Shafer 
(1990b) (see also Shafer, 1992). Shafer's "ideal picture of probability" 
includes, besides belief and fair price, one further element: frequency. 
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3. MAIN RESULTS, I 

Suppose we suspect that the forecaster from Example 2, whose claim is 
understood in the sense of the P-interpretation, systematically underes- 
timates the true trend (or that the true intensity in Example 1 is greater 
than At). In other words, we suspect that Nt is typically much larger than 
At. Let c > 0 be a large constant and ac be the stopping time defined as 
inf{t : At = c} (inf 0 is always taken to be oc). For a well-calibrated 
forecaster, we would have Nac ~ r (assuming ac < c~), but we suspect 
that Nec >> c. In Section 7 (Theorem 5) we shall see that, when Nt - At 
is a martingale, the random variable Nec is distributed as Pc (denoting 
by Pc the Poisson distribution on the set N := {0, 1 , . . . }  with mean c) 
in the sense that: 

(a) for any bounded function U, the upper value of U(Nec) (when 
ac = c~, we define U(Nec) to be inf U) does not exceed f UdT)c; 

(b) moreover, the fair price for U(Nec) exists and equals f Ud'P  when 
it is known that At tends to infinity. 

Part (a) of this result enables us to judge whether the difference Nee - c 
is large enough to justify rejecting the forecaster's claim: we can fix in 
advance a very small value for ~ > 0 and hope that Nee will exceed the 
upper ~-quantile of T'c; in this case, we conclude that the forecaster has 
been proven wrong (or, in the situation of Example 1, we conclude that 
the hypothesis is false). Under the E-interpretation of the forecaster's 
claim, U is interpreted as a loss function. 

Let us now consider a similar problem for a continuous process Wt 
with W0 = 0. There now exist two associated continuous processes 
Bt and At such that At is nondecreasing and A0 = /30 = 0. It is 
claimed that Bt is the drift compensator of Wt and At is the diffusion 
compensator of Wt, in the sense that Wt - Bt and (Wt - Bt) 2 - At 
are martingales. It will be shown (Section 7, Theorem 6) that, for any 
constant c > 0, the random variable Wec - Bec is distributed as .A/'0,c 
(which denotes the normal distribution on the real line ~ with mean 0 
and variance c), in an analogy of the case of a counting process. The 
interpretation of this result is also analogous. 
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4. GAMBLING STRATEGIES 

We now begin the formal exposition. The purpose of this Section is to 
define the notion of a gambling strategy; in this paper, we need only 
consider gambling strategies which we call elementary. 

Let (9t, (.Tt)t>0, .T) be a filtered space, where f~ denotes a set, Jr 
denotes a a-algebra on f~ and (.T't) denotes an increasing family (.Ts C_ 
.Y't when s < t) of sub-a-algebras of .T'. Each Ut may be interpreted as 
the knowledge available at time t. We always assume that 9r0 = {0, f~} 
and .Too = .T'(groo is the a-algebra generated by all .Tt, t > 0). Set 
F :=  ~d for a fixed positive integer d (in Section 7, d = 1 or d = 2). 
We fix a basic martingale #, which is an F-valued adapted (meaning 
that each #t is .Tt-measurable) c,~dl~g (i.e., right continuous with limits 
existing on the left) process. (The word "basic" refers to the fact that we 
shall use # as a basis from which to construct other martingales.) We 
shall always assume that #0 = 0. Note that we do not fix any probability 
distribution in (~,  j r ) .  

A stochastic process Ht  is an elementary gambling strategy if there 
exists a sequence 

0 = Tm ~ r m + l  ~ . . .  ~_~ "In ~ r n + l  -~ (X) 

(m and n being integers with m < n) of stopping times and a sequence 
hm, hm+l,..., hn of partial F-valued random elements (the term "par- 
tial" implying that the domain of hi can be a measurable set other than 
the whole space f~) such that: 

(a) each hi is defined on {'/"/< c~} and is .T'ri-measurable; 
(b) H0 = 0 and Ht = hi for t E]Ti.Ti+l ]. 
The definition and basic properties of the a-algebras .Tr, T ranging 
over the stopping times, may be found in Elliott (1982, Chapter 2); 
the inclusion {'ri < cx~} E .Tr i follows from Theorem 2.12 in Elliott 
(1982). For t > 0, we define the stochastic integral (H. #)t, where # is 
the basic martingale, by the equality 

n 

i =m  

On the right-hand side, �9 denotes the inner product of two vectors in F 
and A denotes the minimum of two numbers. It is easy to see that (H.  p)t  
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does not depend on the representation of H. Those stochastic processes 
which can be represented in the form c + ( H .  #)t, for some c e N and 
elementary gambling strategy H,  are called elementary martingales. 
They are adapted and c?~dl?tg. 

Intuitively, an elementary gambling strategy is a rule determining 
our stakes at each point in time; the Ti'S represent those times when 
we change stakes (the word "elementary" indicates that we do this only 
finitely often). The stochastic integral (H �9 #)t represents the profits 
gained from using the strategy H (negative profit implying a loss). 

5. UPPER EXPECTATION 

Let r be a stopping time. (For the exact formulation and proof of the 
results mentioned in Section 3, it would be sufficient to consider only 
the case T = 0.) For w e f~, define the information about w at time r as 

z~(w) := n{E  e 7~ :w ~ E}, 

so that Ir (w) represents the set of r e [2 which are indistinguishable 
from w at time T (note that Io(w) = f~ does not depend on w). For 
a stochastic process ~t, let ~r(w) denote ~7-(,,)(w), which is undefined 
when r(w) = oo. We define the upper and lower expectation of a (finite) 
random variable r/at time T as 

~.[~l~-](w) := inf { M r ( w ) "  

limt_~ooMt(~b ) > rl(~) , V~b E IT(w)}, 
(2) 

( 

limt~ooMt(r <_ r/(r Vr E IT(w)}, 

where M ranges over the elementary martingales. The upper and lower 
expectations are undefined when r(w) = ec. Note that 

_E. [~1,-] (w) = - ~ ,  [-,71~-] (w). 
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When 7- = 0, the upper and lower expectations no longer depend on o2, 
and we write simply ~7~[r/] and ___E~,[r/]. 

The number ~7~ [r/l~- ] (o2) is interpreted as the minimal price for which 
the owner of 7/(i.e., of the contract whose future value is r/(o2), with 
r/(w) < 0 interpreted as a debt to the guarantor) must be willing (in the 
ideal picture or under the E-  interpretation of the forecaster's claim) to 
sell it at time r(o2). It is less obvious that the number E___~[r/lr](o2) can 
be interpreted as the maximal price for which we must be willing to 
buy r/at time "r(o2). If c < __E~[r/l-r](w), then there exists an elementary 
martingale M such that 

Mr(w) = c, limt~ooMt < rl on Ir(o2). 

We now show that, at time -r(w), it is sensible to buy r /for  c. Let our 
capital at time "r(w) be C. After the deal, our capital becomes (C - c). 
Borrowing c from the guarantor, we increase it to the initial C. Then we 
stake - 1  unit on M thus ensuring that, at each time t > -r(w), our debt 
to  the guarantor will be Mr(w). Since l imMt < r /on IT(w), buying 7/ 
and staking on M will not decrease our terminal wealth. 

The basic martingale # is coherent if, for any elementary martingale 
M,  any constant t > 0, and any o2 E f~, 

inf l i m , _ ~ M s ( r  < Mr(w). 
Celt(,,) 

Intuitively, it is required that no gambling strategy can ever ensure a 
guaranteed profit in the future. (This requirement is close to de Finetti's 
axiom of coherence (1964, 1975).) 

We shall be dealing with expressions involving partial random vari- 
ables ~(w), which can be undefined for some w (like/~[r/[T]).  Such 
an expression is defined to be true if it holds for all w for which all the 
partial random variables that enter into it are defined. We let ~S~[r/[r] 
denote the right-hand side of (2) with M ranging over the elementary 
martingales such that Mr(C) > inf r/, for all r E IT(w) and t > -r(w) 
(so/~[r/[T] differs from ~Sj,[r/l-r] only when r/is bounded below). 

Theorem 1. The coherence o f#  is equivalent to: 
(a) ~,[01t] >_ O, for all constant stopping times t >_ O; 
(b) E~[r/IT] = E~[r/IT], for all 71 and r. 
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Theorem 2. Let # be coherent. For any stopping time ~', random 
variables ~, ~, and constant c, 

(a) ~7/~[r/+ ~lr] _< ~,[ol~-] + R,[~I~-]. 
(b) c _> 0 ;- ~,[c.71~] = ~.[.71~-]. 

< 0 ~ ~7.[~.71~] = cE.[olr]; 
(c) ~ ; , [ l l d  = 1; 
(d) ,7 > o - - ~  E.[,ll~-] _ o. 

Corollary 1. I f#  is coherent, then 

~,,['71~'] -< ~7,['71~'], V,7, ",-. 

Henceforth, we assume that the basic martingale # is coherent. 

The (upper) probability of an event E E .Y" at time r is defined by 

Pr[EId := ~:.[xEId, 
# 

where XE is the indicator of E ,  and the lower probability (or belief 
function) is defined to be 

__P.[EId := E. [x~ld .  

The belief functions of the Dempster-Shafer theory (Dempster, 1967; 
Shafer, 1976, 1990a) are closely related to lower probabilities - -  see the 
discussion in Vovk (1993). Theorem 2 implies that 

Pr[E~, U Fir ] < Pr[El-r ] + Pr[FIT], 

__P~,[EI-r ] = 1 -  Pr[EC[T]. 
# 



198 V. G. Vovk 

Remark 3. In the framework of conventional probability theory, the no- 
tions of probability and mathematical expectation are equivalent to each 
other and so we have probability theory but do not have a distinguishable 
"expectation theory", as such. Either of these two notions can be taken 
as basic (Lebesgue's scheme vs. Daniel's scheme). In the prequential 
framework, probability reduces to upper expectation, but not vice versa. 
So, from a technical point of view, upper expectation yields a richer 
theory. Besides, probability, as a special case of upper expectation, can 
be interpreted as the upper value of some contract. However, the impor- 
tance of probability stems from the fact that it can also be used under 
the P-interpretation of the forecaster's claim, and, in this case, lower 
probability is an explication of wan'anted belief. (This understanding 
of probability is described in detail in Vovk, 1993.) So, the principal 
intuitive meaning of probability does not reduce to fair price. 

6. EXPECTATION 

Recall that the basic martingale # is assumed to be coherent. Henceforth, 
we shall usually remove the subscript # from the relevant notation. A 
random variable r/is r-integrable, where r is a finite stopping time, if 
E[rllr] = ~7[r/l'r]; this common value is denoted by E[rlIT]. 

Theorem 3. For any finite stopping time r, random variables 71 and 
~, and constant c E ~, 
(a) i f  rl and ~ are r-integrable, then rl + ~ is also r-integrable and 

E[r /+  ~[r] = E[rilr] + E[~IT]; 

(b) i f  rl is r-integrable, then crl is T-integrable and 

E[cr l [T]  = cE[~7[T]; 

(c) the identical I is r-integrable and E[l l r ]  = 1; 
(d) i f  rl > 0 is r-integrable, then E[r/lr ] >_ 0. 

The next simple theorem shows that, in some (rather weak) sense, 
the theory of this paper is in agreement with conventional martingale 
theory. 
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Theorem 4. Let P be a probability distribution in (f'/, .Y'). If  the 
basic martingale IZ is a local martingale with respect to (Ut) and P 
then, for each bounded O-integrable random variable r 1, 

  ,TdP = E . [ , 7 ] .  

7. MAIN RESULTS, II 

A function n : [0, cx~[---~ N is counting if it is chdlhg, nondecreasing, has 
unit jumps, and satisfies n(0) = 0. An adapted process Nt is counting if 
all its sample paths are counting. An adapted process Wt is continuous 
if all its sample paths are continuous. A family c~t, t >_ 0, of stopping 
times is a change of time if c~t < c~ for t < s. The change of time o~t is 
proper if c~t (w) < c~, for all t and w. 

Remark 4. It is usually required (e.g., Dellacherie and Meyer, 1982, 
Chapter VI, n. 56) that a change of time be a right continuous process. 
We have modified the definition in order to avoid imposing the unnatural 
requirement that the filtration (5rt) be right continuous. 

We say that a counting process ~t is a Poisson process with respect 
to a proper change of time o~t if, for any t > s > 0 and any bounded 
function U : N ~ ~, the random variable U(~,~ t - ~,~s) is C~s-integrable 
and 

E - = ] N  

A continuous process ~t is a Wiener process, with respect to the proper 
change of time o~t, if ~0 = 0 and, for any t > s _ 0 and any bounded 
continuous function U : ~ ---+ ~, the random variable U(~a t - ~,~s) is 
~s-integrable and 

E [U(r ~.s)l~s] = ~ U(u)Ho,t-s(du). 

We must also deal with changes of time c~t which arc not proper. A 
counting process (t is a Poisson process with respect to a change of time 
o~t if, for any t > s >_ 0 and any bounded function U : N --~ ~, 

F, [U(~& t -- ~C~s)lOls] ~ f .  U(u)79 t - s (du ) ;  
,]IN 
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in the case where a t  = z~, we take 

U(~,~t - ~as) :=  inf U(u). 
U 

Analogously, a continuous process (t with ~0 = 0 is a Wiener process 
with respect to a t  if, for any t > s > 0 and any bounded continuous 
function U : ~R , ~ ,  

with the same convention for a t  -- oo. 

Remark 5. It is easy to see that the two definitions of a Poisson process 
(as well as those for a Wiener process) agree with each other. Indeed, 
when ~t is a Poisson process, in the sense of the second definition, with 
respect to a proper change of time a t ,  we have 

_ E  - = - 

>_ - / N  - U  (u)79t-s(du) = / N  U (U)79t-s(du). 

Theorem 5. Suppose that Nt is a counting process, At is a nonde- 
creasing continuous process with Ao = 0 and the basic martingale 
I~t is defined by #t :=  Nt - At. Then Nt is a Poisson process with 
respect to the change of time at defined by 

ac :=  inf{t : At = c}. ( 3 )  

This result is closely connected with the result of Meyer (1971) 
and Papangelou (1972), although we cannot say that either of these 
results implies the other. In Examples 1 and 2 (Section 1), we have the 
"canonical" situation where: 

(a) ft is the set of pairs (n, a), where n : [0, ~[---~ N is a counting 
function and a : [0, c~[---~ ~ is a nondecreasing continuous function 
with a(0) = 0; 

(b) Nt(w) and At(w), where w = (n, a),  are defined as n(t) and a(t), 
respectively; 
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(c) each cr-algebra .T't is generated by the random variables Ns and 
A s , s <  t. 

It is easy to see that the basic martingale Nt - At is coherent in this case. 
Applying Theorem 5 to the case At = t (which corresponds to 

a proper change of time cet), we obtain the prequential counterpart of 
Watanabe's (1964) characterization of a Poisson process. 

Theorem 6. Suppose Wt, Bt, At are continuous processes with 
W0 = B0 = A0 = 0, At is nondecreasing and the basic martingale 
#t is defined as the ~2-valued stochastic process 

( W t -  Bt, ( W t -  Bt) 2 -  A t ) .  

Then Wt - Bt is a Wiener process with respect to the change of time 
olt defined by (3). 

This result is an analogue of the result due to Dambis (1965) and 
Dubins and Schwarz (1965). The "canonical" situation, where the co- 
herence of # is obvious, is constructed in the same way as for a counting 
process. Theorem 6, in the special case where Bt = O, At = t, parallels 
Lrvy's (1948) (see also Doob (1953), Theorem 11.9) characterization 
of a Wiener process. 

Remark 6. In this paper we consider only the case of"left quasicontinu- 
ous" processes, whose compensators are continuous. For such processes 
it is impossible to predict jumps. Vovk (1993), Section 6, considers 
the case of discrete time. By the usual embedding of the discrete-time 
processes into the continuous-time processes (Jacod and Shiryaev, 1987, 
Chapter I, Section If), this case corresponds to the situation where jumps 
are allowed only at times 1, 2 , . . .  

8. IDEAL PICTURE, II 

In this Section, we focus our attention on some questionable aspects of 
the ideal picture. First, it is an unrealistic feature of the ideal picture that 
we are interested only in our fortune in the infinitely remote future, and 
yet this feature is essentially used in our interpretation of the definition 
of upper and lower expectation. (Such situations are common in applica- 
tions of mathematics: e.g., one never observes the sizeless points studied 
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by Euclidean geometry.) This deficiency must be remedied at the stage 
of application of the ideal picture to reality: e.g., this definition can be 
safely applied when rl(w) depends on w only through It(w), where t is a 
moderately large number. Another unrealistic feature of the ideal picture 
is the stability of money which manifests itself as the willingness of the 
guarantor to make interest-free loans: in reality, we experience inflation 
and hyperinflation, We must be flexible when applying the ideal picture 
to the real world; e.g., it may be useful to interpret capital c as the market 
price for c units of a riskless security or even as a value of c for some 
utility function. 

9. APPENDIX 

Proof of  Theorem 1. Since (b) obviously implies (a), we are reduced 
to proving that the coherence of # implies (b) and that (a) implies the 
coherence of #. Assume that # is coherent but 

r 

for some r/(which must be bounded below) and some -r, w with -r(w) < 
oo. Then there exists an elementary martingale M such that l imMt > 77 
on It(w),  and Mr(C) < infr/for some r E It(w) and t >_ r(w). This 
contradicts the coherence of # since 

t >_ :. It(~b) C_ It(w). 

The last implication is intuitively obvious, but we give a formal proof 
here. 

Proof. Let ~b ~. It(w),  t >_ r(w),  ~o E I t ( f ) ,  and w E E E .T'r; we 
are required to prove that qD E E. From ~b E It(w) and r(w) < t we 
deduce r(~b) _< t (since {r  _< t} E .T'r); ~b E It(w) and w E E E -~r 
implies ~b E E.  Thus, ~b E E Cl {r  _< t}. By Theorem 2.10 (i i) in Elliot 
(1982), EM {r  _< t} E .T't. The last two inclusions and qo E It(~b) imply 
~ E E M { r < _ t } .  

Now assume that (a) holds but # is not coherent, i.e., there are an 
elementary martingale M, a constant c _> 0, and w E f~ such that 

inf l imtMt(r > Me(w). 
~bEIc(w) 
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We insert a real number C between the two sides of this inequality. 
Then the elementary martingale Xt := Mt - C satisfies Xc(w) < 0 and 
l imXt( r  > 0 for all r E [c(w). Hence, 

~.[01c](~) < 0. 

Proof of Theorem 2. 
(a) It suffices to note that the sum of two elementary gambling strategies 

is again an elementary gambling strategy and 

limtMt } ' limt(Mt + Xt) > 77 + ~. 
>_ rl 

limtXt >_ ~ " 

(b) Let M range over the elementary martingales. For c > 0, 

E,~,[crl]T](W) = inf {MT(w): l imMt >__ cr/ on I t (w)} 

= inf {cXr(w): l imXt _> 77 on IT(w)} = cE~,[rllT](w), 

putting X :----- M/c; for c < 0, 

.E~,[crllr] --  .~ ,  [ ( - c ) ( - o ) l ~ - ]  --  - cE , [ -~T l~ ' ]  = cE,[~71r]. 

When c = 0, it suffices to note that the identical 0 is an elementary 
martingale and make use of  item (d). 

(c) Since the identical 1 is an elementary martingale, we have ~7 t, [1 IT] < 
1; the opposite inequality follows from Theorem 1 (b). 

(d) By Theorem l(b), 

,7 _> o ;- E,,[,ll',-] _> 0. = L;, [,;I-,-] 

Proof of Corollary 1. We are required to prove that 

E,[,~I ~] + E , [ - ~ I ~ ]  _> 0. 

This immediately follows from parts (a) and (d) of Theorem 2: 

E',[nl',-] + -E. [ - , IT}  >_ E . [ , -  ,I"-7 = -E,[01"-} >- 0. 
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Proof of Theorem 3. 
(a) By Theorem 2(a), 

E[~ + ~1~] -< E[,71~] + E[~lr]; 

__El,7 + ~1~] 

(b) It suffices to apply Theorem 2(b) and note that 

c >__ 0 :- E[c,71r] = - ~ [ - c o l ~ ]  = - c  ~ [ - , 7 1 r ]  = c E [ , z l r ] ,  

c ~ 0 ,~ E [ c @ - ]  = - ~ [ - c @ - ]  = c ~ [ ~ l r ] .  

(c) Since the identical - 1  is an elementary martingale, we have 

E[IIT] =-- /~[-- I lT]  > --(--1) = 1. 

The result E[ll-r ] = 1 was proved earlier in Theorem 2(c). 
(d) Immediate from Theorem 2(d). 

Proof of Theorem 4. Let 1,11 < c. We are required to prove that 

>_ f rldP; /~[o] 

indeed, in this case, we have 

= _< - f<- )dP = f , d Z  
d J 

(4) 

so E[r/] -- ~7[r/] implies E[r/] = f rl dP. Furthermore, we may assume 
that 77 > 0; the general case reduces to this as follows: 

Thus, we need onl_y prove the result for r/>__ 0. By Theorem l(b), 
we may replace ~7 by E* in (4). It suffices to prove that there exists no 
non-negative elementary martingale M such that 

:rldP,  limt~ooMt(w ) >_ rl(w),Vw. (5) Mo < 
d 



Forecasting Point and Continuous Processes 205 

Let us assume that such an M exists. Then M is a non-negative local 
martingale, with respect to (.T't) and P ,  (Dellacherie and Meyer, 1982, 
Ch. VIII, Nos. 3 and 9) and, hence, a non-negative supermartingale 
(Dellacherie and Meyer, 1982, Ch. VI, N. 29). Now, from (5), we can 
deduce that Mo < f MoodP (where M ~  := limMt), which contradicts 
the fact that Mn, n = 0 , . . . ,  cx~, is a supermartingale (Dellacherie and 
Meyer, 1982, Ch. V, Nos. 28 and 29). 

Proof o f  Theorem 5. We are required to prove that, for any two non- 
negative numbers a < b and any bounded U : N ~ ~,  

[U (N% - No, a)Iv~a] < f N  U(u)7:'b-a(du). (6) 

We fix a, b, and U. Specify a very large integer L > b and put 

b - a  
ci :=  a +  i ---7--, i = 0 , . . .  ,L,  

so that co = a and CL = b, and 

Ti :=  inf{t : At = ci} , i  = 0 , . . . , L ,  

7"--1 : ~  O~ TL+ 1 : ~  (X3. 

We define inductively, for n E N, the quantities 

UL(n):=U(n), 

b - a u i ( n  + l) + (1  b - a )  u i (n ) , i  = L, 1, U _l(n) := - Z - -  Z " '  

in the hope that this "backward averaging" will transform U ( N r  L - Nr  o) 
into Uo (0) ~ f U dPb-a in terms of U ( Nr  L - Nr0 ). Let a be the stopping 
time 

where it is desired that a = e~ in most cases. We let 

Ni := NriA a - Nro, i = O, . . . , L, 
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where Ni is allowed to take the value co and is defined as soon as 
r0 < co; it is not required that ri A a < co. Define H to be the 
elementary gambling strategy associated with the sequence (ri A a) of 
stopping times and the sequence 

hi : =  Ui+l(Ni q- 1 ) - U i + l ( N i ) ,  i = O , . . . , L -  1, h-1 :=  hL : = 0  

of partial random variables (the domain of hi is {Ti A a < co}). Also, 
define M to be the elementary martingale 

Mt :=  Uo(O) + (H. #)t. 

We shall prove that, for all k = 0 , . . . ,  L and all w with rk(w) < 

Mri(W) = Ui(Ni(w)), i = 0,. . .  ,k. (7) 

When i = 0, we have equality, so it suffices to prove that 

i r i+ 1 - M r  i = i i+ l (N i+l ) -Ui (Ni ) ,  i = O , . . . , k -  1, 

where, to simplify notation, we drop the argument w, i.e., 

hi" (#ri+l-tZri)  =Ui+l(Ni+l)-Ui(Ni) ,  

which is equivalent to 

(Ui+l(Ni -{- 1) - Ui+I  (/~r/)) ( ( J~/+l  -- Ci+1) -- (/~ri -- C,/)) 

~- Ui+l (Ni+l) - Ui(Ni), 
(8) 

i.e., 

(Ui+l (NiW1)-Ui+l (Ni ) ) (Ni+l -~ f i  
b-o) 

= Ui+l(Ni+l) b-L aUi+l(Ni + 1 ) -  (1  
b - a )  

i.e., 

(Ui+l (~Yi + 1) - Ui+l (Ni) ) (/Vi+I -/~Ti) = Ui+l (Ni+l) - Ui+l (Ni). 
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It is easy to see that this equality holds both when Ni+l = Ni and when 
Ni+l = ~ri + 1 (other possibilities are excluded by the requirement that 
rk(w) < a(w)). Thus, (7) is proved. 

Note that Mr o = U0(0) may be expressed as 

f{0,1} L U(Ul q-... + UL)13(dul)... B(duL), 

where B is the probability distribution on the set {0, 1} such that 

b - a  

L 

So, for large L, Poisson's theorem implies that Mr o is close to f Ud79b-a. 
This and (7) imply that M is a suitable martingale for use in the proof 
of (6). 

One essential requirement which M may violate is M > inf U. Let 
us show that Mr, where t < a, cannot be much smaller than inf U. Let 
t E]ri, ri+l Aa[ (fort = rj, the inequality Mt >_ inf U follows from (7)) 
and IUI _< c. It is easy to see that (8) will hold when Ni+l is replaced 
with Nt - Nr o. Therefore, 

(Ui+l (Ni + 1) - Ui+, (Ni) ) ((Nt - N.,- o - At) - (.Vi - ci)) 

i.e., 

U i + l ( N t -  gro ) --Vi(Ni) 
2c(b-  a) 

L 

M t  -- M r  i ~ Ui+l(Nt  -- N.ro) -- u i ( g i )  
2c(b-  a) 

L 

Adding this inequality to Mr i = Ui(Ni) gives 

M, > o) 2c(b - a) > i n fU  
L - 

So, for large L, the elementary martingale 

2 c ( b - a )  
L 

2c(b-  a) 
Xt : = M t +  

L 
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satisfies Xt  > inf U for t < a, Xr  0 is close to f U d79b_a and XT L > 
U(NL) when "rL < a. 

Thus, proving (6)reduces to proving that Pr[a  < col'r0] is small 
when L is large (indeed, since U and all the hi are bounded, a small value 
for this probability implies the existence of an elementary martingale 
Y such that Y > inf U everywhere, Y'~a is close to f Ud79b_a and 
Yc, b > U(Nc, b - Naa) when ab < co). Fix e > 0. It is evident that 
Pr[NL > fifo] < e for some constant r = r(e),  so we are reduced to 
proving that 

Pr  [NL < r ,a  < col'to] _< e. 

The idea behind our construction is straightforward: at the time of a 
jump of N,  we stake one unit on the basic martingale until reaching the 
next stopping time "ri. 

Put a-1 :=  0, ao :=  "ro, o'2r+l := oo; the remaining ak, k = 
1 , . . . ,  2r, will be defined inductively. Assume a2j, j < r, to be al- 
ready specified. Put 

a2j+l := inf {t : a2j < t <_ TL, ANt  = 1}, 

with A N t  :=  Nt - Nt - ,  

Define 

a2j+2 := in f{ t  : t > o2j+1,3i : t ---- "ri}. (9) 

h-1 : =  h2r : - -  O, h2j : =  O, h2j+l := 1 , j  ---- 0 , . . . , r  - 1. 

Let Ht be the elementary gambling strategy corresponding to  ( a k )  and 
(hk) and Z be the elementary martingale 

Zt := e + (H "~)t. 

T h e n  Zr 0 -- e and, provided L is sufficiently large, 

b - a  
Zt > e -  r > 0,Yt,  

L 

b - a  
NL(W) <_ r&a(w) < co ',- Zoo(w) >_ e -  r ~  + 1 >_ 1. 
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Remark 7. In the proof of Theorem 5, we have not used the coherence of 
the basic martingale. When the basic martingale is coherent, this proof 
implies that 

~ [U(Y% - 

if, f o r  or b = (x) ,  

Yoo)l~o] =_E [U(N% - Y~o)l~o] = f UaVb_o 

U(N%- N~) := { f U(Nc~ - Naa + V)Pb-Aoo(dv), i f N ~  < c~, 

0, otherwise. 

Proof of  Theorem 6. Without loss of generality, we assume that Bt = 
0, Vt, (otherwise, we may redefine Wt to be Wt - Bt). Fix 0 _< a < b 
and bounded continuous U : ~ , ~. We are required to prove that 

E, [U (W% - W~a ) [aa] <_ f ~  U(u)AfO,b-a(du). (10) 

We assume that U is a smooth function vanishing outside a finite interval 
(we can do this since Wt 2 - At  is a component of the basic martingale). 

We consider a very large integer L > b and define ci, Ti as in the 
proof of Theorem 5. Define inductively, for u E ~, the quantities 

uL(,,) := u(u),  

f 
Ui-l(U) J~ Ui(u + W)AfO,(b-a)/L(dW),i = L , . . . ,  1. 

Note that Uo(O) = f Ud, hfo,b-a. Define 

a := inf t :  [WTi+IAt- WTiAt[ 3 > 9e , 

where e is an arbitrarily small positive constant, and let 

ITVi := Wri A~ - WTo, IVi := W~i Aa, i = O, . . . , L,  
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h-1 :=  hL :=  (0; 0). 

Wi, liVi, and hi are undefined when Ti A a = oo; intuitively, the first 
component of hi is our stake on Wt and its second component is our stake 
on W 2 - At. Let H be the elementary gambling strategy associated with 
('ri A a) and (hi) and define 

Mt :=  Uo(0) + 9K~ + 3K (b - a)3/2 L1/2 + ( H ' # ) t ,  (11) 

where K is a positive constant specified below. We wish to prove that 

Mri(w ) > Ui(I7Vi(w)), i =  0 , . . .  ,k,  

provided "rk(w) < a(w). It suffices to prove that 

Mrs+, - + g i f t ' s + , -  r162 

> Ui+l(lZlTi+l) -- Ui(Vpri) - 3 K  , i = 0 , . . .  , k  - 1, 

again, dropping the argument w, i.e., 

h, " (#ri+ 1 -- #r,)  + KIIYVi+I- 17V, I 3 

>__ Ui+l (l~Vi+l) - Ui(V~ri) - 3K  

which is equivalent to 

nt_lu/t~_l (~ri)((~IZ?+I_ c./+l)_ (~r?_ el)) q- Kll/~ri+l- r162 

> Ui+,(Vpri+l) - Ui(~ri) - 3K , (12) 

i.e., 
(U/t+I(~Yl]'i)- U~l(~ri)lZi/ri) (VI, ri-t-1- ~/,ri) 
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1 ,, - . (l/~r/2+ 1 b - a )  q--2 U~+l(wi) -- ITVi2 L q- I([~V'i+I- vl'ri[ 3 

_> u~+l(ff'~+l) - f u~+l (?r + 
Y) Ho,(b_o)/L(dv) 

-3K ( b ~-----~a ) 3/2 . (13) 

There exists a constant K > 0 such that, for all u and v, 

( 1 ) IU(u+v)- U(u)+g'(u)v+-~U"(u)v 2 I_<Klvl 3. (14) 

It is easy to see that this inequality will continue to hold when U is 
replaced by Ui+I: we can repeatedly replace u by u + w in (14) and then 
average the left-hand side with respect tO.N'0,(b_a)/L (dw) (Kolmogorov, 
1950, Ch. IV, Section 5, Theorem 1). Thus, (14) implies that 

f ( 1 iTv~,b-a\ I Ui+l(~ri-[-V)J~fO,(b-a)/L(dV) - Ui+l(~Vi)-q--~Ui~l( i ) - ' ~ ) 1  

Now noting that 

<_ K /Ivl~A/'o,(~_.)/L(dv). 

K /  ]vl3.AfO,(b_a)/L(dv) g ( ~ - )  3/2 f [vl3.A/'O,l(dv) 

we can see that (13) reduces to 

(U/t+l(~ri)- U~l(~ri)vl/ri) (~/~l/ri+l- ~71,ri) 

1 ,, - ( -  I7V2 b - a )  Kll;Vi+I_I;Vil 3 q-2 U~+I(VV~) ~ ~//r2+l -- -- n + 

1 II I?V b - a  ~-- Ui+l(~'ri+l) - Ui+x(Vl'ri) - ~Ui+l( i) ~ , 
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i.e., 

Since 

v U J . ( ]  1 t t -  (~17/2+1_ ~ r / 2 ) K  i Tk~r/+ 1 ~,r/13 au2__+l,Wi . - --I- - 

)___ Ui-t- l ( Vlli q-1) - Ui q- l ( ~Vi ) . 

~::+~ - ::,~ = ( : : , + ,  - ~:,) + : : , ) ~ -  * :  

= (ff'i+x - f t . ) 2  + 2 ( a , ' i + ~ -  ff'~)ff'i 

= (ff'i+~ - f t . ) 2  + 2ff'i(ff'i+~ - if ' i) ,  

( i s )  

we may rewrite (15) as 

- - 1 l/ - 
V ~ + l ( W i  ) (~17i+1 W i ) " ~ U i + l ( W i )  (VI] ' i+I-  l/Iri)2+Kll~ri+l-ff',l 3 

>_ tri+l (r - ui+,  (lzvi). 

]'he last inequality reduces to (14). 
As in the proof of Theorem 5, there is a problem with the inequality 

M > inf U (this problem is now less serious because M is continuous). 
Let t E]ri, ri+l A a[ and IU"l ___ c It is easy to see that (12) will hold 
when l,~ri+l and t';vri+l are replaced by Wt - Wro and Wt respectively. 
So 

+ 2 _ + x . ~ .  - _ _ + - 

(~.a_) 3/2 c ( b - a )  
>_ U i + l ( W t  - Wr0) - Ui(VITi) - 3K 2L ' 

i.e., 
M t -  M,- i + K I W t -  l~il a 

_> c (b -  a) 
2L 
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Adding this inequality to Mr i >_ Ui(17Vi) gives 

(~_a_)3 /2  c ( b -  a) 
Mt > Ui+l(Wt - Wr o) - KIWt - 17Vii 3 - 3K 2L 

(b~__a) 3/2 c ( b - a )  
> inf U - 9K~ - 3K 2L 

So, by replacing Mt with 

X t ; =  M t + 9 K e + 3 K ( ~ - ~ - )  3/2 c ( b -  a) + 
2L 

we achieve X >_ inf U; also, Xr 0 is close to f UdjV'O,b_a (when r is 
small and L is large) and XT L > U(ITVL) when TL < a. 

Now redefine lYdi := Wr i. It remains for us to prove that, for 
arbitrarily small constants c, 5 > 0, 

L-1 ] 
Pr TL < C~, E ll'7Vi+l - l~il3 > 9e[To _< 6, (16) 

i=0 

provided that L is sufficiently large. Later, we shall prove the following 
two assertions: 

(a) there exists a constant C = C(6) such that, for large L, Pr[E117"0] < 
6/2, where 

E 1 :~ { } 
i=0 

(b) Pr[E~ fq EalTo] _ 6/2, where 

E2 := {w: TL(W) < ee, Cardj(w) > C3/r 

j (w) :=- {i = 0 , . . .  ,L  - 1:  [l/~ri+l(03) -- l/~ri(rO)[ > 8/C},  

E3 := {w: TL@d ) < (X), 

~i e j(a/): I~ri+l(Cd)- Y/,ri(w)l ~ 2c/6} .  
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We shall now see that (a), (b) imply (16). First note that E2 C E1 
(since (C3/e 2) (e/C) 2 = C) or, equivalently, E~ C_ E~. Part (b) 
implies Pr[E~ n E31"ro] < ~5/2. So, by part (a), Pr[E1 U E31"ro] < ~5. 
This implies Pr[Ei  U E2 U E3ITo] < 6. It remains to note that on the 
complement E~ O E~2 O E~ of Et  U E2 U Ea we have either "rL ---- c~ 
or 

L-I  
Z Ir162 - ~,(~)1 ~ 
i=0 

= ~ leci+t(,.,)- ~,(,..,)1 ~ + ~ I~,§ ~,(o.,)1 ~ 
iej(w) if[j(w) 

< (C3/e2)(2e/C) 3 + (e /C)C = 8e + e = 9e. 

Thus, our task has reduced to proving (a) and (b). Let us begin with 
(a). Define 

hi := b - a 2(b - a) ' i = 0 , . . . ,  L -  1, h - i  := hL := (0; 0), 

and let Ht be the elementary gambling strategy associated with ('ri) and 
(hi) and X be the elementary martingale 

6 
Xt  := "~ + ( H .  #)t. 

When "ri+t < cx~, 

(H" #)~+t - (H  "#)ri = hi" (#ri+ 1 - #7- i)  

"}- 2 ( 6 - a )  ( (  ~r2+1 - mri+l) - ( ~ri2 - a'ri)) 

and we have Xr  o = 6/2, 

t < "rL ==* Xt > ~/2 
L-1 
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and, on E l ,  

L-1 
6 b - a  

> 6 / 2  2 ( b - a ) ~ . =  ~ = 0 ,  

L-1 
6 (~ri+ 1 ~ri) 2 6 

XrL >- 2(b - a) E - > 2(b - a) C. 
i=0 

Therefore, it suffices to take C = 2(b - a ) / s  
It remains to prove (b). The idea behind our construction is quite 

natural: after detecting that i E j(w),  we stake a great deal on the 
martingale Wt 2 - At and, thus, our gain is non-negligible when the 
oscillation is great, despite the fact that we cancel the stake very soon 
after. Without loss of generality, we assume that r :=  C3/e 2 is an 
integer. 

Define o--1 :=  0, ao = To, and O'2r+l ::- oo; for k = 1 , . . . ,  2r, ak 
will be defined inductively. Assume that a2j, j < r, is already defined. 
Let 

o2j+1 :=  inf{t  : o2j < t _< -rL, 

3 i  : T i < t < Ti+I, IWt -- ~ri I >_ s / C }  

and define a2/+2 by (9). We then define 

h-1 := h2r := (0; 0), 

L6 L6 ) 
h2j := (0; 0), h2j+l :-- r(b - a) Wa2j+l; 2r(b - a) ' 

j = 0 , . . . , r - 1 .  

Let Ht be the elementary gambling strategy associated with (ak) and 
(hk) and X be the elementary martingale 

Since, for a2/+2 < cr 

6 
x t  := + (H.  

(S '~ )a2 j+2-  ( U ' # ) a 2 j + l  .-~ h2j+l" (#a2j+2- #a2j+l) 
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L6 
r(b-a) Wa2j+l ( Wa2j+2 - W~ 

L6 W. 2 

L6 2 
- 2 r ( b - - a )  ( ( W a 2 j + 2 - W a 2 j + l )  - ( A a 2 j + 2 - A a 2 j + l ) ) '  

we have X r  0 = 6/2 ,  

xt  >_ 3/2 
L3 r-1 b - 

2r(b - a) ~.= L 

a 
~ ~ 0 ~  

and we have, on E~ N E3, 

L6 r-1 )2  

2 r ( b -  a ) Z  ( W ~  W~ 
j=o 

- 2 r ( b - a )  - -  = 2 r ( D : a ) C  2 > 1, 

provided L is sufficiently large. 
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