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SUMMARY 

An expert (for You) is here defined as someone who shares Your world-view, 
but knows more than You do, so that were She to reveal Her current opinion 
to You, You would adopt it as Your own. When You have access to differ- 
ent experts, with differing information, You require a combination formula 
to aggregate their various opinions. A number of formulae have been sug- 
gested, but here we explore the fundamental requirement of coherence to 
relate such a formula to Your joint distribution for the experts' opinions. In 
particular, in the context of opinions about an uncertain event A, we inves- 
tigate coherence properties of the linear, harmonic and logarithmic opinion 
pools. Some general results on coherence of the joint forecast distribution 
are also developed. 
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1. INTRODUCTION 

It is sometimes necessary to construct a single opinion by combining a 
number of individual opinions. A decision maker might consult a num- 
ber of experts (financial, meteorological, medical etc.) before reaching a 
final decision. An ideal Bayesian approach to incorporating the experts' 
views would be for each of them to report all the data and background 
knowledge on which his or her opinions are based, and for You, the 
decision maker, to combine all this information with Your own prior 
opinions and any additional data You may have, using Bayes's theorem. 
However, this ideal will almost always be rendered unattainable, by the 
extent of the data, company confidentiality, or the inability of the experts 
to identify clearly the empirical basis and background knowledge lead- 
ing to their intuitive opinions. You are then left with only the experts' 
stated opinions. We shall suppose that these are expressed as probability 
distributions over a fixed set of events and quantities of interest. Your 
task is flaen to combine these into a suitable distribution to use as Your 
o w n .  

For an extensive review of methods of combining expert opinions 
see, among others, Genest and Zidek (1986). The two most widely 
used pooling recipes are the linear opinion pool (Stone, 1961) and the 
logarithmic opinion pool (Genest, 1984; Genest et al., 1986; Bordley, 
1982). An optimal linear opinion pool was derived in DeGroot and 
Mortera (1991). An axiomatic approach to opinion pooling is taken 
by e.g. Madansky (1964), McConway (1981) and Morris (1983). For 
a detailed discussion and criticism of this approach see e.g. Winkler 
(1986), Lindley (1986), Schervish (1986), Clemen (1986) and French 
(1986). A Bayesian model-based approach to pooling is taken by, among 
others, Winkler (1981), French (1985), Lindley (1985) and Berger and 
Mortera (1991). 

This paper investigates coherent methods for combining experts' 
opinions, when these are expressed as probabilities for some fixed event 
A. Neither axiomatic nor modelling assumptions of the usual kind are 
made. Instead, we work with a special and somewhat restricted defini- 
tion of what constitutes "expertise", as seen by You, the decision-maker. 
We consider an expert to be someone who "shares Your world-view", in 
the sense that, if you both had identical information, you would both have 
identical opinions. This is a natural assumption for those who, follow- 
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ing Keynes (1921), Jeffreys (1939) and Carnap (1950), hold a "logical" 
view of personal probability, under which probability is objectively de- 
termined by evidence. But even for a subjectivist it is a fairly natural 
assumption in our context, since it would be rash to take into account (at 
any rate in too naive a way) the opinion of some one whose world view 
was at odds with Yours. At any rate, the condition has sufficient prima 
facie appeal to make it worthwhile to investigate its consequences, as 
we do here. Note that, while we do not require that an expert be "well 
calibrated", in any frequency sense, we do assume that the probabilities 
the expert provides are correctly and coherently computed. 

With this interpretation, the only reason for consulting an expert is 
that She may have additional information, thus leading to different opin- 
ions, than You do. Although it may not be possible clearly to specify this 
information, we can utilise the underlying identity of Your distribution 
and Hers to help take due account of the opinions the additional informa- 
tion generates. This approach allows us to characterise the appropriate- 
ness of various formulae for combining different experts' opinions. We 
apply a "principle of coherence", that all probability statements should 
be consistent with a single overall probability distribution, common to 
You and all the experts when you are all in the same initial state of infor- 
mation. This principle does not identify a combination formula, but it 
does limit the possibilities. In particular, under a variety of assumptions 
and models, various simple formulae have been suggested in the litera- 
ture for combining probabilistic opinions. Here we examine when these 
formulae are coherent, i.e. justifiable within the framework we present. 

1.1. Preview 

In Section 2 we set out the definition of expertise with which we work, 
and note how this implies a coherence condition on formulae for com- 
bining expert opinions. For simplicity, we largely confine attention to 
the case of k = 2 experts. The main topic of this paper is the search 
for compatible pairs, comprising a function ~5(II1, II2) and a joint prob- 
ability disu-ibution P for II1 and II2. The definition of compatibility, 
with the necessary and sufficient conditions for logical consistency of 
compatible pairs, is given in Section 3. It is also shown how to construct 
compatible pairs, a problem related to recalibration. Section 4 is devoted 
to examples. The linear opinion pool, the harmonic opinion pool and the 
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logarithmic opinion pool are shown to arise naturally under certain dis- 
tributional assumptions. Under our interpretation of the term "expert", a 
notable result is that in the linear opinion pool it is not possible for all the 
weights to be strictly positive, contrary to assumptions commonly made. 
Explicit forms for combination rules ~I, compatible with independence 
and conditional independence assumptions are studied. General theory 
on coherent combination rules is given in Section 5, which is closely 
related to results in Strassen (1965) and Gutmann et al. (1991). A per- 
haps surprising result is that for any joint distribution P of H1 and H2, 
if there exists a compatible combination formula �9 then there exists one 
yielding only 0, 1 predictions: that is, �9 states with certainty whether 
the event A obtains or not. A brief discussion of extensions to more 
than two experts is given in Section 6, and some concluding discussion 
in Section 7. 

2. USING EXPERTS 

2.1. Who is an Expert? 

DeGroot (1988) gives two definitions of an "expert". Under a com- 
pletely liberal interpretation, an expert could be anyone who gives you 
a prediction. Taking a more restrictive view, DeGroot then considers an 
expert to be 

"someone whose prediction you will simply adopt as your own posterior 
probability without modification. This will be the case if you believe that the 
expert has all the information you have that may be relevant to the occurrence 
or non-occurrence of the event, and possibly additional information?' 

It is essentially this definition that we shall adopt here, calling such 
an individual an "expert" (for You). 

The requirement in the first part of the above quotation has been 
termed probability calibration (Lindley, 1982), or being well calibrated 
(DeGroot and Eriksson, 1985); the second part is assumed by, e.g. 
Clemen (1985). However, although it is implicitly assumed by 
DeGroot that the two parts are equivalent, this will in general be so 
only under further conditions, which we now introduce. 

Our basic assumption is that, at some past point of time, 

(i) You and the expert both started with identical information, and 
further 



Coherent Combination of Experts' Opinions 267 

(ii) you both had a common subjective distribution/~, expressing 
your shared uncertainty about all future events and quantities of 
interest. 

(We do not assume that it is possible fully to articulate 3~.) 
Suppose now that the expert alone has since obtained further in- 

formation, which can be regarded as observation of the value of some 
(possibly highly multivariate) quantity, X say. Your state of information 
has not changed, and hence Your current uncertainty is still expressed by 
the distribution/~. This is the scenario envisaged in the second part of 
DeGroot's definition. We shall first show that, under our basic assump- 
tion, it implies probability calibration, as expressed in the first part. 

Let A be an event of interest, and define 1I := Ib(AIX), the expert's 
revised probability of A. Although II is now known to the expert, to 
You II remains unknown, and is thus a random variable. If You know 
which additional random quantity X the expert has observed, then II 
is a known function of X,  and thus has, for You, a well-determined 
distribution. Note that both You and the expert originally assigned the 
same prior probability 7r0 = /5(A), which must also be Your current 
expectation of II. 

Now, using standard notation for conditional expectation given a 
random variable, and using the symbol "="  to denote identity of func- 
tions or almost sure identity of random variables, we have (since 1I is 
a function of X) -P(AIX, 11) ---/3(AIX) --- I-I, which is (trivially) a 
function of YI alone. Thus, using the notation for and properties of con- 
ditional independence in Dawid (1979), under/~, A II X lII. It follows 
that/b(AIX, 1-I ) =/~(A[II) ,  that is 

P(AI11 ) = 11. (1) 

The identity (1) is equivalent to probability calibration for the event A, 
as required by the first part of DeGroot's definition: when the expert 
reports Her probability II for A, You will adopt it as Your own. (A more 
subtle analysis is required when You do not even know which quantity X 
forms the basis of the expert's report, but the conclusion is unaffected.) 
More generally, if the expert's report 11 is Her full updated distribution 
over a collection of uncertain quantities and events of interest, then, for 
any such event we shall have probability calibration, fully adopting the 
expert's reported probability: ib(AlII) _= II(A). 
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We now study the converse relationship, assuming probability cal- 
ibration and deducing, even without making our basic assumption, that 
we can regard the expert as having started with the same distribution as 
You, and then having obtained further information. Thus suppose the 
expert will be required to report Her current distribution Ii, defined over 
some fixed collection .A of events (we might have simply ,,4 = {A }); and 
that You will then be willing simply to adopt her probabilities. For You 
II is currently uncertain, and we have/5(AIII ) -- II(A) for any A E ,A. 
Define X _---- I-I, a (somewhat abstract) random quantity for You. Then 
II(A) - - / 5 ( A I X  ). It follows that we can consider the expert's reported 
probabilitiesas being generated by Her having started with Your own 
distribution P ,  and then incorporating the additional quantity X.  

We have thus shown the equivalence of the two parts of DeGroot's 
definition, so long as the second part is expanded to require that You and 
the expert initially share the same joint subjective distribution/5 over all 
the relevant quantities. (We should point out, however, that whereas the 
second part implies the first no matter what events are being considered, 
the converse is false: it is possible to have an "expert" who is probability 
calibrated for some events, but not others.) 

In this paper we shall consider only the simplest case of a single 
event A of interest, and expert forecasts of the form II - /5(AIX), 
for suitable X.  We have shown that, under our basic assumption, if the 
expert knows at least as much as You do, then on learning Her probability 
II (and nothing else), You would adopt II as Your own probability for A. 

2.2. Coherent Combination 

Now suppose You have access to k different experts. If You were to 
obtain a probability for A from a single one of these, You would adopt it 
as Your own; but the various experts' probabilities typically differ, since 
they will be based on differing information. 

Before You consult the experts, their various reports ( I I 1 , - ' '  , I lk )  
will be, for You, uncertain random quantities, jointly distributed together 
with the uncertain event A. Since ( I I1 , . . . ,  IIk, A) will be the only 
random quantities which we shall here need to consider, it will be enough 
to consider Your overall joint distribution/5 as defined over these alone. 
We shall denote by P the implied distribution for the (IIi), marginalizing 
out over A. 
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How should You assign Your probability for A after learning all of 
theirs? The laws of coherence imply that You must assign the probability 
b ( A l i l i , . . . ,  I l k ) .  That is, we obtain the combination formula 

~(II1,""" ,ilk) ~ -P(AIIIi,-.., IIk). (2) 

(Note that, if expert i bases Her probability on observation of Xi, then 
IIi -= fg(AIXi ), where here P is extended to encompass the (Xi); but 
in general the value of Xi will not be fully recoverable from that of 
Ili, so that the right hand side of (2) will not usually be the same as 
- ~ ( A I X 1 ,  . . . , x k ) . )  

Now suppose that You can specify Your joint distribution P for the 
1-li, and contemplate using some combination formula if), which You will 
apply to whatever values of (1-[1, �9 �9 �9 1-Ik) the experts report to You. The 
principal question we address in this paper is: when will the use of ff~ 
be coherently compatible with Your joint distribution P for the reports? 
That is, when will there be an overall joint distribution t 5 under which 
Ill = P(AII l i ) ,  the implied distribution for ( i l l , ' " ,  l-[k) is P ,  and (2) 
holds? 

We emphasise that the scope of any combination formula if) is re- 
garded throughout this work as restricted to afixed event A and underly- 
ing probability structure P ,  common to You and all the experts in your 
common initial state of information. The only variable arguments of 
@ are ( I l l , . - - ,  1-Ik), the (initially unknown) expert forecasts for A. In 
particular, and in distinction to much of the literature, we do not require 
that the same formula should be used for different events; nor that the 
formula if), which might be written in an algebraic form involving partic- 
ular aspects of P (e.g. the prior probability 7r0 := P(A)) ,  should retain 
the same form when such aspects are changed. In our approach, ~0 is a 
known constant, not a mathematical variable. 

Although we suppose throughout that the experts all know at least 
as much as You do, we can also apply our results to the case in which 
You have some information which they do not. In this case, You can re- 
gard Yourself as just one more expert, and accordingly incorporate Your 
own views with the others. It is now necessary to regard the underlying 
common distribut~ozi _P as that obtaining before either You or the ex- 
perts obtained your differing information. In particular, if You learn the 
opinion of just one "expert", but are Yourself party to information which 
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She does not have, You would not in general accept Her opinion as Your 
own, but instead apply the results below for the case of two experts (one 
being Yourself). 

2.3. Related Problems 

Before addressing the question of compatibility between P and ~b, we 
remark on some related problems. 

2.3.1. Frequency Calibration. 
Let A1, A2 , . . .  be a sequence of events: in the archetypical illus- 

tration, Ai is the event that it rains on day i. A forecaster provides a 
probability 7ri for Ai. Let al ,a2 , . . ,  be the actual outcomes (0 or 1). 
The forecaster is well calibrated (in the frequency sense) if, when we 
consider just those events for which 7ri takes on some preassigned value 
7r, the limiting relative frequency of the outcome 1 is 7r; and this for all 
7r E [0, 1] (see e.g. Dawid, 1982, 1986; DeGroot and Fienberg, 1983). 

Whereas probability calibration refers to agreement between a sin- 
gle expert forecast and Your own subjective opinions, frequency cali- 
bration requires long-run agreement between a string of expert forecasts 
and the associated empirical outcomes. Although conceptually distinct, 
these two properties may be expressed in formally identical terms, an 
identity exploited by DeGroot (1988). Thus, from the observed pairs 
(al, 711), (a2, 7r2),. �9 �9 form the limiting empirical joint distribution: a 
distribution/5, say, for a random pair (A, II). This construction has been 
used by Dawid (1986), Murphy and WinNer (1992). Then the frequency 
calibration condition can be expressed as/5(AIII ) - II, identical in form 
to our definition of expertise, (I). 

Now suppose we have k forecasters, each individually well-calibra- 
ted, but in general giving a set of different probabilities (Trli, �9 �9 �9 7rki) 
for each Ai. We can extend the above construction to a joint empirical 
distribution t5 for (A, I I1 , . . - ,  IIk), constructed from 

{(ai,Trli,"',Trki) : i ---- 1, 2 , . . . } .  

Again P(AlrIi) =II i ,  for each i. Then, 

O(II1 , . - .  , I I k ) - / 5 ( A I I I 1 , . . .  ,IIk) 
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is just the limiting relative frequency of l ' s  in a subsequence of the events 
for which each Hi takes on a pre-assigned value. Such joint frequency 
calibration functions have been studied by Clemen and Murphy (1986). 

2.3.2. Conflicting Reference Sets. 
Suppose You, an insurance broker, wish to assess the probability 

that Mr. Smith, a 42-year-old travelling salesman, will have a motor 
accident next year. Your actuarial tables show that 11% of 42-year-olds 
and that 18% of travelling salesmen have an accident each year; but 
are not sufficiently finely classified to give an accident rate for 42-year- 
old travelling salesmen. You regard Mr. Smith as exchangeable with 
the individuals comprised in the tables. How should You assess the 
probability for Mr. Smith? The analogy (again a formal identity) with 
our definition of expertise is clear. Let II1 be the actuarial accident-rate 
based on an individual's age, and H2 be that based on his occupation. Let 
A denote accident, and/5 be the overall probability distribution to be used 
for setting insurance premiums. Then P(A]H1) ~ IIa,/5(AIH2) - H2; 
but we want/5(AlII1 , H2). If we know the joint distribution of (Ha, II2) 
in the population, what forms are allowable for this quantity? 

An application of the above structure arises in games such as base- 
ball, when we know the average hit rate for a batter off all pitchers, and 
against a pitcher by all batters, and need to assess the probability of a hit 
when a given pitcher meets a given batter (Gutmann et al., 1991). 

3, COMPATIBILITY 
We now investigate in detail the property of compatibility for the case 
of k = 2 experts. 

Suppose expert E1 observes X1 and tells You H1 = b(AIX1) .  
Similarly, E2 observes X2 and tells You H2 = P(AIX2) .  Then, as shown 
in Section 2.1, in the joint distribution t5 of (Hi, 1-I2, A),/5(A[IIi) = Hi. 
Define �9 :=/5(AIrI1 , he) ,  the coherent formula for combining the two 
expert opinions, and let P denote the distribution of (171,172). One then 
has 

0 _< �9 _< 1; (3) 

Ep( ln ) -- Hi, i = 1,2. (4) 
Note that (4) only involves the marginal joint distribution P for (II1, II2), 
and (3) and (4) are only required to hold with P-probability 1. By Bayes's 
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theorem, if P and/5  have densities p and 15 respectively, then 

15(7rl, 7r2]A) -- ~-o-l(I)(Trl, 7r2)p(Trl, 7r2), 

where ~0 = /5(A) is the prior probability common to You and the 
experts; similarly, 

15(7rl, 7r2].A ) ~-~ (1 - 7r0)-l{1 - (I)(Tl'l, 7r2)}p(Trl, 7r2). 

Now suppose that a distribution P for (I'i1, 1[2) and a function ,I, = 
�9 (II1, H2) satisfying (3) and (4) are given. In particular, (4) requires 
that 

Ep(I-[1) = Ep(II2)  -- Ep((I)), =:  7r0, say. (5) 

Together, P and (I) determine a unique distribution/5 for (H1, fi2, A), 
having marginal P over (H1, II2) and with/5(A]H1, II2) = (I). Then 
(4) ensures that P(AI l - I i )  - Hi, P(A) -- T0. Hence, taking Xi = 
Hi, so that Hi ~ P(A]Xi) ,  one has a situation in which II1 and II2 
are experts' probabilities having joint distribution P ,  and combining 
coherently according to the formula (I). 

We thus see that conditions (3) and (4) on P and (I) are necessary 
and sufficient for logical consistency. When they are satisfied, we shall 
say that P and (I) are compatible. 

We can now raise several general questions. 

1. How can we construct compatible pairs (P, (I))? 
2. Given P ,  how can we characterize all (I, compatible with P ?  
3. Given (I), how can we characterize all P compatible with (I)? 
4. Is a given (I) (or P) coherent, i.e. does there exist any compatible 

P (or (I))? 

We do not yet have complete solutions to all these problems: this 
paper constitutes some first steps towards them. 
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3.1. Compatible Pairs 
Construction of a compatible pair is straightforward: starting from any 
joint distribution P for (X1, X2, A), define Hi :=  /5(AIX~) and let 
P be the marginal distribution for (II1,II2) and (b := /5(AIYI1 , 1-[2). 
Calculation of (b is especially easy if I-Ii is a one-one function of Xi 
(i = 1, 2), since then 

~)(Tq, 7r2) = t5 {A Xl  = I-ii-l(Trl) ,X2 : 1-I2-1(7r2) }. 

In particular, one might have each of X1 and X2 taking values in 
[0, 1]. These could be probabilities produced by a forecaster who is 
not an expert according to our definition. Let k~ : [0, 1] 2 --~ [0, 1] 
be an arbitrary combination formula to be applied to (X1, X2), and 
let Q be the joint distribution of (X1, X2). One can then extend Q 
to a joint distribution P for (Xa, X2, A), on putting ~b(A]X1, X2) - 
flY(X1, X2). Let Hi :=  /5(AIXi), assumed one-one, and let P be the 
induced distribution for (II1, YI2). Then Hi is termed the recalibration 
of Xi, since, whereas Xi ~/5(AIXi) in general, by construction Hi - 
/5(AIIIi). In the frequency calibration interpretation of Section 2.3.1, 
1-[i(Xi) is the proportion of events occurring in those trials for which 
forecaster Ei quotes a probability of xi; Ei may not initially be well- 
calibrated, but will become so after recalibration. One then has 

P ( A I H 1  =  rl, n 2  = 7r2) - ~{I I l - l (7 r l ) ,  II2-1(7r2)} =: (b(Tq, 7r2) 

say. Then the distribution P for (II1, H2), and the combination formula 
,I), form a compatible pair 

3.2. Characterizations 
In general, the problem of characterizing all ,I, (or P)  compatible with 
a given P (or (I)) can be difficult - some relevant theory is discussed in 
Section 5. Here we merely note that such a set, defined by (3) and (4), 
is convex. It might be empty, or contain just one member, or many (see 
Section 5). It would obviously be useful to identify the extreme points 
of the convex set, but this too appears difficult in general. The set is 
typically not a simplex, so not amenable to analysis by methods found 
useful in other areas (e.g. extreme-point models, see Lauritzen, 1980). 
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4. SOME SPECIAL CASES 

In this Section various well known forms for the combination rule q~ are 
considered, and a (partial) analysis of their compatibility properties is 
attempted. All these formulae can be expressed in the generalized linear 
form 

g((I))  ----- Oqg( l ' I1 )  + oL2g(1-I2) -b C (6)  

where g is a continuous monotonic function. 
The linear, harmonic and logarithmic rules are special cases of (6). 

We conduct a full analysis of the linear rule. For the harmonic and log- 
arithmic rules compatible distributions are given and some properties 
noted, but we do not have a full characterisation. We also analyse some 
special cases compatible with independence and conditional indepen- 
dence properties. 

4.1. The Linear Opinion Pool 

The general linear opinion pool has the form 

(I) _--~ O/11-I 1 ~- O~21-I 2 -~- C. (7) 

Sup_pose that this combination formula arises from an overall distri- 
bution P ,  with marginal P for the (IIi). Taking expectations, and noting 

(5), we find that c = a07r0, with a l  + a2 + a0 = 1 and 7r0 := /~ (A) ,  the 
prior probability. In particular, if a l  + a2 r 1, ~0 = c / (1  - a l  - a2) is 
determined by (7). It follows, perhaps surprisingly, that every distribu- 
tion P compatible with ~ in (7) must assign the same prior probability 
to A. (If c/(1 - a l  - a2) ~ [0, 1], �9 can not be coherent.) 

We can thus express (7) as 

<I) = o/11-[1 + O~2II2 + a07r0. (s) 

Note that ~0 may be found from (7) as the unique solution of r 7r) = 
7r. In particular we see that, when both experts agree, You too will adopt 
their common forecast if and only if it is the exactly same as Your prior 
probability for A. 

It is now straightforward to characterize all distributions P compat- 
ible with (8). We shall suppose first that a l ,  a2 and c = a0~0 are all 
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non-zero, with ol 1 -q- o~ 2 q- oL 0 = 1 and  0 < rr0 < 1; these restrictions 
will be removed in Section 4.1.1. The condition (4) implies 

Ep(H2III1) =/~I-[ 1 + ( 1 -  A)Tr0 

Ep(HIIH2) pH2 + (1 - #)Tr0, 

( 9 )  

(10) 

where A := (1 - oq)/a2, # := (1 - c ~ 2 ) / o q ,  i.e. one has a linear 
regression for each Hi on the other. 

Conversely, any joint distribution P on [0, 1] 2 satisfying (9) and (10) 
is compatible with (b in (7), with 

1 - A 1 - # - ( 1  - A ) ( 1  - #)Tro 
(11) (Yl . - - - - ~  0~2--- - - ,  C=:  

1 - A #  1 - A #  1 - A #  ' 

so long as it gives probability 1 to the event 

0 _< alH1 + a2H2 + a0rr0 < 1, 

thus satisfying condition (3). 
Not all choices of the coefficients in (7) are coherent. Since, from 

(9) and (10), A# is the squared correlation p2 between Ha and H2, one 
must have 

0 < (1 --O<1)(1- Ol2)/OqO<2 < 1. (12) 

In particular, and in contrast with an assumption commonly made for 
linear opinion pools, it is not coherent for the weights a l ,  a2 and o<0 all 
to be strictly positive, since then both regression coefficients in (9) and 
(10) would exceed 1. The fact that all the weights in a linear opinion 
pool may not be strictly positive was also noted by Genest and Schervish 
(1985) and Singpurwalla (1988). For a discussion on the interpretation 
of possibly negative expert weights see Genest and McConway (1990) 
(however these authors do not use our definition of an expert). 

Conversely, when (12) is satisfied with strict inequality, we can 
indeed find a distribution P for (H1, H2) compatible with (7), so that 
formula is then coherent. We need to show that it is possible to satisfy 
(3), together with (9) and (10). Now (7) will be between 0 and 1 when 
(II1, H2) lies in a band between two parallel lines, this band containing 
the point (Tro, re0). We can then achieve the regressions (9) and (10) 
by, for example, taking (H1, II2) to be uniformly distributed inside a 
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suitably oriented ellipse centred on (Tr0, 7c0) and totally contained within 
this band. 

Shrinkage. More generally, suppose we have any distribution P on 
[0, 1] 2 with (9) and (10) holding, but which may not give probability i to 
0 _< ,I) < 1, where (I, is given by (8) with relation (11) between (al ,  a2) 
and (A, #). The set 

A = {(71-1,71"2) : 0 ~ oqzrl + 0~27r2 q- o~07ro ~ 1} 

contains (Tr0, 7r0). Construct a square S by shrinking each point in [0, 1] 9̀ 
towards (Tr0, 7r0) by a constant scale factor, sufficient to ensure that the 
whole square lies within A. Under this shrinkage map, P is transformed 
to a distribution P* on S. It is easy to see that (9) and (10) continue to 
hold for P*, and now 0 < �9 _< 1 with P*-probability 1, so that P* and 
(b are compatible. 

It may be checked that, among the coherent linear opinion pools, all 
and only those cases in which exactly one of a l ,  a2 or a0 is negative 
can occur, depending on the signs of 1 - A and 1 - p. Thus, if A > 1, 
we have a l  < 0, a2 > 0, a0 > 0. The somewhat paradoxical negative 
weighting on II1 can be partly understood by noticing that in this case 
E(II2 - 7r0lH1) ~ )~(H1 - 71"0) with A > 1 so that, in a sense, H2 - 7r0 
already incorporates, an exaggerated estimate of II1 - ~0, which is then 
corrected when II1 is observed. 

Now consider the case that (12) holds with equality. Without loss of 
generality we can take a l  = 1. We then obtain A = 0, implying p = 0. 
It follows that, for coherence, we must also have a2 = 1 in (10), and 
thus ao = - 1 .  Then we obtain the formula 

(I) ~ II1 + 1-I2 - ~0- (13) 

A distribution P will compatible with this r if and only if: 

(i) it gives probability 1 to the event 7r0 _< II1 + II2 _< 1 + zro, and 
(ii) E(HI[1-I2) = ~0, E(1-I2[II1) = 7r0. 

In particular, (ii) will hold when Ht and II2 are independent (each 
with mean ~0). This can be an'anged (e.g. by shrinkage) to hold with the 
support of (IIl,  H2) a rectangle contained in the set for which (i) holds. 
Consequently, formula (13) is indeed coherent. An intuitive description 
of (13) is that H1 and II2 contribute equally to Your final opinion; since 
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they both incorporate the common prior probability 7r0, this must be 
subtracted to correct for double counting. 

The following example, due to Mark Schervish, gives an explicit 
construction of a distribution P compatible with formula (7), in the case 
when a l  and a2 are both positive rational numbers. 

Example 1. Binomial model. Let O have the beta distribution Be[a, b], 
and, given |  X1, X2 and A be independent, with Xi ~ B [ni; O], for 
i = 1, 2, and pr(Al|  ) = (3. Define no := a + b. Then 7r0 = E (O)  = 
a/no. One has 

1-[1 := pr(AlX1 ) -- E(OIX1) = (a + X1) / (no  + hi) .  

Similarly, 

1"I2 -~ (a q- X 2 ) / ( n  O + n2), ffP ~ ( a q - X l q - X 2 ) / ( n o q - n l q - n 2 ) .  

Thus ~ has the linear form 

a1171 + a2II2 + aoTro 

with a l  := (no + nl) / (no + nl + n2), a2 := (no + 7~2) / (no + nl + n2), 
and ao := - n o / ( n o  + nl  + n2). 

The joint distribution P of (IIa, 1-I2) is discrete, a transformed bivarl- 
ate beta-binomial distribution. Although q~(0, 0) < 0 and ~(1, 1) > 1, 
P puts all its mass on points for which 0 < (b < 1. 

Example 2. Dirichlet model. Let (X1, X2, X3, X4) jointly have a Dirich- 
let distribution D[a, a, b, c], and let H1 --- X1 + X3, II2 -- X2 + X3, 
thus defining a joint distribution P for (1-I1,172) with 

E(II1) = E(H2) --- (a § b)/(2a + b +  c) = 7to. 

By well known properties of the Dirichlet distribution, 

E(X3II-I2 = 7rz) - E(X3IX2  + X3 = 7r2) -~ {b/(a + b)}Tr2. 

Similarly, 

E(XI IH2  = 7r2) -- E ( X I l X 1  + X4 = 1 -  7r2) - {a / (a  + c ) } ( 1 -  7r2). 
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Hence 

E ( 1 7 1 [ I h )  - a/(a + c) + {b/(a + b) - a / ( a  + c)}He 
-- Age + (1 - A)zro 

where A = (bc - a2) / (a  + b)(a + c). Similarly 

E ( n 2 1 n l )  - , nl + (1 - A)Tr0. 

In this case, the corresponding linear ~5, given by (11), is 

= (1 + A)-I{II1 + 172 - (1 - A)Tro}. (14) 

However the support of P is the whole of [0, 1] 2, a n d  (for example) 
(I, < 0 at (0, 0), ep > 1 at (1, 1). We therefore apply shrinkage to 
P ,  so obtaining a distribution P* giving probability 1 to (3), and thus 
compatible with formula (14). Note that the c a s e  a 2 = be, i.e. )~ = O, 
provides an example of a distribution, compatible with (13), where 171 
and 172 are not independent. 

4.1.1. Zero Weights. 
We now relax the assumption that 0/1, 0/2 and c in (7) are all non- 

zero. Suppose first 0/1 ~- 0 (the case c~2 ---- 0 is similar). Then under 
any compatible/5, ~ :=/5(AIII1 ' He) is a function of H2 alone, so that 
A _11_ IIl[II2, and so �9 - /5(AI172) = 172 almost surely. Thus we must 
have a2 = 1, c = 0 (unless, with �9 - a2II2 + (1 - a2)Tr0, 1-i2 = 7r0 
almost surely, in which case also 1I 1 ~ E(~b[II1) = 7r0 almost surely, 
the case of two entirely uninformative "experts"). 

The condition A _11_ 171[II2 is equivalent to H1 _11_ A[H2, implying 
(Dawid, 1979) that 172 is a "sufficient statistic" for inference about A 
based on both 111 and I-i2. That is, 171 is giving no additional information 
about A, once 172 is given. Clemen (1985) calls such an expert E1 
"extraneous". A distribution P is compatible with this property if and 
only if E(II2 [II1) -- II1. Note that a distribution with this property might 
also be compatible with other combination formulae, which do not ignore 
the information in H1. However, the condition E(1-I2[II1) -- II1 does 
imply that expert E2 is more refined than E1 (DeGroot, 1988), so that, 
if You have the choice of consulting either E1 or E2, but not both, You 
should always select E2. 
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Now consider the case c = 0, so that (I, = CelH 1 + ce2H2, with cq + 
a2 = 1 for coherence. Having already treated the contrary cases above, 
we suppose cq, c~2 r 0. Forcompatible P ,  the condition E(ff]H1) = II1 
implies E(II2IH1) = HI,  and similarly E(IIIIII2)  = II2. But these 
properties can only hold together when H1 = H2 almost surely, so 
that the two experts have identical information, and either of them is 
"extraneous" when the other is available (which is not, of course, to say 
that they can both be dispensed with). Then (I, -- H1 ~ II2 almost 
surely. 

Much of the literature on the linear opinion pool assumes a0 -- 0 
in (8) which, we have seen, is not coherent unless at least one expert is 
extraneous. However the incorporation of a constant term appears more 
reasonable when we express (8) as 

(~  - -  71"0) : OQ ( l ' I  1 - -  71"0) q-  O~2(1"-[ 2 - -  71"0) , 

relating the deviations of Your posterior probability and those of the 
experts from your common prior probability 7r0. Recall, too, that we are 
assuming a fixed overall probability structure (common to all parties), 
so that (8) is not required to continue to apply if ~0 changes. 

4.2. The Harmonic Opinion Pool 
Example 3. Negative Binomial model. Let O have a Be[a, b] prior 
distribution and let X1, X2 and A be independent, with Xi ~ NB[ki; O], 
for i = 1, 2, and pr(A[O) ~_ O. Then 

7to :=  E ( O )  = a/(a + b), 

Hi :=  P(A]Xi)  - E(O[Zi)  =- (a + ki)/(a + b +  Xi),  i = 1,2, 

and 
~b -- (a + kl + k2)/(a + b + X1 + X2). 

Thus ~ has the form of a harmonic opinion pool 

(I)-1 ~ oqH1-1  q- c~21-I2 -1 -~- c (15) 

where O~ 1 -~- ( a  -4- kl)/(a + ]~1 -~ k2), 0~2 = ( a  --~ k2)/(a + kl + k2), and 
c = aoTro -1 with ao --= - a / ( a  + kl + k2). 

Note again that a l  + a2 + ao = 1, so that q~(Tro, 7r0) ---- 7to; and that 
a l ,  a2, ao are not all positive. 
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4.3. Logarithmic Opinion Pool 
The logarithmic opinion pool has the form 

r = kI-[1al lI2a27roaO, 

1 - (I) = k(1 - Hi)a1 (1 - n2)~2(1  - ~r0) ~~ (16) 

In what follows we express (16) as 

logit(I) = a l log i tH1 + a21ogitH2 + c (17) 

where logit~- :=  log{~-/(1 - 7r)} and c = o~01ogit~-0. 

Example 4. Normal Model. Given A or .7t, let (X1, X2) be bivariate 
normal with var(X/IA) = var(Xi [ ] i ) =  1, 

cov(X1,X2lA) -- c o v ( X l , X 2 [ 2 t )  = p (p2 • 1), 

E(XiIA) = 6i/2 and E ( X i [ 2 t )  -- - 6 / / 2 .  The prior probabi l i ty  ~0 is 
arbitrary. The normal model  was extensively investigated by French 
(1980, 1981), but without our criterion of expertise. 

Let Hi : = / 5 ( A [ X i ) ,  (I, := ]5(A[X1, X2). Applying Bayes's theo- 
rem we find 

logitHi = logitTr0 + 6iXi 

and 

log i tP (A[X1 ,  )(2) =logitTr0+ 

(1 --  p 2 ) - 1 { ( 6 1  -- f162)X1 -t- (62 -- p 6 1 ) X 2 } .  

Hence (I) = P(A]X1, X2), and (17) holds, with 

Oll ~-- ( 1  - -  p r ] ) / ( 1  - -  p2)  

a2 = (1 -- pr / -1) / (1  - p2) 

where 77 = 62/61 and ao = 1 - a l  - a2. 
Note that the weights in the logarithmic opinion pool depend on 

(51 and 62 only through 7]. Under the compatible joint  distribution t9 
in this case, (logitH1, logit lI2) has a mixture of two bivariate normal 
distributions. 

Again we have ao + a l  + a2 = 1, and, if ao r 0, formula (17) 
determines 7to. Note that, since ao = - ( 1  - p2)ala2, it is again not 
possible for so ,  oq, a2 all to be strictly positive. 
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4.4. Conditional Independence 
Let Hi := P(A[Xi) ,  i = 1, 2 and assume that IX 1 _lJ_ II2[(A, 2t), that is 
the two experts' opinions are conditionally independent given A or ,7t. 
Then it can be easily shown that 

( 1 -  7:o)IIlII2 (18) 
:=  P(A[H1, II2) = (1 - 7:0)Hl1-I2 + 7:0(1 - II1)(1 - H2) 

or equivalently 

logit(I, - logitH1 + logitII2 + c, (19) 

where c = -logit7:0 (so 7:o = (1 + ec)-l) .  We thus obtain a special 
case of (17) with a l  = a2 = 1, which can be analysed in more detail. 
The following theorem characterizes all joint distributions compatible 
with (19). 

Theorem 4.1. A necessary and sufficient condition for a joint den- 
sity f(7:1,7:2) to be compatible with ~b given in (19) is that 

f(7:1,7I"2) ~ [(1 - 7:0)7:17:27:0(1 + 7ro(1_ ~ro)- 7I"1)(1 -- 7:2)] g(7:1,7:2) (20) 

where 7:0 = (1 + eC) -1 and 9 is a density such that 

E g ( I l l l I I 2 )  = E g ( I I 2 1 I I I )  - 7:0. (21) 

In this case 7:0 is the common expectation of H1 and FI2 under f 
and, thus, the prior probability of A. 

Proof. See Appendix. 

It is interesting that the condition on 9 is mathematically identical 
to that on f needed for compatibility with the combination formula (13) 
(although the condition 0 _< �9 _< 1 is automatically satisfied in the 
present case). The conditional independence construction of (18) is 
recovered when 1-i I _[[_ 1"12 under g. 

Note that if (20) holds then 

f(7:l,  7:21 A) = 7:1~2g(7:1, 7:2)/7:0 2 

and 
f(7:1, 7:212[) = ( 1 -  71"1)(1- 7:2)g(7:1, 7:2)/(1- 71"0) 2. 
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4.4.1. Independence. 
Final ly  cons ider  the general ised log-linear formula  

log(,I) + a) -- log(Ha + a) + log(II2 + a) + c (22) 

for constants  a, c. Equivalently,  

---- ee(II1 + a)(II2 + a) - a. (23) 

Again,  the compat ib i l i ty  condi t ion (4) is seen to hold if and only if, under  
P ,  E ( I I l l I I e )  -- E ( I l e t I I1 )  -= 7r0, where  in (22) c = - log(Tro + a),  so 
that ~(Tr0, 7r0) = 7r0, and 7r0 is the prior probabili ty of  A. (Formula  (13) 
is a l imit  of  (22) as lal oc). In particular, the case of  independence ,  
H1 _11_ 17e, with  E ( H 1 )  = E ( I I e )  = 7r0, satisfies (4). 

However  for  condi t ion  (3) to hold, (II1, He) mus t  be restricted to 
a subset  of  the uni t  square, contained in the region where  0 < �9 < 1. 
W h e n  171 _11_ II2 the subset  mus t  be a rectangle. 

For  a = 0, ~5 = II1He/Tr0. Thus  any distribution for which  I-i1 
and He are independent ,  E(I-[i) = 7r0, and sis9 < 7to, where  si = 
wesssup17i, is compat ib le  with (I) = IIlII2/7ro. Note that in this case 
rIa ~ IIeIA (butnot171 11 IlelJt) .  

Similarly,  for  a = - 1  we get 1 - �9 = (1 - II1)(1 - 172)/(1 - 7r0), 
equivalent  to the case a = 0 on interchanging A and A. 

4.5. Some Conjectures 

In all our  variants of  (6), we  have found that, in fact, 

g(( I ) )  = O l l g ( I I 1 )  -~- oL2ff ( I Ie )  q- Og0g(71"0) , (24) 

where  s0  +(~x + c~2 = I and 7r0 = P ( A )  = E p ( ~ )  for any P compat ib le  
with ~ ;  further, not  all the a i ' s  can be positive. This  has been fully 
verified in the l inear case (7), and holds for (15) for the const ruct ion of  
Sect ion 4.2. Likewise  for (17) under  the normal  construct ion,  and for 
(19), by T h e o r e m  4.1, with oq = a2 = 1, s0  = - 1 .  For (22), equivalent  
to (23), we  have shown that, for compat ib le  P ,  Ep(IIe[171) = 7r0 = 
e -c  - a, so that  7to = E p ( H e )  = Ep(eg), and again (24) holds with 
oL1 = Ce2 ~-- 1, oL0 = - 1. 

So long as (24) holds with s0  + a l  + c~2 = 1 and c~0 r 0, 7r0 
is the un ique  solut ion of  @(Tr, 70 = 7r. In particular, a l though various 
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different distributions P for (II1, FI2) may be compatible with such a ~ ,  
all of  them have the same value for 7to = / 3 ( A ) .  That is, the form of 
uniquely determines rr0. It is interesting to speculate how general this 
result might  be. 

For a general  combinat ion formula ~ ,  let 

, a =  {,~ ~ (0, 1 ) :  ~(,~,,~) = ,~}. 

For any 7r E A we can find a distribution P ,  compatible with ~ ,  having 
/3(A) = Ep(,I~) = ~-: simply take P to put probability one on the 
point (Tr, ~r) (the conditions (3) and (4) are clearly satisfied). We may 
conjecture that, when  @ is continuous, then re0 = Ep(@) E ,A, for any P 
compatible  with ~I,, and such that P( ( I I1 ,  H~) = (0, 0) or (1, 1)) = 0. If  
so, then rr0 for such P will be uniquely determined by the form of �9 when  
.A has a single element.  Also, for the generalized linear form (6), we  can 
then deduce  the desired property c = a09(rc0), with o~0 + a l  + oe2 = 1, 
and hence  determine 7r0 whenever  c ~ 0. 

W h e n  c = 0 in (6), the analysis conducted in Section 4.1.1 for the 
linear opinion pool shows that at least one of the experts must be extra- 
neous. This appears to hold more generally. Thus, for the construction 
of Section 4.3, we have o~0 = - ( 1  - p2)alo~2. Thus (for p2 < 1) if 
oe0 = 0, we  have either o~1 = 0 or o~2 = 0. If O l l =  0 then q~ = H2, as in 
the l inear case, and similarly if o~2 = 0. In these cases ,,4 = (0, 1), and 
any value for r~o is possible. 

The case p2 = 1 is a little more complicated. Changing the sign of 
X1 and (51 if necessary, we may assume p = 1. If (51 ~ (52, formula (17) 
does not hold: in fact, for p = 1, we obtain (I) = 1 or 0, according as 
X 1 - X 2  = ((51-(52)/2 or ((52-(51)/2, the only two possible values, where  
Xi = (logitII i  - logitrr0)/&. But if also (51 = (52, then �9 = 111 --= H2 
almost surely, and both experts are extraneous (and (17) holds with 
o~0 = 0 and any oq, oe2 such that cq + c~2 = 1). Again in this degenerate 
case any value of fro is possible. 

In these examples of (6), we can thus only have c = 0 when, under 
any compatible  P ,  at least one expert is extraneous. This is an unexpected 
and somewhat  unsettling property, for which we do not have a convincing 
explanation. Nevertheless we are led to conjecture that it may be a 
general property of  any formula of the generalised linear form (6). We 
further conjecture that, as in all our examples, whenever  (24) holds it is 
not possible for all of  o~0, oq and a2 to be strictly positive. 
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5. GENERAL THEORY 

In this Section the compatibility of a combination formula r and a joint 
distribution P for (HI, II2) is studied, by relating this problem to that of 
existence of probability measures with given marginals. 

Theorem 5.1. Let P be a joint distribution for (II1, H2) with 
E(II1) = E(II2) = fro; and let ,I, : [0, 1] 2 --+ [0, 1] be a com- 
bination formula. Define a finite measure Q by dQ(rrl, rr2) :=  
'I'(rrl, 7r2)dP(rrl, 7r2) (thus when P is absolutely continuous with 
density p, Q, has density q(rrl, 7r2) :=  ff(Trl, rr2)p(rra, 7r2).) Let 
Pi, Qi be the marginals for Hi under P and Q respectively. Then 
r and P are compatible if and only if dQi(Tri) = rcidPi(rci) =: 
dP~ ( rri) say(or, when marginal densities exist, qi( rri) - 7ripi( Tri ) =: 
p~(rri), i = 1,2). 

Proof. See Appendix. < 

Given P ,  Theorem 5.1 thus reduces the problem of finding a compat- 
ible r to that of characterizing measures Q having specified marginals 
(P/*), and such that dQ/dP  < 1. This has been studied by Kellerer 
(1961) and Gutmann et al. (1991). 

5.1. Coherence of Joint Forecast Distribution 

If 1-I 1 and H2 are both produced by "experts", then one should not expect 
them to be wildly different. For example, it would seem paradoxical if, 
with 1I 1 say uniform on [0, 1], one always had 1-I2 = 1 - II1. This sug- 
gests that not all joint  distributions on [0, 1] 2 for (II1, H2) are coherent. 

If, for a joint  distribution P on [0, 1] 2, there exists a compatible ~, 
then we can construct the associated joint distribution/3 for (H1, II2, A), 
and then P (A I I I0  --- rli; so that P is coherent; and conversely. So 
coherence of P is equivalent to the existence of a compatible ~,  or 
equivalently, by Theorem 5.1, to the existence of a finite measure Q 
on [0, 1] 2 with d Q / d P  ___ 1 and given margins (P/*). A necessary and 
sufficient condition for this is (see, for example, Strassen, 1965, Theorem 
6): for all measurable D, B C [0, 1], 

P ; ( D ) -  P~(B) < P (D  x J~) (25) 
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or, when densities exist, 

fD 711Pl(7il)dTll- ~ 7r2P2(Tr2)dTr2 ~ ~DxD p(Trl'Tr2)dTrldTr2" (26) 

Note that on replacing B by B, and using f~ 7rdP1 = f l  7rdP2 = 7to, 
(25) becomes 

fD U d P 1  + ,raP2 _< no + P ( D  x B) (27) 

The following Theorem shows the incoherence of any distribution 
for which, for some 0 _< Cl, c2 < 1, HI - ca and II2 - c2 always have 
opposite signs. 

Theorem 5.2. Suppose P(II1 _< ca A II2 _< c2) = P(IIa _> ca N 
II2 _ c2) = 0. Suppose further that P(I-Ij > cj) > O, where 
cj = max(ca, c2). Then P is not coherent. 

Proof. See Appendix. < 

Gutmann et al. (1991) point out that, whenever P is absolutely 
continuous, and there exists a measure Q with d Q / d P  <_ 1 and given 
marginals, then there exists such a measure with d Q / d P  taking values 
0 and 1 only. The following result then follows from Theorem 5.1. 

Corollary 5.1. Suppose P is an absolutely continuous coherent 
joint distribution for (HI, Ii2). Then there exists a compatible com- 
bination formula q, taking values 0 and 1 only. 

This result is somewhat surprising. It implies that for any such coher- 
ent distribution of experts' opinions (HI, II2), it is logically consistent 
that the combination of these opinions could deliver absolute subjective 
certainty as to whether the event A holds or not. 

Another result of Gutmann et al. (1991) shows that, when II1 and 
II2 are independent, there exists a compatible ~5 which is non-decreasing 
in each argument (but it might not, under this additional restriction, be 
possible to ensure that this ~1, takes values in {0, 1} only). 
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We further note the following application of Example 2 of Gutmann 
et al. (1991)o Suppose II1 and II2 are distributed, independently, uni- 
formly on [0,1]. Then the unique combination formula compatible with 
this joint distribution is 

1 if H a + H 2 >  1 
q~= 0 if H i + H 2 _ <  1. 

6. MORE THAN TWO EXPERTS 

We will now consider some extensions of the previous results when there 
are more than two experts. 

For k > 2 the linear opinion pool is 

k 

(I' = E aiII,  + a0zro 
i=1 

with }--~0 o~i = 1. From the definition of an expert one requires that, 
under a compatible P ,  E(cb[IIi) = II~, that is 

  E(njlno ---(1--oli)II i-oloTro.  
j>_l,j#i 

In general, one cannot deduce that the regression of II i  on the remaining 
II's is linear. However, one can impose the stronger requirement on P 
and q5 that the induced coherent combination formula for any subset of 
the H's be linear, and then deduce that the regression of any Hi on any 
subset of the remaining II 's must be linear. For example, if k = 3 we 
have E(qSlII1, H2) = Ctll-I 1 + ct2M2 + ct3E(lI3[I-I1,112) + c~ozro, and 
this is linear if E(IIa III~, II2) is; the linear regression of E(FI1 [H2) then 
follows from the case k = 2. 

Most of the examples extend quite trivially when k > 2. For Exam- 
ple 1, let Xi  ~ B[ni; O], i = 1 , - . . ,  k. One obtains the linear opinion 
pool 

k 

r -- E c~il-Ii + ao~o 
i=1 

where oli = (no + ni) / (no + E L I  hi), so = - n 0 / ( n 0  + Y  ik=l ni). 
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For Example 2, let (X1, �9 �9 �9 Xk, Xk+l,  Xk+2) have a Dirichlet dis- 
k 

tribution D[a,. . . ,a,b,c] and let Hj := Xj + Xk+l,j  = 1 , . . . , k .  
One can easily show that E ( H j )  = (a + b)/(ka + b+ c) = 7to, 
E(XjlII1 ) =- (1 - H1)a / { (k -  1)a + c}, E(Xk+IIII1) = I-[lb/(a + b). 
Hence 

E(HjIII1 ) -- {b/(a+ b)}H1 + [a / { (k -  1 ) a +  c)}](1 - II1) 

and, after shrinkage, one obtains a distribution compatible with the linear 
opinion pool 

( ~ - [ 1 / { l + ( k - 1 ) r } ] { ~ H i - ( k - 1 ) ( 1 - r ) T r o } i = t  

where r :=  {b/(a + b)} - a/{(k - 1)a + c}. 
Example 3 is likewise easily extendible to k > 2. In all these 

examples, it again turns out that the ai ' s  cannot all be strictly positive. 
This again could be conjectured to be true in general. 

Consider now, extending Section 4.4, the case of k > 2 expert 
opinions, conditionally independent given A or it. One can show that 

:=  P(A]II1,. . . IIk) 
(1 7I"0) k-1 k - l-L=1 ~ i  (29) 

k 
(1 - ~ 0 7  - 1 1 - I ~ l  ~ i  + ~0 k-11-Ii=l(  1 - Y~i) 

The necessary and sufficient condition for the joint density f(~-) to 
be compatible with �9 of (29) is now that 

k 
{/__I~1(1--7ri) } /(l--Tco)k-l]g(Trl, "'',Trk) 

where 9 is a density such that, for j = 1 , - . . ,  k, 

- = E g [ { 1 - I ( 1 - I I i , } / ( 1 - T r o ,  k-1 IIj]. 
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In the generalization of(23) to the case ofk > 2 independent experts, 
we have the combination formula 

d~ ~ (1-Ii-Fa) / (TvOq.-a)k- l - -a .  (30) 

A distribution P is compatible with (30) if and only if, for j = 1,- �9 �9 k, 
E[I-LCj(II i + a)[IIj] _= (Tr0 + a) k-l, and P gives probability 1 to 
0 _< (I) < 1. It is no longer immediately evident, however, that these 
conditions require E((I)) = zr0. 

Theorem 5.1 and Corollary 5.1 extend straightforwardly to the case 
k > 2. However, with more than two experts, there is no simple coun- 
terpart of the existence condition (25). 

7. DISCUSSION 

The purpose of this paper has been to examine coherence properties 
of various methods for combining opinions expressed as probabilities 
for some fixed uncertain event A, by relating the combination rules to 
an overall joint distribution, for all relevant unknown quantities, which 
we have supposed common to You and the experts. More generally, it 
would be desirable to extend the analysis to the case where the experts 
report their probabilities for a number of events, in particular where their 
opinions take the form of full probability distributions for some uncertain 
quantity 0 of interest. This would require investigation of coherence 
properties for a joint probability distribution encompassing both 0 and 
the experts' distributions for 0. While various workers have developed 
models for such joint distributions (e.g. Lindley, 1985), the implications 
of coherence, taken together with our definition of expertise, have not 
been considered. 

Our basic assumption, that You and the experts would agree about 
your probabilities when you have the same information, could be criti- 
cized as too strong in general. One way in which it might be achieved 
is by interaction between You and the experts at the initial point of 
time. DeGroot (1974) described an iterative interaction process lead- 
ing to convergence of individual opinions, when the individuals update 
their opinions in the light of the others' opinions. While it would be 
difficult to apply this formally to the problem considered here, since the 
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distributions to be shared would need to apply to the experts' own future 
opinions, or at least to the variables which they will be based on, it does 
suggest that our basic assumption should be reasonable in at least some 
contexts. 

Most of the literature on combining opinions uses axiomatic proper- 
ties or modelling assumptions to derive particular pooling recipes. Com- 
pared with these, our assumptions are not so restrictive; furthermore, and 
completely generally, our analysis offers valuable guidance for assessing 
pooling formulae that have been suggested from other approaches. 
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APPENDIX 
Proof of Theorem 4.1. 

Note that with definition (18), 0 _< qs(II1,1-I2) < 1 for all (Ha, II2) 
and (20) is equivalent to 

f(Trl, ~2) ~ 7rlT2g(Trl, 7r2) / {710(~(7rl, 7r2)} . 

Suppose (20) and (21) hold. Then 

f1(Tr1) -- 91(71"1) E 7r2g(Tr217rl)dTr2-t- 

11 - 7rl / (1 - ~2)g @2 Izq) dzr2 } -  ~-o 

= gl(zrl) [TrlTro-1Eg(II21~'l)+ 

(1 - 7r1)(1 - ~ o ) - 1 {  1 - Eg(II217rl) } ]  

-- gl(Trl). 

Similarly f2(~2) ---- 92(sr2). Thus 

E((I)[X-I2 = 7t"2) ~ / (I)(~1, 7r2)f(Trll~2)dTq 
d 

f (D(Jr1'Tc2)f(Tcl'T:2){g2(Tr2)}-1dTrl 

7l2710 -1 j 7t19(711 [Tr2)dTrl 

-~ 7r2 
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and similarly E(4)IH1) _= H1. Hence f(Trl, 7r2) is compatible with 4). 
Conversely suppose 4) and f(Trl, 7r2) are compatible and define g(Tq, 7r2) 
by (20). Then 

4)(Trl, Tr2) f (Tr1, Tr2)dTrl - 7r2f2(yr2) 

SO f 7rlff(71"l, 712)dTr1 ------ 7rof2(Tr2). Similarly 

(1 - 7r1)g(Tr1, Tr2)dTrl - - (1 7r0) f2(Tr2), 

thus g2(Tr2) -- f2(Tr2). Hence 

E (nlln2) --- E g ( n 2 1 n l )  - 

Further, 

Ey(171) = E l l  (171)= Ea 1(Ill) = Eg 2 {Eg(1711172)} = 7r0, 

and similarly EI  (H2) = 7r0. ,~ 

Proof o f  Theorem 5.1. 
Suppose 4) and P are compatible. Consider the unique joint dis- 

tribution P for (H1, II2, A), with marginal P for (171, He) and with 
P(AI171,172 ) := 4)(1I1,II2). Then P(AI17i ) -= 17i and P(A)  = 
f 4)dP = 7ro. 

By Bayes's Theorem, under/5 the distribution of (171,1-I2) given A 
is just Q/Tro, which is thus a probability distribution; and then Qi/Tro 
is the distribution of Hi IA, so that, again by Bayes's Theorem, one has 
7ro-l dQi(Tri) =- 7rolTridP(Tri), and hence Qi = P*. 

Conversely, suppose Q << P is a finite measure having marginals 
Qi = P~, and with d Q / d P  = 4). Then, for any measurable function k 
of H1, 

Ep{ 4)k(1-I1) } = / k(Trl)(dQ/dP)dP = / k(Trl)dQ 

= f k( l)dQl= f k( l)dP; 

= f 7rlk(Trl)dP1 = Ep{1-Ilk(171) }. 

Hence, Ep(4)IH1) -= H1, and similarly Ep(4)IH2) - 172, which estab- 
lishes compatibility. <~ 



Coherent Combination of Experts" Opinions 993 

Proof of Theorem 5.2 
Suppose P is coherent. Applying (27) first wi th /3  = [0, cl], D = 

[0, c2] and then with B = [Cl, 1] ,D = [c2, 1], we have 

f0 fo c2 Cl 7rldP1 -4- 7r2dP2 < 7to (31) 

7cldP1 + 7r2dP2 < 7co (32) 

where, since P(1-Ii = c/) = 0, i = 1, 2, the integrals may equally include 
or exclude these end-points. Since the left hand sides of(31) and (32) sum 

to 2~0, we must have equality in both. So fc l, ~ldP1 + fcl~ ~'2dP2 = 71" 0 . 

But fo  1 7hdP1 + fcl 1 7qdP1 = ~'0. Hence fo 1 7rldP1 = fc12 7r2dP2. 
Without loss of generality suppose c2 >_ q ,  so that P(II2 > c2) > 0; 
and note that P(II1 < cl) = P(II2 > c2). We then have 

f0 el 7rldYl < CI-P(1-I1 < C1), 7r2dP2 > c2P(I-[2 > c2),  

a contradiction. ,~ 

DISCUSSION 

R. COOKE (Technishe Universiteit Delft, The Netherlands) 
The fundamental assumption of this article is that evei2cone has the 

same prior. As someone dealing with quantitative expert probabilities 
on a daily basis, I cannot recall a real situation in which this assump- 
tion is plausible. In working with practical Bayesian models for expert 
judgement in which this assumption is not made, I have run up against a 
problem and I would be grateful if the authors could propose a solution. 

Suppose an expert gives invertible cdf's F1 and F2 for random vari- 
ables X1 and X2. Let P denote the decision maker's (DM's) proba- 
bility, and let Gi be DM's (invertible) cdf's for Xi, all this conditional 
on hearing F1 and F2. A Bayesian model should show DM how to up- 
date his distribution after observing X1. The problem is quite general 
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but, for simplicity, let us assume that the events {El(X1) ~ T} and 
{F2(X2) _< r} are exchangeable for every r. This entails, 

P{FI(XO <_ r} = P{F2(X2) < r} 

so that 

P{FI(X1) ~ r} = Gl{F l l ( r ) }  = G2{F21(r)}. 

It follows that G2 = G1F~IF2. Now suppose a second expert has been 
consulted as well, giving invertible cdf's Hi  and/ /2  (conditionalization 
is now on heating the advice of both experts). If the above exchange- 
ability assumption held for the second expert as well, then the same 
reasoning would apply and we should conclude that 

F l l  F2 = 91192.  

If this relation does not hold, and in practice it will not, then exchange- 
ability is not a feasible assumption for both experts. Can someone give 
an updating scheme which is generally applicable? 

S. FRENCH (University of Leeds, UK) 
Early in their paper, the authors refer to a need for a shared world 

view. To follow the detail of their exposition fully, one needs to share 
their world view; and alas I do not. So, perhaps, they will forgive me 
if I concentrate on their opening section and explain where my world 
view differs from theirs. I should also say that this is not intended as a 
dismissal of their work. Far from it. Reading their ideas opened a new 
perspective on the expert problem for me, one that helped me understand 
more clearly why I am most comfortable with approaches in which the 
decision maker's beliefs are modelled with probabilities, which he can 
use in guiding his thinking and his choice of action, whereas experts' 
statements should be modelled as data, even if they are articulated in the 
language of probability. 

The history of group decision making and the combination of opin- 
ion shows that one enters the land of paradoxes immediately one treats 
all participants in a symmetrical way. Arrow's Theorem shows that to 
combine weak orders representing beliefs or preferences in an entirely 
symmetrical manner leads to the contradiction of sensible principles of 
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rationality or faimess. (Arrow, 1951; Cooke, 1993; Dalkey, 1972; Kelly, 
1972). Only when one takes a constructive approach to subjective ex- 
pected utility (French, !994), does it seem possible to avoid difficulties. 
In a constructive approach the viewpoint taken is internal to a decision 
maker (You) and the models are constructed to help the decision maker 
organise, understand and evolve his beliefs and preferences. An expert 
is external to the decision maker and, while one can help the decision 
maker model his beliefs about her 1 statements, one avoids modelling her 
internal beliefs. Thus I am immediately uncomfortable with part (ii) of 
the basic assumption in this paper: namely, that the decision maker and 
expert share a common subjective distribution,/5. I wonder whether the 
authors have examined the comments of Cooke (1993) which identify 
some difficulties with exchangeability when there is a single probability 
distribution owned by the decision maker and the expert(s). 

As the authors show, this assumption of a common t5 implies that 
for the decision maker the expert is probability calibrated. Of course, 
vice versa, it implies that for the expert the decision maker is probability 
calibrated. It also implies that the decision maker believes that when 
they base their judgements on the same information they share the same 
frequency calibration curve. Thus in matters of belief and information 
processing, the decision maker and expert are clones of each other. Are 
we entering a Brave New World in which Betas only take advice from 
Betas and not Alphas or Gammas? But ignoring that rhetorical question, 
let me focus on why the assumption that the decision maker and expert 
share a common world view renders this theory inapplicable in some 
very important circumstances. 

More and more evidence is accumulating of the danger of ignoring 
modelling error (see, e.g., Draper, 1995; Harper et al., 1994). If one lives 
within a model and forgets the step back to reality in the interpretation of 
an analysis, one risks underestimating the uncertainty in one's forecasts. 
Moreover, since no physical model is a perfect reflection of reality, 
there can be considerable advantages in combining forecasts based upon 
very different physical models. For instance, a decision maker who is 

1 The decision maker will be referred to in the masculine and the expert in the 
feminine. 
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offered two economic forecasts, one based upon Keyesian thinking and 
the other on monetarist thinking, might be well advised to weight them 
together in some way (Draper, 1995; Makfidikis and Winkler, 1983). 
Recently a joint CEC and USNRC has shown the advantage of combining 
atmospheric dispersion-deposition models both in terms of accuracy and 
in making realistic assessment of modelling error (Harper et al., 1994). 
In this latter study forecasts based upon different models of atmospheric 
physics (i.e., distinctly different world views) were combined. Such 
combinations, the ones that in practice seem to bring the greatest benefit, 
are outside the scope of the authors' approach. 

Despite all my negative comments, I enjoyed and valued this paper. 

C. GENEST (Universitd Laval, Canada) and 
M. J. SCHERVISH (Carnegie Mellon University, USA) 

We are grateful for the privilege to comment on this paper authored 
by three fine statisticians with whom we have had opportunities to reflect 
on the issue of the combination of expert opinions on various occasions 
in the past. We share the preoccupation of Dawid, DeGroot and Mortera 
(DDM) with coherent methods of aggregation and were not surprised to 
discover many similarities between their approach to the problem and 
our own attempt to wrestle with it, ten years ago (Genest and Schervish, 
1985). 

In the simplest situation we considered at the time, You specify 

Pr(A) = 7r0 and E(FI) = #, (1) 

where II = (I-I1,..., ilk) is a vector whose components represent the 
subjective probability for event A, as reported by k _> 1 experts. Then 
You look for combination rules ~(II) that can be expressed in the form 
Pr(AlII  = 7r) for some joint distribution for (l-I, A) that satisfies (1). 
As shown in Theorem 3.2 of our paper (whose statement contains a 
typographical error), ~(II)  must be of the form 

k 

�9 ( H )  = + - 

i = l  

( 2 )  

in order to be compatible with every distribution for II satisfying (1). 
Here, the Ai's are scalars to be selected by You so that r (l-f) lies between 
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0 and 1. Thus they must satisfy 2 n+l  (possibly redundant) inequalities 
of the type 

max  Ai , Ai 1 - x'0 
i = 1  ' =  

The components of the vector A ----- (A1, . . . ,  Ak) may actually be 
interpreted in terms of the coefficients of a linear regression of A on H, 
through the relation Coy(A, II) = Var(II)),. This implies that some of 
the Ai's might be negative, but not that at least one of them is necessarily 
negative. 

What explains this discrepancy between our result and DDM's find- 
ing that linear opinion pools are incoherent if their weights are all posi- 
tive? Their conclusion stems from two properties of the distribution of 
H, namely that (i) the expected value of the vector II is necessarily of 
the form 7r01, where 1 is a k-dimensional vector of ones; and that (ii) 
the conditional mean of each Hi given another Hj must be linear in Hi. 
These two properties are consequences of DDM's definition of expert, 
which is more restrictive than ours. By limiting the class of people who 
can be called experts, DDM achieve sa'onger results, but at what cost? 
In order for someone to be an expert in their sense, two conditions must 
hold: 

1. You and the expert must have had the same opinions about all 
relevant data at some time in the past, and 

2. the expert must have observed all the data that You have observed 
and possibly more. 

Are these conditions plausible in some circumstances? For example, 
suppose that the event A concerns some rare medical condition about 
which You have never heard. Perhaps You will consider a specialist to 
have all information available to You and more. You might even believe 
that, at some time in the distant past, this specialist knew as little as 
You do about the condition. At that time, the specialist's opinion about 
all relevant information might possibly have been the same as Yours is 
now. We believe, however, that such a case is rare. Surely, You know 
something about Yourself that a medical specialist does not know or will 
not treat with the same importance as You do. 

These considerations lead rather naturally to the question of what 
You should do if You regard Yourself as an expert. At the end of Sec- 
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tion 2.2, DDM claim that if You are party to information that another 
expert does not have, then You could treat Yourself as one of the experts 
and apply their results. This comment is sufficiently intriguing that we 
wish to pursue it here. You are asked to imagine a time in the past (say 
To) at which You would have accepted the expert's opinion as Your own, 
had it (and nothing else) become available. However, between To and 
now, You have obtained some information that You do not believe the 
expert to have acquired. In the spirit of DDM's discussion at the end 
of Section 2.1, we impose no conditions on the form of the additional 
information that You (but not the expert) have obtained. Let H stand for 
the current opinion of the expert. Does the problem, as described, place 
any restrictions on Your joint distribution for II and A? We think not. 
To support our position, we offer the following result, whose proof is 
given at the end of the discussion. 

Proposition. Every joint distribution for (H, A) is consistent with the 
assumption that, at some earlier time To, You would have accepted the 
expert's opinion as Your own, but that between then and now, You have 
learned some additional information not available to the expert. 

Although it is stated in the one-expert case, this result remains valid 
for multiple-expert situations. In short, it says that if You are willing 
to assume that You have some information that is unavailable to the 
experts, and if You put no restrictions on how that information might 
have arrived, then the results described by DDM are no longer relevant 
to You, in Your current state of information. This is because at present, 
the experts need no longer be experts in the sense of DDM, since You 
have information that they do not have. In fact, Your current state of 
information is not at all constrained by the assumption that, in the past, 
the other experts satisfied DDM's definition. In this case, however, You 
could still apply Theorem 3.2 of Genest and Schervish (1985), since it 
does not rely on a restrictive concept of expertise. If You believe now 
that E(IIi) = #i, this theorem implies that (2) is the only combination 
formula that is consistent with every marginal distribution of H having 
mean (#1,-- . ,  #k)- 

The situation is somewhat different if You assume that the experts 
are conditionally independent given A and its complement. In that case, 
DDM arrive at a logarithmic opinion pool of the form (18) or (29) in 
their paper. By comparison, an unrestrictive definition of expert leads 
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to Theorem 4.1 of Genest and Schervish (1985) (whose statement also 
contains a typographical error!). The ensuing logarithmic pool may be 
written as 

o ( n )  = 
71.1-k k - -  1-Ii=  IIi 

7rol-k k 1-L=I n i  + (1 - 1-k k F[i 1( 1 - Hi) 

with Hi = 7r0 + Ai ( I I i  -- ~ i ) ,  # i  = E(1-[i),  and scalars Ai's to be chosen 
by You in such a way that 

max{rro / (# i -  1), (7 :o-  1)/pi} <_ Ai <_ 

min{rco /p i , (1 -  rco) / (1-# i )} ,  1 < i < n. 

This formula has the nice property that, if You only learn some of 
the experts' opinions, the resulting combination rule retains the same 
form. In particular, if only one Hi is revealed to You, then 

Pr(AlII i  ) = Hi = rr0 + Ai(IIi - #i). 

If in addition Ai is set equal to one (which forces #i = rr0), one gets 
DDM's condition Pr(AIII/)  = lii. Conversely, their definition of expert 
implies ),i ----- 1, and hence #i = 7r0. So, the assumption that the experts 
are conditionally independent given A and its complement brings DDM's 
results and ours closer together. That is, their characterization of the 
logarithmic opinion pool is the special case of ours in which A1 . . . . .  
)~k = 1 and no further conditions need to be assumed. This is in contrast 
to the linear opinion pool in which their result reduces to ours with 
#1 . . . . .  #k = 7r0 and the additional requirement that the conditional 
mean of each Hi given another II d is linear in IIj. Of course, conditional 
independence is itself an assumption (made both by DDM and by us), 
and quite a strong one at that. 

Although the present discussion is critical of some of DDM's find- 
ings, we would not want to leave the readers with the impression that we 
find no merits to their work. Nothing would be further from the truth. 
In particular, we are grateful to DDM for articulating some of the con- 
nections between coherence issues in the combination of probabilistic 
opinions and compatibility requirements for the existence of distribu- 
tions with fixed multivariate marginals. In the light of their paper, it 
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now seems obvious that modern developments in the latter area could be 
profitably applied to expert use, as Clemen and Jouini (1996) have re- 
cently begun to explore. DDM are to be congratulated for describing one 
promising line of attack, and we hope that the publication of their paper 
will help rekindle the statistical community's interest in these issues. 

Proof of  the proposition. Let f(rv, a) stand for the joint density of the 
pair (H, A) with respect to some a-finite measure, and identify A with 
its indicator function. In order for f to be Your current density, there 
must have been some data X with conditional density h(xlrr , a) given 
(II, A) = (rr, a), and a joint density g(rr, a) that You held at time To 
such that 

(i) g(Tr, 1)/[g(Tr, 1) + 9(rr, 0)] = rr for all rr; 
(ii) f(rr, a) or g(Tr, a)h(xirc, a) as a function of (rr, a). 

Define 9(rr, a) = 7ra(1 - rr) l -a ,  so that condition (i) holds. Now, 
introduce a random pair X = (X1,)(2) whose components are condi- 
tionally independent given (H, A). Assume that X1 has a uniform dis- 
tribution on [0, 1] given (H, A) = (~r, a) if f(rr, a) > 0, and that it has a 
uniform distribution on [2, 3] given (H, A) = (rr, a) if f(Tr, a) = 0. Let 
the conditional distribution of X2 given (H, A) = (rr, a) be normal with 
mean 0 and standard deviation 9 (r r, a ) / f  (re, a) if f(rr, a) > 0, and let the 
conditional disu'ibution be u n i f o ~  on the interval [2, 3] if f(rr,  a) = 0. 
Then condition (ii) is satisfied whenever (X1, X 2 ) =  (1/2, 0) is ob- 
served. Since we are not required to assume any particular form for the 
type of information that only You (and not the expert) have, the proof is 
complete. 

D. V. LINDLEY (Somerset, UK) 

This excellent paper is a real advance in our understanding of what 
constitutes expert opinion and how it should be used. I was once of the 
view that experts, in the restricted sense in which the term is used here, 
were uncommon because of a 'strange' property that you have of them. 
The present paper convinces me that this view is too extreme and that the 
restricted sense is valuable. The 'strange' property flows from Bayes's 
theorem 

o(AJH) = P(HIA) o(A'~ 
p(nl ) ' " (1) 
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where o means your odds on and p your probability. Thus p(IIlA ) is 
your probability that the expert will announce H for her probability of A, 
were A to be true. By definition, you believe the expert, so the left-hand 
side is H/ (1  - H). Hence so is the right-hand side and therefore the 
likelihood ratio is 

II 
p(HIA) (i-n) 

= - -  (2) 
p(HIA) o(A) 

This analysis effectively treats H as you would any other data. (2) says 
that the likelihood ratio, on the left, depends on the prior odds, on the 
right. This is the 'strange' feature refen'ed to above. It is 'strange' 
because standard practice is to fix the likelihoods and consider the prior 
separately. 

To pursue this further, consider what happens when your prior 
changes. Presumably this is because you have received some addi- 
tional information. If so, the expert ceases to be an expert, since it is 
a requirement of expertise that "the expert has all the information you 
have". So the only way to retain the expertise is for you to share this new 
information with them. If this is done, it is perfectly reasonable for your 
likelihood to change, since it now involves p(HIA , I) ,  where I is the new 
information, and not p(II IA). I can therefore more comfortably accept 
the definition of an expert, though it does demonstrate that experts need 
to be treated with care. Do not keep anything from them. 

The analysis becomes more complicated when two experts are con- 
sulted, the situation that occupies the bulk of the paper. Let them give 
their opinions in sequence, 1-I1 and then II2. The question then arises as 
to whether the second informant is an expert. In a sense, no, because 
you know II1 and therefore have information that the second informant 
does not. They are experts in isolation but not in sequence. One way 
to retain the expertise is to tell the second what the first has said, before 
you receive 1-I 2. Again, no secrets from experts. 

With two experts, Bayes's theorem says 

o(AIH1, H2) = p(HllA)p(H21FII'A) "A" 
p(HllA)p(H2~I,~ ~ ) 

nl p(n21nl, A) 
(1 - n l )  p(n21nl, ) 

(3) 

(4) 
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because the first informant is an expert, equation (2). If the second is 
told II1 before pronouncing, then the expertise condition presumably 
obtains, in the sense that the second informant "has all the information 
you have". (2) may therefore be applied again, with the result 

H I 17 2 

o(A]IIi, II2) = (1-nl) (1-II2) 
o(AIH1) 

But o(AIH1) = [1-11/(1 - Hi)], so that finally 

o(AInl, n2) = 
II2 

( 1 - n 2 )  

We have here a solution to the problem of combining expert opinion; 
namely tell the second expert what the first has said and then accept the 
second's opinion, ignoring the first. On reflection, this is most sensible; 
you let the second expert do the combination for you since, after all, he 
or she is an expert and can do it as well as you. (Notice that it will not 
matter whether you provide Ha or the information that led to it, since 
just as you consider the informant an expert, the informant thinks you 
are an expert, as you both share t5.) Of course, sometimes it will not be 
possible to establish communication between the two experts and resort 
must be made to some combination. But expert 2 can do the combining, 
why can't  you? Notice that if you do not communicate H1 to the second 
e__xpert, and if you judge II1 and II2 independent, given A and also given 
A, then from (4), applying (2) again and taking logs 

logi t~ = logitII1 + logitH2 - logitII0 

as in Section 4.3. This has the curious consequence that even though 
you accept each separately, you do not accept what they both say, even 
when they agree, HI = II2, unless the common value is 7r0. 

My own view is that the definition of an expert given here is too 
restrictive. My preference is to speak of an informant who provides H, 
which is treated, like any other data, by Bayes, (1). The informant's 
expertise for you is expressed through your likelihood ratio. Thus if 
you thought they were good, then p(HIA ) would centre around a large 
value of H, certainly in (1/2, 1), whereas p(IIlA) around a low value in 
(0, 1/2). With two or more informants, the joint likelihood ratio does 
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the same job as in (3). I remain somewhat unhappy about going direct to 
the combination rule, rather than deducing it from the proper use of the 
probability calculus. Invention of a rule smacks of adhockery. There is a 
good precept than I learnt from de Finetti: think about your probabilities; 
but then don't think any more, merely become a computer and apply the 
rules of the probability calculus, and nothing else. 

K. J. McCONWAY (The Open University, UK) 

1. Introduction. Dawid, DeGroot and Mortera (hereafter DDM) deal 
with a crucial real-world problem. The world is full of experts telling us 
what to think and how to act. (Some of these experts are even statisti- 
cians.) DDM describe, and to a considerable extent elucidate, a particu- 
lar model of expert knowledge and of how a decision maker should use 
it. The theory they present is in itself fascinating. But is it useful? To 
what extent might the kind of experts they describe be found in the real 
world? 

2. Do 'experts' exist?. DDM's basic assumption about experts stems 
from remarks of DeGroot (1988), quoted by DDM in Subsection 2.1, 
about the use of another person's stated probability and about the avail- 
ability of information. DDM recognize that DeGroot's statements about 
probability and about information cannot be equivalent unless further 
assumptions are made, and they provide such an assumption; that ev- 
eryone involved has a common subjective probability distribution for 
everything of interest. The clarification that this brings is very welcome, 
but it is important to realize just how restrictive it is. It leaves no room, 
for example, for the decision maker to learn anything about the state of 
the world from the fact that an expert chose to observe one particular 
random variable rather than another. It leaves no room for honest sub- 
jective disagreement, where two subjectivists have access to identical 
information but nevertheless state different probabilities. DDM them- 
selves point out (Section 1) that their assumption is more in accord with 
a logical view of probability than a subjective one; they justify the use of 
their assumption to a subjectivist by pointing out the rashness of taking 
into account in a naive way the views of someone 'whose world view 
was at odds with Yours.' Their assumption is that Your world view and 
the expert's are exactly in accord; 'at odds with' sounds too strong tbr 
views that differ slightly from their assumed equality. 
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DDM note (Section 7) that their basic assumption might indeed be 
taken to be too strong in general, but propose achieving it by some sort 
of consensus-seeking process, carried out before extra information is 
observed. While it is possible that such a process might indeed validate 
their assumption, perhaps it limits its real-world validity even more. Un- 
der what circumstances would a group of experts and a decision maker 
be able to co-operate in this possibly time-consuming way at the start of 
the process, but not interact at all (except through reports to the decision 
maker) later on? French (1985) pointed out the importance of the dis- 
tinction between the 'expert problem', where a panel of experts advise 
a decision maker individually, and the 'group decision problem', where 
the group are jointly responsible for what goes on. It seems inappropri- 
ate in most circumstances to use what is fundamentally a description of 
group interaction (DeGroot 1974) at one stage in the process, and then 
to use a model for the 'expert problem' in the rest. 

To summarize, my view is that 'experts' in the sense of DDM rarely 
if ever exist in practical situations. However, this is far from saying that 
this work is of no practical value, for three reasons. First, as pointed out 
in Subsection 2.3, the same modelling approach fits other situations; in 
my view, it may turn out to be more directly useful in the situation of 
conflicting reference sets than in dealing with the opinions of real experts. 
Secondly, the work throws important lights on the whole process of using 
expert opinion, which go beyond the specific assumptions made. Thirdly, 
every method of attacking this problem yet proposed makes restrictive 
and probably unrealistic assumptions; there seems to be no other way of 
getting to grips with it. 

3. Recalibration and the linear opinion pool In Subsection 3.1, DDM 
explain how, under certain circumstances, their method for constructing 
a compatible pair can be applied, for example, to probabilities produced 
by forecasters who are not 'experts' on their definition. This is done 
by recalibrating each of the stated probabilities Xi to Hi := -h(AlXi). 
Using this construction, one can show, for instance, that if You choose 
to combine the reports X1 and X2 of two non-'expert' forecasters using 
a linear opinion pool ~(X1, X2) := 91X1 +/32X2 (/3a +/32 = 1) 
which does not attach weight to Your own view, and if X1 and X2 are 
considered independent, then the Hi, the recalibrations of the Xi, are 
linear functions of the Xi. Furthermore, the combination formula for 
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the recalibrated probabilities is 

55(H1, I-I2) =-- Ill  -t- 1-I2 -- 7to. 

This demonstrates a situation in which one can begin with a linear opinion 
pool of the kind considered sometimes in the past (no negative weights, 
zero weight for Your probability), and end up after recalibration with a 
pool including Your own probability 7r0, and indeed giving it negative 
weight. 

A related converse problem is the following. Under what circum- 
stances is it true that the combination formula �9 for uncalibrated 'prob- 
abilities' is a linear opinion pool, and the combination formula 55, con- 
structed in the manner described in Subsection 3.1 of DDM is also a 
linear opinion pool as defined in Equation (7) of DDM? My preliminary 
investigations indicate that, when the opinion pool �9 gives zero weight 
to Your own probability, then the only possible form for the opinion pool 
55 is 55(1-11, I 1 2 )  = 1-I 1 n t- I I  2 - -  71"0. If this is indeed the case, what forms 
of pooling operator ~ and recalibration can lead to other weights in the 
opinion pool 55? More generally, under what circumstances is it helpful 
to think of a pooling operator for uncalibrated probabilities in terms of 
recalibration and a pooling operator for 'experts' in the DDM sense? 

4. Conclusion In conclusion, though this paper may not directly provide 
a practical model for dealing with the opinions of real-world experts, 
it provides important insights and concepts for that process. It also 
emphasizes yet again the key role that Professor DeGroot played in this 
area over such a long period. I am honoured to have been asked to 
discuss it. 

R. L. WINKLER (Duke University, USA) 
Dawid, DeGroot, and Mortera (hereafter D/DG/M) are to be con- 

gratulated on an interesting, thought-provoking paper. I have read it 
several times with new insights each time. 

The issues of what constitutes "expertise" and what might be rea- 
sonably assumed to be common knowledge are crucial elements of the 
D/DG/M structure. In their development, expertise rests on the notion 
of a "shared world-view." One implication of this notion, that you are 
extraneous when a single expert is available, is perfectly reasonable. But 
the extension of the shared world-view to imply that at some point, you 
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and the expert can be viewed as having a common subjective distribu- 
tion about all future events and quantities of interest, is an awfully strong 
assumption. It is hard to imagine this scenario without going back to a 
point before the expert acquired any of her expertise, in which case the 
common starting point is based on a diffuse state of information with 
~espect to the substantive questions of interest. After all, expertise is 
not just having access to relevant data, but being able to understand and 
interpret that data. Without going back to a state where everyone is dif- 
fuse, can you realistically share the same grand probability distribution 
without being an expert yourself? Also, keeping in mind that assump- 
tions of common probabilities restrict the generality of many results in 
game theory and economics, we should be cautious in interpreting results 
based on such assumptions. 

A key question, to my mind, is the role of the prior. Strictly speaking, 
in a Bayesian formulation the prior is certainly relevant, and the prior 
seems to play a major role in many of the developments in D/DG/M. 
In a practical sense, however, should the prior be so important in this 
context? If any prior information you have will be overwhelmed by the 
judgments of an expert, then your state of prior information is effec- 
tively diffuse. Once the expert has given you her probability, you will 
immediately forget about whatever (weak) judgments you may have held 
before obtaining the expert's probability. With more than one expert, 
your prior information is likely to be relevant only to the extent that it 
will help you sort out any relationships among the sets of information 
(hence among the probabilities) of the experts. (See Clemen (1987) 
for an example in which one expert is extraneous when compared with 
either of two other experts individually but not when all three experts 
ale considered together.) But once again, if these are truly experts, your 
meagre information about A, as reflected by 7r0, shouldn't be of much 
help. I therefore get nervous when I find that 7r0 seems to play more than 
a trivial role in the combination of experts' opinions. 

For the above reasons, discussions of the combination of experts' 
opinions in the literature have typically used (explicitly or implicitly) 
diffuse priors and focused on combinations of the experts' probabilities, 
not of the experts' probabilities and your prior probability. If your prior 
information is non-diffuse, then it is easier to treat yourself as another 
expert (e.g., see Winkler (1981), p. 481, and Section 2.2 of D/DG/M). 
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The typical dependence among experts is a contributing factor here, 
since it is easier to model the overall dependence structure among the 
new pieces of information (including your own probability as one of the 
new pieces of information) than to think about the dependence structure 
only for the k experts and then to have to consider separately the depen- 
dence between your prior and the new information. This explains why, 
for instance, the linear opinion pool generally does not include a term 
involving ~ro. When a constant term is included, it is usually to correct 
for systematic bias, not to bring in ~ro. 

As a concrete example, suppose that I am interested in the prob- 
ability of rain tomorrow and that the only prior information I have is 
climatology, the historical long-run proportion of days with rain at the 
location of interest for this time of year. Thus, my ~0 is simply equal 
to climatology. Then I see a probability assessed by a weather fore- 
caster with considerable experience at this location and in this season. 
Surely the weather forecaster knows the value of climatology and takes 
that into account, along with all sorts of current weather information, in 
coming up with her probability. My 7c0 is now totally irrelevant. IfI were 
using a linear opinion pool, I would give myself a weight of zero and 
the weather forecaster a weight of one (possibly after recalibrating the 
weather forecaster if I judge her to be miscalibrated). With probabilities 
from two forecasters, I would give myself a weight of zero and would 
give weights to the two tbrecasters based on my judgments about their 
relative accuracy and the degree of dependence between them. 

Why does my result with two experts differ from D/DG/M in that ~0 
is not included in the combination rule? Because of my diffuse state of 
information. In terms of the binomial model in Section 4. t of D/DG/M, 
I am saying that no is zero for all practical purposes. If having an 
improper prior for 0 is unappealing, let no get arbitrarily close to zero 
with ~0 = a/no held constant. If no is not zero, then I would expect the 
term with 7to to have a negative coefficient, as in D/DG/M, to allow for 
the fact that this information is already being included twice, once in each 
expert's probability. For the same reason (multiple-counting of my prior 
information), shouldn't the numerator of so be - ( k  - 1)no instead of 
just - n o  in the extension of the binomial example to k experts in Section 
6? When no is zero, of course, the term involving 7to drops out because 
double- (or multiple-) counting "no information" is not a problem. As 
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an aside, negative weights can also be traced to high dependence, but 
that is not the issue here. 

It is worth noting that things seem to work differently in a model such 
as the above binomial model, which is hierarchical in the sense that the 
experts and I have probability distributions for the probability of interest, 
than in a more basic non-hierarchical model in which we assess our 
probabilities for A and do not consider "probabilities of probabilities." 
These different ways of modelling were discussed in Winkler (1986) and 
the accompanying series of papers in Management Science. 

One quibble I have with D/DG/M is that I would have liked to see 
more examples, interpretation, and intuition to supplement the mathe- 
matical results. This is particularly true when the results seem somewhat 
counterintuitive. In some such cases, it is not too difficult to sort out 
what is happening. For example, consider the result in Section 4.1.1 that 
i fc  ---- 0 and both experts get non-zero weights, then the two experts must 
agree on their probabilities almost surely. One explanation here is that 
under D/DG/M's assumptions, a negative c is needed to avoid double- 
counting unless the two experts have identical information and there is 
no double-counting. This is a direct consequence of D/DG/M's defini- 
tion of a shared world-view. (See Clemen and Winkler (1990) for further 
thoughts on situations in which experts give identical probabilities.) 

In another case, the result that if there exists a compatible com- 
bination rule for any joint distribution P ,  then there exists one which 
predicts with certainty whether A will occur or not, I wonder if D/DG/M 
could provide a bit more insight? Under what conditions will this par- 
ticular rule hold, and are those conditions likely to occur in practice? 
More generally, do seemingly pathological results such as this indicate 
that coherence as defined by D/DG/M is a very weak condition that is 
consistent with non-plausible combination rules, that there is something 
inherently faulty with the basic assumptions (e.g., common probabili- 
ties), or that my intuition that labels the results is pathological is itself 
faulty? 

In conclusion, despite my concerns about the basic assumptions in 
D/DG/M, it is always valuable to look at a familiar problem (in this case, 
the combination of experts' opinions) from a new perspective (D/DG/M's 
coherence). The main results of the paper, showing probability mod- 
els and combination rules that are compatible with each other given 
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D/DG/M's assumptions, are certainly of interest. It would be nice to see 
them supplemented with some speculation on which models and rules 
seem reasonable and on implications for practice. Beyond this, the paper 
can add to our understanding of the combination of experts' opinions 
by stimulating further thought about notions of expertise and coherence 
and their implications. 

REPLY TO THE DISCUSSION 
(by A. E Dawid and J. Mortera) 

A common theme of much of the discussion is a feeling of discomfort 
over the relevance and usefulness of our definition of "expert". We can 
strongly sympathize with this, and in no way would we wish to suggest 
that our analysis makes other approaches redundant. We claim merely 
that a study of the implications of our definition casts valuable light on the 
problem of combining expert opinions. In particular, a point McConway 
takes up, given any combination formula for "non-expert" probabilities 
(X1, X2), together with a joint distribution for those probabilities, we can 
always convert them to "expert" probabilities (Hi, II2) by recalibration, 
as in our w and thus obtain a new, coherent, combination formula. 
Such constructions deserve further analysis. However, McConway's 
specific conjecture, that a linear recalibration of a linear "non-expert" 
combination formula will always have the form ~ -= 1-I1 + 172 - 7r0, 
is easily seen to be false. Suppose we start with �9 _=/31X1 + f12X2, 
and the joint distribution of (X1, X2) has linear regressions of each Xi 
on the other. Then Hi = E(~[Xi) is linear in Xi, and substituting 
for Xi in terms of Hi into the original combination formula k~ leads to 
a new, coherent, "expert" linear combination formula ~5(I:I1,172), now 
generally with a constant term, in which the coefficients of Hi and 172 
are unconstrained. 

French correctly points out the desirability of combining diverse 
judgments that may not reflect a shared world-view. Application of 
recalibration, to obtain new assessments which now behave (technically 
at least) like expert judgments in our sense, demonstrates that he is 
incorrect in asserting that such problems are outside the scope of our 
approach. 

Also closely related to the recalibration construction is the formula 
for the general logarithmic pool for conditionally independent experts, 
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given by Genest and Schervish. In this case, l~Ii is just the recalibration 
of the "non-expert" rIi, and their formula then follows immediately from 
our equation (29). 

Genest and Schervish claim that we obtain stronger results than 
theirs by imposing stronger conditions. This is not clearly so. They 
are looking for a combination formula which will simultaneously be 
compatible (according to their interpretation) with every one of a large 
class of joint distributions, constrained only to have given means. This 
requirement appears extremely strong, and we are not clear when or why 
one might wish to impose it. 

Genest and Schervish also argue that, when You have data that the 
experts don't, coherence puts no constraints on Your combination for- 
mula. This is true, but only in the same sense that, in ordinary Bayesian 
analysis, coherence puts no constraints on Your posterior distribution 
given the data to hand. All coherence does is relate what You would do 
or believe under various different circumstances, all but one of which 
must be counter-factual. It is thus still worthwhile to try to go back in 
time to before You got Your additional data, when Your own posterior 
probability was still random for You, and jointly distributed with those of 
the other experts. (Assessing this joint distribution now is logically sim- 
ilar to assessing a prior, after seeing the data.) The theory of our paper 
then applies to delimit Your choice of (prior) combination formula. You 
might choose one such formula by considering its behaviour for various 
hypothetical data that You and/or the experts might obtain. Then, when 
You are happy with it, You can plug in Your own new probability based 
on the actual data to hand, thus obtaining the "coherent" new combi- 
nation formula for incorporating the other experts' probabilities. The 
procedure runs exactly parallel to the way a thoughtful Bayesian might 
use coherence to help her decide what to believe after seeing the data. 

Lindley contrasts our analysis with the more common paradigm in 
which the informant's opinion is treated as data, and subjected to a fairly 
standard Bayesian analysis. However, we find such an approach, popular 
though it is, too facile. Is it really sensible to consider Your "sampling 
model" for 1-[ given A or A as an "objective" ingredient, which can be 
specified independently of Your prior probability P(A)? Surely, if You 
think A very likely, that in itself should lead You to expect that so too 
does the informant, and it would be reasonable to bias Your conditional 
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distributions for II more towards higher values. (Similar considerations 
cast doubt on the realism of the model of conditional independence of the 
informants). What Lindley terms a "strange property" of our approach 
is in fact entirely reasonable. It is only "strange" when referred to an 
inappropriate paradigm whose wide use in this area appears to have no 
better justification than an uncritical analogy with something familiar 
in a totally distinct context. An additional implementational difficulty 
of this "Bayesian" approach is the need to understand and assess the 
conditional distributions of II given A and 2t. How realistic are the 
strong model assumptions that are commonly made in order to assess 
these conditional distributions? How is one to assess the interdepen- 
dence among the experts? It is all too easy to write down and play with 
arbitrary mathematical formulae for these conditional distributions, but 
we consider the true psychological effort involved in any real-world as- 
sessment to be totally unfamiliar and mind-boggling. Frankly, it seems 
to us far more natural to introspect directly about P(A[II) .  This can 
then be recalibrated, if necessary, and the approach of our paper applied 
to the problem of finding combination rules. 

Lindley remarks on the "curious" property of our formula (19) 
(which is shared with the various other formulae we consider): that 
even when both experts give You the same probability, each of which 
by itself You would adopt, Your coherent probability based on hearing 
both experts will differ from their common value, unless that is the same 
as the prior probability 7r0. This does not seem to us at all curious, as 
the following argument shows. Except in degenerate cases, the experts 
must have seen different data. If expert 1 has seen data that justify an 
increase in the probability of A from, say, 0.5 to 0.75, and expert 2 has 
seen different data with the same effect, then You might feel justified in 
concluding that the overall effect of all the data (an effect You are trying 
to reproduce in so far as it is possible on the basis of the experts' re- 
ports) should be to raise the probability of A still further. See, however, 
the discussion on shrinkage on page 276 for a case in which a different 
conclusion is appropriate. 

Lindley also suggests that a simple solution for combining two ex- 
perts' opinions is to tell the second expert the first expert's opinion and 
then adopt the second expert's updated opinion, letting her do the com- 
bination for You. However, this does not resolve the problem, it merely 
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displaces it. The second expert still needs a coherent method for combin- 
ing the first expert's opinion with her own. The coherent methodology 
we have proposed can be used by whoever is required to perform the 
combination. 

Cooke describes a problem of his own making, in a different set-up 
from ours, and asks for our comments. We find it hard to appreciate why 
he should be so concerned to discover that it is possible to make a col- 
lection of assessments that are inconsistent with each other. Is he saying 
that he does not wish his freedom to be constrained by the mathematical 
theory of probability? French refers to Cooke (1993), which we have 
examined, but we cannot reconcile it with French's description of it, so 
that we do not know what "difficulties" we are being asked to address. 

Winkler claims that the only satisfactory use for our approach is 
when the initial state of information is "diffuse". However, this concept 
plays no r61e whatsoever in our theory, and we do not even know how 
to interpret it clearly within our general framework. But if we posit 
that we all start out at birth as equally blank Bayesian babies, and learn 
coherently from whatever life throws at us, we might have a scenario 
which links his ideas with ours. 

Winkler is mistaken in claiming that "the prior seems to play a 
major r61e in many of the developments". The prior probability cannot 
play any r61e at all, because, in our framework, it is just a fixed number; 
something that cannot vary cannot have any influence on anything. True, 
that number, 7r0, does come up in various formulae, but this should not 
be overinterpreted. Winkler's intuition, to combine two different expert 
forecasters using a linear opinion pool with no constant term is, as we 
have shown, misguided. A constant term is required, and the fact that it 
turns out to be related to the prior probability should be neither surprising 
nor worrying. 

Winkler regards the possibility of a formula which combines two 
uncertain judgments to obtain certainty as "pathological". It is not, al- 
though it is perhaps, a little artificial. Suppose that expert i observes 
Xi (i = 1, 2). Let A be an event of the form "(X1, X2) E S", deter- 
mined by (Xa, X2) jointly, but not by either singly. Then, assuming 
Hi = P(A]Xi)  is an invertible function of Xi, we have exactly the 
"pathological" case described. We also remind Winkler that, except for 
special cases such as that at the end of our w the 0-1 formula associated 
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with a given distribution for (II1, II2) will only be one of a wide variety 
of  compat ible  combinat ion formulae.  

In conclusion,  we should like heartily to thank Jos6 Bernardo for 
organising this discussion on our paper, and all the discussants for con- 
tributing to it. In doing so, they honour  the memory  of  a wonderful  
friend and colleague,  Morr ie  DeGroot.  Had he been with us today, this 
rejoinder  would certainly have been far more  interesting and insightful. 
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