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Abstract. Let G be a group and A a G-graded ring. A (graded) ideal I of A is (graded)
essential if 7 N J # 0 whenever J is a nonzero (graded) ideal of A. In this paper we study the
r.elationship between graded essential ideals of A, essential ideals of the identity component A,
and essential ideals of the smash product A#G*. We apply our results to prime essential rings,
irredundant subdirect sums and essentially nilpotent rings.

§1. Essential Ideals

Let G be a group with identity e. An associative ring A is G-graded if the additive group
of A is a direct sum of subgroups Ay, g € G which are such that A; Ay C A, forall g,h €G.
The grading is faithful if 0 # a € A, implies aAs # 0 and Apa # 0 for all g,k € G, and the
grading is strong if A;jA,-1 = A, forallgeG.-

Let A be a G-graded ring. The smash product A#G* is an associative ring in which
each element can be written uniquely as a finite. sum E, apy, 9 € G, a9 € A, and the
multiplication satisfies apybpy = abyy-1ps for a,b € A, 9,h € G where byj-1 denotes the gh™?
component of b. If K is an ideal of A#G*, then K, denotes the ideal {a € A, : ap, € K} of
A, ( this ideal is used in [8] where the notation.is K, .).

Let I be an ideal of a G-graded ring A. For each g € G,I; = IN A, and I is graded if
I= E’ I,. A graded ideal I of A is graded essential if I N J # 0 for each nonzero graded
ideal J of A, and an ideal B of A is essential if BN C # 0 for each nonzero ideal C of A.

In this section we prove the following two theorems.
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Theorem 1. Let A be a G-graded ring and let I be a graded ideal of A. The following
are equivalent,

(i) I is an essential ideal of A.

(ii) I is a graded essential ideal of A.

(iii) I#G"* is an essential ideal of A#G".

Theorem 2. Let A be a G-graded ring with faithful grading, let I be a graded ideal of A
and let K be an ideal of A#G".

(i) K is essential in A#G" if and only if K, is essential in A,.

(ii) I is essential in A if and only if I, is essential in A..

In subsequent sections we apply these results to prime essential rings, to irredundant
subdirect sums and to essential nilpotence.

Let A be a G-graded ring and let I be an ideal of A,. The associated ideal [I} of A#G*
is defined in (8] : [J] = 3, AIA ~1p,. Note that when A has an identity this is just the ideal
of A#G* which is generated by I,,. The results in the following proposition are implicit in
[8], but we include a proof for the convenience of the reader.

Proposition 1(Liu). Let A be a G—graded ring.

(i) If K is a nonzero ideal of A#G* and the grading on A is faithful, then K, # 0.

(ii) If I and J are ideals of A,, then [I][J] C [IJ).

Proof. (i) Let 0 # 3°, , agnpy € K where ag 5 € Ap, and assume that aq,g # 0. Then

9.k

A(ﬂa)"Pﬂa (Z ag,hpg) Agpe = A(pa)-laa,ﬂAape

is in K. Since the grading is faithful, A(ga)-1da,8Aaz0 and so K. # 0.
(ii) Let C and D be ideals of A,. Then

[C]=)_ACA,-1p,

and
(D] =Y ADAp-1pa;
B

SO
[CIID] =) ACAg-1A,DAy-ips
g,h
C ) ACDA,-1pn = [CD].
h

We remark that in [8] Liu shows that if the grading is strong then the correspondence
C « [C] is a bijection between the set of ideals of A, and the set of ideals of A#G" .
Proof of Theorem 1. (i) implies (ii) is obvious. We now show that (ii) implies (iii).

Let J be a nonzero ideal of A#G*. Write elements of J in the form

Y agap, where agh € An, (*)
9.k :
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and choose u # 0 in J of this form with a minimum number of coefficients ay» ¢ I. Suppose
¥ =daqppat -+ andaqgs ¢1I.

If AaapA # 0 it has a nonzero intersection with I; and since the intersection is graded
there is a nonzero za, gy € I where z and y are homogeneous. Suppose z € A, and y € A;.
Then zpmuypn, = Ta4 psypPn Where m = Ba and n = §~a. Since zpmuyp, € J and its one
nonzero coeflicient is in I we have reached a contradiction. Hence u € I#G*.

Now assume Aa,pA = 0 but Aay s # 0. Then there is a nonzero zaq g € I for some
homogeneous z, say € A,. Hence zp,,u = za, gp, + - -- where m = Ba is in form (x) and
has fewer coefficients not in I than u does. Once again we conclude that u € I#G*.

If Aaa,sA = 0 but aq A4 # 0, an argument similar to the one above shows that u €
I#G". Finally, if Aasp = aqpA =0, then 0 # kaq g € I for some integer k and so ku has
fewer coeflicients not in I than u does.

This completes the proof that (ii) implies (iii).

Now assume (iii) and suppose that K is a nonzero ideal of A. Write elements of K as
sums of homogeneous components and choose 0 # v = ay4, +---+a,, € K of shortest length
and with a maximum number of homogeneous components in I.

Suppose a,, € I.1f Aay, A # 0 then it has a nonzero intersection with I (since (Aay, A)#

G* has a nonzero intersection with I#G™), and because the intersection is graded there is
a nonzeto element za,, y € I where z and y are homogeneous. Now zvy # 0 and zvy has
more homogeneous components in I than v does. We reach the same conclusion in the cases
Aag, A = 0 but Aa,, # 0;Aa, A = 0but a, A #0; and Aa,, = a,, A = 0. Consequently,
we conclude that v € I, and this completes the proof.
Proof of Theorem 2. (i) First suppose that K is essential in A#G*. Let T be a nonzero
ideal of A,. Since the grading is faithful, [T] # 0; and so since K is essential, [T} N K # 0.
From Proposition 1 (i), ([T]N K). # 0; and since it is clear that ([T]N K). C [T]).N K. and
that [T]. C T we conclude that K, is essential in A,.

Conversely, suppose that K, is 2ssential in A,, and let J be a nonzero ideal of A#G".
From Proposition 1 (i), J. # 0 and so K. NJ. # 0. Hence 0 # (K. N J.)p. € K NJ and so
K is essential in A#G*.

(ii) If I is a graded ideal of A, then (I#G*), = I,; and so the result follows from Theorem
1 and (i) of this theorem.

§2. Prime Essential Rings

A ring A is prime essential if A is semiprime and each prime ideal is an essential ideal.
Prime essential rings were introduced by Rowen [!%) and have recently been studied in [6].
By analogy with the ungraded case, we say that a G-graded ring A is graded prime essential
‘if A is graded semiprime and every graded prime ideal of A is graded essential.

Theorem 3. Let A be G-gréded with faithful grading. The following are equivalent.

(i) A, is prime essential .

(ii) A#G" is prime essential .

If G is finite and A has an identity, these are also equivalent to
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(iii) A is graded prime essential.

Proof. First suppdse that A, is prime essential. If 7 < A#G* and I? = 0, then (I.)? = 0.
Also, if I # 0, Proposition 1 (i) implies that I, # 0; and so it follows that A#G"* is semiprime
because A, is semiprime. Let P be a prime ideal of A#G"* and suppose that C and D are
ideals of A, such that CD C P,. It follows from Proposition 1 (ii) that [C][D} C [CD}; and
since CD C P,,[CD] C P. Thus [C] C P or [D] C P, and so (A#G*)Cp.(A#G*) C P or
(A#G*)Dp.(A#G*) C P. Since P is prime, Cp, C P or Dp, C P. Hence C C P, or D C P.;
and we see that P, is a prime ideal of A,. Since A, is prime essential, P, is essential in A,,
and hence P is essential in A#G"* by Theorem 2 (i).

Now suppose that A#G* is prime essential. If I is a nonzero ideal of A, then [I] # 0
because the grading is faithful and [I]2 C [I?] by Proposition 1 (ii). Hence it follows from
the semiprimeness of A#G* that A, is semiprime. Let @ be a prime ideal of A.. Choose
M maximal in {K|K < A#G* and K, = Q}. It is straightforward to check that M is prime
and so M is essential. Hence @ is essential in A, by Theorem 2 (i).

We now assume that G is finite and that A has an identity.

Suppose that A, is prime essential. It follows from [4, Theorem 2.9] that A is graded
semiprime. Let P be a graded prime ideal of A. From [4, Lemma 5.1 and Theorem 7.3] we
see that PN A, is a finite intersection of prime ideals of A.. Hence PN A, = P, is essential
in A, and so P is graded essential in A by Theorem 2 (ii).

Conversely, suppose that A is graded prime essential. Then A, is semiprime [4, Theorem
2.9]. Let P be a prime ideal of A,. From [4, Theorem 7.3] there is a prime ideal Q of A with
QNA. C P . Let Qg = ), QN Ay. Then Qg is a graded prime ideal of A [4, Lemma 5.1],
and so Q¢ is graded essential in A. Hence Q¢ N A, is essential in A, by Theorem 2 (ii), and
since Qg N A, C P it follows that P is an essential ideal of A,.

We note that if A is a ring with identity which is graded by a finite group G where A
has no |G|-torsion, then it follows from [6, Remark 3] that A is prime essential if and only
if A#G* is prime essential.

Let S be a ring and let P be the product II{S;}i € Z and S; = S for all i} (here Z
denotes the ring of integers). We will use the notation (s;) = (---s_1, 50,51, ) for the
elements of P. The subring of P, consisting of all (s;) such that there is a positive mteger
n (depending on (s;)) such that s; = s; if i = jmod(n), will be denoted by S.

The next proposition will be used to construct examples to show that (i) and (ii) of
Theorem 3 are not equivalent to (iii) for arbitrary groups.

Proposition 2. If S is a semiprime (respectively, G-graded semiprime ) ring, then S is
prime essential (respectively, G-graded prime essential).

Proof. We first assume S is semiprime. Clearly S is also semiprime. Let P be a prime ideal
of 5 and let I be a nonzero ideal of S. Choose 0 # (s;) € I where s; = s; if i = jmod(n) and
ék # 0 for some k,0 < k < n. Since S is semiprime, Ss; # 0. Select s € S such that ssp # 0,
and define (u;) and (v;) as follows: u; = s if i = k mod(2n), and u; = 0 if otherwise;
v; = sif i = k+n mod(2n), and v; = 0 if otherwise. Now, (v;)(s;) and (u;)(s;) are nonzero
elements of I and at least one of these is in P because (v;)(s:)S(u;)(si) = 0 . Hence P is
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essential and so S is a prime essential ring.

Now assume that S is G-graded. We first show that S is G-graded. For each g € G let
Sy = {(si) € Sla; € Sy forall i € Z}. Clearly 5,5, = 0if g # h. Let (s;) € S . Since there
is a positive integer n such that s; = s; if i = j mod(n), we see that (s;) € 1{S,lg € G}.

Now the argument given above to show that S is semiprime implies S is prime essential
can be adapted to show that S is G-graded semiprime implies S is G-graded prime essential.
Example 1. As in [3], let R be the polynomial ring over a field ¥ with commuting
indeterminates {X;|i € Z}. Let A = R/I where I is the ideal of R generated by {X?|i € Z},
and set z; = X; + I. Then G = Z acts as automorphisms on A with n(z;) = z;4n for each
n € G. It is clear that the product of any two nonzero G-invariant ideals of A is nonzero,
and so it follows from [9, Theorem II] that the skew group ring S = A * G is prime, hence
graded prime. By Proposition 2, 5 is prime essential and graded prime essential. However,
S. = {(si)]si € S. = A for all i € Z} is not prime essential since it is not even semiprime.

This example shows that Theorem 3, (iii) implies (i), do not hold for arbitrary groups.
Example 2. Let S be a semiprime ring with identity. Then G = Z acts on S via
n((si)) = (t;) where tj1, = s; for all i € Z. Since the product of any two nonzero G-invariant
ideals is nonzero, it follows from [9, Theorem II] that the skew group ring A = S*G is prime,
hence graded prime. Thus A is not prime essential or graded prime essential even though
A. =S is prime essential.

This examples shows that Theorem 3, (i) implies (iii), do not hold for arbiirary groups.

§3. Irredundant Subdirect Sums

A ring A is an irredundant subdirect sum of rings A, : v € T if and only if there are
ideals P, of A such that Ay = A/P, forally€T,N,P, =0, and for all § € [',N,25P, # 0.
When the P, are prime ideals it is easy to check that NyxsP, is the annihilator of Pj; in
particular, each P; is a minimal prime ideal. Irredundant subdirect sums were introduced
by Levyl?l, and irredundant subdirect sums of prime rings were studied in [10].

Theorem 4. Let A be a G-graded ring with faithful grading, and consider the following
conditions : '

(i) A. is an irredundant subdirect sum of prime rings,

- (ii) A#G" is an irredundant subdirect sum of prime rings,

(iii) A is an irredundant subdirect sum of graded prime rings.

Conditions (i) and (ii) are equivalent and they imply (iii). When G is finite and A has an
identity, all the three conditions are equiva]ent.‘ '

Proof. First we suppose that A, has prime ideals P, : ¥ € T such that N P, = 0
and Nyzs Py # 0 for each 6§ € T. For each v € I choose M, maximal in {I|I is an ideal
of A#G* and I, = P,}. Then M, : v € T is a family of prime ideals of A#G*; and if
6 € T,N,y 25 M, # 0 because it contains (N, x5 Py) p.. Also, (N, M, ), = N, (M,). =N, P, =0,
and so N, M, = 0 by Proposition 1 (i). '

Now assume that A#G"* is an irredundant subdirect sum of prime rings and has prime
ideals @y : v € T such that N, Q, = 0 but N,x£5Q, # 0 for each § € I'. As in the proof of
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Theorem 3, (Qy)e : 7 €T is a family of prime ideals of A, and certainly Ny (Q4). = 0. In
particular, A, is semiprime.

We now show that if a, # € T with a # 8, then (Qa). # (Qs).. Let K be the annihilator
in A#G" of Q4. Then K # 0; and so from Proposition 1 (i), K, # 0. Since K C Qp, K.p. C
(@8)epe- If (Qa)e = (Qp)e, then (Kepe_)z C (Ke)pe(Qa)epe € KQq = 0; and so K2 = 0,
contradicting the semiprimeness of A,.

Let 6 € I'. Since the annihilator of Qs is nonzero, Q5 is not essential in A#G*. Hence,
by Theorem 1, (Qs). is not essential in A,; and so if I is the annihilator of (Qs).,I # 0.
So each (Q@y)e, v €T, is a minimal prime because A, is semiprime and (Qy). has a nonzero
annihilator. It follows that I C (Q,). for all ¥ € T, v 3# 6. Hence Nyx5(Q4). # 0, and so
A, is an irredundant subdirect sum of prime rings. We now show that A is an irredundant
subdirect sum of graded prime rings.

As in [1], Q4 = {a € Alap; € Q, for all g € G} is a graded prime ideal of A for each
7 € T and clearly ﬂ{Q}, |y € T'} = 0. However, it may be that Q}, = Q% when 7,6 € ',y # 6,
so we choose A C T such that N{QL|a € A} =0 and o, 8 € A, a # B implies Q} # Qll,. Let
a € A and let J be the annihilator of Q, in A#G*. Then J. # 0 by Proposition 1(i), and
J.QL = 0 because J.Q4p. = (J.p.)(QLpe) C JQq = 0. Let J* be the ideal of A generated
by J.. Then J* is a nonzero graded ideal of A and J*Q} = 0. Since A is graded semiprime
it follows that Q% is a minimal graded prime, and so just as in the ungraded case we see
that N{Q}l8 € &, 8 # a} #0.

Finally, we assume that A has an identity, G is finite and A has graded prime ideals
Ty : ¥ € T such that N,T, = 0 but N, 257y # 0 for each § € T. From [4; Lemma 5.1 and
Theorem 7.3], for each ¥y € I, T, N A, = ﬂ?;lP»,,,- where P, ; are prime ideals of A, and
ﬂ".-_;’,_ P,; # T, N A, for each j,1 <5< n,. Clearly N, ;P,: = 0. Suppose that for some
) G”I‘ and some j,1 < j < ngy,

(ﬂﬁpqﬂ A B | =o.

§i=1 i=l
T#E S e

Then ﬂ',:'__f,. FPj; is contained in the annihilator of N, 45 n}‘;l Py i = (NyzsTy) N A,. Since the
annihilalt;gr in A of N, 5T, is T; and since the grading is faithful, the annihilator in A, of
(NyzsTH) N A, is Ts N A.. This contradicts the fact that n';:! Ps; # Ts N A,, and the proof
is complete. w

The ring A in Example 2 is graded prime and so is certainly an irredundant subdirect sum
of graded prime rings. However A, is prime essential and so A, is clearly not an irredundant
subdirect sum of prime rings. Hence condition (iii) of Theorem 4 does not imply conditions
(1) and (ii) for arbitrary groups.

§4. Essential Nilpotence

A ring A is essentially nilpotent if A contains a nilpotent ideal which is essential. Essential
nilpotence was introduced by Fisher®! and it follows easily from the results in that paper
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that A is essentially nilpotent if and only if the prime radical of A, N(A) , is essential in A.
Recall that N(A) is the intersection of the prime ideals of A. If A is a G-graded ring, the
graded prime radical of A, Ng(A), is the intersection of the graded prime ideals of A, and
we say that A is graded essentially nilpotent if Ng(A) is graded essential in A.

Theorem 5. Let A be a G-graded ring with faithful grading, and consider the following
conditions :

(i) A. is essentially nilpotent,

(ii) A#G" is essentially nilpotent,

(iil) A is graded essentially nilpotent.

Conditions (i) and (ii) are equivalent and are implies by (iii). When G is finite and A

has an identity, all the three conditions are equivalent.
Proof.  Suppose that N is a nilpotent ideal of A, which is essential. Let [N] be the -
associated ideal of A#G*. From Proposition 1 (ii) we see that [N]? C [N?], and so [N] is a
nilpotent ideal of A#G™. Let I be a nonzero ideal of A#G"*. Then I, # 0 by Proposition 1
(1), and so I, NN # 0. Since the grading is faithful, this implies that IN[N] # 0, and hence
A#G" is essentially nilpotent.

Now suppose that K is a nilpotent ideal of A#G" which is essential. Then K, is a
nilpotent ideal of A4, , and it follows from Theorem 2 (i) that K, is essential.

Let P be a prime ideal of A. Clearly P = {a € Alay, € P for all g € G} is a graded
prime ideal of A, and so Ng(A) C N(A). Suppose that A satisfies (iii). Then Ng(A) is
graded essential in A, and hence (Ng(A)). is essential in A, by Theorems 1 and 2. Since
Ng(A) € N(A),(Ng(A)). € (N(A)). and since subrings of prime radical rings are prime
radical, we have (N(A)). C N(A.). It follows that N(A.) is essential in A,, and so A satisfies
(i).

Finally, if G is finite and A has an identity then (Ng(A4)). = N(A.) by [4, Corollary
5.4], and so (i) implies (iii) by Theorem 2 (ii).

The ring S in Example 1 is graded prime, but S, is essentially nilpotent, so the three
conditions in Theorem 5 are not equivalent for arbitrary groups.
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