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A b s t r a c t .  Let G be  & group and  A a G-graded ring. A (graded) ideal I of A is (graded) 
essential if I n J ~ 0 whenever J is a nonzero (graded) ideal of A. In this paper  we s tudy the 
relationship between graded essential ideals of A, essential ideals of the  identity component  Ae 
and essential ideals of the  sna~h  product  A#G*. We apply our results to prime essential rings, 
i rredundant  subdirect  sums and essentially nilpotent rings. 

w Essential  Ideals 

Let G be a group with identity e. An associative ring A is G-graded if the additive group 

of A is a direct sum 0fsubgroups Ag,g E G which are such that AgAh C Agh for all g, h E (7. 

The gradingis faithful if 0 ~ a E Ag implies aAh ~ 0 and Aha ~ 0 for all g, h E G, and the 

grading is strong if AgAg-~ = A, for all g E G. 

Let A be a G-graded ring. The smash product A#G* is an associative ring in which 

each element can be written uniquely as" a finite sum ~"~g agpg, g E G, ag E A, and the 

multiplication satisfies apgbph = abg~-~p~ for a, b E A, g, h E G where bgh-t denotes the gh -1 

component of b. If K is an ideal of A#G*, then Ke denotes the ideal {a E Ae : ape E K}. of 

A, ( this ideal is used in [8] where the notation, is K,.,). 

Let I be an ideal of a G-graded ring A. For each g E (7, Ig = I f'l Ag and I is graded if 

I = ~"~g I a. A graded ideal I of A is graded essential if 1 I"1 d ~ 0 for each nonzero graded 

ideal d of A, and an ideal B of A is essential if B I"1C # 0 for each nonzero ideal C of A. 

In this section we prove the following two theorems. 
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T h e o r e m  1. Let A be a G-graded ring and let I be a graded ideal of A. The following 

are equivalent. 

(i) I is an essentiM ideM of A. 

(ii) I is a graded essential ideal of A. 

(iii) I#G* is an essential ideal of A#G*.  

T h e o r e m  2. Let A be a G-graded ring with faithful grading, let I be a graded ideal of  A 

and let K be an ideal of A#G*.  

(i) K is essential in A#G" ff and only i f  Ke is essential in Ae. 

(ii) I is essential in A/ / 'and only i f  I~ is essential in A,.  

In subsequent sections we apply these results to prime essential rings, to irredundant 

subdirect sums and to essential nilpotence. 

Let A be a G-graded ring and let I be an ideal of A~. The associated ideal [I] of A#G* 

is defined in [8] : [I] = ~ A I A r , p  e. Note that when A has an identity this is just  the ideal 

of A#G* which is generated by Ip,. The results in the following proposition are implicit in 

[8], but  we include a proof for the convenience of the reader. 

P r o p o s i t i o n  l ( L i u ) .  Let A be a G-graded ring. 

(i) I l K  is a nonzero ideal of A#G* and the grading on A is faithful, then K~ # O. 

(ii) If  I and J are ideals o lAf ,  then [I][J] C_ [IJ]. 

Proof. (i) Let 0 ~ ~'~,h aa,hp~ E K where ag, h E Ah, and assume that aa,# # 0. Then 

( z  / A(#a)-'p~a a~,apg Aap~ = A(#a)-laa,#Aape 
\9,h I 

is in K. Since the grading is faithful, A(~)-~a~,,#A~#o and so Ke # 0. 
(ii) Let C and D be ideals of A,. Then 

[C] = ~ ACAa-,pa 

and 

SO 

[D] = ~'~ADAh-,ph; 

[C][DI = Z A C A g - ' A g D A h - ' P h  
g,h 

C Z ACDAh-,ph - [CDI. 
h 

We remark that in [8] Liu shows that if the grading is strong then the correspondence 

C ~ [C] is a. bijection between the set of ideals of A, and the set of ideals of A # G  ~ . 

Proof of Theorem 1. (i) implies (ii) is obvious. We now show that (ii) implies (iii). 

Let J be a nonzero ideal of A#G*. Write elements of J in the form 

~-~ao,hp9 where a~,h EAh,  (*) 
g,h 
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and choose u ~ 0 in J of this form with a minimum number of coefficients ag,h r I.  Suppose 

u = aa,#p~, + ' "  and aa,a r I.  

If Aaa,#A ~ 0 it has a nonzero intersection with I; and Since the intersection is graded 

there is a nonzero zaa,#y E I where z and y are homogeneous. Suppose z E A~ and y E A6. 

Then zpmuyp,~ = zaa,#yp, where m = / ~ a  and n = 6-zct. Since zp,nuyp,~ E J and its one 

nonzero coefficient is in I we have reached a contradiction. Hence u E I#G*. 

Now assume Aaa,#A = 0 but Aaa,# ~ O. Then there is a nonzero zaa,p E I for some 

homogeneous z, say z E A-r. Hence zp,nu = zaa,#pa + ' "  where m = / ~ a  is in form ( , )  and 

has fewer coefficients not in I than u does. Once again we conclude that u E I # G  ~ 
If Aaa,aA = 0 but aa,#A ~ O, an argument similar to the one above shows that  u E 

I # G  ~ Finally, if Aa,~,# = aa,aA = 0 , then 0 ~ kaa,a E I for some integer k and so ku has 
fewer coefficients not in 1 than u does. 

This completes the proof that (ii) implies (iii). 

Now assume (iii) and suppose that K is a nonzero ideal of A. Write elements of K as 

sums of homogeneous components and choose 0 ~ v = ag t + - - -  + a t .  E K of shortest length 

and with a maximum number of homogeneous components in I.  

Suppose as1 ~ I. I fA%,A ~ 0 then it has a nonzero intersection with I (since (Aag, A)#  
G ~ has a nonzero intersection with I # G * ) ,  and because the intersection is graded there is 

a nonzero element a:agty E -/" where z and Z/are homogeneous. Now a:vy ~ 0 and zv / /has  

more homogeneous components in I than v does. We reach the same conclusion in the eases 

Aag~A = 0 but  Aag, ~ O;Aag,A = 0 but  ag~A ~ 0; and Aag, = ag~A = 0. Consequently, 

we conclude that  v E I,  and this completes the proof. 

P roof  of  Theorem 2. (i) First suppose that K is essential in A#G ~ Let T be a nonzero 

ideal of A~. Since the grading is faithful, IT] ~ 0; and so since K is essential, [3] CI K ~ 0. 

From Proposition 1 (i), (IT] fl K ) ,  ~ 0; and since it is clear that  ([7"] fl K ) ,  _C IT], rl Kr and 

that [T]~ C T we conclude that Kr is essential in A,.  

Conversely, suppose that Ke is ~ssential in Ae, and let J be a nonzero ideal of A#G ~ 
From Proposition 1 (i), Jr ~ 0 and so Ke I"i Jr ~ 0. Hence 0 ~ (Kr f3 Jr)Pr C_ K N J and so 

K is essential in A#G ~ 
(ii) If I is a graded ideal of A, then (I#G*), = It;  and so the result follows from Theorem 

1 and (i) of this theorem. 

w P r i m e  Es sen t i a l  R ings  

A ring A is prime essential if A is semiprime and each prime ideal is an essential ideal. 

Prime essential rings were introduced by Rowen tZ0l and have recently been studied in [6]. 

By analogy with the ungraded case, we say that  a G-graded ring A is graded prime essential 

i f  A is graded semiprime and every graded prime ideal of A is graded essential. 

T h e o r e m  3. Let A be G-graded with faithful grading. The following are equivalent. 
(i) A, is prime essential. 
(ii) A#G* is prime essential. 

If  G is tinite and A has an identity, these are also equivalent to 
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(iii) A is graded prime essential. 

Proof. First suppose that  Ae is prime essential. If I ,~ A # G  ~ and 12 = 0, then (Ie) 2 = 0. 

Also, if I r 0,  Proposition 1 (i) implies that I e r  0; and so it follows that  A # G  ~ is semiprime 

because Ae is semiprime. Let P be a prime ideal of A # G  ~ and suppose that  C and D are 

ideals of A, such that CO c_ P,. It follows from Proposition 1 (ii) that  [C][D] C_ [CO]; and 

since C D  C Pc, [CD] C_ P. Thus [C] C P or [D] _C P, and so ( A # G * ) C p , ( A # G  *) C_ P or 

( A # G * ) D p , ( A # G  ~ C P. Since P is prime, Cpe C. P or Dp, C P. Hence C C P, or D C_P,; 

and we see that  Pe is a prime ideal of Ae. Since A~ is prime essential, Pe is essential in A~, 

and hence P is essential in A # G  ~ by Theorem 2 (i). 

Now suppose that  A # G *  is prime essential. If I is a nonzero ideal of A, then [I] ~ 0 

because the grading is faithful and [i]2 C [12] by Proposition 1 (ii). Hence it follows from 

the semiprimeness of A # G  ~ that A~ is semiprime. Let Q be a prime ideal of A~. Choose 

M maximal in { K [ K , ~ A # G *  and Ke = Q}. It is straightforward to check that  M is prime 

and so M is essential. Itence Q is essential in A~ by Theorem 2 (i). 

We now assume that  G is finite and that A has an identity. 

Suppose that  Ae is prime essential. It follows'from [4, Theorem 2.9] that  A is graded 

semiprime. Let P be a graded prime ideal of A. From [4, Lemma 5.1 and Theorem 7.3] we 

see that P N Ae is a finite intersection of prime ideals of Ae. Hence P N A~ = P~ is essential 

in Ae and so P is graded essential in A by Theorem 2 (ii). 

Conversely, suppose that A is graded prime essential. Then A~ is semiprime [4, Theorem 

2.9]. Let P be a prime ideal of A,. From [4, Theorem 7.3] there is a prime ideal Q of A with 

Q N A~ C P. Let Qa = ~"~g Q N A~. Then Qa is a graded prime ideal of A [4, Lemma 5.1], 

and so Qc is graded essential in A. tIence Qc r A, is essential in A~ by Theorem 2 (ii), and 

since Qa N Ae _ P it follows that P is an essential ideal of Ae. 

We note that if A is a ring with identity which is graded by a finite group G where A 

has no [G[-torsion, ~hen it follows from [6, Remark 3] that A is prime essential if and only 

if A # G  ~ is prime essential. 

Let S be a ring and let P be the product H{Si]i E ~ and Si = S for all i} (here ,~ 

denotes the ring of integers). We will use the notation (si) = ( . . .  s - l , s o ,  s l , . . . )  for the 

elements of P.  The subring of P, consisting of all (si) such that there is a positive integer 

n (depending on (si)) such that si = s i if i -- jmod(n) ,  will be denoted by S. 

The next proposition will be used to construct examples to show that (i) and (ii) of 

Theorem 3 are not equivalent to (iii) for arbitrary groups. 

P r o p o s i t i o n  2. I f  S is a semiprime (respectively, G-graded semiprime ) ring, then S is 

prime essential (respectively, G-graded prime essential). 

Proof. We first assume S is semiprime. Clearly S is also semiprime. Let P be a prime ideal 

o r s  and let I be a nonzero ideal orS.  Choose 0 ~ (si) e I where si - sj i f / -  jmod(n)  and 

sk ~ 0 for some k, 0 < k < n. Since S is semiprime, Ssk ~ O. Select s E S such that ss~ ~ 0, 

and define (u~) and (vi) as follows: ui - s if i - k mod(2n), and ui - 0 if otherwise; 

vl = s i f / - -  k + n mod(2n), and vi = 0 if otherwise. Now, (vi)(si) and (ul)(si)  are nonzero 

elements of I and at least one of these is in P because (vi)(sl) 'S(ui)(si) = 0 . Hence P is 
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essential and so S is a prime essential ring. 

Now assume that  S is G-graded. We first show t h a t  S is G-graded. For each g �9 G let 

S"~ = {(si) �9 "Sial �9 Sg for all i �9 ~ } .  Clearly SeNSh = 0 ifg # h. Let (si) �9 S .  Since there 

is a positive integer n such that si = sj if i -- j rood(n), we see that  (si) �9 E{~gla �9 G}. 

Now the argument given above to show that  S is semiprime implies S is prime essential 

can be adapted to show that  S is G-graded semiprime implies S is G-graded prime essential. 

E x a m p l e  1. As in [3], let R be the polynomial ring over a field k with commuting 

indeterminates {X~li �9 ~}. Let A = R/1 where I is the ideal of R generated by {X~I i �9 ~} ,  
and set zi = Xi + I .  Then G ,~ nets as automorphisms on A with n(zi) = zi+, for each 

n �9 G. It is clear that  the product of any two nonzero G-invariant ideals of A is nonzero, 

and so it follows from [9, Theorem II] that  the skew group ring S = A * G is prime, hence 

graded prime. By Proposition 2, S is prime essential and graded prime essential: Itowever, 

S ,  = {(s~)ls~ �9 S, = A for all i �9 ~ }  is not prime essential since it is not even semiprime. 

This example shows that  Theorem 3, (iii) implies (i), do not hold for arbitrary groups. 

E x a m p l e  2. Let S be a semiprime ring with identity. Then G = ~ acts on S via 

n((si)) = (ti) where ti+r, = si for all i �9 ~ .  Since the product of any two nonzero G-invariant 

ideals is nonzero, it follows from [9, Theorem II] that  the skew group ring A = S * G  is prime, 

hence graded prime. Thus A is not prime essential or graded prime essential even though 

Ae = S is prime essential. 

This examples shows that  Theorem 3, (i) implies (iii), do not hold for arbitrary groups. 

w I r r e d u n d a n t  S u b d i r e c t  Sums  

A ring A is an irredundant subdirect sum of rings A 7 : 7 E F if and only if there are 

ideals P.~ of A such that  A.f -~ A / P  7 for all 7 E F , f ~ P  7 -" 0, and for all 6 E F, IqT#6P-r ~ 0. 

When the t?.7 are prime ideals it is easy to check that  f t r#6P 7 is the annihilator of P6; in 

particular, each P6 is a minimal prime ideal. Irredundant subdirect sums were introduced 

by Levy[ 7], and irredundant subdirect sums of prime rings were studied in [10]. 

T h e o r e m  4. Let A be a G-graded ring with faithful grading, and consider the following 
conditions : 

(i) A, is an irredundant subdirect sum of prime rings, 

(ii) A#G* is an irredundant subdirect sum of prime rings, 

(iii) A is an irredundant subdirect sum of graded prime rings. 

Conditions (i) and (ii) are equivalent and they imply (iii). When G is finite and A has an 
identity, Ml the three conditions are equivalent. 

Proof. First we suppose that Ae has prime ideals P7 : 7 E F such that  N.rP. r ~ 0 

and f%r;~tP~ ~ 0 for each 6 E F. For each 7 E F choose M r maximal in {I l l  is an ideal 

of A#G* and Ie = PT}. Then M r : 7 E r is a family of prime ideals of A#G*; and if 

5 E I', f 'b#6M 7 ~ 0 because it contains (f3-~#~P.y)pe. Also, (N7M-r) e = f'~(MT)e = f ' bP  7 = 0, 
and so f ~ M  7 = 0 by Proposition 1 (i). 

Now assume that  A#G* is an irredundant subdiiect sum of prime rings and has prime 

ideals Q7 : 7 �9 P such that  I-i~Q 7 = 0 but Iq-r#6Q~ ~ 0 for each 6 �9 F. As in the proof of 
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Theorem 3, (Q-~), : 7 e F is a family of prime ideals of Ae and certainly f'~(Q-~)e = 0. In 

particular, Ae is semiprime. 

We now show that  if ot, fl E r with ot # fl, then (Q~), # (Q~)e. Let K be the annihilator 

in A#G* of Qa. Then K # 0; and so from Proposition 1 (i), K ,  # 0. Since K C Qg, Kep, C 
(Q~),p~. If (Qa)~ = (Q~)e, then (g~p~) 2 C (Ke)pe(Qa),p, C_ KQ,~ = 0; and so K~ = 0, 

contradicting the semiprimeness of A~. 

Let 6 E F. Since the annihilator of Q6 is nonzero, Q6 is not essential in A#G*. Hence, 

by Theorem 1, (Qs)~ is not essential in A,; and so if I is the annihilator of (Qs),,I ~ O. 
So each (Q~), ,7 e F, is a minimal prime because A~ is semiprime and (Q~), has a nonzero 

annihilator. It follows that I C (Q~), for all 7 6 r , 7  # 6. Hence f~,#6(Q-r)~ ~ 0, and so 

A~ is an irredundant subdirect sum of prime rings. We now show that  A is an irredundant 

subdirect sum of graded prime rings. 

As in [i], Qt -. {a E A[ap e E Q'r for all g E G} is a graded prime ideal of A for each 

e r and clearly nfQ41  e r} = o. However, it may be that  Q7 t = Q~ when 7,/~ �9 F,7 # 6, 

so we choose A C F such that n{Q~[a �9 A} = 0 and a, fl �9 A, ot # • implies Q t  # Qt .  Let 

a �9 A and let J be the annihilator of Q~ in A#G*. Then Jc # 0 by Proposition l(i), and 

j~QI = 0 because j~Qtpr = (jep,)(Qlpe) C JQ,~ = 0. Let J* be the ideal of A generated 

by Je. Then J* is a nonzero graded ideal of A and J*Qt a = O. Since A is graded semiprime 

it follows that Q t  is a minimal graded prime, and so just  as in the ungraded case we see 
that  n(QtIfl �9 A,~ # a} # O. 

Finally, we assume that A has an  identity, G is finite and A has graded prime ideals 

T~ : 7 �9 F such that ffgtT-t = 0 but nT#6T, v r 0 for each 6 �9 F. From [4; Lemma 5.1 and 

Theorem 7.3], for each 3' �9 F,T7 N A, = ni=lPT,i where PT.i are prime ideals of A ,  and 

N~'=, P-r r T7 N Ae for each j,  1 <~ j ~ n 7. Clearly f~,iP%i = 0. Suppose that for some 

5 �9 F and some j,  1 ~ j ~ n$, 

P,,' A = o. 

Then ,s n., PT,i (n~r n A,. Since the n,=~ Ps,i is contained in the annihilator of nTr ni= 1 = 
Otj 

annihilator in A of n~r t is T6 and since the grading is faithful, the annihilator in A, of 

(n-tr n )t,  is Ts n A,. This contradicts the fact that ,,s n,=, Ps,i # Ts nA , ,  and the proof 
~tj 

is complete. 

The ring A in Example 2 is graded prime and so is certainly an irredundant subdirect sum 

of graded prime rings. However A, is prime essential and so A, is clearly not an irredundant 

subdirect sum of prime rings. Hence condition (iii) of Theorem 4 does not imply conditions 

(i) and (ii) for arbitrary groups. 

w Essen t ia l  N i lpo t ence  

A ring A is essentially nilpotent ifA contains a nilpotent ideal which is essential. Essential 

nilpotence was introduced by Fisher Is] and it follows easily from the results in that  paper 
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that A is essentially nilpotent if and only if the prime radical of A, N(A) , is essential in A. 

Recall that  N(A) is the intersection of the prime ideals of A. If A is a G-graded ring, the 

graded prime radical of A, NG(A), is the intersection of the graded prime ideals of A, and 

we say that  A is graded essentially nilpotent if NG(A) is graded essential in A. 

T h e o r e m  5. Let A be a G-graded ring with faithful grading, and consider the following 
conditions : 

(i) Ae is essentially nilpotent, 
(ii) A#G* is essentially nilpotent, 

(iii) A is graded essentially niipotent. 
Conditions (i) and (ii) are equivalent and are implies by (iii). When G is finite and A 

has an identity, all the three conditions are equivalent. 
Proof. Suppose that N is a nilpotent ideal of Ae which is essential. Let [N] be the 

associated ideal of A # G  ~ From Proposition 1 (ii) we see that  IN] 2 C [N2], and so IN] is a 

nilpotent ideal of A#G*. Let I be a nonzero ideal of A#G*. Then Ie # 0 by Proposition 1 

(i), and so Ie N N r 0. Since the grading is faithful, this implies that  I A [N] r 0, and hence 

A#G* is essentially nilpotent. 

Now suppose that  K is a ni|potent ideal of A#G" which is essential. Then K ,  is a 

nilpotent ideal of A~ , and it follows from Theorem 2 (i) that  K~ is essential. 

Let P be a prime ideal of A. Clearly Pa = {a E A]as E P for all g E G} is a graded 

prime ideal of A, and so No(A) C_ N(A). Suppose that  A satisfies (iii). Then Na(A) is 
graded essential in A, and hence (NG(A)), is essential in Ae by Theorems 1 and 2. Since 

NG(A) C N(A),  (NG(A)), C (N(A))e and since subrings of prime radical rings are prime 

radical, we have (N(A)),  C N(A~). It follows that N(A,)  is essential in A,,  and so A satisfies 

(i). 
Finally, if G is finite and A has an identity then (Na(A))e = N(A~) by [4, Corollary 

5.4], and so (i) implies (iii) by Theorem 2 (ii). 

The ring .5' in Example 1 is graded prime, but Se is essentially nilpotent, so the three 

conditions in Theorem 5 are not equivalent for arbitrary groups. 
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