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Abstrac t  

The third Part of our work continues the analysis of the problem considered in Parts I and II [J. Russ. 
Laser Res., 17, 205 (1996); 18, 2 (1997)]. We continue the search for the answer to the question: What is 
laser radiation from the viewpoint of the classical theory of wave fields? Here, we give one of the possible 
interpretations of propagation of laser radiation in vacuum outside a resonator from both the nonrelativistic 
and relativistic points of view. The relation between the metric and the radiation field structure is noted. 
Moreover, the third Part contains the conclusion concerning the work as a whole. It presents the main 
observations that may be useful for further studies of the problem. 

1. Introduct ion  

It is evident that  the interpretat ion of the s t ructure  of laser radiation inside a resonator  is intimately 
connected with the interpretat ion of laser radiation outside a resonator.  Therefore,  in our opinion, it is 
desirable to s tudy bo th  s t ructures  simultaneously and within the framework of equivalent concepts. However, 
from the viewpoint of the analysis technique, first it makes sense to s tudy thoroughly the radiat ion structure 
inside a resonator.  This way of s tudying the problem is demonst ra ted  here. Par ts  I and II [1, 2] were devoted 
to the analysis of this component  of the general problem. 

Let us qualitatively i l lustrate the factors responsible for the relation between the structures of a laser 
radiation field inside and outside a resonator  and analyze the s t rength of this relation. 

Let us illustrate this relation by the example of a regular s t ructure  of laser radiat ion at the output  of 
a resonator  with plane-parallel mirrors. For simplicity, we consider a two-dimensional problem (x, z). Let 
us give the interpretat ion of the laser radiation s tructure within the framework of the method  of normal 
coordinates related to the radiat ion field and the resonator  geometry. This interpretat ion is based on the 
physical concepts s tated by us in Par t  I. The coordinate system corresponding to this interpretat ion is 
schematically shown in Fig. 1. 

One can see that  this coordinate system strongly differs from the coordinate system constructed,  for 
example, within the framework of the model of an incompressible liquid. The main difference consists in the 
fact that  Fig. 1 gives an approximate  relation between the metric and the field. This relation is determined 
mainly by the diffraction effect. 

One can see from Fig. 1 that  the wave field outside a resonator  may be interpreted within the framework 
of the method of normal coordinates in a way similar to the one used for interpretat ion of the field inside a 
resonator in Par t  I. 

This makes it possible to represent the wave field outside a resonator  in the form of a system of two 
orthogonal waves whose wave fronts correspond to the orientation of the coordinate system shown in Fig. 1. 

This interpretat ion of the laser radiation s tructure is very simple and pictorial, and we shall use it later. 
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Fig. 1. Coordinate system under consideration (semitransparent resonator mirrors). 

Note that within the framework of this interpretation of laser radiation, it is obvious that structures of 
radiation outside and inside a resonator are coupled. Coupling is realized through the space metric. In the 
case under consideration, the latter is strongly coupled with the field structure both outside and inside a 
resonator. 

In particular, the field structure outside lateral resonator boundaries largely determines the extent of the 
area in which transverse waves are reflected into a resonator. (This effect shows itself through the space 
metric as well.) 

Within the framework of this interpretation of the laser radiation field, it cannot be divided into two 
parts (inside the resonator and outside it). The field is represented as a unit. This is a substantial refinement 
of the interpretation of laser radiation, and one should always bear it in mind. The division of the laser 
field into two parts is convenient only from the viewpoint of gradual perception of the problem as a whole. 
We followed this viewpoint in the course of presenting the material and in the diagram of the structure 
describing the study of the problem mentioned in Part I. In this case, the laser field is divided into two parts 
by a very artificial method, a certain indeterminate specification of boundary conditions of the problem. In 
this sense, the perception of the problem is simplified to a certain extent. This simplification is convenient 
for understanding individual characteristics of the problem, but not the problem as a whole. In what follows, 
we use this simplified method for understanding the propagation of laser radiation outside a resonator. 

Our interpretation of laser radiation outside a resonator, which is presented below, strongly differs from 
the interpretations known to us from the literature. As noted above, it is based on the use of the method of 
normal coordinates, which was considered in close detail in Part I. 

In what follows, the material is presented in a way that strongly differs from the one used in the previous 
parts. It is given in a very brief and mathematically formalized form. 

A reader acquainting himself with this part of the work should pay attention to the physical meaning of 
those mathematical procedures that we used for solving this part of the problem. 
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2. General Relations.  Nonrelat ivist ic  Theory 

The  wave equat ion for the  electric vector /~ of a radiat ion field will be used as the initial equation for 
fur ther  analysis. It readily follows from the Maxwell equations and has the form 

(1) 
c 2 Or2 [e  J 

where ~ is the permi t t iv i ty  of a med ium,  c is the speed of light, t is t ime, and f ' is  the space radius vector. 
Equat ion  (1) was obta ined in the approximat ion  where the frequency of field oscillations w was much 

higher than  the rate of variation of ~(~', t) in t ime. 
In what  follows, we restrict  our  considerat ion to the case where the inertial propert ies of polarization 

of a med ium may be neglected in relation to the radiat ion pulse length.  It is obvious tha t  this is a ra ther  
rough assumption.  Nevertheless, as will be seen from further  reasoning, this model  appears  to be useful for 
s imulat ing propagat ion  of laser radiat ion in vacuum (in vacuum,  e = 1, but  for the present  we set e it 1). 

Fur ther ,  we use the scalar approximat ion  according to which one may  neglect the right par t  of Eq. (1) 
and consider the scalar componen t  E instead of the  electric field vec tor /~ .  Then  in the nonrelativist ic case 
and curvilinear coordinates (X1,X 2, X3), Eq. (1) can be wri t ten  in the form 

r  ) 
c20t~ V~ Oxi v/~gjk OE =o, (2) 

where gik are metric tensor components ,  g = det (gjk), and j ,k  = 1,2,3.  
The  sense of the m e t h o d  of normal  coordinates consists in the representat ion of oscillation of E in the 

form of three or thogonal  nonin terac t ing  normal  oscillations: longitudinal  w, azimuthal  v, and radial u: 

E = uvw. (3) 

These oscillations satisfy the  equat ions wri t ten in or thogonal  normal  coordinates 

E O~u 1 0 / ii Ou 
~l 2 at 2 yr~ OxJ ~v~g ~xJ) = O; (4a) 

~ 0 2 v  1 0 (  Ov) 
~22 Ot 2 ~ Oxi v~gJJ-~J = 0; (4b) 

02w 1 0 / Ji Ow \ 
~v~g  ~-7x3") : 0 (4c) 

2 0 t2  OzJ 

where vk is the phase velocity of the oscillatory wave k. Here, j = 1,2,3.  
Let us analyze propert ies of an individual  normal  wave within the framework of the hydrodynamic  model.  

For this purpose,  we represent,  for example,  w in the form 

w = p~ (~', t) exp[iS~ (~', t)].  (5) 

Here, the amph tude  p~ and the phase S~ are real functions of t ime and coordinates.  Moreover, let us 
introduce the complex permi t t iv i ty  of a med ium for the wave w in the form 

= 

where Crw and -i g~ are real values and -1 ~w > 0 corresponds to wave absorption.  
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The sense of introducing the imaginary component of e consists in the following. The hydrodynamic 
model has a substantial drawback. It does not take into account the effect of wave reflection. On the other 
hand, as shown in Par t  I, this effect is quite possible, for example, in the case of propagation of transverse 
waves in the space. It is natural  that  it is closely connected with the geometry of such waves. This effect 
can be taken into account within the framework of the hydrodynamic model by introducing the energy loss 
factor for the incident wave and the gain factor for the reflected one. These factors should depend on the 
coordinate along the directions of the incident and reflected waves. In this case, the quantity ~ fulfills the 
role of these factors. It can be determined within the framework of the wave model, which will be considered 
below. 

Let us substi tute (5) into (4c) and separate the real and imaginary parts. This gives the system of two 
equations 

5a2 ot(P~W~) + V/~cgx j (vfgp,ovJ,~) -- ~a 2 \ oqt~ p~w~_ ; (6) 

- 5  - -  + - -   vgg ( 7 )  
PwV3 V32Pw Ot 2 pwMlg OX j ' 

where vi~ = giiOS,~/Ox i is the quasi-particle velocity, and w = -OS~/Ot is the frequency. 
Equation (6) is the continuity equation, and Eq. (7) describes the energy of the flux of quasi-particles. 

The last term on the right part  of Eq. (7) describes the diffraction effect, the next to last one describes the 
dynamic effect, the quanti ty i giiv~vJ~ is proportional to the kinetic energy, w~ ( 1 -  r 2 is proportional to 
the potential energy, and ~ - 2 o~/v3 is proportional to the total energy of quasi-particles. 

Systems of equations similar to (6) and (7) can also be derived for the waves u, v and for the wave E. 
The last fact is convenient to use for determining the metric and, hence, the system of normal coordinates. 
Indeed, if E is represented in the form E = pexp (iS), then assuming r = E~ + i~' one obtains, in view of (7), 

g Nr =  .k0 , ( 8 )  

where v J = ~ + ~  + v~ is the velocity of quasi-particles, ko = o~/c is the module of the wave vector of 
radiation in vacuum (in the general case, w is a variable quantity),  and 

1 [ 1 0 ( 0 ~ 7 )  g' ] r = e~ + k-~o pv/g OxJ v~gSi e~ 10Up (9 2 
p ) " (9) 

Here, p = p,p,p~ and E. has the meaning of permitt ivity modeling diffraction, dynamic, and absorption 
effects described by the first, second, and third terms in square brackets of (9), respectively. 

In view of the fact that  the meaning of the quantity E. is established, it is natural  now to take into account 
that  r = 1 in vacuum. Operating on Eq. (8) with the gradient operator, one obtains the system of three 
equations of motion 

J }vn)]  : ~--~(d.k~) (10) 

Here, k is fixed and takes the values 1, 2,3; the summation is performed over n and j ;  e'. = e. - 1. 
Equations (10) along with the continuity equation 

~ O(p2w) 1 0 (0  2p ) 
- -  ~ \-ff~- - pw 2 (11) 

determine the space metric deformed by a radiation pulse. In essence, Eqs. (10) and (11) for the given 
p = p~pop,~, v i = v$ + v~ + v~, and 0J = w~ + oJ~ + ww represent the conditions of expansion of the wave E in 
three normal wave components  u, v, and w. 
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Qualitatively, the metric may also be analyzed by using the electrostatic analogy (see Part I). In this case, 
the metric is determined by the system of three equations 

0 ii 1 0E. (12) 
0zJ (v g) = -v g " 

Now, if information about e. is included into gJJ, i.e., a field-metric coupling is taken into account, then 
it follows from Eqs. (9)-(11) that the metric distortion by a pulse has a wave character and the deviation of 
normal coordinates from their equilibrium values changes in the course of propagation of a radiation pulse. 
Let us now describe dynamics of the field of propagating radiation. 

3 .  F i e l d  D y n a m i c s  

The field dynamics will be described with the help of the formalism developed in Part  I. According to this 
formalism, normal waves are represented in the form of individual partial waves directed along coordinate 
tubes. In the general case, these partial waves are coupled, and coupling is caused by the transverse transfer 
of amplitude. 

Let us analyze a particular problem, the propagation of a stationary beam of laser radiation in vacuum. 
We consider an idealized case where the transverse transfer of wave amplitude is not taken into account and 
one is interested only in the radial structure of a cylindrical beam. Within the framework of the formalism 
mentioned above, the radial structure of the beam is described by equations of oscillations of the field ui along 
radial coordinate tubes i. In the laboratory system of coordinates moving along the optical axis z together 
with the front of a longitudinal wave, we have the equation 

1 02ui 02ui 1 dai Oui 
- -  - 0 ,  ( 1 3 )  ~ Ot 2 O~ ai d~i 0~ 

where ~i is a coordinate with a uniform scale along the axis of a radial coordinate tube, ai = ai(~i) is the 
cross section of the radial tube i, and vi is the phase velocity of the radial wave. 

The structure of the cylindrical radiation beam is shown in Fig. 2. For simplicity, it is assumed that 
the curvature of longitudinal coordinate lines may be neglected. This is correct under the assumption that 
the longitudinal wave is plane, has a constant amplitude over the wave front, and transverse waves do not 
change the metric. One can see from Fig. 2 that the beam structure is determined by the time evolution of 
the wave packet corresponding to radial field oscillations. In the figure, the evolution of this packet is shown 
at moments 1-4. At the initial moment 1, the packet represents a standing wave of radial oscillations on the 
surface of a resonator mirror. At moments of time following moment 4, the diffraction destruction and the 
package displacement along the radial coordinate proceed. Note that in the case under consideration it is 
assumed that the laser generates a highly excited azimuthal oscillation and the field on the z axis vanishes. 
In this case, the region of maximum beam energy density in the far field is far removed from the optical axis 
z. In a more general case (for example, in the case of generation of the fundamental Gaussian mode in a 
resonator with concave mirrors), the density of radiation energy in the far field may have a maximum on the 
z axis. However, in this case, a beam propagates in a substantially curved space. 

Let us complicate the problem and describe a stationary radiation beam in a more real case of a curvilinear 
coordinate grid. Then, in contrast to the problem considered above, the propagation of normal waves w, 
u, and v along orthogonal coordinate axes (longitudinal (, radial ~, and azimuthal ~7) is described by three 
equations of oscillations in curved space. For the longitudinal natural wave wk propagating along an individual 
coordinate tube k, we have 

1 02wk [02wk 1 da3kOwk 
~k Ot2 [ 0(~ + a3k d(k --O(k + [e'3k2~ - U3k((k)] wk j = 0, (14) 
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Fig. 2. The structure of a radiation beam outcoupled from a cylindrical flat resonator. O' is the turning point; the 
points A and B specify boundaries of a transverse wave packet of a radial oscillation. The arrows indicate the directions 
of propagation of the radial wave. 

where fi3~ is the phase velocity of the wave, a3~ is the cross section of tube k, Uak is the potential caused by 
the curvature of the axis of the tube k, and e~ is the changing component of effective permit t ivi ty containing 
information about the transverse diffraction of the longitudinal wave. The radial and azimuthal waves are 
conveniently described in the laboratory system of coordinates moving along the optical axis of the beam 
with velocity of the front of the longitudinal wave. In the general case, the coordinates ~ and y undergo local 
stretches and compressions in the course of motion. Therefore, it makes sense to pass from these coordinates 
to the coordinates (z 1, x2), which do not change in time: 

d~ = ~/~-(dz~; d~l = v f ~ d x 2 ;  dt = v / ~ d x  ~ 

In new coordinates (z~,z2), the transverse waves u and v along corresponding individual tubes i and j are 
described by the equations 

4,~9o, \o (xo)  ~ o~ o a~ o)  - o ( ~ )  - - - - z  + g,, o~ff 

alog_ x /~  ] Ou, } 
Ox, ] ~ § g'' [E;k~ - U,,(x~,x~ u, = 0; (15) 
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0 log v/~j- ] Ovi 
[E'2k~ U2j(x~, ~ vj} = 0 (16) 

J - . 

In these equations, the meaning of variables with subscripts corresponds to their meaning in Eq. (14). We 
emphasize once again that Eqs. (15) and (16) for transverse waves are extremely useful because they permit 
one to change from the formulation of the problem of wave motion in the time-dependent coordinates (~, r/) 
to its formulation in the stationary coordinates (x 1, x2). (The quantities ga, g2 contain the time dependence.) 

From Eqs. (15) and (16) follows an interesting conclusion. The effect of change of the tube cross section 
along the transverse coordinate can be easily simulated by compression and stretching of this coordinate 
(change of the "metric" gi). This conclusion follows from the structure of the terms 

1 0ai and Ol~  1 OV'~ 
a~ Oz i Oz ~ ~/~ Oz ~ 

One can see that these terms have the same structures, and from Eqs. (15) and (16) it follows that the 
terms have different signs. Therefore, in this simulation, a decreasing dependence gi(x i) will correspond to 
an increasing dependence ai(xi). 

In Eqs. (13)-(16) presented above, the effect of ampfitude transfer along the front of normal waves was 
not taken into account. Usually, this effect cannot be ignored in problems that are of practical interest. This 
conclusion is valid for the problem under consideration as well, especially in the case where the propagation of 
short pulses of laser radiation is studied. In the nonrelativistic approximation, velocities of diffraction transfer 
of wave amplitudes may appear to be very high. Because of this, the problems under consideration should 
be analyzed within the framework of the relativistic theory. The need for taking into account the relativistic 
effect also arises in the case where one studies the propagation of a pulse and describes its longitudinal 
component moving with a relativistic velocity. In the general case, it is possible to state that the relativistic 
effect produces an additional distortion of the metric (similarly to the diffraction effect). This property was 
noted in Part I of our work during the study of metric properties of the space in empty laser resonators. We 
noted there that the inclusion of the relativistic effect into analysis was a difficult problem. Below, we try 
to construct a simple model enabling one to evaluate the influence of the relativistic effect on the problem 
considered. 

4. Wave Equation in the Relativistic Theory 

The wave equation in the relativistic theory has the form of the Laplace-Beltrami equation [1, 2] 

) gU" E:":u ~ Oxu v/~gU~ O E - ~ = 0 .  (17) 

Here, the greek indices #, u take the values 0, 1,2,3; E:v:u is the covariant derivative with respect to x v and 
x", 9uu = ( - , + ,  +, +) is the signature, g = det (gu~), and x ~ is the time coordinate. 

For E = pexp(iS),  one obtains in the known way from Eq. (17) the system of energy and continuity 
equations 

1 0 ( ~ u~ Op 
- k , / - 9 g  b - -~ )  , (18) 9"~v"v~ pv/:~ Ox" 

0 
o x .  = o ,  (19) 
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OS 
where v u = guy Oz -----~ are velocities of quasi-particles. Operating on Eq. (18) with the gradient operator, one 

obtains a system of four equations of motion. In combination with the continuity equation (19), this system 
is written in the form 

2g~ \ O x  ~ + ate v ~ = g~ ~ ; (20) 

0 
Oxu (v/-~O2vU) = O , (21) 

where the index a is fixed and takes the values O, 1,2,3, summation is performed over the indices # , a , u ,  ~, 
and 

e" v'- g �9 

Equations (20) and (21) describe the process of propagation of a laser radiation pulse within the framework 
of the hydrodynamic model taking into account the relativistic effect, and the information on it is contained 
in the components of the metric tensor. 

In the simplest case where the acceleration of a medium may be neglected, the metric of an uncurved 
space-time is invariant under the Lorentz transformation. In the case of a linearly accelerated medium, this 
property is apparently not satisfied (see [3]). The metric of the space-t ime gU" and, therefore, the system of 
normal coordinates x" are determined with the help of the method described above. 

. C o m p a r i s o n  w i t h  O t h e r  T h e o r e t i c a l  M e t h o d s  a n d  D i s c u s s i o n  o f  
R e s u l t s  

Let us illustrate the advantages of the above method of analysis of the structure of a laser radiation field 
in comparison with other methods available at present. One of the most widespread methods is based on the 
ttuygens-Fresnel principle [5, 6]. It is mathematically formulated in the form (see [4], p. 194) 

U(P)  = f G U ( Q ) d f , ,  (23) 
! 

where U(P)  is the field at the observation point,  U(Q) is the field at a point Q on the wavefront surface, G is 
the Green function of the Helmholtz equation, and dr, is the projection of an element of the surface f onto 
the plane arranged perpendicular to the segment Q P  = R at the point Q. It is common to use the Green 
function in the form (see [4], p. 194) 

ko e ik~ 
C(R)-  R (24) 

The drawback of the method is the difficulty of determining the Green function in curved space. It may 
considerably differ from the Green function in uncurved space (24). As shown above, laser radiation usually 
propagates in a substantially curved space. Therefore, this disadvantage may be a serious problem. 

The most important  conclusion of our work is the following statement.  We have shown that  metric 
properties of space-t ime in which laser radiation propagates were intimately connected with the radiation 
field structure. Because of this, an independent specification of the metric and, therefore, the coordinate 
system is nothing more than an approximation to the exact solution of the self-consistent problem. Such a 
situation is typical of problems of the general relativity in which the concepts of field structure and metric 
are indivisible. 
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This s tatement  is usually neglected in the solution of practical problems. In this case, one a t tempts  to 
select a coordinate system as close as possible to the real one. For this purpose, various approximations are 
used. For example, in [7] Vainshtein used the model of the harmonic coordinate system. 

In the paraxial model of propagation of laser radiation, which is extensively used at present (see, for 
example, [8, 9]), 

2iko~z  + V]_A = 0. (25) 

Here, A is the envelope of the field amplitude, z is the coordinate along the optical axis, and V]_ is the 
Laplacian with respect to the coordinates x and y in the plane perpendicular to the optical axis z. It is 
assumed there that  radiation propagates in uncurved space-time (g u" = 0 for # r u, and g oo =- _ g i i  : --1 
for i = 1,2, 3) and the Green function of Eq. (25) under such conditions has the form 

G(r,z)  = ko exp ( ik~ 
27riz \ 2z ] '  

where r = ~ .  
It should be remembered that  such approximations are not exact. In the general case, they may be 

substantially different from the real picture corresponding to propagation of laser radiation. 

6. C o n c l u s i o n  

In conclusion, we note some remarks that  seem to be of importance. 
(1) In this work, we did not analyze the problem by the conventional method  within the framework of 

Maxwell equations for vector-wave fields. Note that  the method is used in almost all modern publications 
concerning the problem under consideration. This way is difficult for a simple intuitive understanding of 
the problem at the initial stage because it contains a large number of degrees of freedom (variables). This 
complexity is particularly strong for the interpretation of processes of interaction of a wave field with a 
continuous medium. 

Meanwhile, we think that  our way based on the analysis of scalar-wave fields can be specified in this 
respect later on. 

(2) We think that the theory of Lie groups, topology, and mathematical  statistics hold the greatest promise 
for the physical analysis of the problem under consideration. 

Let us enumerate the main advantages of the use of the group-theoretical methods.  
(i) These methods provide simple and pictorial forms of representation of solutions even in the case of 

very complex nonlinear equations and systems of such equations by the algebraic transformations 

= ..... , . s  

where A = (x, y, z, t, ~o,p,. . .)  is a vector of dependent and independent variables of the problem, Ltl,,2 ..... ,~ 
is the algebraic transformation with m parameters t l , t2 , . . .  ,to,, and ,40 is the vector determined by the 
boundary condition of the problem. 

Varying parameters ti, one can determine the space X by the known vector A0. This is simple and clear. 
(ii) Several group-theoretical methods are available that  can be used to analyze the given problem. This 

is an additional advantage. 
(iii) One can give a simple physical interpretation of the process of wavefront propagation. For example, 

the change in one of the group parameters corresponds to the wavefront motion in the space (x, y, z, t), and 
the change in other parameters corresponds to the change in amplitude on this moving front. 
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(iv) The algebraic form of the construction of spaces of dependent and independent variables of the 
problem is very convenient for its statistical analysis. 

(v) The construction of the space of dependent and independent variables of the problem in a form similar 
to the one considered in item (i) is suitable for studying global properties of the solution of the problem. 

This way led to the use of topological methods of analysis of the problem. 
As for the topological methods of research, we agree with the American mathematician M. Morse, who 

wrote [10] that if a problem is nonlinear in character, more than one system of coordinates or more than one 
variable is involved in it, or it concerns in a nonlocal manner the structure being determined, the solution of 
this problem usually requires invoking topology or group theory. The classical analysis, as a rule, is applied 
to the solution of such problems for a preliminary local study, whereas the following generalization is made 
with the help of topology or group theory. 

As for the mathematical methods of statistical analysis of the problem, the necessity of their use is 
explained by that fact that real laser radiation has a statistical nature. 

(3) In our interpretation of the structure of a laser radiation field, some classical methods of analysis of 
the statistical aspect of the problem are strongly modified. 

For example, the classical method of analysis of statistical properties of laser radiation outside a resonator, 
formulated in the form of linear differential equations [11] concerning the coherence function of the radiation 
field, becomes inconvenient because initial wave equations for regular fields are nonlinear in our interpretation. 
Fortunately, some other mathematical methods that are convenient for the physical analysis of the statistical 
aspect of the problem within the framework of our representations are currently available. 
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