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Subharmonic functions of
completely regular growth in a cone

Yang Xing

1. Introduction

We shall consider domains I' in the unit sphere 51 CR™, satisfying the following
conditions:
(a) The boundary IT is twice smooth;
(b) The normalized solutions ¢;, corresponding to the eigenvalues A; with
0< A1 <A2<..., of the boundary value problem
A*¢p+A¢=0; ¢|or=0,
where A* is the spherical part of the Laplace operator A, are twice continuously
differentiable functions on the closure of I', and the inward normal derivative 8¢y /dn
is strictly positive on the boundary 9%
(c) There exists a point z, €Sy such that, if KT is the cone {zeR™;z/|z|€T'},
then the closure of the translated cone KT +Iz, is contained in KT, for every [>0.
Denote by B(zg,r) the open ball in R™ with center at zo and radius r, B,.=
B(0,7) and S,=08B(0,r). Given such a domain T' and the cone K=K spanned
by I', we shall use the notations K,=KNB,, K,, ,,=KN{ri<|z|<r}, T, =KNS,
and Iy, »,=0KNOK,, ,,. Notice that if the function ¢; is homogeneously extended
to the cone K, then the functions |17|’“1i $1(x), with 2k =—m+424/(m—2)2+4\;,
are harmonic in K and vanish on K\ {0}.
By SH(K, ), 0>0, we denote all subharmonic functions u in K satisfying the
condition -
lim sup M, (?)
t—o0 te

< 00,
where

M, (t) = max{M,(t), ®u(t)},

My(t)= sup{u(@)} and @y(t)= /F 61.()[u(tz)| dS: (z).

z€ly
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Here dS; denotes the element of (m—1)-dimensional Euclidean volume on the unit
sphere.

Recall that a set ECR™ is said to be a Cj*!-set if it can be covered by balls
B(zj,r;) such that the relation

. 1 m—1
fim o > =0

|z;] <t
holds. Following Rashkovskii and Ronkin, see [4], we introduce the concept of
completely regular growth for subharmonic functions in the cone K.
Definition. A function u€ SH(K, g) is said to be of completely regular growth
(CRG) in the closed cone K if there exists a Cj* '-set ECK such that

Jim_[u(e) - (2)|/Jal? =0,

z¢E

where the indicator function

hy(z)=limsuplimsupu(y) with u:(y) =u(ty)/t°.

Yy t—o0

A function u€ SH(K, g) is said to be CRG in the open cone K if it is CRG in
every closed cone KT spanned by TVCI.

Remark. Unlike in the case of functions defined in the whole space, we cannot
cancel the integral ®,(¢) in the definition of the class SH(K, ). Otherwise the
indicator functions may be identical to infinity. Such an example is given by the
function uo(ml,xz):-a:l in the half plane z;>0.

It is known, see [3], that for any function u€SH(K,g) there exists a real
measure v, on the boundary 0K, which is the boundary value of u in the following
sense:

For any continuous function ¢ on 8K with supp ¢y CCOK\ {0}, the relation

lim (@)u(z+iz,) do(z) = / W() dvu(z)
=140 Jox K

holds, where do denotes the (m—1)-dimensional Euclidean volume element on 8K.

By means of the weak boundary value, Ronkin discussed the relation between CRG

functions in an open cone K and in a closed cone K, and obtained the following

result, see [5, Theorem 4.4.6].
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Theorem A. In order that a function u€ SH(K, p) be CRG in K, it is suffi-
cient and, under the additional assumption sup,cr |y (z)|<oo also necessary, that
u be CRG in K and that

(A) lim —1—/ dlvy—vps | =0,
Ty

o0 tetm—1

where |V, —vpx | denotes the total variation of the measure vy, —vps .

The proof of Theorem A was rather long, and an integral representation for
subharmonic functions of finite order was used, see [6]. In his book [5, p. 240] Ronkin
conjectured that the assumption on boundedness of the indicator Ak}, is unnecessary,
and his opinion was based on the following theorem.

Theorem B [4, Theorem 2|. If u€ SH(K,p) is CRG in the closed cone K
and can be extended to some large cone K'=K r’ spanned by I DDT as a function
in SH(K', 0), then u satisfies Condition A.

However, Theorem B does not seem to give any indication as to whether or not
the assumption on boundedness of the indicator is superfluous, because we have the
following improvement.

Theorem 1. Suppose thatue SH(K, g) is CRG in the open cone K and can be
extended to be a function in SH(K', ) for some cone K'=K" spanned by I'2>DT.
Then u satisfies Condition A.

We have not been able to prove Ronkin’s conjecture, but we have found slightly
weaker sufficient conditions. First, by the positive homogeneity, it is clear that the
boundedness of h}, implies

[vh |(E) <sup he, (%) do(E)
TE

for any subset ECIg ;. The following result is therefore slightly stronger than the
necessary part in Theorem A, and requires a different method of proof.

Theorem 2. Suppose that u€ SH(K, 0) is CRG in K and that there ezists a
positwe constant ¢ such that |vsx |[(E)<cdo(E) for all subsets E in I'g1. Then u
satisfies Condition A.

On the other hand, since the functions w; with ¢>1 are uniformly bounded
from above in T, the boundedness of h} also implies that there exists a positive
constant ¢ such that

wg(z) < hyy(z)+c

for all z€@'. This inequality is in fact enough to ensure Condition A.
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Theorem 3. Suppose that ue SH(K, p) is CRG in K and that there exists
¢>0, such that
w(z) < hy(z)+c

for all xel’ and sufficiently large t. Then u satisfies condition A.

In our opinion, for subharmonic functions, the hypothesis in Theorem 3 is more
natural than the necessary part in Theorem A. For some functions, such inequalities
follow for instance from the Hartogs lemma, see [2, Theorem 1.31]. The proof of
Theorem 3 is essentially parallel to the proof of Theorem 2 given below, and will
therefore be omitted.

Acknowledgements. 1 would like to express my gratitude to my advisor Mikael
Passare for his discussions and suggestions. [ am also grateful to Professors
Lawrence Gruman’s and Lev Isaakovich Ronkin’s fruitful discussions.

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. As it is mentioned in [4], under the assumption of Theo-
rem 1, the weak boundary values v,, and vy are equal to u and hj, respectively on
0K\ {0}. Hence Condition A takes the form

1 ) .
o tim s [ (@) (o) dof@) =0.

To obtain (1) we first show the equality

(2) lim Jug(z)—hi (x)| do(z) =0.

t—oo Ti/2,1

It is enough to show that for any sequence ¢;— o0 there exists a subsequence such
that the equality (2) holds for such a subsequence. To do this, we choose a domain
D such that I'y 5 ; CCDCCK'. It follows from Theorem 4.1.9 in [1] that the family
{uy,} is relatively compact in L (D). So there exists a subsequence t;, — 00 such
that u;; converges to some subharmonic function g in L (D). Since u is CRG
in K, u; converges to h in the distribution sense, see [5, Theorem 4.4.3]. By
Theorem 4.1.9 in [1] we then have that u; converges to A}, in L} (K), and hence
g=hy, in DNK. This implies that A} do=gdo on OKNDDI';/5 ;. Now for z€D,
using Riesz’s theorem, we write

iy, (@) == [ Gla.)din, 1)+ 24(2)
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and
o(z)=— /D G () iy () + (),

where @, and ® are the smallest harmonic majorants of u; 5, and g in D respectively,
and G is the Green function of D. Since u;;, converges to g in Lj (D), it follows that
@, converges uniformly to ® in I'y /5 ; and d'u“‘a‘k converges to dug as a distribution
in D. Therefore, dﬂutjk converges to dug, in the weak topology of measures in D.

On the other hand, we have that
[ cewiw
Ti/21
is a continuous function of y in D and vanishes on the boundary dD. So

tm [, (@) =R () do @)= Jim [ G, (2)=g(a)) doz)

k- Ti/21 1/2,1

= lim /D (g (y) —dppus, (v)) /F G(z,y) do(z)

1/2,1

+ lim (Pr(z)—P(z)) do(z) =0.

k—o0 Ti/2,1

Hence, using the same method as in the proof of Lemma 2.1.4 in [5], we obtain

(z)—hy(x) do(x) =0,

lim Juy

k—oo Tk

Ti/2,1
and this completes the proof of equality (2).
We now know that for any >0 there exists a constant ty>1 such that

/ () = b (2)] do(z) < et ™1 for t> o,
Tiy2,t

So we have

[ w@-r@id@s [ ju@-rw)ldow)
Fl,t Fl,to
[(n(t/to))/ In2}+1
DS [u(@)— (2| do(a)
k=1 P2k—1t0,2kt0
[(In(¢/40))/ 1n 2]+1
—o(tetmly4e Y (2g)etmol
k=1
=o(teT™ ) +eO(tet™ 1),  ast— 0.
This implies Condition A, and hence the proof is complete.

To prove Theorem 2 we need the following lemma for CRG functions in the
open cone K, see [5, Theorem 4.4.5].
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Lemma. Suppose that ue SH(K, g) is CRG in the open cone K. Then we
have

/}_{ @ (¢1(x) djta, (z) — 9—1": % dve, (x))

— [ 6@ (1@ b o) - (@), astvce

K3
for any function ¥ €C(K3), where g denotes the Laplacian 0} Ag, the constant
Om=(m=2) [g dSi form>2 and 6,=2r.

Actually, in [5] this result was obtained for the functions ¢ in C'(K1), but by
homogeneity it is equivalent to take ¢ in C(K3).

Proof of Theorem 2. Using the same argument as in the above proof, we only
need to show that for any sequence t;— oo there exists a subsequence ¢;, — o0, such
that

1
3) lim — / v ~vps | =0,
thk/z t;

k—oo t9+m 1

For simplicity, we consider the whole family ¢>0.
Since u is CRG in K, there exists a C*~'-set ECK such that

(4) A @) —he(@)|/|2]¢ =0.
¢ E

Hence, using the definition of the weak boundary value, we can write

1
el MR Tt
Tiy2,¢

1
< lim sup lim sup m/ lu(z+lz,)—hy (z+lz,)| do(x)
t—oo  1—>+40 te Tiy2e

) <h?ligphzmiu1)t — 1/ lu(z+lxy)| do(x)

+lim sup lim sup Py 1/ |hy (x+1x,)| do(x)

t—o0 —+0

+lim sup lim sup lu(z+lz,)—h} (z+lz.)| do(z)

~00 —4 ! /I A
t l Y te t/2,t\ +
def

=I+I11+111,
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where A;={x€Ty/4;x+lx.€E, for some 0<I<1}COK.
It follows from (4) that IIT=0. Since E is a Cg" '-set, there exist balls
B(z;,r;) CR™ such that EClJ; B(;z:j,rj) and

) Jim Lo S rieo

|x7|<t

We denote Byj={x€Tss;x+lx.€B(xj,7;), for some 0<i<1}. Then
At C U Btj

|| <2¢
for large enough t.

We now define a projection P: K— 9K as follows. For all z€ K, we claim that
the intersection 0K N(z+Rx.) consists of exactly one point. Then we let P(x) be
this point. To justify this claim, suppose that a, b€ 0K N(z+Rx,). Then a—b=lz.,
for some constant !, and we can assume [>0. But since K +!z.CK for every (>0,
we obtain /=0 and hence a=b.

Since OI" is compact, there exists a positive constant ¢, independent of 7 and %,
such that By; CP(B(z;,7;)NK)CB'(z},cr;), where B'(z},cr;) denotes the inter-
section 0K NB(x’;, cr;) and 2;=P(z;). It follows that

(7) A C U B'(z, cry)
|$j|<2t
for large enough t. Furthermore, since 9I' is smooth, we can also find another

constant, ¢/ >0, such that do (B'(z},cr;)) <c'ri*™ ! for all j.
Now we estimate II. For large enough ¢ we have

[ armaws Y[ B (2 +1.)] do2)

25| <2t Y Ter2.4NB (w]0r5)
def
= 2. D
|e; <2t
Suppose that h%(z+Iz.)<al|z|? for all 0<i<1 and z€K\B;. Take a continuous

function ¥, on 8K such that 0<v; <1 on 0K, supp 1 CI'y/39¢ and 1 =1in[y/a;.
Then for each j, by the definition of v4:, we have

Dyjy g/ (at®—hy(z+lz,)) da(x)—i—/ at® do(x)
Tey2,e

(®)

Lejae
(9) < / ¥1(x)(a2%¢? — h (z+1xy)) do () +at® do(Ty/o,:)
Ty/3,2t
— Y1 () (a2t do () —dvps (z))+at® do(Ty/a,),  as l—+0.

Ti/3,2t
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So for any fixed ¢>2, the integrals D;j; are uniformly bounded for small enough I,
and all j. Hence the Fatou lemma implies that

(10) lim sup Z Dy < Z lim sup Dyj;.
=40 <o jz <2t ‘7 FO
Choose again a continuous function 1, on 8K satisfying the conditions: 0<,<1

on 9K, supp 2 CB'(z7, 2cr;) and =1 in B'(z}, cr;). In analogy with (9), we get

limsup Dyj; < (a2%® do—vpx )(Tyy3,2:NB' (7, 2cr;5))
l—+0
(11) +a2°t® do(T'y/5,4NB' (), cry))

< vz |(Te/3,2eN B’ (2, 2¢r5)) +a291 2 do (T, /3 04 NB'(z},2cr;))

for each j. Together with (8) and (10), we have

1

l—+0
1
(12) = erm1 Z [z [(Ty/3,2¢N B’ (27, 2¢r5))
|z <2t
1
+O<tm_1 Z r;"_1>, as t— oo.
'Zj|<t

Since |vxx | (E)<¢1 do(E) for any subset ECTg 1, and h¥ is positively homogeneous
of degree g, we obtain

1 1 _
Zm Z |I/h::|(rt/3’2th,($;,ZCTj))ZO(tm_l Z T;n 1), as t — 00.

Jzj|<2t |z;]<2t

It then follows from (6) and (12) that I7=0.
Next we want to show I=0. Repeating the above process, we have

1

1—40
1
<limsup ——— / lu(z+lz. )| do(x)
I—to et 'Zj|2<2t Tt/2,4NB’ (f,cry)
(13) 1
= erm 1 Z [vu|(Tey3,2eN B’ (2, 2¢r5))+0(1)

lej]<2t

def 1
= it 2L Guto(l), ast—oo,
|z <2t
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and we can also choose, for any £>0, a sequence t;— o0 such that

1 1 €
(14) e Z (dU-}-g\l/h;\) (Tt /4,36 ﬁB'(x;-,3crj)) < o for all k.

ko ayl<aty
Clearly, for each k we have

x 2cr
tg+m Totm—1 Z Gy = Z |Vutk|(F1/3zﬂB/( 2 tkj))

|| <2ty lzj|<2ts

T 2cr
<Z Z |Vutk (F1/32ﬂB,( J J))

i=1 |;]|<2t; ti

(15)

But in view of the lemma, all terms in the sum (15) are uniformly upper bounded
for large enough k, and so the Fatou lemma implies that

1
(16) hmsup T Z Giyj

k—oo Ja ;| <2ty
z 2cr
< E E hmsup|uut |(F1/320 ( J J))
k—o0 tz
i=1 |z ;| <2t;

If we can show that there exists a constant ¢y >0 such that for each i and j we have

x5 2cr;
(17)  limsup |vy,, || T1/32NB'{ =2, Sk
k—o00 k ’ tl t’

ZI?
<02(da+|uh*])(F1/43ﬂB ( 3CTJ>),

z tz

it then follows from (14) and (15) that

1
hlrcnsupt T E Gy, 5 Lok
% Yk || <2tk

This implies I=0, and hence the equality (3) holds.

Now we need to show (17). Let c3 be a positive constant such that u,(z)<cs
for all z€ K4 and r>1. So c3do—vy, and c3do—vp: are positive measures in I'g 3.
We choose a domain GCB3—B;/4 and a continuous function 3 in K3 satisfying
the following conditions:

(i) F1/3’2 ﬂB/(.'B;- [t 2c'rj/ti) C G_OI‘O,;; CF1/4,3I"|B’(:L';/ti, 3CT‘j/ti);

(i) Sonk, 1(z) duny (€) <do(T1/a,sNB' (5/ti, 3cr; /t:));

(iii) 0<¢3<1 in K3, and ¢3(z)=1 in T'y/32NB’(z}/t;, 2cr;/t:);

(iv) supp s CGNKs.



502 Yang Xing

Hence we have

) (Pojaan®’ (”” )< [ o b)), (1)

t; tz
1;/. 20r.;
+C3 dU(Fl/g 20B1<—J, ﬂ))
’ i b

Since the function ¢; is homogeneous in K and 0¢1/0n is a positive continuous
function on OI', there exists a constant ¢4 >0 such that the integral in (18) can be
estimated by

(19)
C4 da(@ﬂf0,3)—c / wg( ) -aaidl/utk( )<C4 dU(F1/4 3ﬂB (33 3?7']))
Gﬂro 3 m

(18)

Z 1

ver [ @) (6100) o, (@) G2 i (@) ).

GﬂK3

Since u is CRG in K, it follows from the lemma that, when k— oo, the last integral

tends to
(20)

/G (@ <¢1(x) e )—%% v (x)) <do (rl J43N B (9;_] B ))

; a(bl) ( ,<:EI‘ 30”“))
+ osup [ =2 (e | Ty s B (22,295} ).
Gﬁl‘ro),a(em on lvmzI{Pjas bt b

So (17) follows from (18)—(20), and therefore (3) holds. Hence we complete the
proof of Theorem 2.
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