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A secretory system can be considered a collection of packets of a stored substance, each
packet characterized by a threshold to a stimulatory releasing agent. In terms of macro-
geopic release of the substance, the rate equation contains explicitly and naturally the
time derivative of the stimulus intensity. -Elaboration of this general model for threshold
secretory mechanisms was motivated by insulin secretion data discussed here. Experi-
mental data on the same type of secretory system (pancreas), the hormone secretion as well
as electrical characteristics of the secretory cells, lead to a conjecture that the packets
might be identified with the whole secretory cells, rather than the granules or vessicles of
the stored hormone.

Threshold phenomenon in biophysico-chemical systems may be responsible for
a variety of interesting effects in biology. Processes manifesting themselves
as threshold excretion, siphon effect or a trigger mechanism are merely repre-
sentations of different organizational complexity of some form of elemental
threshold mechanism such as saturation or allosterism. These elemental
mechanisms are the consequence of the Law of Mass Action, but they transgress
this law as they exceed this level of organization. From a higher stand point
on the hierarchical scale of organization, they are viewed as being governed by
another set of simple rules in a degree of abstraction analogous to the Law of
Mass Action. This law states that the rate of a reaction v is proportional
to the product of concentrations of the constituents c;, namely, v = k7, ¢;.
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The rule of threshold processes states that the rate of the process v is zero for a
constituent concentration ¢ below a threshold concentration #, and is some
function of the concentration f(c) otherwise, viz.,

v =H(c - )fc, 0), (1)

where # is the Heaviside unit step function: it is zero for ¢ < 8, unity other-
wise. Just as the rate coefficient z of the Law of Mass Action is open to empiri-
cal estimation, the threshold # and the functional form of f(c) may be experi-
mentally determined. On the other hand, the rate coefficient may also be
accessible to computational procedures for simpler reaction mechanisms
(Eyring, 1965). Similarly so, the threshold # and the f(¢) in (1) may be com-
puted, at least for simple threshold mechanisms (Ligko, 1972).

Once a rule of a threshold process is established, an analysis and synthesis of
more complex threshold systems may be attempted. Presently we will utilize
the threshold reaction concept in discussing a secretory mechanism. This
mechanism possesses an interesting inherent characteristic, namely, the stimulus
rate sensitivity whose existence is often assumed for the interpretation and
simulation of endocrine data (Cerasi, 1967; Dallman and Yates, 1969; Foster,
1970; Srinivasan ef al., 1970).

Model. Consider a product of biochemical processes in an organism which is
released only upon an adequate stimulus. Hormones and neurotransmitters
usually belong to this group of substances, most of them retained in granular
or vessicular form in the secreting cells. We refer subsequently to the unit
storage of such a substance as a packet, leaving it at present unidentified as
anatomical structure. Furthermore, consider the process of release of the
material as a threshold reaction: to every packet a certain threshold 6 is as-
signed such that the stimulus effectively acts only upon those packets whose
thresholds are below the stimulus level 8. In other words, on the basis of this
assumption there exists a threshold density function é£(6,t)df of equal*
packets, representing the number of packets in the threshold interval (4,
0 + d6), and therefore, the amount of the substance releasable by stimulus level
shift from S = 0to S + dS = 6 + dé.

Total releasable amount of the substance by a given stimulus level S(¢) at any
time is

St
X800 = [ 0.0 a0, (2)

* The assumption of equality of the packets is not a restrictive one, it is used here merely for
the convenience of description of the model.
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This entity also defines the threshold distribution function up to the stimulus
level S(t). Hence, the rate of change of the amount of the releasable material
when its packets face the stimulus level S(f) is

dS(t) 3)

Mere inspection of (3) reveals a startling result: the rate of change of the
releasable amount of the packeted substance depends not only upon the stimu-
lus level S(¢) [the first term of the right-hand side of (3)], but also upon the rate
of change of the stimulus level, dS(t)/d¢. Moreover, the second term of (3),
representing the derivative element, is attenuated by the threshold density
function £[8(t), ¢], so that the effectiveness of the derivative element is not
necessarily uniform over the range of the stimulus level S, nor over the
time £.

If we attempt to give a biophysically meaningful interpretation to the mecha-
nism of release of the packeted substance, we must assume that at any threshold
level 6, the rate of the release is a function of the number of packets (or the
amount of substance stored in them) of the given threshold. Then, according

to (1), the rate equation for the release of the substance from the packets of the
thresholds between 6 and 0 + dd is

£(0,1)d0 = ~#S(t) — 61f(£(6, 1), S(t), 6, t] d6. (4)

This equation holds for the entire population of packets with non-negative
thresholds, 0 < 4 < oo.

Therefore,

X[8@), 1] = f £0,1)d0 + S(t), t] —=

dS(t)

X[8(), 1] = f 11260, 8), S, 0, 716 + g8, B (5)

because £(6,t) df = 0 for all 6 > S(t).

Equation (4) contains only a loss term, even though this loss term is in its
most general form. In any actual situation, refilling of the packets must be
considered and, possibly, a redistribution process must take place to maintain
the initial threshold density function. These two processes have been des-
cribed (Grodsky, 1972) for a particular set of assumptions and functions fitted
to the experimental data on insulin release. Here, for the sake of completeness,
we merely include a function G[S(¢), {] into (3) and (5). Thence,

X[S(t), 8] = — F{X[8(), 11, 8¢), &} + GIS(t), 8] + £S(t), 1] —~ dS(t) (6)
with

Si)
FRIS(, 1,50, 6 = [ f10,0.50), 0,71 o.
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However, in general we shall conclude that the processes of refilling and redis-
tribution, G[S(t), ], must be very slow in comparison with the release process,
F{X[S(t), t], 8(t), t} and the effective rate of change of the stimulus intensity,
E[S(t), t)[dS(t)/dt], if the characteristic response pattern of the system is to be
observed. We consider such a response pattern as a spike response of the F
function to every step of a staircase stimulation, as depicted in Figure 1.

Flstnlsm \ s(t)

Fls(t),1]

¥

Figure 1. The rate of release F[S(t), f] of a
substance stored in packets of differential
sensitivity in a staircase stimulation

Each stimulus step can be thought of as a limit ramp function, increasing
from the stimulus level S; to S, in a time interval A¢,

S =8, +ct for0g < At (7)
and
Sz = Sl + C At.
Taking the limit for A¢ approaching zero of the integral of (6), we arrive at
s
X(8) - X(82) = | &8, 0)dS, (8)
Sy

since the integrals of the first two terms of right-hand side of (6) vanish in the
process of taking the limit for At — 0, both funtions F' and @ being bounded.

Thus, for a step function stimulation, integration of (6) simply involves
solving the differential equation given by (6) without the third term. This term
is, however, important for setting the new initial condition for X by the step as
it is given by (8).

An Example: Insulin Secretion. The idea of the threshold distribution of
packets came out of the analysis of data on glucose perfused pancreas in vitro
(Li¢ko et al., 1971). Of the three stimulatory patterns, namely, glucose step
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funection, glucose staircase function and glucose ramp function, the results of the
second type of the stimulation were the most puzzling. These results are
schematically shown in Figure 1. If the first step of glucose causes depletion
of the insulin pancreatic storage, consecutive steps should not bring about any
more release of insulin. Thus, we were compelled to consider the stored insulin
as only partially available at any given glucose concentration, a “compartmen-
tal conglomerate of differential sensitivity to the stimulator”. Furthermore,

since the response to every step is exponential and independent of glucose con-
centration S, we assumed

f[f(e: £), S(t)> 0, t] = mg(gi £), (9)

and thus obtained for a step function stimulation
s
F(S,t) = m f €60, ) d0 = mX(S, 1), (10)
0

From the experimental data it was also possible to determine that G(S,t)
function derives its form from a first order process:

&(S,1) = Y(8, 1) a1
Y(S,t) = o[Y(S, c0) — ¥(S, )],

where Y (S, 00) is an experimentally determined function

0.5810
o0 = {] ]_
¥(8, o) 8.8 x 102! + 2.2 x 101583 + 3.5 x 10887 + §1° (12)

shown in Figure 2. Integrating the second equation of (11), we find
G(S,t) = [Y(S,0) — Y(S, 0)] e~ + Y (8, o). (13)
Thus, (6) becomes
X(S,t) = —mX(S,t) + [Y(S,0) — Y(S, c0)] e~ + Y(S, o0), (14)

the third term of (6) being zero for allt > 0, as shown above. Integrating (14),
we arrive ab

X(8,t) = [X(S, 0) —

mY(S, O) - aY(S’ OO) —mi
m(m — a) ] ‘

L XS0 - Y(S ) Y_(Sm_°°_) (15)

m — o

The values of the rate coefficients m and « were estimated as 0.62 min~! and
0.034 min~?!, respectively.
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Figure 2. Steady state rate of insulin replenishment

into the portion of insulin storage which is releasable

by the glucose concentration S. (Data from rat pancreas
perfusion by Grodsky, 1972)

When X(S, 0) was plotted as a function of glucose concentration, a log-
normal distribution (the threshold distribution function) curve resulted (Figure
3), approximated by

X(8,0 1
Xmax G"\/%

where glucose concentration S is in units of mg/100 ml and the values of the
constants X, .., k and C are: X, = 1.65 ug of insulin; k = 3.3; 0 = 1.51 x
107. Differentiating with respect to S, the following threshold density function
was obtained

1 8
1+ Ce Fn8 = 0 1 &%

JS e~ n6-106)%20%1 J 1 g = (16)
0

£0,0) kOO
Xom ~ C + 0 (7

shown in Figure 3 as the dashed curve.

“Packets”. The concept of material stored in packets of differential sen-
sitivity need not picture any specific anatomical structure. It would seem
plausible to identify the packets with the granules or vessicles. These may
differ in their thresholds either by their individual physico-chemical charac-
teristics (e.g., of their membranous envelopes), or, by local microenvironment in
the cell (such as non-uniform distribution of enzymes or other important
molecules throughout the cell). On the other hand, one can think of whole
cells as packets which release their stored material (by exocytosis) only if the
stimulus level reached the cellular threshold. Although the experimental data
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is not complete yet, it seems that the latter interpretation is more in accord
with the current findings.

Mathews and Dean (1970) systematically studied the electrical properties of
mice pancreatic cells under the glucose stimulation. They reported a “‘sig-
moidal” electrical action potential curve as a function of the logarithm of
glucose concentration (a log-normal distribution). Their experimental data

0 100 200 300 400 500

g[mq/IOOml]

Figure 3. The initial threshold density function £(6, 0)
(dashed line) and the initial threshold distribution
function X(8, 0) (full line) for insulin in rat pancreas
(data by Grodsky, 1972). Full circles represent rela-
tive number of mice panereatic islet cells found in the
state of electrical activity (action potential). The
histogram shows the frequency distribution of mem-
brane potential for mice pancreatic islet cells upon
the transformation § = 0.09E%2. (The mice pancreas
data—iull circles and the histogram—are from
Matthews and Dean, 1970)

is plotted in Figure 3 as full circles, while the smooth curve fits adequately with
the insulin secretion data in rat pancreatic perfusates (Grodsky, 1972).
Matthews and Dean also reported in the same paper a ‘“normal frequency
distribution” of islet cell membrane potentials. As shown in Figure 3, this dis-
tribution (histogram) coincides with the threshold density function by em-
ploying the following simple transformation

0 = 0.09E%2 (18)

where 6 is the threshold glucose concentration in millimoles and £ is the mem-
brane potential in millivolts.

Inspection of Figure 3 reveals a remarkable coincidence of the results obtained
in two different laboratories with two different species and methods. Although
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this coincidence is no proof of any relation between the thresholds and mem-
brane potentials, it suggests that it might be more meaningful to relate the
notion of a packet to the whole cell rather than to a granule or a vessicle.

The author is indebted to Drs. H. D. Landahl, R. Farmer and I. W. Richardson,
of the University of California at San Francisco, for valuable suggestions.
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