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A b s t r a c t  

An ensemble of two-level radiators in a lossless cavity is considered as interacting with a resonant eigenmode 
field taking into account the feedback effect of the radiators on the field. In a semiclassical approximation, 
this dynamical system is described by the Maxwell-Bloch equations and is shown to have two control 
parameters, namely, the individual and cooperative Rabi frequencies. In the neoclassical Jaynes-Cummings 
treatment, a pure quantum-level description is converted to a set of closed c-number equations for quantum 
expectation values with a single control parameter (the cooperative vacuum Rabi frequency). We develop 
also a group-theoretical description for both of these models, which provides further insight into the general 
dynamic behavior. Increasing one of the model's control parameters, we investigate numerically the onset of 
dynamical chaos in field-atom interaction by calculating the maximum Lyapunov exponent of the Maxwell- 
Bloch and the Jaynes-Cummings dynamical systems. The onset is shown to differ depending on the 
model adopted, the control parameter used, and the initial conditions chosen. Possible candidates for 
experimentally observable (semi)quantum chaos in a system of dynamically driven two-level radiators are 
discussed by estimating the orders of magnitudes for the respective control parameters in actual quantum 
electrodynamical systems. It is shown that quantum-well excitons in fabricated semiconductor microcavities 
are likely candidates for experimental confirmation of transitions to dynamical chaos which have been 
revealed numerically in this study. 

1. In troduct ion  

In the preceding paper [1], a comprehensive analysis of the general dynamic behavior of an externally 
driven two-level a tom in the context of dynamical-system theory was carried out using the properties of the 
underlying SU(2)  symmetry.  In the present paper,  we will consider dynamically driven two-level atoms in 
a cavity within the same context.  From an abstract  point of view, this coupled system provides a physical 
realization of an SU(2)  dynamical  system driven by another  dynamical  system, namely, by a linear oscillator. 
Physically, this means tha t  we take into account here the response of atoms to a radiation field in a resonant 
cavity. 

As was shown in [1], the temporal  evolution of a two-level a tom in a given laser field is not truly chaotic. 
It may be more or less irregular, depending on the type of field polarization and on the ratio of the two 
driving frequencies. It may  even result in broadened power spectra and phase portraits  that  appear quite 
irregular. However, the characteristic Lyapunov exponents are invariably nonpositive. 

To evaluate the chaos, one needs to use the Lyapunov exponents for trajectories in a phase space of a 
dynamical system. For an n-dimensional dynamical  system, there are n, possibly indistinguishable, Lyapunov 
exponents Aj (j  = 1,2, ..., n). By definition, we have [2] 

A =  lim A(t) A ( t ) =  lim l l n { A ( t )  
t--.~ ' ~ ( 0 ) - 0  t \ A - - - ~ ]  ' (1)  

Translated from a manuscript submitted December 25, 1995. 
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where A(t) is the distance between two initially adjacent trajectories at time t. These characteristics describe 
the exponential divergence or convergence of nearby trajectories. It follows from Eq. (1) that  small deviations 
A(0) in initial conditions evolve in time as A(0) exp At. For regular motion, all the Lyapunov exponents vanish 
asymptotically in time. For chaotic motion in Hamiltonian dynamical systems, there exists at least one ),i 
that  is greater than zero for a reasonably long time. A positive value of A implies an exponential separation 
in time of trajectories and, thus, dynamical chaos in the system. 

In this paper, we consider an ensemble of two-level atoms in a single-mode high-Q cavity with the feedback 
effect of the atoms on the radiation field taken into account. To describe the atom-field interaction with the 
feedback, we must add an equation of motion for the field variables to the equations of motion for the atomic 
variables. It may be done in different ways. 

In a semiclassical approximation (Sec. 2), the radiation field is treated ab initio as a classical one and is 
defined by the Maxwell equation. The other way is to start  with a completely quantized Jaynes-Cummings 
Hamiltonian of the atom-field interaction and then to factorize the respective Heisenberg equations (Sec. 3). 
Such a procedure is referred to as a "neoclassical approximation" [3]. 

In the two-level case to be considered here, the atomic dynamics may be described by Bloch equations 
or by a second-order differential equation for the probability amplitudes in the SchrSdinger picture or by 
a second-order differential equation for the SU(2) group parameter  in the group-theoretical picture. All 
these descriptions are, of course, equivalent. The language of the components of the Bloch vector and of 
the probability amplitudes is preferable from the physical point of view. However, the group-theoretical 
language is more general and enables one to describe consistently dynamical systems of a different nature. 
We will supplement the analysis of both the Maxwell-Bloch model and the Jaynes-Cummings  model by 
corresponding group-theoretical descriptions (see Subsecs. 2.2 and 3.2). It will be shown in these subsections 
that  the group-theoretical picture provides further insight into the dynamics of atom-field interaction in a 
cavity. 

A brief review of actual quantum electrodynamical systems with strong coupling between the radiators 
and the cavity field is given in Sec. 4. From an estimate of the magnitude of this coupling it follows that  the 
cavity polaritons in fabricated semiconductor microcavities are good candidates for experimental studies of 
transitions to (semi)quantum dynamical chaos. 

. T h e  o n s e t  o f  D y n a m i c a l  C h a o s  in a S e m i c l a s s i c a l  M o d e l  o f  A t o m - F i e l d  
I n t e r a c t i o n  

2.1.  M a x w e l l - B l o c h  D y n a m i c a l  S y s t e m  

The model involves a gaseous sample of N identical non-interacting two-level atoms with transition 
frequency w and transition electric dipole moment  d in a high-Q resonator with a single eigenmode which is 
assumed to be uniform along the resonator length. For simplicity, the frequency of the eigenmode was made 
equM to the frequency of the atomic transition. 

The interaction of atoms with the electromagnetic field will be treated here in a semiclassical manner with 
the atoms described in terms of the quantum-mechanic Bloch equations and the field in terms of the classical 
Maxwell equation. Dissipation effects are not taken into account in this model. In other words, we consider 
a Hamiltonian dynamical system. Of course, this imposes restrictions on the characteristic time constants of 
the system. 

If the density of atoms in the cavity volume V is sufficiently large, it is necessary to take into account the 
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interaction of atoms with their own radiation field. The corresponding criterion is the following: 

> n0 ,  (2) 

where 

, / 2 r N d 2 w  
= V h v  (3) 

is the cooperative Rabi frequency [4], which characterizes the periodic energy exchange between N atoms 
and the field, 

dEo 
h (4) 

is the single-atom Rabi frequency, and E0 is the maximum strength of the radiation field. 
The semiclassical Hamiltonian of our model is given by 

N N 

H =  l hw ~--~ aJ + dE ~--~ a~ , (5) 
j----1 j = l  

where E is now not a prescribed field as in [1], but is a self-consistent field which satisfies the following 
single-mode Maxwell equation written in an approximation of slowly varying envelopes: 

d2E 2 N 
dt--- ~ q-w2E = 4rw d v ( a ~  ) . (6) 

Let x, y, and z be the densities of the expectation values of the Pauli operators a~, a~, and az, respectively: 

(7) 

These expectation values are defined with respect to the atomic initial state, which is assumed to be the same 
for all atoms. From the Heisenberg equations of motion follow the Bloch equations: 

dx 
dt - - w y  , 
dy 

- w x -  2 d h - l E z ,  
dt 
dz 

_ 2 d h - l E y .  
dt 

(8) 

The components of the Bloch vector ( x ,  y ,  z) may be written in terms of the probability amplitudes cl(t) 
and c2(t) for the lower and upper states of an j t h  atom, respectively, as 

x = N -1E(c*lc 2 + c lc ; ) ,  

y = N - l i E ( c * ~ c 2 -  clc~), 

z = N -~E(Ic~I 2 -  1c11 ). 

(9) 

Let us introduce the dimensionless time 7- = wt and represent the field in the form 

E ( t ) =  Eoe(t) , O <_ e(t) <_ 1 ,  (10) 
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where e(t) is the dimensionless alternating component of the field. Now we can rewrite Eqs. (6) and (8) in 
the dimensionless Maxwell-Bloch form 

Y = x - 4 f t e z ,  

2, = 4 ~ e y  , 

A 
P = e - - - ~ x .  

(11) 

Dot denotes throughout  the paper derivatives with respect to v. 
We have defined two control parameters,  namely, the dimensionless separate Rabi frequency 

gt0 
Ft = 2-w (12) 

and the constant of the coupling between N atoms and a self-consistent field 

8 7r N d 2 
A -  hV-----~ (13) 

It follows from Eqs. (3) and (13) that  the cooperative control parameter A is related to the dimensionless 
cooperative Rabi frequency in the following way: 

h = . ( 1 4 )  

Dynamical system (11) has two conservation laws 

x 2 + y 2 + z  2 = 1 ,  
A A 

e 2-t-p2 _ - ~ e x  - ~--~z -- cons t .  (15) 

Conservation of the norm of the Bloch vector implies simply conservation of total probability for two-level 
atoms. The second law in Eq. (15) means conservation of total energy in a coupled atom-field system. It 
should be stressed that  a rotating-wave approximation would lead to a third integral of motion reflecting 
conservation of the interaction energy. Without  a rotating-wave approximation, we have three independent 
real variables [five variables in Eq. (11) minus two conservation laws (15)], which is the minimum required 
for chaos. 

It was first found in [5] that  the interaction of an ensemble of two-level atoms with their own radiation 
field can become chaotic when the cooperative parameter A exceeds a critical value A~ _~ 1. Since the criterion 
for vahdity of the rotating-wave approximation is 

v ~ < < l ,  (16) 

chaos arises when this approximation is no longer valid. The regime of dynamical chaos in the Maxwell-Bloch 
system and in its modifications has been investigated in a number of studies [6-10]. In particular, it was 
shown in [10] that  in the case of driving a cavity by an additional external ampli tude-modulated field chaos 
becomes possible even in the context of the rotating-wave approximation under certain conditions imposed 
on the detuning from resonance and on the amplitude of the external field. 

The aim of our numerical experiments was to study the transition from order to chaos in Maxwell-Bloch 
model (11). With this in mind, we carefully investigated the dependence of the maximum Lyapunov exponent 
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Fig. 1. The maximum Lyapunov exponent A for Maxwell-Bloch system (11) as a function of the cooperative control 
parameter A for initially lower-state atoms (a) and for initially upper-state atoms (b). In both cases, f~ = 0.25.10 -6 
and e(0) = 1, p(0) = 0. 

A of dynamical system (11) on both the control parameters  f~ and A under the following initial conditions 
for the field: 

e ( 0 ) =  1 ,  p ( 0 ) = 0 .  (17) 

As to atoms, we considered the two limiting cases in which all the a toms are assummed to be initially either 
in the lower state 

x ( O ) = y ( O ) = O ,  z ( O ) = - l ,  (18) 

or in the upper state 
x(0)  = y(0)  = 0 ,  z(0)  = 1 .  (19) 

We found the max imum Lyapunov exponent to be an increasing function of the cooperative control 
parameter  A [see Eq. (13)] on average. This is illustrated in Fig. 1 for initially unexcited atoms (Fig. la)  
and for initially excited ones (Fig. lb) .  In both cases, the individual control parameter  was f / =  0.25- 10 -6. 
In accordance with other  studies [5, 7, 8], we have found that  the Maxwell-Bloch system becomes chaotic 
(Fig. la) in the neighbourhood of h~ _~ 1 for initially unexcited atoms (18). For initially excited atoms (19), 
chaos becomes evident for much smaller values of the cooperative parameter ,  of the order of A~ ___ 0.1. 

Let us est imate whether  it is possible to observe such a transition to deterministic chaos under actual 
experimental conditions. For a typical magni tude of the electric dipole moment  d = 10 - is  cgs and optical 
frequency w = 3 �9 1 0  TM rad /s ,  the critical value A~ _ 0.1 is reached at an atomic density N / V  of the order 
of 1021 cm -3. To obtain f/ = 0.25 �9 10 -6, the strength of the cavity electric field must  be E0 --- 0.15 cgse. 
Thus, the Maxwell-Bloch dynamical  system can undergo transition to chaos at high but reasonable atomic 
densities. As the cooperative control parameter  A is varied, there are no surprises in the dynamics. It becomes 
more and more chaotic, at least up to A = 10, showing a tendency to saturation.  We have not observed any 
transition to order with subsequent recurrence of chaos in the range considered Ac < A < 10. 

A different onset of chaos was found for the dependence of the maximum Lyapunov exponent A on the 
separate control parameter  f~, which is simply the dimensionless single-atom Rabi frequency (12). The results 
for a fixed value of the cooperative parameter  A = 1 are shown in Fig. 2. Unlike the dependence A(A), the 
maximum Lyapunov exponent is not a monotonic function of the individual control parameter  f/. It has 
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Fig. 2. The maximum Lyapunov exponent A for Maxwell-Bloch system (11) as a function of the individual control 
parameter 9t for initially lower-state atoms (a) and for initially upper-state atoms (b). In both cases A = 1 and 
e(0) = 1, p(0)=  0. 

both domains of positive values and those of negligibly small (zero) values. For both initially unexcited and 
excited atoms, the first transit ion to chaos occurs at f~c - 0.1. Summing up the results, we can state that ,  as 
the individual l~abi frequency increases, a sequence of transitions from quasi-periodicity to chaos takes place 
for two-level atoms interacting with a self-consistent radiation field in a cavity. 

In principle, the dimensionless Rabi frequency (12) for optical transitions, say, with frequency w = 3.  
1014 rad/s ,  may vary within the following limits [11]: 

i0 -T < ~ < 30 ,  (20) 

where the lower limit is determined by the typical energy-level width ,,~107 Hz, and the upper limit is 
connected to the atomic frequency ,,~1017 rad/s .  It follows from (12) that  we need extremely strong electric 
fields, E0 - 5 �9 104 cgse, to reach the critical value f~r ~ 0.1. 

2.2. G r o u p - T h e o r e t i c a l  D e s c r i p t i o n  of  Semic lass i ca l  D y n a m i c s  

Let the Hamiltonian of N two-level atoms be again given by Eq. (5). Introducing the collective operators 

1 g 1 g 1 N  
Ro :- a z , = a x ~ -~ a u 

and their combinations 

with the commutat ion relations 

we can rewrite (5) as 

R+ = RI  + i R 2  (22) 

JR0, R+I = +R+, JR+, R_] = 2R0 , (23) 

H = h w R o  + h f l o e ( t ) ( R +  + R _ ) .  (24) 
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Here, the atomic Hamiltonian has exactly the same SU(2) form as in Subsec. 2.1 of [1], and therefore the 
atomic subsystem is governed by the equation of motion (5) in [1], which now takes the form 

d2 g ( 1 de ) d9 
dt 2 \ e d-t  + iw -~ + (~oe)~g = 0 ,  (25) 

where the single-atom Rabi frequency ~0 is given by Eq. (4), and e(t) is the dimensionless alternating 
component of the electric field which satisfies the Maxwell equation 

d2 E 
dt--- 5- + w~E = 4rw2P,  (26) 

where the polarization P produced by atoms is 

79 = Nd Nd -V- (R + R_)  (27) 

It is convenient to use the same dimensionless control parameters ~ and A as in Subsec. 2.1 [see Eqs. (12) 
and (13)]. Then the dimensionless versions for atomic subsystem (25) and for field subsystem (26) are of the 
form 

g -  + i  g+ (2ae )2g  = 0, 

A 
+ e -  + R_) = 0 ,  (2S) 

where the expectation values of the collective operators 

(R+ + R _ ) =  Sp [UOoUt(R+ + R_)] (29) 

can be calculated for any initial density matrix ~0 using the evolution operator (4) in [1]. 
Restricting ourselves to pure states and using the results of Subsec. 2.3 in [1], we have the following 

solution of the time-dependent SchrSdinger equation for the probability amplitudes 

Cl(t) 0 e iw'12 0 :J " c1(0) ' 

where ca and c2 are the probability amplitudes for the lower and upper states, respectively. The expectation 
value (R+ + R_) can be written in terms of these amplitudes: 

(R+ + R_) = c,(t)c~(t) + c2(t)c*~(t) . (31) 

Thus, we have two coupled oscillators (28) describing the self-consistent interaction between two-level 
atoms and a single-mode classical field. Let us introduce real variables: 

u = R e g ,  v = _ I m g ,  f i = R e ( 0 d ~ t ) ,  ~ - I m ( 0 e i ~ t ) .  (32) 

In view of (30) and (31), one can express the expectation value (R+ + R_) for any pure state in terms of 
these variables. For instance, it has the form 

(R+ + R_)_ = -2(u~  + v~) (33) 
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for a toms that  are initially in lower states.  For initially excited a toms,  we have 

<n+ + R_)+ = 2(u~2 + v~) .  (34) 

Now we may represent Eqs. (28) in the form of first-order dimensionless equations for the real variables: 

with the two conservation laws 

U = 2~te~ , 

V = -2g te { t ,  

2, 

u = - 9 + 2 ~ e v ,  

v = ~ t - 2 ~ e u ,  

= - p  , 

= e •  i, 
/ 4  s 

u 2 + v 2 + ~2 + ~2 

A _ A 2 v: fi2 e 2 + p 2 •  + vv)•  + - - ~ )  

Introducing new real variables 

(35) 

= 1 ,  
(36) 

= const . 

x = t = ( u ~ + v g ) ,  

y : -t-( 'Sv- uf i ) ,  (37) 

z : •  2 _ v  2 ) ,  

we can rewrite set (35) exactly in Maxwell-Bloch form (11). The  respective integrals of mot ion  (15) follow 
from integrals (36) with subst i tu t ion of (37). In Eqs. (35)-(37),  the upper  signs refer to initially unexcited 
a toms and the lower signs refer to initially excited atoms.  

. 

3 .1 .  

The onset  of  D y n a m i c a l  Chaos  in Neoc las s i ca l  M o d e l  of  A t o m - F i e l d  
Interact ion  

Jaynes-Cummings Dynamical System 

where 

In this section we start  with the fully quantized N - a t o m  Jaynes -Cummings  Hamil tonian 

H :  ] h w y ~ a ~ + h w  a t a +  + h A o ( a + a t ) y ~ a ~ ,  
j----1 j = l  

(38) 

dEvac 
A0- h (39) 

is the vacuum Rabi angular  frequency for resonance interaction. The  vacuum electric field Ev~r (or the electric 
field per p h o t o n ) i s  given by the known expression (see, e.g., [12]) 

Ev~r = ~/2~hw . (40) 
V V 
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The vacuum Rabi frequency A0 has the meaning of the frequency of population oscillations for a two-level 
system in a vacuum field given by (40). The cooperative Rabi frequency, which was introduced in Subsec. 2.1. 
[see Eq. (3)], is related to A0 as 

wc = A0x/N. (41) 

Without resorting to a rotating-wave approximation, we can use the Heisenberg equations of motion with 
the Hamiltonian (38) to obtain the following set of equations for the atomic and the field operators: 

. d  
, ~ y ' ] a ~  = - i r  , 

. d  
~ a ~  = i w E a ~  - 2 i A 0 ( a + a  t ) E a ~ ,  

. d  ~"~a. = 2 i A o ( a + a t ) • a ,  ~--~ 

.d  
~-~a = wa + Ao E a~ , 

. d  t ~ - ~ a  = - w a t  - Ao E a~ . 

(42) 

The crucial point is factorization of these equations. We merely average Eqs. (42) and uncouple the operator 
products as follows: 

(aa) = <a)<a). (43) 

Introducing the dimensionless time r = wt, we obtain the following closed set of first-order equations for the 

(44) 

neoclassical model of field-atom interaction: neoclassical model of field-atom interaction: 
X = - y ,  

Y = x + 4 A g E z ,  

= - 4 A N E y ,  

E ~ - -P ,  

P = E -  4ANx , 

where we have introduced the expectation values for the field operators: 

1 1 
E -  v f ~ ( a 4 - a t ) ,  P = - i - ~ ( a - a  t) (45) 

in addition to the atomic expectation values x , y ,  and z given by Eq. (7). 
The control parameter  in neoclassical model (44) has the form 

A N -  AoV/-N - _ we (46) 
2w 2w 

This parameter is related to the cooperative control parameter of semiclassical Maxwell-Bloch model (13) in 
a simple way: 

A = (4AN) 2 (47) 

(48) 

System (44) has two conservation laws: 

x 2 + y 2 + z 2 =  1 ,  

E 2 + p2 + 2z + 8ANEx  = const .  
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Fig. 3. The maximum Lyapunov exponent ,~ for Jaynes-Cummings system (44) as a function of the cooperative 
control parameter AN for initially lower-state atoms (a) and for initially upper-state atoms (b). In both cases, E(0) = 
1, P(0) = 0. 

As in the Maxwell-Bloch case, we would have had an extra conservation law if we had resorted ab initio to 
a rotating-wave approximation. 

To analyze chaos, we ag~n  examine the dependence of the maximum Lyapunov exponent A of neoclassical 
Jaynes-Cummings system (44) on the control parameter  AN of this system [13]. The results are shown in 
Fig. 3a for initially unexcited atoms 

z ( 0 ) = y ( 0 ) = 0 ,  z ( 0 ) = - l ,  E ( 0 ) =  1,  P ( 0 ) = 0  (49) 

and in Fig. 3b for initially excited atoms 

x ( 0 ) = y ( 0 ) = 0 ,  z ( 0 ) =  1,  E ( 0 ) =  1,  P ( 0 ) = 0 .  (50) 

It is evident that  the onsets of chaos are different in these two cases. With initially unexcited atoms (Fig. 3a) 
the system exhibits a complicated sequence of order-chaos-order-chaos.. ,  transitions with alternating regular 
and irregular modes. In the case of initially excited atoms, the system becomes more and more chaotic with 
increasing AN (see Fig. 3b). 

To elucidate the role that  atomic initial states play in the onset of dynamical chaos, we plotted the map 
of chaos as a function of the value of the control parameter AN and of the initial atomic inversion z(0) [14]. 
It follows from the first conservation law in (48) that  the atomic transition dipole moment  is equM to zero for 
the largest z(0) = 1 and the smallest z(0) = - 1  values of population inversion. When Iz(0)l ~ 1 the atoms 
have nonzero transition dipole moments and, therefore, are in a superposition state. Figure 4 demonstrates 
the results of c~lculations. Curves in Fig. 4 are the lines of equal values of the maximum Lyapunov exponent. 
The more shaded an area in this figure, the stronger the chaos for the corresponding values of AN and z(0). 

We conclude from this map that  a coupled atom-field system in a neoclassical approximation remains 
regular up to large values of the control parameter  AN if atoms were prepared in superposition states with 
closed probabilities to be found at lower and upper levels, i.e. with z(0) ~ 0. A sea of chaos can be seen on 
the map under conditions of unbalanced initial probabilities. 
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3.2.  G r o u p - T h e o r e t i c a l  D e s c r i p t i o n  o f  N e o c l a s s i c a l  D y n a m i c s  

Dynamical system (44) can be rewritten in terms of SU(2) variables (32). For initially unexcited atoms, 
it has the form 

u 

fi 

E 

p 

= 2ANEfi,  

= - 2 A N E f i ,  

= - ~ + 2 A N E v ,  
(51) 

= f i -  2 A N E u ,  

- P ,  

= E + 8AN(Ufi + vfi). 

While the form of s tandard neoclassical dynamical system (44) does not depend on the initial conditions, the 
system for group-theoretical variables does depend on the atomic initial conditions [compare Eqs. (33) and 
(34)]. For completeness, we write here the integrals of motion for system (51) 

u ~ + v  2 + f i 2 + f i 2  = 1 ,  

E ~ + p2 + 4ANE(Uf i  + vfi) + u 2 + v ~ - fi2 _ 92 = const . 
(52) 

In the MaxweU-Bloch model, the variables u, v, fi, and 9 are parameters of the dynamical-symmetry 
group of the atom-field system, since its semiclassical Hamiltonian (5) generates an SU(2) algebra. This 
is not the case for Jaynes-Cummings Hamiltonian (38), which generates ab ini t io  an infinite-dimensional 
dynamical Lie algebra. Nevertheless, one may treat these unknowns as new real variables in a neoclassical 
approximation. ~ 

Numerical experiments were carried out with dynamical system (51) using the fourth-order Runge--Kutta 
method [15] under the following initial conditions: 

u ( 0 ) = 0 ,  v ( 0 ) =  1 ,  f i ( 0 ) = 0 ,  f i ( 0 ) = 0 ,  E ( 0 ) =  1,  P ( 0 ) = 0 .  (53) 

This is the case of initially unexcited atoms. It was found that  the behavior of the largest Lyapunov exponent 
A as a function of AN was exactly the same as in Fig. 3a. It is seen in this figure that  there are both domains 
of positive values of X, where the system is chaotic, and those of negligibly small (zero) values of ),, where it 
exhibits (quasi)regular motion. 

To obtain more comprehensive information about the motion of a coupled atom-field system, we calculated 
the power spectra and phase portraits for three values of the coupling constant A~ corresponding to three 
different types of motion. The following representative values of Alv were chosen: 

�9 Domain of regular motion with An = 0.15 and A = 0. 

�9 Domain of quasi-regular motion with AN = 0.95 and A = 0. 

�9 Domain of chaotic motion with A N  ----- 0.68 and A _~ 0.4. 

The power spectra for regular and quasi-regular motion feature a b-like structure (Figs. 5a and 5b) and 
become broadened in the case of chaotic motion (Fig. 5c). Two-dimensionM projections of the system's phase 
portraits onto the plane Img = v - Reg = u of the atomic variables are displayed in Fig. 6 for all three 
representative values of the coupling constant. The corresponding projections onto the plane P - E of the 
field variables are shown in Fig. 7. 
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Fig.  5. Power spectra for group-theoretical version (51) of the Jaynes-Cummings system in the cases of regular motion 
with AN -- 0.15 (a), quasi-regular motion with AN = 0.95 (b), and chaotic motion with AN : 0.68 (c). The initial 
conditions for the field are the same as in Fig. 3. 
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Fig. 6. Stroboscopic two-dimensional projections of the phase portrait for group-theoretical version (51) of the Jaynes- 
Cummings system onto the plane of the SU(2) group parameter in the cases of regular motion with AN = 0.15 (a), 
quasi-regular motion with Au = 0.95 (b), and chaotic motion with AN = 0.68 (c). The initial conditions for the field 
are the same as in Fig. 3. 
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Fig. 7. Stroboscopic two-dimensional projections of the phase portrait  for group-theoretical version (51) of the J aynes- 
Cummings system onto the plane of the field variables in the cases of regular motion with AN ---- 0.15 (a), quasi-regular 
motion with AN = 0.95 (b), and chaotic motion with AN = 0.68 (c). The  initial conditions for the field are the same 
as in Fig. 3. 
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4. Actual Quantum Electrodynamical Systems with Strong Coupling 

The purpose of this section is to discuss different types of actual quantum electrodynamical systems with 
large values of the vacuum Rabi frequency A0 (39), characterizing the radiator-field coupling, and to select 
the most promising candidates for experimental investigations of transitions to dynamical chaos, which were 
discovered numerically in the preceding sections. As follows from our numerical results, transition to chaos in 
the Jaynes-Cummings model takes place when the control parameter  AN, which is related to A0 by Eq. (46) 
exceeds a certain critical value Ar which depends on the initial conditions. We found its minimum value to 
be equal to _ 0.1 for initially excited atoms (see Fig. 3b). Let us determine whether it is possible to reach 
this order of magnitude for AN in actual physical systems. For convenience, we introduce the single-atom 
control parameter 

A0 (54) 
AI = 2-~ 

It follows from Eq. (46) that  AN = AIv/N ". 

4.1.  A t o m s  in  C a v i t i e s  

We begin our discussion with atom-field systems in electromagnetic resonators operating in the strong 
coupling regime, which are widely used in resonator quantum electrodynamics [16-18]. In this regime, the 
atom-field coupling is much larger than the reciprocals of all other characteristic times such as the lifetimes 
of atoms and the cavity field and  the atom-field interaction time. 

Rydberg atoms are very good objects for the study of quantum electrodynamical effects in the microwave 
region. In typical experiments [18], rubidium atoms with transition frequency w / 2 r  = 51.1 GHz (between 
two adjacent states with principal quantum numbers n = 50 and n = 51) and the transition electric dipole 
moment d = 1250 D are placed in an electromagnetic resonator with a typical size of 1 cm and an effective 
volume of the order of 0.1 cm 3. The vacuum electric field (40) is equal to Ewe ~ 1.3.10 -7 cgse. The vacuum 
Rabi frequency (39) then reaches A0 "~ 2- l0 s tad/s;  values of this order are maximal for Rydberg atoms in 
microwave cavities. Therefore, the highest attainable value of the single-atom control parameter  for these 
objects is of the order of A1 ~- 3 �9 10 -v. 

Strong coupling can also be achieved in the optical region. Especially strong atom-field coupling is 
observed at the surface of small dielectric spheres [19]. For instance, the whispering-gallery mode at the 
surface of a silica microsphere of 17.5 #m radius has a very high Q-factor and a frequency, w/2~ ~_ 4.1014 Hz, 
which is almost in resonance with the rubidium 5S - 5Pal2 transition (d ~ 2 D). The effective mode volume 
is V "" 1.6- 10 - l~ cm a, which yelds the vacuum electric field Ev~r -~ 0.3 cgse. The vacuum Rabi frequency 
is then of the order of A0 ~- 6 �9 l0 s rad/s .  Therefore, the single-atom control parameter  for such an object 
reaches A1 -~ 10 -7. 

Thus, we see that  the highest attainable value of A1 for atoms in both the microwave and optical regions, 
is of the order of 10 -7. As follows from Eq. (54), in this case one needs N = 1012 atoms to reach the critical 
value of the cooperative control parameter  AN, of the order of 10 -1 , which is the threshold for transition to 
dynamical chaos in the Jaynes-Cummings neoclassical model. 

4.2.  M i c r o c a v i t y  P o l a r i t o n s  

An interesting quantum electrodynamical system with very strong coupling is that  of quantum-well ex- 
citons in integrated semiconductor microcavities [20-23]. We will discuss here quantum wells located in a 
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Fabri-Perot  semiconductor microcavity that  is formed by two distributed Bragg reflectors placed one wave- 
length of light apart.  For definiteness, we consider the s tructure of an actual A1As/A104Ga~6As sample 
used in experiments (see, e.g. [20]). The lifetime of this microcavity and its resonance width are 130 fs and 
5 Mev, respectively. A quantum well width of the order of 76/~ ensures an exciton transition that  is resonant 
with the cavity mode at 785 nm at temperatures  of 5-10 K. At such temperatures ,  the relaxation time of 
quantum-well excitons is T~ - 1 ps, and the radiative lifetime is approximately 10 ps [20]. Such quantum 
electrodynamical effects as spontaneous emission enhancement  and suppression, vacuum Rabi oscillations, 
and vacuum Rabi splitting have been observed with excitons in semiconductor microcavities (for reviews see 
[20,21]). 

The exciton states of a quantum well form a two-dimensional band. On the other hand, a resonant 
Fabri-Perot  cavity also has a two-dimensional density of photon modes. Because of the conservation of the 
wave vector of an exciton in its interaction with light [22] a given excitonic state can interact only with a 
wave-vector-matched cavity photon state. As a result, normal modes of the exciton-cavity system, which can 
be termed "cavity polaritons," arise. 

In the strong coupling regime, it is possible to describe cavity polaritons by Jaynes-Cummings  Hamilto- 
nian (38). The Pauli matrices now describe two excitonic states, and the creation and annihilation operators 
describe a cavity field which is assumed to be a single mode one. All the analytical and numerical results of 
Sec. 3 are valid for our cavi ty-polari ton system (in the context of a two-level approximation).  In particular, 
different onsets of chaos become possible when the control parameter  exceeds a critical value (see Figs. 3 and 
4). 

Let us est imate the vacuum Rabi frequency (39) for the s tructure considered. The relevant dipole moment  
is [20] 

d = er~[F[L, (55) 

where er, is the atom-like dipole moment ,  

8 (56) IFI2= ~a~ 

is the probability per unit area of finding an electron and a hole in the same unit cell, and L is the characteristic 
size of the crystal. Using Eqs. (39) and (40), the vacuum Rabi frequency can be writ ten 

~ n  2 
Ao = er, lh-~c~ lF(O)l , (s7) 

where lr is the effective cavity length. For a sample with JF(0)J 2 = 1.6.1012 cm -2, r ,  = 6/~, lcav = 785 nm, 
e = 4 .8 .10  -1~ cgse and with n = 25 quantum wells, we have A0 - 2 . 1 0  la rad/s .  Such a high vacuum Rabi 
frequency yields a value of the individual control parameter  of the order of A1 - 5 �9 10 -a, which is far in 
excess of the coupling constants for atom-field systems (see Subsec. 4.1). It is worthwhile to mention that  
the estimated magnitudes of A0 for other fabricated semiconductor structures can reach (1-3).10 la rad/s  [23]. 

To sum up, we can say that  quantum-well excitons in semiconductor microcavities are good objects for 
s tudy of the quantum signatures of dynamical chaos because of their very strong coupling to cavity modes. 
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