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Abstract. In analogy to valuation characterizations and kinematic formulas of convex geome- 
try, we develop a combinatorial theory of invariant valuations and kinematic formulas for finite 
lattices. Combinatorial kinematic formulas are shown to have application to some probabilistic 
questions, leading in turn to polynomial identities for Mrbius functions and Whitney numbers. 
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1. Introduction 

The lattice structure of  the collection o f  polyconvex sets, that is, the collection o f  all 
finite unions of  compact convex sets in/R n (also known as the convex ring), provides a 
crucial link between convex geometry and combinatorial theory. This connection was 
highlighted by Rota in [20], where a valuation characterization theorem and kinematic 
formula were derived for the Boolean algebra of  subsets o f  a finite set (see also [ 11]). 
In [ 10], the author extended these notions to the lattice o f  subspaces o f  a vector space 
over a finite field. In this paper we develop a general theory in the broader context o f  
finite posets and lattices o f  order ideals. 

We begin by recalling briefly two important results from classical convex geometry. 
Denote by 9(" the set o f  all compact convex sets in I~ n. The set K n is endowed with the 
topology induced by the Hausdorffmetric on compact sets in/~n (see [22]). A function 
q~ : K n ----+ ~ is called a valuation on K n ifq~(0) = 0, where 0 is the empty set, and 

cp(KUL) = (p(K) + cp(L) - ~p(KfqL), (1.1) 

for all K,L E K n such that K U L E K" as well. A valuation q~ on K" is said to be 
rigid motion invariant if q~(gK) = cp(K) for all rigid motions (translations, rotations, 
and reflections) g o f  ~n. 
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Of particular interest are McMullen's intrinsic volumes [11, 13-15, 22, p. 210], 
which give invariant extensions of/-dimensional volume (on/-planes) to polyconvex 
subsets of ~n, where n > i. Denote by G(n, i) the set of all/-dimensional subspaces of  
~n, equipped with the invariant (Haar) measure vi normalized so that 

vi(G(n,i)) = (7) fDiO)n- i  f'On , 

where COl is the/-dimensional volume of the unit ball in /I~ i. Denote by V,- the i- 
dimensional volume in/I~ i. The/-volume V~. is extended to i-th intrinsic volume (also 
denoted by V,.) on all of K n by 

Vi(K) = fG(n,i) V,'(KI~) dr;, 

where KI~ denotes the orthogonal projection of K onto the subspace ~. The valuation 
V,. then extends uniquely to the lattice of  polyconvex sets via inclusion-exclusion (see, 
for example, [11,22]). 

The valuation/I0, which takes the value 1 on all non-empty compact convex sets, 
extends to "the Euler characteristic on the lattice of polyconvex sets (see, for example, 
[11,14,15,22]). 

Hadwiger's volume theorem states that Vn is the only continuous rigid motion in- 
variant valuation on K n that vanishes on compact convex sets of  dimension less than n, 
i.e., on sets with an empty interior. This theorem is easily shown to be equivalent to the 
following [7, 9, 11,22]. 

Theorem 1.1. (Hadwiger's Characterization Theorem) Suppose q~ is a continuous rigid 
motion invariant valuation on K n. Then there exist c0,cl , . . .  ,cn E I~ such that 

n 

i=0 

for all K E K n. 

Hadwiger's characterization leads to simple and straightforward proofs o f  many 
classical theorems of integral geometry, an important example of  which is the principal 
kinematic formula. 

Denote by En the group of rigid motions of/I~", that is, the indirect sum of the 
translations group o f ~  n with the orthogonal group O(n). 

Theorem 1.2. (Principal Kinematic Formula) For all polyconvex sets A andK, 

i=0 COn 
(1.2) 

The integral in (1.2) is taken with respect to the indirect sum of the Lebesgue mea- 
sure on ~n with the Haar probability measure on O(n). For compact convex sets A and 
K, this integral has an evident geometric interpretation as the measure of  the set of  all 
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g E En such that A ['lgK # O. Alternatively, one may think of (1.2) as the "measure" of 
all convex sets gK in I~ n congruent to K that meet A. 

Theorem 1.2 is one of a family of  kinematic formulas for valuations on polyconvex 
sets, attributed in origin to Blaschke [ 1], Chern [3], and Santalo [21]. The techniques 
of  the present work are inspired by those of Hadwiger [7] and Rota [20] (see also [I 1]). 
Kinematic formulas remain a topic of  current interest in convex and integral geometry 
(see [4, 5, 8, 11,22, 23, 26, 27]). 

2. Invariant Valuations on Finite Lattices 

Let P denote a finite set, partially ordered by the relation <, and with a minimal element 
0. We shall also refer to the partially ordered set P as a poset. An automorphism of a 
poset P is a bijective function g : P ---+ P which preserves the ordering <. The collec- 
tion of all automorphisms of a poset P forms a group under composition of  functions, 
denoted by Aut (P). I f  G is a subgroup ofAut (P), then G acts on P by evaluation of  the 
functions g E G at elements x E P. 

For x E P, denote 
U(x) = {gx : g E G}, 

that is, the orbit o f x  under the action of G. Let U(G;P) denote the collection of all 
orbits in P of the action of the group G, except the singleton orbit {0} of  the minimal 
element 0. We shall refer to q_/(G;P) as U where no confusion is possible. Denote 

Stab(x) = {g E G : gx = x}, 

that is, the stabilizer ofx  under the action of G. Recall that Stab(x) is a subgroup of  G. 
IfA is a finite set, denote by IAI the number of  elements of  A. The orbit and stabilizer 

of  an element x E P satisfy the identity: 

IU(x)l I a t a b ( x ) l  = Ial. 

An order idealI is a subset of  P such that, i fx E A andy < x, theny E A. An order 
ideal is a partially ordered set in the order induced by P. An order ideal having exactly 
one maximal element is called a principal ideal. 

The (set-theoretic) union and intersection of any number of  order ideals is again an 
order ideal. Thus, the set J(P) of all order ideals in P is a distributive lattice and we can 
study valuations on J(P). 

A function cO :J(P)  ----+ IR is called a valuation if~0({0}) = 0 and 

(p(A UB) + (p(A MB) = (p(A) + (p(B), 

for all A, B E J(P). 
For x E P, denote by 2 the principal ideal whose maximal element is x, that is, the 

set of all y E P such that y < x. 
It is well known (or see [ 11, 19]) that every valuation (p on J(P) extends uniquely to 

a valuation, again denoted by (p, on the Boolean algebra B(P) of all subsets of  P, which 
is generated by J(P). Such a valuation is evidently determined by its value on the one 
element subsets of B(P), that is, by arbitrarily assigning a value (p({x}) for each x E L. 
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Let x E P and let 11,I2, �9 �9 �9 ,lm be the maximal principal ideals lk _C 2 such that Ik # 2. 
Then 

cp({x}) = cp(2) - cp(I, U12 U---U/m). 

The right-hand side can be computed in terms of principal ideals of  lower order by the 
inclusion-exclusion principle (1.1). Thus, by induction on the partial ordering, we have 
the following theorem (due to Rota [12, 19]). 

Theorem 2.1. Every valuation ~ on the distributive lattice J(P) of all order ideals 
is uniquely determined by the values q~(2), over all x E P. The values q~(2) may be 
arbitrarily assigned. 

Suppose G is a group acting on the poset P. For I E J(P), the set 

gI = {gx : x E I} (2.1) 

is also an order ideal of  P. It is easily verified that (2.1) defines a group action of G on 
the lattice J(P). We say that this G-action on J(P) is induced by the action of  G on P. 

A valuation c 0 on J(P) is called invariant if it is invariant under the action o f  group 
G, that is, if~0(1) = ~(gI) for every order ideal I E J(P) and all g E G. 

Among the most important invariant valuations on any lattice is the Euler charac- 
teristic, which we now define. The following is an immediate consequence of  Theo- 
rem 2.1. (See also [19].) 

Theorem 2.2. There exists a unique invariant valuation q~ on J(P) called the Euler 
characteristic, such that )~ (2) = 1 for every principal ideal ~ with x > 0 and ~ ( { 0}) = O. 

Recall that the Euler characteristic of  the distributive lattice J(P) of order ideals of  
a poset P satisfies 

Z(I)=-  ~, /t(0,x), (2.2) 
xEl,x>O 

where 0 denotes the minimal element of  P and/.t is the M6biusfunction of P (see [12, 
18, 19, 24, p.120, 25]). 

For U E 'U(P; G), define 
= 12n u I ,  

and extend cpu to all of  J(P)  by Theorem 2.1. For every order ideal I, 

~(1) = Fn UI. 

In other words, the valuation g'u counts the number of  elements of  the orbit U contained 
in an order ideal. 

Note that i fy  E U(x), then l,(O,x) =/, (0 ,y) .  This follows from the fact thaty  = gx 
for some automorphism g of P. Therefore, we denote by/I(U) the value of/z(O,x) for 
any x E U. It now follows from (2.2) that 

•(I) = - ~ ~-"/*(0,x) = - ~ I~(U)cpu(I), (2.3) 
UEq..I(P;G) xEU UEq.I(P;G) 
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for any order ideal I. 
More generally, we have the following combinatorial analogue of Hadwiger's char- 

acterization theorem for invariant valuations. 

Theorem 2.3. (Basis Theorem) The invariant valuations {tpu : U E q-/(P; G)} span the 
vector space o f  all valuations (p on J(P) that are invariant under the action o f  G. 

Proof Suppose (p is an invariant valuation on J(P). Extend (p to all of  B(P). The 
extended valuation, which is still denoted by (p, is again invariant. If U(x) = U(y) = 
U, then there exists an automorphism g of P such that gx = y. Therefore, ~0({x}) = 
(P({y}) = cu, for some constant cue  R Thus, the valuation 

- if'. cuq)u 
Ue U(P;G) 

vanishes on all singleton sets {x} for all x E P, and consequently vanishes on all of 
B(P). t 

In order to compute the coefficients eu given by the Basis Theorem 2.3, note that if 
x E U, then 

(p({x}) = ~ cuq%({x}) = cu. (2.4) 
UE "/./(P;G) 

If  we know the values of q)({x}) for some x in each orbit U, then we are done. 
However, a valuation tO is often given in terms of its values on principal ideals ~ for 

x e P (as in, for example, Theorem 2.1). In order to compute the values (p({x}), given 
the values (p(.~), we use MObius inversion. Recall that the extension of a valuation (p on 
J(P) to all of  B(P) is given inductively by 

and 

so that 

q, ({o})  = 0 

q,({x}) = ,p(r) - Z , p ( L v } ) ,  
y<x 

= 
y<_x 

for all x e P. Applying MObius inversion to (2.5) yields 

q,({x}) = y '  ~,(y,x),p(y). 
y<x 

Combining (2.6) with (2.4) along with the invariance of (p, we obtain 

co = = Z  Cv, xul (y), 
y<xu 

(2.5) 

(2.6) 

(2.7) 

for each U E qd. 
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3. Kinematic Formulas for the Lattice of  Order Ideals 

As an application of the Basis Theorem 2.3 we shall derive a combinatorial analogue of 
the principal kinematic formula (1.2). 

One way to construct invariant valuations on J(P) is the following. Start with any 
valuation q~ on J(P) such that q~({0}) = 0 and let A be any order ideal. For any order 
ideal B, define 

qs(A;B) = ~G[ ~gqS(AMgB), 

where g varies over the group G. For fixed A, the set function t0(A;B) is a valuation in 
the variable B; in fact, it is an invariant valuation, since 

1 
~(A;goB) = V~ ~(p(A nggoB) 

g 

= l_~ Zg(AMgB)  ' 
161 g 

for each automorphism go E G. By Theorem 2.3, the functional q)(A;B) can be ex- 
pressed as a linear combination of the valuations q~u, with coefficients ctu(A) depending 
onA: 

q)(AzB) = ~ etu(A)q)u(B). (3.1) 
UEq./ 

Meanwhile, for fixed B, the set function q)(A;B) is a valuation in the variable A. 
From this it follows that each of the coefficients c%(A) is a valuation in the variable A. 

Now consider the case when q) is an invariant valuation. If so, then 

q)(A;B) = q)(AMgB) = V-~5 ~q)(g-'AMB) 
g 

I = - -  ~-~qo(gA AB) = r 

It follows that c% (A) is an invariant valuation in the parameter A, so that 

,p(.4;B)= Z ~ov~,o(A),pv(B). 
U,VEqd 

Since ~0(A;B) = q~(B,A), it is evident that auv = e~vu. It turns out that most of  the 
constants c~uv are equal to zero. To compute the coefficients Otuv, extend the valuation 
q~ to the Boolean algebra B(P) generated by J(P)  and let c~ denote the value of q~ on a 
singleton set in B(P) whose single element lies in the orbit U (that is, cu = q~({x}), for 
anyx E U). Recall that the values cu may be obtained from (2.4) or (2.7). 

Theorem 3.1. (General Kinematic Formula) Suppose q~ is an invariant valuation on 
J(P). For all A, B E J(P), 

I.~ ~.r = ~., i-~c~qoc,(A)qo, (B). (3.2) 
[ G I g  uE'u  I v l  
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When P is a modular lattice and the orbits U coincide with the grades of P, the 
values [U[ are sometimes called the Whitney numbers (of the second kind) for P. 
Proof. Suppose xo,yv E P lie in orbits U and V respectively. Let A = {x~} and B = {y~}. 
For anyg E G, the s e t A N g B =  0 i fU ~ V. I fU = V, t h e n A n g B =  0 ifxu Cgy~, while 
there are IStab(x~)l automorphisms g of V such that x~ = gy~. Hence, we have 

1 k~t h( )l 1 r , . ,  

~(A;B) = -~l Ee(AngB) - F~I (ptA) : ~lC~. 
g 

Meanwhile, ~Pu0 (A) = 1 if U0 = U; otherwise, it is equal to zero. Similarly, (Pv0 (B) = 1 
if V0 = V; otherwise, it is equal to zero. Hence, 

= y '  = 

uo,vo~u 

Therefore, c%v =(1/IUI)cu i fU = V, otherwise, it is equal to zero. 

For example, if q~ = q~~ then (3.2) becomes 

,.pu(A ClgB) = ~ q%(A)~.(B). (3.3) 

The basis theorem implies that every kinematic formula for an invariant valuation can 
be expressed by taking linear combinations of the identity (3.3). 

The case ,,p = Z is of  particular interest. The Euler formula (2.3) implies that 
Z({&,}) = -/~(U). Theorem 3.1 then specializes to the following combinatorial ana- 
logue of Theorem 1.2. 

Theorem 3.2. (Principal Kinematic Formula) For all A, B E J(P). 

1 
1 ~x(A ngB) = ~ -I,(U) ~0i-,I,, (A)e~ (B). 
IGI g ue~l 

(3.4) 

The probability that a randomly chosen principal idealy shall meet a fixed principal 
ideal .~ is now given by 

~Glg ~ U 1 , z(~ngf) = ~ - ~ , ( ) ~ ~ 1 7 6  (3.5) 
UE'U 

By combining (3.3) and (3.5) with standard probabilistic arguments, one may derive 
new combinatorial identities, as is demonstrated in the examples that follow. 

4. Examples and Applications 

We now apply the the theory of invariant valuations to central examples of  posets in 
enumerative combinatorics. 
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4. I. Finite Boolean Algebras 

Consider the lattice Bn of all subsets of { l, 2 , . . . ,  n}, a Boolean algebra. The collection 
B, is ~ poset when ordered by inclusion of subsets. Let G = Sn, the group of permuta- 
tions on n elements. The orbits of the action of G are the collections Bk, of k-element 
subsets of { 1,2,... ,n }, having size IBm[ = (~). 

The Mt~bius function of the poset Bn is given by 

U(x,y) = ( -  I) [vl-lxl 

for x,y E B, such that x C_ y. The Basis Theorem 2.3 implies that all invariant valuations 
on J(B,) are linear combinations of the valuations ~0i, given by 

q~i(I) = I/fIBil, 

for all I E J(B,) and i = I , . . .  ,n. 
It then follows from Theorem 3.2 that 

, (7) n~ " ~. z(afIgB) = ~-'2(-1) i+l (pi(A)q~i(B), (4.1) 
gESn i= I 

for all A, B E J(B,). If A = ~k and B = Yt, then the left-hand side of (4.1) expresses the 
probability that a randomly chosen/-simplex will meet a given k-simplex. Using ele- 
mentary probabilistic reasoning, one can easily check that the probability that a random 
/-simplex does not meet a given fixed k-simplex is 

(7) 
From (4.1), we then obtain 

( 7 ) - ' (  7 ) ( 7 ) - ' ( : )  (li) 
1- n k 1 : ~ ~ Z(.~k f igy t )=  ~-" ( - l )  i+l . (4.2) 

gESn i= I 

By adding the term corresponding i = 0 to both sides of (4.2) and multiplying by - 1, 
we obtain the identity 

,_~o(-1) ' (7)- '  ( : ) ( : ) =  ( ; ) - '  (nTk) ,  (4.3) 

for all positive integers 0 < k, l < n. 
Note that if k + l > n, then ("7 k) = 0. In the preceding argument, this corresponds 

to the case in which the two sets gYt and Xk have non-empty overlap for any permutation 
g, i.e., the case in which x, fIgYt = O with probability zero. 

The left-hand side of (4.1) can be computed once again using standard combinato- 
rial arguments. Let xk E Bn. The number ofl-setsy E B, such that xk Ay is a set of size 
i is given by 

C ) ( ; - i k )  �9 
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On combining this with (4.1), we obtain the identity 

n - I  -1  
( 1 TM (;) C)(1)--(7) 

On simplifying, we then obtain 

361 

) =0  44, 

Similarly, we use the identity (3.3) to compute the expected value ofcpm(Xk Rgyt), 
yielding the identity 

for all 0 < k, l ,m <_ n. The left-hand side of (4.5) is obtained from the definition of 
expectation, while the right-hand side follows immediately from (3.3). 

4.2. Finite Vector Spaces 

Denote by Ln(q) the set of all subspaces of a vector space V of dimension n over a 
finite field of order q. The collection Ln(q) is a poser when ordered by the inclusion of 
subspaces. Let G = GLn(q), the group of linear automorphisms of V. The orbits of the 
action of G are the collections L~ (q) of k-dimensional subspaces of V, having size 

( n )  ( q n - l ) . . . ( q ' - k + ' - l )  
lLkn(q)l= k q =  ( q k _ l ) . . . ( q _ l )  ' 

the Gaussian coefficients. Recall also that 

IGL,(q)[ = (q" - l )(qn - q) " " (q" - qn-t)  �9 

The M6bius function of the poset Ln(q) is given by 

I~(x,y) = ( -  1 )dim(y)-dim(X)q (dim/v)~dimlxl) , (4.6) 

for x,y E L,  (q) such that x _C y. 
By the Basis Theorem 2.3, the collection of valuations {q)i}in=l on J(B,) given by 

~;(~) = F n L~. (q)l 

is a basis for the space of invariant valuations on L,(q).  From Theorem 3.2, we then 
obtain 

. /(:) 1 • z ( A N g B )  ~-" ( -  1)'+lq (2) -1  = r (4.7) 
IGL,(q)l g i--l q 

for all A,B E J(L, (q)  ). 
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Similarly, the kinematic formula (3.3) now becomes 

n )  - 1 
1 ~.cpi(AAgB)= i cpi(A)cpi(B) 

IGL,(q)I g q 
(4.8) 

for all A, B E J(L, (q)) and for each i = 1 , . . . ,  n. Let xk and y /be  subspaces of  V having 
dimensions k and l, respectively. In the ease when A = xk and B = Yr, the formula (4.8) 
gives the expected number of/-dimensional subspaces inside the intersection of the 
k-dimensional subspace xk with a random/-dimensional subspace gxt. 

By applying elementary probabilistic reasoning to (4.7), we obtain the q-analogue 
of(4.3), to wit: 

,,( () (;) ("7') _l)iq(~) l -1  

i=0 i q q i q = qkl q q 

for all positive integers n,q and all 0 < k,l  < n. This formula was originally obtained 
by Chen and Rota (see [2, (4.4)] and also [12, p. 273]). 

For additional details, see [10]. See also [6, 12, 24, pp. 126-127, 25, pp. 291-197] 
for a treatment of q-analogues, Gaussian coefficients, and the MObius function (4.6). 

4.3. The Lattice of Partitions (Order Ideals) 

Denote by 1-1,7 the set of all partitions of the set { 1,2,. . .  ,n}. The collection Fin is a 
poser when ordered by a refinement of partitions. Specifically, we have n < o in FI, 
provided each block of the partition n is contained inside a block of o. We denote by 
I~1 the number of blocks in the partition n. 

Let G = S,, the group of permutations of { 1,2, . . . ,  n}. The orbits of Fin under the 
action of G are collections of partitions having the same shape. Let n E FI, and let ai 
denote the number of blocks o fn  of size i. Then the orbit U(n) has size 

n! ,1 1 

Ig(~)l = (1')~ al I . . .  (n!)a, an! = n! H (k!)akak!" 
" k = l  

For n, o E FI, such that n < or, the MObius function lt(n, o) is given by 

/z(n,o) = ( -1 )  Inl-I~ 1"I ( n p -  1)!, (4.9) 
PEo 

where np denotes the number of blocks of n contained in the block P. For a derivation 
of(4.9), see [25, p. 301]. 

Note that if n = On,,, the discrete partition, then (4.9) becomes 

~(on,,,~) = (-1) "-I~j 1-'[ ( I P I -  1)! = (-1) "-I~1 f l ( k -  1)! ~k, 
PE o k= I 

(4.10) 

where ak denotes the number of blocks of o of size k. 
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Combining (4.10) with Theorem 3.2 we obtain 

~., ~x(A ngB) 
g 

= 5-" (_t),,-I,,!+~ (k-1)t~ Z, (/,!)~ q,~CA)q, oCB) 
a I + 2 a 2 + - - + n a n = n  

a,+aoz+...+,,a,=,, n! ( ( k -  1)[)a~(k!)a~a~[ ~t.(A)g~u(B) (4.11) 

for all A,B E J(FI,), and where I~l = al + ' "  + a,. 
Unfortunately, the values of ~ou(A) are very difficult to compute for a typical order 

ideal A in 1-1,. 

4.4. The Lattice of Partitions (Filters) 

Unlike the previous examples, the lattice Fin is not self-dual. Denote by FI~, the lattice 
dual to I-I,, in which all order relations in FI, are reversed. Denote by 1 n,, the indiscrete 
partition consisting of a single block, In, = {{ 1,... ,n}}. The MObius function for I-l,] 
is then given by 

,u(0ri~,,cr) = kt(cr, llq,,)= ( - 1 )  la[-I 1"1 (nB-1) !  = ( - l ) l~ l - I ( ]cr l -  1)!. 
BE I rln 

It follows from Theorem 3.2 that 

z (AngB)  = ~ ( -  (k!)a'ak! cp~(A)~p~(B). 
gESn al + 2a2 + - ' + n a n = n  " 

Once again the values ofcpu(A) are very difficult to compute for a typical order ideal A 
in l-I~ (a filter in Fin). 

4.5. The Lattice of Faces of an n-cube 

Let Cn denote the n-dimensional unit cube in 1I~ n. Let 6" denote the regular cell de- 
composition of  the cube Co into tower-dimensional unit cubes. The cell complex 6" 
is partially ordered by set inclusion of the faces of C,,. The null set 0 is included as 
the minimal element of the lattice 6". For a description of the lattice structure of 6", 
see [16, 17]. See also [12] for an extensive bibliography. 

The MObius function of the lattice C" is characterized as follows. 

Proposition 4.1. Let C,D E C n be any two cells with C C_ D and C 7 ~ O. I f  dimC = k 
and dimD = l, then 

/u(C,D) = ( -1 )  t-k and /.+(0,C) = ( -1 )  k+l. (4.12) 
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Proposition 4.1 is not difficult m prove directly. For a more general result, see [24, 
p. 122]. 

We shall consider the action of group G of isometries of the n-cube Cn, a finite 
subgroup of the orthogonal group O(n). Evidently, G acts transitively on the set of i- 
dimensional faces of Cn for each i = 0, 1 , . . . ,  n. It is not difficult to show that I G] = 2nn!, 
while the orbit U,. of an/-dimensional face has size 

Let J(C n) denote the lattice of order ideals in C n. The Basis Theorem 2.3 implies 
that if tp is an invariant valuation on J(Cn), then 

gl 

(~ = Z Ci(~i~ 
;=0 

where q)i is the invariant valuation given by 

q,;(A) = IA n u,.I, 

for all A E d( Cn). 
Kinematic formulas are now derived in the usual way. Suppose q~ is an invariant 

valuation on d(Cn). For all A,B E J(Cn), we have the general kinematic formula 

1 ~'tp(AMgB) = 2i-"cicPi(A)cpi(B), (4.13) 
2nnl g i=o \ t /  

where ci = 9({C/}). 
Suppose cp is chosen to be the Euler characteristic X for the lattice J(C'). For 

0 < i < n, the value ci is then given by 

c, = = - a ( 0 , c , )  = ( - 1 ) ; .  

This follows from Proposition 4.1. 
Combining this with (4.13), we obtain the principal kinematic formula 

1 = 2J-n( - l)iq~i(A)~i(B). (4.14) 
�9 g i = o  k ~ /  

IrA = Ck and B = CI are principal ideals, then the formula (4.14)becomes 

' " 
2"n' ~J"~z(ANgB) = ~"~(-1)i " 2 k+t-i-n, (4.15) 

�9 g i = 0  Xl/  

giving the probability that a random/-dimensional face of Cn meets a given k-dimensional 
face. It follows that there are 

(7) 2n- t~(-1) i (n '~- '  ( : ) ( : )  2k+t-;-.= ' ~ ( - 1 ' i ( 7 ) - '  ( 7 ) ( : ) ( : )  2k-/ 
i=0 \ L /  /=o 

(4.16) 
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/-faces of C, that meet Ck. 
Instead, if we apply the formula (4.13) to the case q~ = tog for a particular fixed 

i E {0, 1,... ,n}, we have 

(:) 1 ~q)i(AflgB)= 2i-"$i(A)q)i(B), 
2nn! g 

(4.17) 

for all A,B 6 J(Cn). IfA = Ck and B = Ct are principal ideals, then the formula (4.17) 
becomes 

' (:) 2"n '  ~'~pi(Cl, ClgCt) = 2 j ' + t - " - i  , 
�9 g 

(4.18) 

giving the expected number of/-faces of  the intersection of a given k-face of  Cn with a 
random/-face of Cn. 

Using the definition of  expectation and standard probabilistic arguments, one can 
compute the left-hand sides of(4.15) and (4.18) more directly. In this case, powers of 
2 appearing on both sides of  these expressions cancel out, resulting once again in the 
same identities (4.4) and (4.5) obtained from the example of finite Boolean algebras. 

5. Variations and Generalizations 

There remain many other variations and applications of the general kinematic formula, 
Theorem 3.1. For example, one can replace the random intersection of two order ideals 
with a random union. For any invariant valuation (p on J(P), the valuation identity (1.1) 
implies that 

1 1 (5.1) 

A kinematic formula for the expected value of a random union, tp(A U gB), is then 
derived from a combination of Theorem 3.1 with the identity (5. I). 

One can also consider multiple intersections. The proof of Theorem 3.1 easily gen- 
eralizes to the case of  multiple intersections to yield the kinematic formula: 

1  (AngW, oWk), 

for all order ideals A,BI,... ,Bk E J(P). Similarly, one can derive kinematic formulas 
for multiple unions. 
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