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T H E  R E G I O N A L  S T R A T E G Y  IN T H E  A S Y M P T O T I C  E X P A N S I O N  

OF T W O - L O O P  V E R T E X  F E Y N M A N  D I A G R A M S  

V. A. S m i r n o v  1 a n d  E.  R. R a k h m e t o v  2 

General prescriptions for evaluating coefficients at arbitrary powers and logarithms in the asymptotic 
expansion of Feynman diagrams in the Sudakov Bruit are discussed and illustrated with two-loop exam- 
ples. Peculiarities connected with the evaluation of individual terms in the expansion, in particular, the 
introduction of an auxiliary analytic regularization, are characterized. 

1. The simplest explicit formulas [1-3] (see [4] for a review) for asymptotic expansions of Feynman 
diagrams in various off-mass-shell limits of momenta and masses in which the momenta  are either large 
or small in the Euclidean sense have been generalized to some on-shell limits [5-7] typical for Minkowski 
space, in particular, to the Sudakov limit. The prescriptions for these limits were formulated by applying 
(pre)subtractions in a certain family of subgraphs of a given graph. 

Explicit prescriptions for expanding Feynman integrals near threshold were recently presented using a 
standard physical strategy based on the analysis of regions in the space of loop momenta  [8]. However, this 
regional strategy was usually used only to evaluate and sum the leading logarithms, in particular, in the 
Sudakov limit (see, e.g., [9]). We note that  contributions to the leading logarithms come only from some 
specific regions and integrations in the other regions are usually not considered. 

It was argued (and demonstrated for the threshold expansion) tha t  this strategy can be used to evaluate 
coefficients at all powers and the logarithm in an arbitrary limit [8]. In such an extended form, the strategy 
reduces to the following prescriptions: 

a. Consider all the regions of the loop momenta that  are typical for the given limit. In each region, 
develop the integrand in a Taylor series with respect to the parameters tha t  are considered small 
in the given region. 

b. Integrate the developed integrand separately in each region and thus obtain the integral over the 
total integration domain of the loop momenta. 

c. Set all scaleless integrals to zero (even if they are not regularized, e.g., using the dimensional 
regularization). 

Step b is the most nontrivial [8]. We believe that  this strategy succeeds for every limit of momenta  and 
masses. For example, it leads to the well-known formulas for the asymptotic expansions in the s tandard 
Euclidean limits [1, 2] (the proof was in [3]), which indirectly confirms the assumption in this case. We note 
that  for these limits as well as for the on-shell limit considered in [5, 6], the collection of relevant regions is 
determined by subdividing all the loop momenta into large (hard) and small (soft) momenta.  

In the present paper, we check this heuristic procedure for evaluating the coefficients at arbi t rary 
powers and logarithms in asymptotic expansions of Feynman diagrams in the Sudakov limit [10] with two- 
loop examples. We consider two commonly accepted variants of this limit for vertex diagrams with the 
external momenta Pl, P2, and q = Pl - P2. 

L im i t  1 Two external momenta are off shell, p2 __ p2 = rn2 = _#2 and Q2 = _q2 ~ oo; all internal masses 
are zero. 
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Fig. 1. Two-loop planar vertex diagram. Fig. 2. Two-loop nonplanar vertex diagram. 

L i m i t  2 Two external momenta are on shell, p~ = p~ = 0 and Q2 __~ oo; some internal masses are nonzero. 

We calculate the leading power behavior including all the logarithms, logJ(q2/m2), j = 0 , . . . , 4 ,  of 
the massless planar diagram in Fig. 1 in the first limit and compare the obtained result with the well- 
known explicit expression [11]. After such confirmation, we apply the above heuristic prescription to the 
nonplanar diagram in Fig. 2 (for which no analytic results are known) in Limit 2 where ml . . . .  = m4 = 0 
and m5 = rn6 = m. We also use the second example to describe techniques for evaluating individual terms 
of the expansion. A natural way to evaluate terms with the 1/(rn2) 2' dependence is to introduce an auxiliary 
analytic regularization. In contrast  to the second limit of the planar diagram in which the poles of the first 
order arise in the analytic regularization parameter  (and mutually cancel in the sum of two contributions) 
[7], the nonplanar diagram contains poles up to the second order, which occur in five contributions. These 
poles also cancel in the sum, and we obtain the result coinciding with the dimensional regularization. 

2. The Feynman integral for Fig. 1 can be written as 

f / ddk ddl 1 
Fl(Q,m,e)= (12_2pll+m2)(12_2pzl+m2) (k2_2pxk+m2)(k2_2p2k+m2)k2(k_l)2. (1) 

We use the dimensional regularization [12] with d = 4 - 2e. When presenting our results we omit irr a/2 
per loop, and when writing separate contributions through the expansion in e, we also omit exp(--TEe) per 
loop (with 7E the Euler constant). 

For convenience, we choose the external momenta 

m 2 

 o,o) 
' 2 ' 

m 2 - 

(2) 

which implies p~ = m 2, t57 = 0, and 2/5x/52 = 2/5~p2 = Q2. The following regions are typical [9] in the given 

hard (h) :  k - ~ Q ,  

1-collinear (lc) : k+ ,-, Q, 

2-collinear (2c) : k_ --~ Q, 

rn 2 
ultrasoft (us):  k ~ --~-, 

limit: 

m 2 
k _ ' - -  k,~m, Q ,  - 

m 2 k+~-O-, k_ m, (3) 

871 



where k+ = k0 + kl and __k = (ks,k3). The notation k -.0 Q means that  any component of k,  is of the 
order Q. 

We assume that  each loop momentum k, l , . . .  belongs to one of the above types and consider various 
choices of the loop momenta (avoiding double counting). Other regions give zero contributions, in particular, 
when one of the loop momenta is soft, i.e., k .~ m. However, if some masses of the diagram are nonzero, 
then some soft regions would generate nonzero contributions (starting from a subleading order). 

Integral (1) contains contributions of the leading order, 1/Q 4, from the following nine regions: h-h, 
1c-h, 2c-h, lc-lc, 2c-2c, us-h, us-lc, us-2c, and us-us, where the region for the loop momentum k stands in 
the first place and for the loop momentum l in the second place. In the h-h region, the Taylor expansion 
of the integrand in the parameter m occurs. In the leading order, this is the massless planar diagram at 
p~ = p~ = 0 first evaluated in [13]. Although the result can be expressed through gamma functions for 
general e using the method of integration by parts [14] (first performed in [15]), we here present it in the 

ddk ddl 
form of the e expansion, 

C(1) / /  
(h-h) = (12 _ 2fill)(12 _ 2;521)(k2 __ 2/~lk)(k2 _ 2/52k)k2(k _ l)2 = 

1 5~ 2 29r a~ '~  1 
= ~ + ~ + ~ +  32 ] (Q2~+2c" (4) 

All the contributions connected with the ultrasoft regions are easily evaluated in gamma functions 
using alpha parameters. In the leading order, we have 

f f ddk ddl 
C~-"s)  = (-2/51/+ m~)( -2 /h l  + m2) ( -2 /hk  + m~)(-2/i2k + m2)k2(k - 0 2 = 

r(1 - ~)Sr(2~)2 
---- ~ 2 ( _ m 2 ) 4 e ( Q 2 ) S _ s  e , ( 5 )  

/ dd k dd l 
C ~ - h )  = (l 2 -- 2~ht) ( /s  -- 2 r 5 2 / ) ( - 2 r h k  + m S ) ( - 2 r h k  + mS)k212 = 

r ( 1  + c ) r ( 1  - ~ ) r ( ~ ) ~ r ( - ~ )  2 

= r(1 - 2e)(-m2)2'(O2) 2 ' (6) 

f f dd k ddl 1 
C~'1r = (-2/hi)( /s  - 2psl + m2)(-2/51k + m2)(-2if2k + m s) k s (l 2 (2~t)(s~k) = - -  Q2 ) 

r(1-~)sr(~)r(2~)r(-~) 8(1) 
= er(1 2e)(_mS)3,(Q2)2-, = (us-2c)" (7) 

For arbitrary e, the remaining contributions can be represented through Mellin-Barnes integrals using 
the alpha parameters, 

CO) / /  dd k dd l 
(lc-lc) = (-2/51/)(/2 - 2p21 + m2)(-2~lk)(k 2 - 2p2k + m2)k2(k -/)2 = 

r(,)r(-,)r(2,) 1 [ + ~ o ~  r ( s  - 3 0 F ( s  + 1 - 2 e ) r ( s  + 1 - e ) r ( e  - s ) r ( - s )  
= d s  = 

r(1 + e)(-m:)2,(Q2) 2 2~r I, -ioo F(s + 1 - 3e) - 

f f ddk dal 1 

F(e)F(-e)F(1 - e) 1 f+ioo F(s + 1)F(s - e)F(s + 1 + e )F( -e  - s )F ( - s )  
d s  - -  

- c 2 _ , ,  , .  

8 7 2  



We assume the standard choice of the integration contours: the UV poles are to the right and the IR poles 
are to the left of these contours. The above Mellin-Barnes integrals are expanded in e by shifting the 
contours and evaluating residua at points where UV and IR poles meet as e --* 0. As a result, we obtain 

~(2c-2c)/'~(1 ) ~(lc-h)(-Y(1)"-'(Sc-h)J(-*(1)]_ 1 ( 2 ~  4 ~_~) 1 ~  ( 1  -g-LTr 2 17r 1 3 .  + + + + L s -  + L ) ; - +  

71-4 
+ 7 L 4  - 4r 144' (10) 

where L = log(Q2/tt 2) and we set # = 1 for brevity. (We note that we have both Iog(QS/# 2) and log(# 2) 
in individual contributions.) 

Collecting all nine contributions together, we observe that  the poles in e, which have very different 
(UV, IR, or collinear) natures, mutually cancel, and we obtain 

7~r4 (Q2)2FI(Q,m,O) QZ ~ L 4 + ~r2L2 + - -  ( 1 1 )  
2 - 60 ' 

which agrees with the leading order expansion of the well-known explicit result [11]. 

3. Setting rnl . . . . .  m4 = 0 and ms = m6 = m, we obtain the expansion of the planar diagram in 
Fig. 1 in Limit 2 in arbitrary order using the subtraction operators strategy (see [7]). We note that the same 
expressions for all the contributions to this expansion can be obtained using the regional strategy. The list 
of nonzero contributions, in this language, consists of h-h, lc-h, 2c-h, lc- lc ,  and 2c-2c contributions plus a 
contribution that  starts from the next-to-leading order and comes from the region where the momentum of 
the middle line is soft and the second loop momentum is hard. 

We now consider the expansion of the nonplanar diagram (Fig. 2) in Limit 2. The Feynman integral is 

f / ddk ddl 
Fs(q,m,e) = ( ( k + / )  2 _ 2 p , ( k + l ) ) ( ( k + l )  s_2p2 (k+l ) ) x  

1 
x (k 2 _ 2plk)(12 _ 2p2/)(k2 _ m2)(/2 _ mS), (12) 

where Pl and P2 satisfy the relations for 151 and 152 in the previous section. We also use the second choice 
of the loop momenta, where k and l are the respective momenta  of lines 3 and 4, which corresponds to 
permuting the masses, which results in Eq. (12) with ml = ms = m5 = m6 = 0 and m3 = m4 = m. 

Nonzero contributions to the expansion in the leading order are generated by the following regions: h-h, 
h-2c, 2c-h, lc- lc ,  2c-2c, 2c-lc, ( lc- lc) ' ,  (2c-2c) ~, and (us-us)q As above, the regions for the loop momenta 
k and l stand in the first and second places. The primes label the regions for the second natural choice of 
the loop momenta. The h-h contribution is given by the massless nonplanar diagram. The result expanded 
in e is [13] 

C(2) ( 1  ~r2 83~(3) 5 9 r 4 )  1 
(h-h) = O d 3e 120 (13) 

The (us-us)' contribution can be easily evaluated in gamma functions, 

/ dd k dd l 
C----us) ' } ~  = ( -2p ,  (k + l))(-2p2(k + l))(-2p, k + m2)(-2psl + m2)k212 

1 
= (Q:)2-S~(m2)~ [r(e)C(2e)C(1 - 2~)] ~. (14) 

The 2c-h contribution is 

C(2) / /  (2c-h) = (l 2 - 2pll 
ddk ddl 

Q: ] 
1 

• (15) 
(k2 - 2 p l k ) ( l s  - 2p l)(k s - m )l s '  
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and the same leading order h-2c contribution is obtained by permuting k and I. Using the alpha parameters  
and the Mellin-Barnes representation (twice), we obtain 

C[h!2r ) : ~(2) ( 3 .2  22~'(3) 16 .  4 '~ 1 
~(2c-h) = - - ~  + -~" + - -  + (Q2)2+~(m2)<" (16) e 45 / 

The lc - lc  contribution is 

i f  dd k dd l 1 
c ~ _ , ~ )  = ( - 2 v , ( k  + O) ( (k  + 0 2 - 2v2(k + O) ( - 2 v ,  k )q~  - 2 ~ l ) ( k 2  - m2)(t~ - ~ ) '  

(17) 

and the 2c-2c contribution is obtained by permuting k and l. We must also consider similar ( l c - lc ) '  and 
(2c-2cy contributions with the second choice of the loop momenta. The corresponding expressions are 
obtained by permuting the masses (see above). The fifth nonzero contribution of the collinear-collinear 
type originates from the 2c-lc region. These contributions are dimensionally regularized only in the sum. 
It is convenient to introduce an auxiliary analytic regularization into lines 3 and 4 as 

(k 2 _ 2plk)l+~, (/2 _ 2p2/)1+~2 " 

In contrast to the planar two-loop diagram calculated in this limit [5], we obtain poles in xi up to the 
second order. In particular, the 2c-lc contribution is evaluated in gamma functions for general �9 as 

ddk ddl 

S i  (_2,,,1 +/2.%12,.,,i) (_2,,2k +/2,,%12.,,i) x 
1 x -- 

(k 2 - 2plk)(l  2 - 2p2l)(k 2 - m2)(l  2 - m 2) 

r(1 + z,)r(1 + x2)r( -e)2(-m2)~,+=~+2~(Q2)  2 
(18) 

Applying the technique of alpha parameters and the Mellin-Barnes representation to the other four e-e 
contributions, we obtain an expansion in xi for each of them. We then switch off the analytic regularization 
(first x2 -4 xl and then xl ~ 0), observe that  the singular dependence in xi drops out in the sum of all 
five contributions, and obtain the following result in the e expansion: 

rr:(2) ~(2) C(2) r r 1 
(Q2)2 L~(lc-lc) -I-V(2c_2c ) --I- (lc-lc)' --b V(2c_2c ), + V(2c-lc)J = 

4e 4 2e 3 + L2 1 { 3 ,  2 = - | - : - - .  L + 1 
7 

+ "2L2 + 9 ~ ( 3 ) L -  23"~" (19) 
12 32 ' 

where L = log(Q21rn 2) and we set m = 1 for brevity. 
Collecting all the leading-order contributions, we see that  the poles in e cancel, and we obtain 

(Q2)2F2(Q,m,O) Q~oo 7L4 _ r_~ L 2 + 20~(3)L  - 31" ' i  (20) 
180 

It is possible to extend this result to any order in 1/Q 2 at the expense of computer algebra. 
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