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CRITICAL PHENOMENA IN THE FERMIONIC HIERARCHICAL
MODEL

M. D. Missarov!

The dynamics of the renormalization-group transformation in the coupling-constant space of the fermionic
hierarchical model are discussed. The critical behavior of this model is described in terms of the complex
behavior of the Grassmann-valued mean-spin distribution density with the proper normalization. Some
critical indices are calculated.

1. Introduction

In [1-3], the renormalization-group (RG) study of the hierarchical fermionic model was started. In
particular, the reduction of the Kadanoff-Wilson RG transformation to a rational transformation in the
coupling-constant plane was shown, the RG transformation stable points and stable invariant curves passing
through these points were described, and the global RG dynamics in some domains of the coupling-constant
plane were investigated. In the present paper, we study the RG transformation dynamics in depth and
describe critical phenomena of this model.

We recall the main definitions. A hierarchical lattice is the set of natural numbers N endowed with
a hierarchical distance d(i,j), 4,7 € N, where d(i,j) = n®(®9) if { # j. Here, s(i,j) = min{s : 3k : 4 €
Vi,s:7 € Viesh Vies = {j: JEN, (k—1)n*<j< kn’}, and n is a fixed natural number. Four-component
spins 9* (i) = (¥1(3), ¥1(3), ¥2(3), ¥2(i)), whose components are generators of the Grassmann algebra, are
placed at the sites of this lattice.

We recall (see [1]) that we consider a fermionic field on the Grassmann subalgebra Ay, which is
generated by 4 - nV generators (v1(3), ¥1(5), ¥2(¢), ¥2(i)), i € An; the field is determined in the volume
AN = Vi n with the Gibbs state pn(r,g) (which also depends on the real parameter «). If F(y*) € An,
then

pN(T,g)(F(lV)) _ Z;,l/F(Q/)‘)C_HN(w.;r’g)d’l,b', (1)

where

dy* = [ dvr(i) dih(3) dpa () debo(3),

icAn
Hy($*;r,9) = Hon($", ) + Y L(®*(i);r.9), (2)
i€AN
L($*(3); 1, 9) = r(¥1(8)¥1(3) + P2(0)¥2(3)) + 991 (2) 1 (1) P2 (5) ¥ (5), (3)
Hon({W";a) = E do,n (3, 7) (01 (D)1 (5) + ¥2(8)¥2(3)), (4)
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Zn(r.9) = / e N (Tn9gy®.

The integration uses the superanalysis rules {4]. The RG transformation is
r(@)y (i) =n 3 $*().
JE€EVia
It was shown in [2] that

pN(T,g)(F(T(a)'l,b*)) = PN—1(7">QI)(F(¢‘))-

In the coupling-constant space (r, g), the RG transformation acts as the rational mapping

r = ol (—((::11))22:%(1'+ 1) - 1) ,

2
g/:nZa—3<(T+1)2—g) g
r+1)2-2

which has nontrivial branches with the stable points (r4, g4+ ), where

_ +yn —n>!

Ty = T A 9+ = 9+(T4),
r(l+1)?
9:!:(7'):(—‘_)1_'
1+T:tﬁ

(7)

(8)

It was shown in (3] that for & > 3/2, the connection component of a stable RG-invariant curve that
passes through the plus (minus) stable point (SP) is determined by a smooth, monotonically increasing
(decreasing) function g = hy(r), r >0 (g9 =h_(r), r <—-1). Then, hy(r) 5 0forr =0, h_(r) — 0 for
= =1, hy(r) = +oo for r = 400, and h_(r) = +oo for r - —oco. For 1 < a < 3/2, the curve g = h(r)

becomes a stable RG-invariant curve for the zero SP (r =0, g =0).
The curve g = h(r) lies in the domain

G = {<w): 0<r<ry, max{0,94(r), 97 (r)} < g < g+<r)}u

U{(rg): max{0,r1} <7, g4(r) S g < g¥ ()},

and the curve g = h_(r) lies in the domain

Gr={(rg):r<r_, gy (1) <g<g-(Nju{(rg):r- <7< -1, g_(r) <g < g7 (r)},
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where

4 _(r+1(n2F\/—)—n+n2‘°‘T .
97 (r) (r+1(n¥\/—)—1+nl_°( +1)%,

(9)
gar) = —— o)y,

r(l-n*"2)+1-n

Let y; and -y, respectively denote the curves g = hy(r), 0 <r <oo,and g=h_(r), —co <7 < -1. In [2],
it was shown that the upper half-plane domains to the right of v; and to the left of v, are RG invariant, and
the asymptotic behavior of the RG-transformation iterations was found in these domains. These domains
are denoted by Q; and €2, respectively.

In Sec. 2, the RG dynamics in the domain between the curves v; and <, are investigated for 2 >
a > 1. We show that after a finite number of RG iterations with large enough g, the point (r,g) with
r > —(n® — n®"1)(n® — 1)~! enters the domain Q; and with r < —(n® —n*~1)(n® — 1)~! the domain ;.
Computer simulations showed that all other parts of stable invariant curves for the plus and minus SPs and
the stable invariant curve for the infinitely distant SP are in the domain between +; and <y;. These curves
slice the domain between 7; and 7, into an infinite number of connected domains, whose points enter either
the domain ©; or the domain 2, under RG iteration; these domains are mixed in a fractal manner.

In Sec. 3, the global RG dynamics are used to describe critical phenomena in the model under con-
sideration. The critical behavior results from the limiting behavior of the Grassmann-valued total-spin
distribution density with the proper normalization,

1(\?)(1:';7-’9) :p(r,g)5( alN Z ¢ (z)—z ) (10)

iEAN

where p(r,g) is the thermodynamic limit of the states pap(r,g) at M — oo, § is the Grassmann delta
function, and z* = (z1, %1, T2, T2) with z;, Z,, 2, and Z, being Grassmann variables.
If RNo(a)(r, g) enters ©; or Q, for some Ny > 0, where R(c)(r,g) = (r',g') is given by formulas (6),
then
1

c}(r,9)
in the normalization a = 1/2. Here, ¢,(r, g) is the limit

llm q (33 3T g) e~ 1 (rg)(Z121+2222)

c(r,g) = lim rMNp-Nla=1)

N—=oo
where (V) is determined by the relation (r(N ), gV )) = RN(a)(r,g). The existence of the constant c,(r, g)
was proved in [2]. In other words, the limit is given by the “Gaussian” distribution; ¢;(r, g) > 0 if (r, g) lies
in the attraction zone of Qy, and ¢;(r,g) < 0 if (r, g) lies in the attraction zone of §2;.

On a half-line (r,g), g > 0, a rearrangement of the limiting density occurs when g increases and r > 0
is fixed. At sufficiently small and sufficiently large g, the limiting density is Gaussian (with different signs of
the coupling constant). A domain of values of g exists in which the limiting density becomes non-Gaussian
infinitely many times (but on a set of zero measure), being Gaussian on a set of full measure on which the
coupling-constant sign changes infinitely many times.

If (r,g) lies on the invariant curve 7; or 72, then we need the nonstandard normalization a = «/2;
the limiting behavior qf\’,/ 2(:n’*;r, g) is then non-Gaussian and is determined by the limiting density that
corresponds to the plus or minus SP respectively.

The singularity of the constant ¢;(r, g) at ¢ — ge.(r), where (r, g.:(r)) is the intersection point of the
half-line (r,g), g > 0, with the invariant curve ; (or 72), gives one more critical index of the model.
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2. Renormalization-group dynamics in the domain between the
curves v; and v;

In what follows, together with the variables r and g, we use the notation

_ _ g
)B—ﬁ(r'lg)_ (T+1)2,
1-—
g = O’(T,g) = ——1 _ﬂﬁ(:’,gg)’

n

and A\ = n®"1, Ay = n2e3. We note that \; and A, are the eigenvalues of the differential of the mapping
R(a) at the zero point.

In (3] (Lemma 3), the following statement was proved: the parabola g(r) = B(r + 1)2, 8 = const,
becomes the parabola g’(r') = B(r'+X1)?/n after one RG iteration; here, 7’ depends on r linearly, r' = kr+b,
where £ > 0 for § <1 and 8> n and k <0 for 1 < 8 < n. Intersection points of the parabolas g(r) and
g'(r) lie on the lines r = 74.

Therefore, each point (r,g) such that r > —1 and n > f(r,g) > 1 passes to the domain g < (r + A;)?,
r < —A,, after one RG iteration. The invariant curve theorem implies that this point eventually enters the
domain 2.

We find where the points of the line r = r¢y go. The lemma follows.

Lemma 1. The line r = rg passes to the curve

r— /\17‘0
T —Ainrg — Ay (n—1)

9= (r+X)? (11)

after one RG iteration. For o > —1 or rg < —1, the points (rg, g) such that ((rq,g) > n are mapped to
that part of curve (11) for which r > Ajnro+ A1(n—1) or r < Ajnro+ A1(n — 1) respectively. Furthermore,

for g — o0,
' (r0,9) = Ainro + A (n — 1), g'(ro,g) = oo.

In addition, the line r = —1 passes to the line r = —\; while all other assertions of Lemma 1 remain
valid.

Lemma 1 implies that for
S _ /\1(71 - 1) ,
- )\ln -1
the points (r,g), B(r,g) > n, move right in the r direction: r'(r,g) > r. The lemma follows.

(12)

Lemma 2. If r satisfies condition (12) and §(r,g) > n, then the point (r,g) enters the domain
after a finite number of RG iterations.

Proof. We use the relation

!/ 1 n _ ﬂ Al bl 1 —2
ﬁ—ﬂ(ﬂg)—g(l—m) - (13)
For 8 > n, we have 0 = (1 — 8)(1 — 8/n)~! > n, and inequality (12) implies

A -1

1> ———
)\10’(?‘+1)’
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whence ' > 1. Furthermore, by virtue of Eq. (13), we obtain

3B
< — 14
A <o (14)
at sufficiently large r. Because we obtain
' 1-— ,B
=\ 1_g(r+1)—-1 > Ai(n(r+1) - 1)

for 8 > n, the number k exists such that either the point (r*), g(*)) enters the domain

(r+1)2 <g<n(r+1)2 r> -1, (15)

consequently entering the domain €25, or this point enters the domain where inequality (14) holds, therefore
entering domain (15) after a few additional iterations.

We now consider the case r < —Aj(n — 1)(A\;n — 1)~1. In the sequel, we need the family of curves
g = f(r;a), where
T

f(r;a) = (r+1)>2 ' (16)

r—a

In particular, f(r;a) = g4+(r) for a = —(1 + n~1/2). Direct calculation shows that the RG image of the
curve g = f(r;a) is the curve g = f'(r;a), where

r(r + Ap)?
r—Ana—A(n—-1)

f'(r;a) = (17)

We prove the following assertion.

Lemma 3. Let r < —(1 +n~%2) and g > g4 (r). Then the point (r,g) enters the domain €, after a
finite number of iterations.

Proof. First, we note that a point that satisfies the lemma conditions lies on a curve g = f(r;a),
a < —(1+n~Y2), Let r;(a) denote the abscissa of the intersection point of the curve g = f(r;a) with the
parabola g = n(r + 1)2,

rl(a) = . (18)

The relation

r' = =M1 (1 +r1(a)) (19)

r—ri(a)

implies that the part of the curve g = f(r;a) with r < r1(a) is mapped to the part of the curve g = f'(r;a)
with r > r3(a), where ry(a) = —A;1(1 +r1(a)), under the RG transformation.

For r > 0, the inequality f'(r;a1) > f'(r;a2) > 0 holds for a; < a1 < 1/n — 1, and ra(az) > r2(a;) for
@1 > az. Therefore, if we prove that the part of the curve

g:f’(r;—(1+n_1/2)), T >r2(-(1+n‘1/2)),

lies to the right of the curve <y;, then the same is true for the part r > ry(a) of the curve g = f'(r;a) if
a<—(1+n71/2),
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Because f(r; —(1+n~2%)) = g,(r), we have

T

+2p)2

Fri—Q+n" ) =g\ (r) =
We thus obtain the decomposition

(n2 - D07
T (r+ 14072 (r + A (1 4+ nl/2))

n1/2—/\1 —1/2 /\1
x<r+———nl/2_1)(r+(1+n )—/\1+n‘1/2 . (20)

Because
ro(—(1+n7Y2)) = A(n7 V2= 1)7 > ry(a) = (A - n/ B2 - 1),

(20) implies that for r > ro(—(1+n~/2)), we have g, (r) > g/, (r), which means that g, (r) lies to the right

of Y1-
Therefore, we have proved that any point from the domain

Ar={(rg):r <ri(-Q+n"2), f(r;—=(1+n"?)) < g <n(r+1)?}

enters the domain §2; after one RG iteration.
We now consider points lying in the domain

Az ={(r,9): T < —(1+n"2), g > max(n(r + 1)%, f(r;—(1+n""2)))}.

The RG iteration maps the part r;(a) < r < a of the curve g = f(r;a) to the part r < A\j(na +n — 1) of
the curve g = f'(r;a), and f'(r;a) > f(r;a) for 7 < Ay(na+ n — 1). This fact together with formula (13)
implies that any point from the domain A, enters the domain A; after a finite number of RG iterations.

We note that the RG transformation formulas do not define this transformation for the points of the
parabola g = n(r + 1)%. This restriction can be overcome if we can define the RG action in the space
of expansion coefficients of the Grassmann-valued unit-spin distribution function. A nonnormalized spin
density is

P(41, 91,92, %2) = co + 1 (P11 + P2v2) + ca(r19192102),

where 91, 11, P2, and 1, are the generators of the Grassmann algebra describing the spin at the fixed lattice
site and (cg, €1, ¢2) is a three-dimensional real-valued vector. In particular, the coefficient set (1,-r,r2—g)
corresponds to the density

e—f(¢1¢1+¢2¢2)—9$1¢1¢2¢2’

and the set (0,0,1) corresponds to the §-function §(3p) = 191%212. Describing the density as a point in
the two-dimensional projective space (co, ¢1,¢2), we can prove that the RG action in the space of constants
(co, €1, €2) is determined by

, 1
cg = (1 —¢o)? — ;(C% — Cocz),
1
=X\ ((Cl —cg){c2 —e1) - ;L‘(Cf - COc?)) ' (21)
1
¢ = M ((Cz —a)? - ;(C% - COC2)> '
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Considered as a transformation of P? onto itself, this transformation is determined everywhere except the
point (1,1,1). In the new coordinates, the parabola g = n(r+1)? is the curve (1, —r,r2—n(r+1)?), r # —1,

which becomes the curve
n+1
(0,1,,\1(n—1) (r+n_1)) (22)

after one iteration of transformation (21). This curve cannot be described in the coordinates (r, g). However,
after one more iteration of transformation (21), curve (22) becomes the curve

(1, /\1t(T) —1-n"t 22 (t(T) . 1)2 _ n—l) |

1-n-1 71 1-n-1

where t(r) = A;(n —1)(r + (n+1)(n — 1)~!). Returning to the coordinates (r, g), we therefore see that two
iterations of the RG transformation transform the parabola g = n(r + 1)2 into the parabola

g® = %(r(z) + /\1)2,

n+1
n—-1

r® = —Mnr — A\ (Ain - 1)

Under the RG transformation thus defined, the parabola part g = n(r +1)?, r < ri(—(1+n~/2)), enters
the domain Q, after two RG iterations.
This completes the proof of Lemma 3.

As for the domain —(1 +n~Y2) <7 < ~A;(n — 1){A\;n — 1)~!, we formulate the following lemma.

Lemma 4. If —(1+n"Y2) <r < —=A;(n—1)(Ain —1)~! and g is large enough, then the point (r, g)
enters the domain 2, after a finite number of RG iterations.

Proof. Let s(t) = (r(t),g(t)) be a continuous curve parameterized by the parameter ¢, 0 < ¢ < b,
with the vertical asymptote r = ro: 7(t) = 19, g(t) = oo for ¢ — 0. Also let the curve s(t) lie in the
domain g > n(r + 1)2. Then the RG image of this curve, f'(t) = (r'(t), ¢'(t)), is also a continuous curve
in ¢ with the asymptote r = r1(0): r'(¢) = r1, g¢'(t) = oo for t — 0. Here, ry = Ai{n(ro + 1) — 1).
We can choose b; < b such that the curve f/(t) lies in the domain ¢ > n(r +1)2 for 0 < ¢ < b;. Let
k= M (n(re—1+1) —1). If rg < —A;(n—1)(An—1)7, then after a finite number of steps k, the quantity
7+ becomes less than —(1 4+ n~1/2). Choosing the vertical line r = r as the initial curve and applying the
above reasoning several times, we obtain the assertion of the lemma.

We used a computer to investigate the RG dynamics in those upper half-plane domains where the
assertions of the above lemmas are invalid. The results follow.

The point (—1,0) is the starting point of a curve that asymptotically tends to the line 7o = —A;(n —
1)(Ain — 1)71, which, in turn, can be treated as the graph of a smooth, monotonically increasing function
g = h(r), 1o < =A1(n —1)(A\in — 1)~1. This curve is a part of a stable invariant curve for the infinitely
distant SP (given by the set (0,0, 1) in the projective coordinates). Let -y, denote this curve. Let

o0
:Yi = U R_n’)’i, 1= 1a2aooa

n=0

i.e., 71, 2, and Yo, are the whole stable curves for the plus, minus, and infinitely distant SPs respectively.
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Fig. 1

In the projective coordinates, each curve 7; is a smooth connected curve, which passes infinitely many
times through the point (—1,0) and its RG preimages (—A7*,0), k=1,2,....

In the coordinates (r, g), these curves are not connected and are unifications of their connected parts,
each of which passes through only one of the points (—/\l_k,O), k=0,1,2,.... We note that the RG
transformation group is indeterminate at the point (—1,0) and at its preimages, which must therefore be
deleted from the curves 7;, ¢ = 1,2, 00.

The curves ¥; are connected in the projective coordinates: the junction occurs on the set of points
of the type (0, c1,c2), which cannot be depicted in the (r,g) coordinates. Presumably, almost all upper
half-plane points lying between the curves y; and 7, and not belonging to the curves ¥, ¥2, and 7., enter
either the domain §2; or the domain §2, after a finite number of RG iterations. We consider the vertical
liner =79, ¢>0. f =M\ (n—1)(A\n—1)"1 <rg <ci, e1 < —A7', then the vertical line crosses the curve
Yoo at & point (rg, go) and is decomposed into the two intervals

I = {r=r10,0 < g < go} and Iy = {r = 19,90 < g < o0}.

All the points from I; and I, enter the respective domains €25 and ; after a finite number of RG iterations.
For all other values of ro, the half-line r = ry, g > 0, crosses each of the curves ¥;, 73, and Yoo
infinitely many times. If ro > 0, then the half-line (r = 9, g > 0) is decomposed into the intervals
I = {r =70,0 < g < golro)}, I{r = r0,91(r0) < g < 00}, and infinitely many intervals into which the
interval (r = 1o, go(ro) < g < g1(ro)) is decomposed in a fractal manner. The points of I; belong to ;,
the points of I, enter the domain 2, after a finite number of RG iterations, and the RG behavior alternates
in the other intervals. For ro < —1, we have an analogous picture with the only difference that the points
of I belong to 2, and the points of I, enter the domain Q; after a finite number of RG iterations. The
same behavior occurs for ¢; < r¢ < 0, but in this case, the points of both I;, and I, enter the domain Q,
after a finite number of RG iterations.

Figures 1 and 2 illustrate this situation. In Fig. 1, the upper half-plane g > 0 is depicted. It is colored
in black and white following the rule that black points move left, i.e., to the domain 5, and white points
move right, i.e., to the domain {2, under RG iterations. The plus and minus SPs are circled in Fig. 1.
We assume that almost all points lying at the boundary separating black and white domains belong to the
invariant curves ¥;, 9, and 9. A sufficiently small neighborhood of an invariant-curve point is divided
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Fig. 2

by this curve into two parts. Then, the structures of these parts are different for different invariant curves.
For the curve 7, one part of the neighborhood is entirely white (consists of white points), and the other
part is mixed (contains both white and black points). For the curve 9., one part is white, and the other
is black. For the curve 9,, one part is black, and the other is mixed.

One can see the parts of the curves ¥; and 9., in Fig. 1. Parts of the curve 4, cannot be distinguished,
but their existence becomes clear after amplifying the picture considerably. In Fig. 2, the amplified image
of the square marked in Fig. 1 is given. The minus SP, which lies on the curve 7, is at the center of the
small circle in Fig. 2. In the example depicted, the RG parameter o = 1.7 and n = 2.

3. Critical phenomena

Critical phenomena in our model are related to the limiting behavior of the Grassmann-valued distri-

bution “density” of the properly normalized total spin averaged w.r.t. the state py in the volume Ay.

Let 653) (z*;r,g) denote the distribution “density” of the normalized total spin

1 .
YNo = vy 2; P* ()
t€AyN

for the field ¥* in the state pn(p, 9):

i (1, 9) = pn(r, 9) (6 (Wi o — 7°)),

where z* = (21, %1, T2, Z2) (the d-function for anticommuting variables is §(¥*) = ¥19192%2).
The results of [1] imply

(5*im9) = o) (5(al3 a8V 3 9 - 7) ) =

1€EAN

= pa(§-a)N (o) (n(a—%)Nx*;r(N)’g(N)) ,
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where (r(N),g(N)) = RM(a)(r, g) is the Nth iteration of the RG transformation R(a), R(a)(r,g) = (r',g"),
determined by relation (6).
Therefore, we can explicitly calculate df\?)(x‘; T,g) as

n(2a—4a)N

(rN +¢g)2—g

q‘g‘)(xt; T,g) — = exp{—L(z*; n(2a—a)N?_(N)’ n(4a—2a)Ng(N)) }’

where (see formula (5))
co = co(@) =dgo(i,i) = (1 —n*"2)(1 —n~1)"L.

Before stating the theorem, we recall that the existence of the constants ¢, (r, g), c2(r, g), (1, g) € Q,UQ,
such that
lim rMp=—Ne-1) = ci(r, 9), lim gMp—NR@a-3) _ ca(r, g) (23)
N—aoo Nooo
follows from Theorem 2 in [2]. Then, ¢,(r, g) > 0 for (r,g) € Qi, c1(r,g) < 0 for (r,g) € 2, and ca(r, g) =0

only for g = 0. These results are valid for all @ > 1. Analogous relations hold for the lower half-plane as
well.

If the spin distribution density admits the exponential representation

e_L(:B ;r)g),

1
* —
p(z*;r,9) g

then we can say
Jim p(z*irm, gm) = plz*; 7, 9),
if limm 00 (Tm, gm) = (1, 9).

Theorem 1. Let 2> a > 1. If (rNo) g(M)) € Q, UQ, for some Ny > 0, then
s =(1/2) 0« — *,
A}I_IPOOQN (II: ,'I‘,g) —p(x ,cl(r,g),O).
If (r,9) € A2, then

. ~(af2), . _ *,
Jim gy (@t r,g) = p(z*; co(a) + 7-(a), 9-(@)).

If (r,g) € %1, then for a > 3/2,

: ~af2)( =« _ *.
dim gy Tzt g) = p(z™; co(a) + 74(a), 94(a)),
and for 3/2> a > 1,
: ~(a/2 * *
ngrcl)oqﬁv/ N(z*;1,9) = p(z*; col)).

Here, 1 () and g4 (a) are determined by formulas (7) and (8) respectively.

Proof. The proof of the first assertion of Theorem 1 follows from asymptotic behavior (23). The other
statements follow because ¥, is a stable invariant curve for the minus SP and ¥, is the stable invariant
curve for the plus SP at « > 3/2 and for the trivial SP at 1 < o < 3/2.
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We now demonstrate that analogous results can be obtained for the total-spin distribution density in
the volume Ay, averaged w.r.t. the state that corresponds to the thermodynamic limit and belongs to an
infinite-dimensional Grassmann algebra generated by all spins of the hierarchical lattice.

Let, for instance, (r(e), g(No)) € Q) U for some No > 0. The results in [2] imply that the thermo-
dynamic limit exists in our model for a > 1, which means that limits of all correlation functions py (F (1/)*))
exist as N — co. The proof follows from the existence of limits of one-point correlation functions

up(r,9) = pn (1, 9) (V1(D)¥1(5) + ¥2(3)¥2(3)),
ui(r,9) = pn (1, 9) (—1(D)P1(E) P2 (D) P2(3)), i€ An.
un(r, g) = (u;\,(r,g)) )

uN(r7 g)

Let

It was proved in [2] that the limit
u(r,g) = lim un(r,g)

exists. Moreover, in the case where (r, g) enters ; after a number of iterations, the following representation
is valid [2]:

oo 1—1

u(r,g) =Y _ [ A(r®,g®)s(r®, g}, (24)
1=0 k=0
where
or'  dg’ dloge(r, g)

_1{ar or _ or
A(r’ g) = ; a_,’_/ E ) 8(1‘, g) = ; 6log c(r,g) ) (25)

g dg dg
c(r,g) = ((r +1)2 - g)"_2 ((r +1)% - %) . (26)

Let p = limps_,00 pPur, and let qﬁ\?)(z*) denote the distribution density of the total spin 9} , calculated
w.r.t. the state p,

o = P8 — ).
We can easily obtain the representation

. - L (ae
g/ (z%) = —n2@ DNy, () (MY _ LNy, (V) (M)

2 (f:l.’El + 1_:2.’1,‘2) + I1Z21T9x2.

Therefore, the limiting behavior of the density q( /2 )( *) is the same as the limiting behavior of the vector
DNu( (N) g(N)) where

AV
From formula (24), we obtain the representation

i—1
DNu(r(N),g(N)) = }O:o: h TN (T(N+k)’g(N+k))DNS(T(N+i)’g(N+i))’
i=0 k=0
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where
Tn (T(N+k)’g(N+k)) _ DNA(T(N+k),g(N+k))D;/l-

A convenient representation for the matrix A is

n2 2 (02 — 022 + n) 4“2__3 (r+1)o(1 —0)?

no1l
A(T7g): " 1 I
o= 1 2 gp?e—d 3n+tl
_’;—l'r+l'(1_%) 1:;1‘7( U'n_qzl-_'*'")
where o (r+1)2—g
oc=0(r,g)=—F—+—5
(r+1)2—;9;

Using asymptotic behavior (23) (found in [2]) and the fact 1 — o (r(™), g™} = o(n=N/2), we obtain

na—2 0
I}HanN(r(N+k),g(N+k)) - ( (1 _ _) cnl(, ;)n_k(a_l) n2(a—2)) ) (27)
1{r,
_ (2 - (1~ 1)n-ite-1)
lim D (N+) G(N+)) = N i . 2 ) 28
Aim_ Dws(r g = _ ((1 ~ 1 cl(l,g)n“'(a—ﬂ) (28)

By virtue of (27) and (28), we find

2
lim DNU(T(N),g(N)) — cl(rag)
N-ooo 1
c(r.g)

Therefore, we have

1
lim /2 - _ s N
im gy (z*) = a0, g) o g) (Z171 + ToT2 + T121T222)
— 1 e—¢x(r,g)(f=1z1+fzxz),
ci(r,9)
i.e., the limiting case of the densities q( /2 )( *) is the Gaussian density with the “variance” 2¢;(r, g).

We now suppose that the point (r, g) lies on the invariant curve 4;. The restrictions on a and n under
which the thermodynamic limit of our model exists in the SP of the RG transformation were found in [1].
It was shown that if the spectrum of the matrix A(r;,g+) or A(r_, g_) lies inside the unit circle, then the
respective thermodynamic limit in the plus or minus SP exists.

Under the same restrictions on « and n, the thermodynamic limit exists for the invariant curve points ¥;
and ;. The representation

P4

1—1

N-1
T AG®), g%)s(r), g0) 4+ TT A(r®), g®)ug (r), g0,
k=0

k=0

Il
=)

1
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where A(r, g) and s(r, g) are determined by Eqgs. (25) and (26) respectively and

610g Z()(T,g) )
or 1 — no—2
= Z = _ —
UO(T, g) alog Z()(T, g) ’ D(T’g) ((T + > g) ’
dg

was obtained in [2].

For definiteness, we consider the plus SP. If the eigenvalues of the matrix A(ry, g4+) are inside the unit
circle, then the same is true for the matrix A(r, g) given (r, g) sufficiently close to (r+, g+). If the point (r, g)
belongs to the curve 4;, then the spectrum of the matrix A(r(k), g(k)) starting with some k also belongs to
a circle of radius 6§ < 1.

Because the vectors s(r(i),g(i)), 1=1,2,..., and uo(r(N),g(N)), N =1,2,..., are bounded in the
norm by a constant, the limit limy_, o, un(r, g9) = u(r, g) exists and u(r, g) also admits representation (24).

Considering the total-spin density normalized to a/2, we obtain

qg\?/z)(x‘) = —us (r(N),g(N)) _ %m(r(N),g(N))(ilzl 4 £975) + 1215272,
The expansion
oo i—1 .
u(r™,g™) = ST T A(rOV+0, gN+R) 5 (r(NH) | g(N+i))
i=0 k=0

and the limiting relations

A(r(NHR, gONHR) s A(re,g4), s, gM*D) — s(ry,g4)
—00 N-oo

yield

(N) ,(N)
u(r 9 ) N:zo u(r+,g+).

Therefore, we have proved that limy_, qﬁ/ 2)(:z:") exists and is a non-Gaussian density determined by
the coupling constants r, and g4,

1
p(z*0) = —ua(ry,g4) — §u1(r+,g+)(i1$1 + I2T2) + 1712272,
where
> i -1
U(T+,g+) = Z(A(T-i-vg-l-)) S(T+’g+) = (I - A(T+,g+)) S(T+’g+)
i=0

and I is the unit matrix. Analogous reasoning is valid when (r, g) belongs to the stable invariant curve 7.
Then, the limiting density p_(z*, @) is determined by the vector u(r_, g_), which can be found from the
relation

ulr_,g-) = (I-A(r_,g-)) "' S(r_,g-).
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The vectors S(r4, g+) and matrices A(ry,g4) can be calculated explicitly,

5 (n—-2+8) (1;%)

Sren AT T =6
T+,9+) = ’ 9 0 ’
aa?(27) ()
TVREl (90— ) (29)
2 n+3 4(y/n - 0)(1F0)?
(n—1)v/n6 (02 FO—— +n) P 1) (em = 1)
A(rs,g+) =

A g (1 S) oy (0 )

The following theorem holds.

Theorem 2. Let 2> a > 1. If (rVo) g(No)) € O, U Q, for some Ny > 0, then

. 1/2)/ «, — *,
A}l_l;nooqj(v ($ ,T,g) -—P(x ,Cl(T,g),O)-

If (r,g) € 42, then
i o/ (2" 1,9) = p_(z"; ),
and if (r,g) € 41, then for a > 3/2,
i v/ (z*i7,9) = pi(a*; ),
and for1 < a <3/2,
Jim g2/ (2% 7, 9) = p(z"; co(@), 0),

where the densities py (z*; ) are determined by the formulas

. 1 _ _ o
p(z*;a) = ~us(rs,g+) — §ul(riagi)($1$1 + Z2T2) + T171Z21;

with

1 20-1)(1F8)°
A(vn £1)(vn - 06)’

o1 ATV aE) AEN
2( i’gi)_:FA\/ﬁ(\/'r_zj:l)(\/_—O)z (ni2\/7—1 6 n )7 6 = )

uy(T4,94) =

on—3/2 n
A=1+n-32_ 2 n —1/2y2 )
n ‘_—l:tn—l/z)() (9 ¢92(1:§:n ) +n

Therefore, in the case where (r,g) belongs to either the invariant curve 71 or the invariant curve s,

the limiting behavior of the total normalized spin YN a2 18 non-Gaussian, only slightly different from
Theorem 1.
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Theorem 2 gives the following picture of the critical behavior. We fix the value of ry. For definiteness,
we set 7o > 0 and a > 3/2. We consider the half-line (rg, g), g > 0, and let (rg, g.r) denote the point where
this half-line crosses the curve %4;. Then for 0 < g < g, the total normalized spin in the volume Ay has
the “Gaussian” distribution with the “variance”

2
cl(ra g)

x(ro,9) = /(mlil + Zaz2)p(z*; €1(r0, 9),0) dz” =

in the limit N — oo. We note that x(r, g) can be also written as

x(r.9) = Jlim p(r,g)—5 [ i) D hilG)+ D va(i) Y 1/32(1')]

i€AN JEAN i€AN JEAN
and this quantity is therefore an anticommuting analogue of the susceptibility.

For g = gcr, the total spin density has a nontrivial limit for the normalization factor a = /2, and this
limit is determined by the plus “non-Gaussian” SP of the RG transformation p4 (z*; ). For large enough g,
for instance, for g > (ro + 1)? (as follows from the results in Sec. 2), the total spin with the normalization
factor @ = 1/2 has the limiting “Gaussian” distribution with the “variance” x(ro,g) = 2¢1(ro,9)7!, but in
contrast to the case g < g, this “variance” is negative.

In the interval from g to (ro + 1)%, computer simulations show that we jump from the attraction
domain of the invariant set £2; to the attraction domain of the invariant set 2, and back infinitely many
times while crossing the stable invariant curves for nontrivial SPs infinitely many times. In this respect, the
critical behavior differs from the critical behavior in “bosonic” models where only one critical temperature
exists (in our model, g is an analogue of the reciprocal temperature).

Computer experiments show that if g approaches 4; from below, the variance x(ro, g) tends to +oo,
and if g approaches ¥, from above, the variance x(ro, g) tends to —oo; if g crosses Jo0, then x(rg,9) = 0.
The graph of the function x(rg, g) has a complex form with infinitely many poles.

We consider the behavior of x(rg,g) when g 1 g., where g. is the ordinate of intersection of the
half-line (ro, g) with ;. We write g in the form g = g —b(g)p} k(9) , where p, is the largest eigenvalue of the
RG differential in the plus SP, k(g) is a natural number, and 1 5 b(g9) < p4. If g = ger, then k(g) — oc.
We recall that the explicit formula D(ry,g9+) = nA(ry,g+)", where A(ry,g4) is given by formula (29),
holds for the RG differential in the plus (minus) SP. If & > 1, then gy > 1.

Because x(r,9) = 2¢1(r,9)~! and c;(r, 9) = limy_,00 N )/\i'N , we obtain the recurrent relations

1 (T(k)) g(k)) = /\'fcl (T7 g))

x(r,9) = Mx(r®), g®).
We consider the limit

. IOgX(TO,g) . k(g) log/\l + logX(Tgk(g)),g(k(g)))
lim ———"2% = Lm
9 Ger IOg |g - gcrl k(g)—o0 —k(g) log py + log b(g)

Using methods in [5], we can show that ¢, (r(()k(g)), g("(g))) < const. Hence,

log x(ro,9) _ logA
99 loglg — ger| ~ logpy’
which determines the critical index in our model (in the bosonic models, it is denoted by «). If ro < —1,
then the half-line (rq, g) first crosses the curve 7y, at some point (rg, gcr). Analogous reasoning shows that

lim log |x(r0, 9)] _ _logh
9-9cc 10g g — gerl log "’
where p_ is the largest eigenvalue of the RG differential in the minus SP.
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