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G E N E R A L  R E L A T I V I S T I C  A N A L O G U E  S O L U T I O N S  F O R  T H E  

Y A N G - M I L L S  T H E O R Y  

D.  S i n g l e t o n  ~ 

We discuss several solutions to the Yang-Mills equations that can be found using the connection between 
general relativity and the Yang-Mills theory. Some comments about the possible physical meaning of these 
solutions are made. In particular, it is argued that some of these analogue solutions of the Yang-Mills 
theory may have some connection with the confinement phenomenon. To this end, we briefly look at the 
motion of test particles moving in the background potential o. r the Schwarzschild analogue solution. 
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1. I n t r o d u c t i o n  

Yang-Mills theories [1] are non-Abelian gauge theories that  have found a central role in particle physics 
for describing both electroweak and strong interactions. The non-Abelian nature of Yang-Mills theories 
make the field equations nonlinear and therefore much more difficult to handle compared with Abelian 
gauge theories such as pure electromagnetism. For example, at the classical level (and also approximately 
at the quantum level if the quan tum corrections are not too large [2]), superposition can be used for Abelian 
gauge theories, while even at the classical level, superposition is not valid for Yang-Mills theories. This 
nonlinearity of the Yang-Mills field equations makes finding solutions difficult. There are some well-known 
solutions of the Yang-Mills field equations, such as the 't Hooft-Polyakov monopole [3], the Julia-Zee 
dyon [4], the Bogomolnyi-Prasad-Sommerfield (BPS) dyon [5, 6], and the instanton [7], but there is no 
systematic way to solve the Yang-Mills field equations. 

General relativity can also be considered a non-Abelian gauge theory in some sense [8, 9], and a 
mathematical  connection between the two theories can be made [10, 11]. One can ask if the solutions to the 
field equations of one theory could provide a starting point for using this connection to look for solutions 
in the other theory. This is in fact possible, and a host of solutions can thus be found. 

In this paper, we review various solutions thus found and discuss some of their properties. All the 
solutions thus discovered have the apparent  weak point that  they have an infinite field energy, i.e., there 
are singularities in the fields of the solutions that  make the field energy infinite. This is in contrast to the 
finite field-energy solutions in [3-6]. In addition to the purely mathematical  interest in studying all types of 
solutions that  occur in such nonlinear field theories, we present some ideas about the possible physical uses 
of such singular solutions. One speculation is that  some of these may be connected with the confinement 
phenomenon of the strong interaction. Just  as the various black-hole solutions (Schwarzschild or Kerr 
black holes) exhibit a type of confinement for any particle that  crosses the event horizon, the Yang-Mills 
analogues of these solutions may exhibit a confining behavior. 

In what follows, we discuss the spherically symmetrical  solutions of the SU(2) Yang-Mills equations 
coupled to a scalar field (these are usually called the Yang-Mills-Higgs equations). Then, we discuss 
solutions for gauge groups other than SU(2). Finally, we examine the behavior of a test particle placed in 
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the potential of the Schwarzschild analogue solution. We show that under certain conditions, this analogue 
solution can confine the test particle and that this system has a half-integer angular momentum, even 
though all the fields involved have an integer angular momentum. 

2. SU(2) Yang-Mills field equations for spherically symmetrical field 
configurations 

In this section, we study an SU(2) gauge theory coupled to a scalar field r in the triplet representation. 
The scalar field is taken to have no mass or self-interaction. The Lagrangian for this system is 

1 o  v 
.~_ m - -  I ' l  4 G~. ,Ga + (Dt,r162 (1) 

where G~v is the strength tensor defined by the gauge fields W~ as 

b r a L = o.w  - o w; + g o  w;wa (2) 

and D,  is the covariant derivative of the scalar field given by 

Di,r ~ = 0 a b .r + g ab w;r . (3) 

The general equations of motion for this system are 

O~'G~, = gqb~[G~,vbW~ - ( D t , r 1 6 2  ] , 

OU D u r  a = 9eabc( Dt,r ) Wc ~. 
(4) 

These field equations can be simplified using the generalized Wu-Yang ansatz [12] used by Witten [13] to 
study multi-instanton solutions, 

W ~  = eaii gr--- 5 - ~ - gr  ' 

r a 
w 3  = 

r a 
Ca = H ( r ) .  

9r 2 

(5) 

The ansatz functions K(r) ,  G(r), J(r) ,  and H(r)  are to be determined by the equations of motion. Inserting 
these expressions into the field equations in Eq. (4), we find the set of coupled, non-linear equations 

r 2 K , ,  = K ( K  2 + G 2 + H 2 _ j 2  _ 1), 

r2G ,, = G ( K  2 + G 2 + H 2 _ j 2  _ 1), 

r 2 j  '' = 2 J ( K  2 + G2), 

r 2 H  '' = 2H(K 2 + G2), 

(6) 

where the primes denote differentiation with respect to r. The most well known solutions of these equations 
are those discovered by Prasad and Sommerfield [6] and independently by Bogomolnyi [5]. They are 

K ( r )  = c o s ( 9 ) C r  csch(Cr), 

J(r)  = sinh(7)[1 - C r  coth(Cr)],  

G(r)  = s in (O)Cr  csch(Cr), 

H(r)  = cosh('r)[1 - C r  coth(Cr)],  
(7) 
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where C, 0, and "y are arbitrary constants. Solutions (7) have a finite field energy. Indeed, the energy 
density of the fields is 

TO 0 _  1 ( (K 2 + G  2 - 1 )  2 + J 2 ( K 2 + G  2) 
g2r 2 ~K ~2 + G ~2 4- 2r  2 r2 ~- 

g 2 ( g  2 + G 2) ( r g : -  g ) 2 ~  ( r J '  - j ) 2  + + 

+ 2r 2 r 2 2r 2 ] '  
(8) 

which yields a finite field energy E = 4rCcosh2(7 ) /g  2 when integrated over all space. This finite-energy 
property of the BPS solution is a main reason for the interest in this classical solution. 

We now examine the general relativistic analogue solutions of the Yang-Mills equations. 

Solutions with spherical singularities. To find the general relativistic analogue solutions to the 
Yang-Mills field equations, we begin by examining the Schwarzschild solution of general relativity. The 
Schwarzschild solution written in Schwarzschild coordinates has two nonvanishing metric tensor components: 
go0 and gr~. The nonvanishing spatial element has the form g~ = K r / ( 1  - Kr )  and goo = -1/g~r ,  where 
K = 1 / (2GM).  Trying this form of g~r in Eq. (6), we find the solution 

K ( r ) -  T c o s 0 C r  G ( r ) -  T s i n O C r  
1- t -Cr  ' l + C r  ' 

sinh 7 cosh "y 
J(r)  - 1 :l= C----~' H(r )  - 1 + C---~' 

(9) 

where C, "y, and 0 are arbitrary constants. The solution with the minus sign in the denominator (which we 
call the Schwarzschild-like solution) develops a singularity in the gauge fields W~ and scalar fields Ca on a 
spherical surface of radius r = r0 = 1/C.  Both the Schwarzschild-like solution and the solution with the 
plus sign in the denominator develop singularities in the fields at r -- 0. These field singularities lead to the 
field energy of these solutions being infinite, as can be seen by inserting the ansatz functions from Eq. (9) 
in Eq. (8) and trying to integrate over all space. Such infinite-energy solutions of the Yang-Mills equations 
have been investigated by several authors [14-19], and the earliest discussion [14] actually predates the 
study of the finite-energy solutions such as the 't Hooft-Polyakov monopole or the BPS dyon. 

The infinite field energy is not a serious drawback of solutions (9) as compared with the finite-energy 
solutions. A similar situation occurs in some classical field theories, whose solutions nevertheless have 
a physical meaning. An example in electromagnetism is provided by the Coulomb solution with a field 
singularity at r -- 0 similar to the r -- 0 singularities developed by solutions (9) when these are inserted 
in (5). It has been speculated that  the Schwarzschild-like solution, with its singular spherical surface, 
has some connection with the quark confinement phenomenon [15, 17, 18, 20, 21]. The motion of a test 
particle that moves in the potentials given by the minus-sign solution in Eq. (9) shows that the spherical 
singularity in the fields represents a barrier that can trap the test particle inside the sphere. This is similar 
in spirit to bag models of hadron structure with test particles moving in some confining potential (such as 
an infinite spherical well). It is also interesting that this Schwarzschild-like solution was obtained from the 
general relativistic solution for a nonrotating black hole that  exhibits its own type of "confinement:" any 
particle that passes within the event horizon becomes permanently trapped. One should be cautious about 
pushing this analogy too far, because the spherical singularities in general relativity and the Yang-Mills 
theory differ. The singularity at the event horizon of the general relativistic Schwarzschild solution is not 
a physical but a coordinate singularity, as can be seen by writing the Schwarzschild solution in Kruskal 
coordinates, where the only singularity is at r = 0. Both singularities in the Yang-Mills analogue of the 
Schwarzschild solution are true singularities in the fields. 

The existence of singular solutions for certain field theories is not new (e.g., the singularities in the 
Coulomb solution of electromagnetism, the Wu-Yang monopole solution [12], or the meron solutions [22]). 
Even the appearance of a singularity in the gauge fields on a spherical surface, such as occurs in the 
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Schwarzschild-like solution of Eq. (9), which may at first seem unique, can be found in other infinite-energy 
solutions. These other solutions possess an infinite set of concentric spherical surfaces on which the fields 
develop a singularity. This solution behavior could be taken as evidence that such spherical surfaces with 
singularities are not uncommon features in classical solutions to the Yang-Mills field equations. The first 
of these solutions can be obtained by exchanging the hyperbolic functions of the BPS solution in Eq. (7) 
with their trigonometric counterparts, 

K(r) = cos(O)Cr csc(Cr), 

J ( r )  = sinh(7) [1 - Crcot(Cr)], 

G (  r ) = sin( O)Cr csc(Cr), 

H(r) = cosh(7)[1 - Cr  cot(Or)].  
(lo) 

This solution was briefly discussed in the derivation of the BPS solution in [23], where the authors start with 
a solution like that in Eq. (10) and apply the transformation C --+ iC to arrive at the BPS solution. Solution 
(10) exhibits a series of concentric spherical surfaces on which the gauge and scalar fields become singular. 
These singularities are located on the spherical surfaces Cr  = nTr where n = 1, 2, 3, 4 , . . . .  Inserting the 
ansatz functions of Eq. (10) in Eq. (8), we find the energy density 

T0O_2Cosh2(7) [ (C2r2 csc2(Cr) - l) 2] 
r2g~ C2csc2(Cr) (1-Crc~  2+ 2r 2 �9 (11) 

The energy density becomes singular on the same spherical surfaces as the gauge and scalar fields. These 
spherical shells, on which the energy density becomes infinite, cause the total field energy of this solution 
to diverge. 

To obtain the next solution, we simply try the complementary trigonometric functions for the solution 
in Eq. (10). Doing this shows that the following is also a solution [24] of Eq. (6): 

K(r) = cos(O)Cr sec(C'r), 

J(r) = sinh(3,) [1 + Crtan(Cr)], 

G ( r )  = sin(O)Cr sec(Cr), 

H(r)  = cosh(7) [1 + Crtan(Cr)].  
(12) 

We note that because of the linear Cr  term in each solution, solution (12) cannot be obtained from the other 
trigonometric solution in Eqs. (10) by simply letting Cr -+ Cr - 7r/2. Although these two trigonometric 
solutions are in this sense distinct (i.e., they are not simply related by the transformation Cr --+ Cr - 7r/2), 
they are physically similar, because most of the comments concerning the solution in Eqs. (10) apply here 
as well. Most obviously, the ansatz functions (and therefore the gauge and scalar fields) become singular 
when Cr = nTr/2, where n = 1, 3, 5, 7 , . . . ,  and when r -- 0. This solution thus exhibits a series of concentric 
spherical surfaces on which its fields become singular as well as a point singularity at the origin. These 
singularities also show up in the energy density of this solution as they did for the solution in Eqs. (10). 
The point singularity at r = 0 and the spherical singularities of the solutions in Eqs. (10) and (12) are 
similar to those of the solutions in Eqs. (9). However, the solutions in Eqs. (9) only possessed one spherical 
surface on which the fields and energy density diverged. 

One conjectured application of the Schwarzschild-like solution is as a possible explanation of the con- 
finement mechanism. When the Schwarzschild-like solution in [19] is treated as a background potential in 
which a test particle is placed, it is found that the spherical singularity can act as an impenetrable barrier 
that traps the test particle either in the interior or the exterior of the sphere [20], giving a classical type of 
confinement. Similar results have been found for other singular solutions [15, 17, 18]. In addition, it was 
pointed out in [15] that such a classical type of confinement is only possible with infinite-energy solutions. 
Treating the trigonometric solutions as a background potential would also trap test particles between any 
two of the concentric spherical singularities. These trigonometric solutions could possibly be used to solve 
the field equations in some limited range of r, and then the resulting solution could be patched to one of 
the other solutions that would solve the field equations for the remaining range of r. This is similar to 
attempts in general relativity to patch an exterior solution to some interior solution. 
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Finally, a third solution of Eqs. (6) can be obtained by applying the transformation C --+ iC to the 
solution [24] in Eqs. (12). This yields 

K(r) = i cos(O)Cr sech(Cr), G(r) = i sin(O)Cr sech(Cr), 

J(r) =sinh( 'y)[1-Crtanh(Cr)] ,  H(r) =cosh(7)[1-Crtanh(Cr)] ,  (13) 

Because the ansatz functions K(r) and G(r) are imaginary, the space components of the gauge fields are 
complex. Despite this, all the physical quantities associated with this complex solution, such as energy 
density, are real. Inserting the ansatz functions of Eqs. (13) in Eq. (8), we find that the field energy density 
is 

TOO 2c~ [_C2sech2(Cr)(1 Crtanh(Cr)) 2 (C2r2sech2(Cr) + l) 2 ] 
- r2g 2 - + 2r 2 . (14) 

This energy density is real, but the total field energy is infinite due to the singularity at r = 0. This solution 
is thus more like a Wu-Yang monopole [12] or a charged point particle, as opposed to a finite-energy BPS 
dyon. 

S U ( 2 )  so lu t ions  w i t h  i nc reas ing  po ten t i a l s .  In addition to the preceding infinite-energy solutions, 
whose gauge and scalar fields become singular on some spherical surface, there are other types of infinite- 
energy, general relativistic analogue solutions. In general relativity, if a nonzero cosmological constant A is 
allowed for, then the t ime-t ime component of the metric tensor for the Schwarzschild solution becomes [25] 

2GM h r  2 
g 0 0 =  1 (15) 

r 3 
The Newtonian potential for this solution is 

r  (go0 - 1) _ - G M  Ar 2 (16) 
2 r 6 

Using Eq. (16) as a starting point, we find the simple solution [26] of Eq. (6) 

B 
g(r )  = cos 0, G(r) = sin0, J(r) = H(r) = -- + Ar 2, (17) 

r 
where a, B, and 0 are arbitrary constants. If we set A = 0, then it can be seen that the Schwarzschild-like 
solutions in Eqs. (9) and those in Eqs. (17) become similar in the limit as C --+ oo and e~/C --~ 2B. 
Inserting the ansatz functions of Eqs. (17) into the gauge and scalar fields of Eqs. (5), we find that the 
time component of the gauge field (W~') and the scalar field (Ca) behave as Ar + B / r  2. The space part of 
the gauge fields (W~) have a 1/r  dependence. This classical solution exhibits a linear confining potential 
similar to those used in some phenomenological studies of hadronic spectra [27]. In addition, arguments 
from lattice gauge theory [28] seem to indicate that the confining potential between quarks should be linear. 
Classical solutions similar to those in Eqs. (17) were discdssed in [29] in connection with the confinement 
problem. 

This solution also has an infinite field energy. Inserting the ansatz functions of Eqs. (17) into the 
energy density of Eq. (8) and integrating to obtain the total field energy, we find 

f 4 r f ~  ~b 47rA 2 87rB2 ( 1  1 )  
E =  T~176 T~176 2 d r -  g2 ( r3 - r3 )  g2 r 3 r3 , (18) 

a 

where we introduce the respective upper and lower cutoffs in the radial coordinate rb and r~. If rb --+ oo, 
then the field energy becomes infinite because of the linear part of the gauge and scalar fields; if r~ -~ 0, 
then the field energy becomes infinite because of the singularity at r = 0. Compared with the solutions in 
Eqs. (9), which had infinite field energy coming from local singularities (either at r = 0 or r = 1/C), the 
solution in Eqs. (17) can have a infinite field energy coming from the point singularity at r = 0 and from 
the linearly increasing gauge and scalar fields as r ~ oo. Again, although this classical solution has some 
undesirable characteristics, it also exhibits features found in some phenomenological studies of hadronic 
bound states. 
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S U ( 3 )  s o l u t i o n s .  Up to this point, we discussed classical solutions of the Yang-Mills field equations 
for SU(2) fields. Because the quan tum chromodynamics (QCD) involves the SU(3) gauge group, it is 
natural to ask if there are any SU(3) or even S U ( N )  generalizations of the above solutions. One possibility 
is to embed the SU(2) solutions above in an S U ( N )  gauge theory [30]. Recently, a Schwarzschild-like 
classical solution was found that  is not a simple embedding of the previous SU(2) solutions in an SU(N)  
gauge theory but a true SU(3) solution [31]. To arrive at the SU(3) solution, the Wu-Wu ansatz [32-34] 
is generalized as [31] 

1 _ _  (z~7X /~hy )~2Z) a XtX3 
w 0  - - + + z~ (~T j  + ~j,)-=a-~ w(, ) ,  

g r  2 

x' (19) ixJ Q 
( 1  - f ( r ) )  + A;k(eitjx k + e i t k xJ ) -~v ( r ) ,  w t  = (~,j - A j , ) ~  

where h a are the Gell-Mann matrices. Using this ansatz in the Yang-Mills field equations yields the 
following set of coupled differential equations for the functions f ( r ) ,  v(r), r and w(r): 

r 2 f ,  = fa  _ f + 7 fv  2 + 2vwr - f ( w  2 + r 

r2v" = v 3 - v + 7v f  2 + 2 f w r  v(w 2 + r 

~2w" = 6w(f  2 + v 2) - 1 2 f v r  (20) 

r2r = 2 r  2 + v 2) - 4 fvw ,  

where the primes denote differentiation with respect to r. The nonlinear, coupled differential equations in 
Eqs. (20) are the SU(3) equivalents of those in Eqs. (6). There were several simplifying assumptions to 
make the problem more tractable in [31]. First, taking w = r = 0 reduces Eqs. (20) to the system 

r2f,,  = f ( f 2  _ 1 -I- 7v2), 

r2v" = v(v 2 - 1 + 7f2). (21) 

Then, the further simplification f2 = v 2 = q2/8 reduces Eqs. (21) to the Wu-Yang [12] equation for q(r), 

r2q,, = q(q2 _ 1). (22) 

This equation has been shown to have a solution that  is singular at some radius r = r l  [14, 18, 31]. In 
other words, the solution near r = rl  has the form 

A 
q(r) .~ , (23) 

r I - -  r 

where A and rx are constant.  Thus, even with no scalar field, solutions to the pure gauge field theory 
equations can be found that  tend to trap test particles behind a spherical barrier in much the same way as 
the Schwarzschild-like solution in Eqs. (9). It is also possible to find closed-form solutions to a special case 
of system (20). With v = w = 0, Eqs. (20) become 

r 2 i , ,  = f ( f 2  _ r _ 1), 

r2r = 2 r  2, 
(24)  

which has the simple dosed-form solution 

C T  

f ( r)  = T 1 i C--~-~-~' 

i 
r : + 1 =L C~" 

(25) 
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Other, similar solutions can be found by making different simplifying assumptions such as f = w = 0. 
Thus, solutions with singular fields on a spherical surface are not unique to SU(2) gauge theories but can 
also be found for SU(3) [31] and, in general, for SU(N) [30]. The interesting aspect of the solutions in [31] 
is that these solutions are true SU(3) solutions and not simply embeddings of an SU(2) solution in the 
SU(N) gauge group as in [30]. Also, the SU(3) solutions presented here are pure gauge field solutions, as 
opposed to the general SU(2) solutions for the system given in Eq. (1) that involves scalar fields. In some 
sense, the role of the scalar field in the SU(2) system is played by the time component of the gauge field 
in the SU(3) system. This can be seen by comparing system (6) with system (20): the equations for f ( r )  
and v(r) are similar to those for K(r) and G(r), and the equations for w(r) and r are similar to those 
for J(r) and H(r). 

3. Electromagnetic properties of the SU(2) solutions 

All the SU(2) solutions to the Yang-Mills field equations have interesting "electromagnetic" features. 
To investigate these properties, we use 't Hooft's definition of a generalized, gauge-invariant, U(1) field 
strength tensor [3] 

0. (r  o F ~ V  --~ ^ a  a _ 0~(r W•) leabce"(oucb)(o~qhc), (26) 
9 

where dp~ = r162 This generalized U(1) field strength tensor reduces to the usual expression for 
the field strength tensor if a gauge transformation to the Abelian gauge is performed, where the scalar field 
only points in one direction in isospin space (i.e., r = r [35]. If this U(1) field is associated with the 
photon of electromagnetism, then the solutions in Eqs. (9), (10), (12), (13), and (17) carry magnetic and/or 
electric charges. In general, the electric and magnetic fields associated with these solutions are 

gr dr 
1 ri 

Bi = =eijkFik -- gr 3 Z - -  

(27) 

The magnetic field of all the solutions is that of a point monopole of strength -41r/g. The reason for this 
is discussed at the end of this section. 

The electric field of the Schwarzschild-like solutions in Eqs. (9) is easily found by inserting the ansatz 
function J(r) from Eqs. (9) in Eq. (27). This gives 

- r i  sinh'),(1 -t- 2Cr) 
Ei = gr3(1 + Cr)2 (28) 

As r ~ oo, this electric field goes as 1/r 3, which indicates that the net electric charge of this solution is 
zero, although there appears to be some kind of dipole charge distribution. 

The electric fields of the two trigonometric solutions presented in Eqs. (10) and (12) are similar in that 
they indicate that these solutions carry an infinite electric charge. Inserting the ansatz function J(r )  from 
trigonometric solution (10) in Eq. (27) yields the electric field 

E i -  -sinh( ') ' )r i  (1 - C 2 r  2 csc2(Cr)). 
gr 3 (29) 

The electric field does not fall off for large r but behaves as ri csc2(Cr)/r. This electric field also becomes 
singular on the spherical surfaces defined by Cr  = n~r, where n = 1, 2, 3, 4, . . . .  Trigonometric solution (12) 
exhibits the same type of electric field except that it becomes singular on spherical shells given by Cr = n~r/2 
with odd n and at r = 0. The electric charge of this solution is also infinite, because the electric field from 
Eq. (29) does not fall off as r -4 oo. For the special case where -), -- 0, the solution carries no electric charge 
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but only a magnetic charge. Even in this case, i~he energy density becomes singular on the concentric 
spherical surfaces and at the origin. Both the BPS solution and solutions (10) and (12) have the same finite 
magnetic strength -4rr /g .  Although this solution is a dyon in the sense that it carries both magnetic and 
electric charges, it is probably not correct to view it as a particle-like solution, because the oloctric field 
does not fall off, thus implying that these solutions have an infinite, spread-out electric charge. 

The electric field associated with the complex solution in Eqs. (13) can be found in the same way as 
for the other solutions. Inserting the ansatz function J ( r )  from Eqs. (13) in Eq. (27) yields 

Ei - - s i nh (7 ) r i  (C2r 2 sech2(Cr ) + 1). (30) 
gr  3 

As with all the other solutions, the complex solution carries a magnetic charge of strength -4rr /g .  In 
addition, the behavior of the electric field in Eq. (30) as r --* oo shows that this complex solution carries 
the electric charge -4rr sinh(7)/g, which is the same as that carried by the BPS solution. One interesting 
feature of solution (13) is that  even though the space components of the gauge fields are complex, all the 
physical quantities (e.g., field energy, magnetic charge, and electric charge) calculated from it are real. Also, 
unlike solutions (10) and (12), this complex solution can be viewed as a pointlike dyon because it has a 
localized electric charge. The main difference between this solution and the BPS solution is the infinite 
field energy of the complex solution due to the field singularity at r = 0. 

While many physical characteristics are substantially different in each of these various solutions, the 
magnetic charge of all the solutions is the same. This occurs because the magnetic charge of each solution 
is a topologic charge with the same value for each field configuration. A topologic current k~, can be defined 
as [35] 

1 e e Ou~'ao a ~ b ~ i c  k~, = 8 r  , , a ~  abc "Z ~ u oZ. (31) 

The topologic charge of this field configuration is then 

/ 1/ 
q= kod3X= (r162162176162 d3x= 

1 / . . . . .  
: 8--~ e i j keabcO' ( r162  d3x" (32) 

For all the solutions, we find that q~a = r a / r ,  which is the same regardless of the ansatz function H(r) .  In 
all cases, we find that the topologic charge is q = 1. In the next section, where we examine the motion of a 
test particle in the background field of the Schwarzschild-like solution, we find that  there is a field angular 
momentum due to the interaction of the test particle with the field configuration of the Schwarzschild-like 
solution. This field angular momentum can be seen to arise from the interaction of the topologic magnetic 
charge with the charge of the test particle, in much the same way as the configuration of a normal magnetic 
charge and an electric charge lead to a field angular momentum [36, 37, 2]. 

4. M o t i o n  of tes t  part ic les  in a Schwarzschi ld- l ike  po t en t ia l  

We now study the motion of a test particle in the background potential of the Schwarzschild-like 
solution in Eqs. (9). We make several assumptions in doing this. 

First, we take our test particle to be scalar as in [18, 20]. One reason for this choice is to illustrate 
thc spin-from-isospin effect [38] that  occurs with these solutions. As discussed in Sec. 3, all these solu- 
tions carry a magnetic charge. Many researchers have noted that  the composite system of a magnetic 
charge and an electric charge has an angular momentum due to the configuration of electric and magnetic 
fields [36, 37]. Even when the magnetic charge is topologic, as with 't Hooft-Polyakov monopoles, a similar 
effect whereby the composite system of a topologic magnetic charge and a particle with an isotopic charge 
has an angular momentum in the gauge fields is found [38]. This has an interesting consequence: to con- 
struct fermionic objects from the singular solutions, scalar particles in the fundamental representation of 
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the gauge group (SU(2) for the solutions considered here) should be used. (Fermionic test particles in the 
adjoint representation would also give a net fermionic bound state [21]). 

Second, we assume that the test particle is coupled to the scalar-field part of the solution of Eqs. (9) 
via the substitution m 2 -+ (m + Aa~r 2, where A is an arbitrary coupling constant. Finally, we assume. 
in order to ignore the ansatz function G(r), that O = 0 in Eqs. (9). 

Thus, the scalar particle (I)A moving in the background field of the Schwarzschild-like solution given in 
Eqs. (9) becomes 

0 o -  ig ~ ~\ " A 

- ( O i -  ig ~ ~\ 2 -~-(' ~ i  ) B e B ( z , t )  = - + (x , t ) ,  (33) 

where a * are the standard Pauli matrices and A and B are SU(2) group indices with the values 1 or 2. 
Taking r  t) = c A ( x ) e - i E t ,  using (a%a) 2 = v %  ~, and expanding, we find that Eq. (33) becomes 

_ E  _ ga'~W~E - ~ (W~') 2 - V 2 + igo~ + (w2Y  r  = 
B [ ]A 

= -  m 2 + ~ m ~ r  (r r  
B 

(34) 

Inserting the ansatz form of the gauge and scalar fields from Eq. (5) in Eq. (34) then yields 

- [ V  2 ( 1 - ~ ( r ) )  aala ( 1 - K ( r ) )  2 aar '~ J(r)2] A 
- 2"-~ + - 7  g - - E J ( r ) +  4r 2 JB (~B(x )=  

= E ~ - . ~  ~ o%~ 4~-~H(~)~ Br (35) 

where we use 
r io  i 

i ga~  = - i ( 1 -  K(r))o%o3,  r~ - ( 1 -  K ( r ) ) a ~ l " / r  2 

(with l" being the standard orbital angular momentum operator) and 

�9 (1 - K ( r ) )  2 
(W~)  2 = eaij~aikrJr k g2r4 

_ 2 ( 1 - K ( r ) ) 2  
g2r2 

Because aal ~ does not commute with a~r ~, Eq. (35) is difficult to handle. By taking advantage of the 
free parameter 7 in the ansatz functions J(r)  and H(r),  we can chose 7 such that Es inh  7 = AmcoshT/g .  
With this choice, the two a"r ~ terms in Eq. (35) cancel each other. To handle the a~l ~ term, the total 
angular momentum operator must be defined as 

1 a 
J ~ = l  ~ + S  a = l  a + ~ a  . (36) 

Thus, the total angular momentum comes not only from the orbital angular momentum; it has a contribution 
that looks like a spin angular momentum. The a matrices in the last term of Eq. (36) are, however, 
connected with the isospin of the system rather than with the spin. This is just the spin-from-isospin 
effect [38] and is connected with the fact that the Schwarzschild-like solution of Eq. (9) carries a topologic 
magnetic charge. Thus, even though our system involves only integer-spin fields (i.e., W~, r (I)A), the 
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combined system is a spin-l /2 object. Using Eq. (36), we can expand the aal a term in the usual way as 
a~l~ = 2Sal ~ = j~2 _ 12op _ S2op, except that Sop is now the isospin, not spin, operator. 

Finally, we assume for simplicity that A = g, which allows the J ( r )  2 and H( r )  2 terms to be combined 
more easily. At first glance, there seems to be nothing special in this choice, but we can see that according 
to the arguments in [18] and [39], the barrier at r = 1/C absolutely confines a particle only if A _> g, while 
for A < g there is some probability for the test particle to tunnel through the barrier. Combining all the 
preceding assumptions, we find 

_ IV 2 ( 1 - r K ( r ) )  (Jo~ -lo2p - So~) ( 1 - 2 r  2K(r)) 2 1 ( j ( r )2  H(r)2)] A - c B ( x )  = 

B 

= ( E 2 - - m 2 ) A + B ( x ) .  (37) 

In order to separate the radial equation from Eq. (37), we take 

c A ( x )  = -1Yj (r)Y M(O, r (3S) 
r 

whe re  YA M are the standard spinor spherical harmonics that can be obtained by adding the orbital angular 
momenta l ~ to a spin 1/2. Here, spin is replaced by isospin, but the mathematics and the spinor spherical 
harmonics are exactly the same. Now, inserting Eq. (38) in Eq. (37) yields 

d D F ( 1 -  K(r)) (1-  K(r)) 2 
drr 2 r 2 r 2 - 2r 2 

1 ( j ( r )2  H(r)2) ] 2 Ijl(r) 
J 

= (E 2 - m2)f j t (r)  (39) 

with the constants D = l ( l + l )  and F = J ( J + l ) - l ( l + l ) - 3 / 4 .  If we then set x = Cr and insert 
the ansatz functions K(r) ,  J(r),  and H(r) from Eqs. (9) in Eq. (39), the problem becomes the effective 
one-dimensional Schrhdinger equation 

d 2 D F(1 - 2x) (1 - 2x) 2 1 ] (E 2 m2)fgt(x) ,  
-df ix  2 + x-2 + x2(1 - x) + 2x2(1 - x) 2 + 4x2(1 - x) 2 f jr(x) - ~2 (40) 

where all the nonderivative terms in the left-hand side are viewed as the effective potential. The key feature 
of this effective potential is the singularities at x = 0 and x = 1. As x -~ 1, the leading term in the effective 
potential goes as 

D F(1 - 2x) (1 - 2x) 2 1 3 (41) 
V e n ( x ) = ~ +  x 2 ( l _ x )  + 2 x 2 ( 1 - x )  2 + 4 x 2 ( 1 - x )  2 ~ 4 ( 1 - x )  2" 

It was argued in [39, 18] that such a singularity would only present a true barrier to the test particle (i.e., 
the probability of the test particle tunneling through the barrier would be zero) if the coefficient in Eq. (41) 
were greater than or equal to 3/4. Thus, the effective potential of Eq. (40) just confines the test particle 
to the range 0 _< x < 1. That  the effective potential is just able to confine the test particle stems from 
our choice of A = g for the coupling of the scalar potential r to the test particle (I) A. If we had taken 
A < g, the coefficient in the limiting form of the effective potential from Eq. (41) would have been less 
than 3/4, and the test particle would no longer be confined (e.g., if we take A = 0, it is straightforward to 
show starting from Eq. (35) that  we obtain the coefficient 1/2). Conversely, when A > g, the coefficient in 
Eq. (41) becomes greater than 3/4, and the test particle is confined. This has the interesting implication 
that the scalar potential plays an important role in this confinement mechanism. Although confinement is 
generally thought to be just the result of the gauge interaction, there are phenomenological studies [40-42] 
that indicate that an effective scalar potential is involved in the confinement mechanism. 
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To consider the solut ion of Eq. (40) in more detail,  we must  pick par t icular  values of J and l (which 
determine the constants  D and F in Eq. (40)) and solve for the eigenfunctions f j l (x)  and the eigenvalues 
(E 2 - m2) /C 2. In general,  this mus t  be done numerically [21, 20], but  the key features of the effective 
one-dimensional  potent ia l  of Eq. (41) (i.e., the singularities in the potent ia l  at  x = 0 and x = 1) make this 
potent ia l  similar to the P5schl-Teller  potent ia l  [43] 

1V, [ a ( a -  1) / 3 ( ~ -  1) ] (42) 
v ( x )  = 0 + ' 

where a , /3 ,  and V0 are constants .  Wi th  a ,  fl, and V0 chosen correctly, the P6schl-Teller  potential  can be 
made  similar to the effective potent ia l  from Eq. (41). The  known eigenfunctions and eigenvalues of the 
P5schl-Teller  potent ia l  should then  give a good approximat ion  to the eigenvalues and eigenfunctions of the 
potent ia l  from Eq. (41). The  eigenfunctions for the P5schl-Teller  potent ia l  are given by [43] 

fn (x) = K sin a (rrx/2) cos e (~rx/2), 
( 1 ) 

2F1 - n ,  a + /3  + 'n, a + ~ sin2(lrx/2) , (43) 

where K is a constant  fixed by normalizat ion,  n is the radial q u a n t u m  number  wi th  the values n = 
0, 1 , 2 , 3 , . . . ,  and 2Fl(a,b,c;x) is the hypergeometr ic  function. The  energy eigenvalues for the P6schl-  
Teller potent ia l  are [43] 

1 
En = ~V0(a + /3  + 2n) 2. (44) 

We see from the shape  of bo th  the P6schl-Teller  potent ia l  and the effective potent ia l  in Eq. (41) tha t  
this is exactly the kind of dependence  to be expected for the energy eigenvalues. For small  energies (i.e., 
a + /3  > 2n), bo th  potent ia ls  behave as a harmonic  oscillator potential ,  and  it would therefore be expected 
tha t  the leading te rm in En would go as 2Vo(a + / 3 ) n  c c n .  For large energies (i.e., 2n > a +/3) ,  both  
potent ia ls  behave as infinite spherical  wells, and it would therefore be expected tha t  the leading term in En 
would go as 2V0n 2 or n 2. As a simple example,  we consider the  l = 0 case for the potent ia l  in Eq. (41). For 
I = 0, we find J = 1/2, D = 0, and F = 0; the potent ia l  in Eq. (41) becomes 

3 - 8x + 8x 2 
Ve~(x) = 4x2( 1 _ x) 2 �9 (45) 

This  potent ia l  approaches 3/ (4(1  - x) 2) as x --+ 1, and the test particle is therefore just  confined to the 
range 0 < x < 1. In this range, Veff(x) of Eq. (45) reaches its m i n i m u m  value of 4 at  x = 1/2, and the 
potent ia l  is symmetr ica l  abou t  this point.  For the PSschl-Teller  potent ia l  to also be symmetr ica l  about  
x = 1/2 and to also take a value of 4 at  this point ,  we can choose V0 = 1 and a = fl = 2. Now, inserting 
these into Eq. (44) and recalling t ha t  our  eigenvalue from Eq. (40) is (E 2 - m2)/C 2, we find tha t  the 
approximate  energy of the bound  states  for this case wi th  l = 0 is 

= m s + C2(2 + n) : .  (46) 

We note tha t  this energy depends  on the arbi t rary constant  C tha t  sets the radius of the confining sphere 
(r = I/C).  The  radius of the spherical  shell decreases as C increases, and we can see from Eq. (46) tha t  
the energy of the s tate  increases as would be expected.  Al though  it was part icular ly easy to de termine  V0, 
a,  and fl in this l = 0 case, the form of the bound-s ta te  energy given by Eq. (46) is similar even when l # 0. 

5. Discussion and Conclus ions  

In this article, we have presented a variety of solutions to the field equat ions  of the Yang-Mills theory. 
Al though finding exact  solut ions of nonlinear field theories is difficult in general,  many  of the solutions 
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given above were found using the mathematical connection that exists between the Yang-Mills theory 
and general relativity. Because general relativity has been studied longer than the Yang-Mills theory, 
there exists a body of known solutions that can serve as guides for finding solutions to the Yang-Mills 
or Yang-Mills-Higgs field equations. The Schwarzschild solution of general relativity, both without and 
with a cosmological term, gave rise to the solution with a spherical singularity in Eqs. (9) and the linearly 
increasing solution in Eqs. (17). Although both of these solutions suffered from the apparent drawback of 
an infinite field energy, they also exhibited some possible connection with the confinement phenomenon. 
The linear solution in Eqs. (17) has the form of phenomenological potentials [27] that are often used in 
studies of heavy-quark bound states. In addition, arguments from lattice gauge theory [28] favor a linear 
type of confining potential. The Schwarzschild-like solution in Eqs. (9) has some similarities to bag models 
for quark bound states. Spherical singularities, similar to those of the Schwarzschild-like solution, were also 
found in several other solutions as given in Eqs. (I0) and (12). Actually, the solutions given in Eqs. (10) 
and (12) possess an infinite set of concentric spheres on which the gauge and scalar fields became infinite. 
Thus, such spherical singularities may not be uncommon features of Yang-Mills field theories. The SU(2) 
Schwarzschild-like solution can be easily generalized to SU(N) by simply embedding the SU(2) solutions 
in an SU(N) gauge theory [30]. It has also recently been found that true SU(3) solutions (not simple 
embeddings of the SU(2) solutions) can be given [31]. 

In Sec. 4, we examined the behavior of a scalar test particle placed in the background potential 
presented by the Schwarzschild-like solution. In order for the Schwarzschild-like potential to confine the 
test particle cA, it was necessary to couple (I)A to the scalar part of the Schwarzschild-like solution Ca via 
the coupling m 2 --+ (m+Aa~r 2, where A is the strength of the coupling between the (~A and r particles. 
Even with this coupling, it was found that confinement occurred only for A _> g and there would be some 
finite probability for (~A to tunnel out of the spherical well for A < g. Although it is normally thought that 
the confinement phenomenon is the result of only gauge interactions, there has been some work [40-42] 
that indicates that an effective scalar interaction may be needed to completely explain confinement. 

Another interesting aspect of the bound-state system studied in the previous section is that the total 
system was a fermion even though only integer-spin fields were involved. The spin-l /2 nature of the 
bound-state system resulted from the fact that the isospin 1/2 of the test particle (I)A was converted into 
spin 1/2 when it was placed inside the Schwarzschild-like solution. Another way of obtaining this result is 
to note that almost all the solutions presented here could be shown to carry a topologic magnetic charge. 
Thus, in the same way that  a standard magnetic-electric charge system carries a field angular momentum 
of 1/2 in the combined electromagnetic fields, the combined charges of the Schwarzschild-like solution 
and ~A carry a field angular momentum of 1/2 in their combined non-Abelian fields. If a realistic model 
of hadronic bound states can be constructed from these classical field-theory solutions, then the fact that 
the net angular momentum of these states does not come entirely from the constituent particles may offer 
a possible explanation of the European Muon Collaboration effect [44], which shows that a large part of 
the net spin of the proton does not come from the valence quarks. 

In addition to the Schwarzschild-like solutions presented here, it is also possible to take more complex 
solutions from general relativity to find other Yang-Mills solutions. In [45], the general relativistic Kerr 
solution was used to construct a new Yang-Mills solution. Although the final form of this solution was not 
as simple as the Schwarzschild-like solutions, it did share the common feature of having confining surfaces 
on which the fields become singular. Finally, it is also possible to use this method to find solutions of 
nonlinear field equations in reverse: starting from known solutions to the Yang-Mills equations, solutions 
to the general relativistic field equations can be obtained [46]. 
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