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V I R A S O R O  A M P L I T U D E  F R O M  

T H E  SNR24-ORBIFOLD S I G M A  M O D E L  

G. E. A r u t y u n o v  1 a n d  S. A. Fro lov  2 

The four-tachyon scattering amplitude is derived from the SlVR24-orbifold sigma model in the large N 
limit. The dosed string interaction is described by a vertex that is a bosonic analog of the supersymmetric 
vertex recently proposed by Dijkgraaf, H. Vertinde, and E. Verlinde. 

1. In troduct ion  

Compactification of M(atrix) theory [1] on a circle results in the A / =  8 two-dimensional supersymmetric 
SU(N)  Yang-Mills model [2]. It was recently suggested in [3-5] that in the large N limit, the Yang-MiUs 
theory describes the nonperturbative dynamics of type IIA string theory, while the string coupling constant 
was argued to be inversely proportional to the Yang-Mills coupling. This suggestion appears to be very 
natural since, in the IR limit, the gauge theory is strongly coupled and the IR fixed point may be described 
by the A/" = 8 supersymmetric conformal field theory on the orbifold target space S N R  8. In the large N 
limit, the Hilbert space of the orbifold model is known [6] to coincide with (to be precise, to contain) the 
Fock space of the free second-quantized type IIA string theory. Using these facts, Dijkgraaf, E. Verlinde, 
and H. Verlinde (DVV) [5] have suggested that perturbative string dynamics in the first order of the string 
coupling constant can be described by the S N R  s supersymmetric orbifold conformal model perturbed by an 
irrelevant operator of conformal dimension (3/2, 3/2). An explicit form of this operator V was determined 
in [5] and it fits the conventional formalism of the light-cone string theory nicely. 

The described approach does not appear to be limited to the supersymmetric case only. In particular, 
one can suggest [7] that the M(atrix) theory formulation for closed bosonic strings is provided by the large 
N limit of the two-dimensional Yang-Mills theory with 24 matter  fields in the adjoint representation of the 
U(N) gauge group. In this case, the IR limit of the gauge theory results in the SNR24-orbifold conformal 
model. The closed bosonic string interactions are described via perturbation of the conformal field theory 
(CFT) action with a bosonic analogue of the DVV vertex [7]. 

An important problem posed by the above-described string interpretation of the SN-orbifold sigma 
models is to obtain the usual string scattering amplitudes directly from the models. This problem seems 
to be nontrivial because the SN-orbifold models are non-Abelian. 

The aim of the present paper is to derive the four-tachyon scattering amplitude from the S N R  24- 
orbifold CFT perturbed by the bosonic analogue of the DVV interaction vertex. 

Obviously, the first step in constructing the scattering amplitudes consists in defining the incoming 
and outgoing asymptotic states li) and If>. The free string limit gs ~ 0 implies that the asymptotic states 
should be identified with some states in the Hilbert space of the orbifold CFT and, therefore, should be 
created by some conformal fields. Then, by conventional quantum field theory, the g2-order scattering 
amplitude A can be extracted from the S-matrix element described as a correlation function of n conformal 
fields V(zi) with subsequent integration over the insertion points zi, 

~ f 1-I d2z~ ( f lV(zl  " '  V(zn)li>. (flsIi> 
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Construction of the asymptot ic  states li) and If) that  can be identified with incoming and outgoing 
tachyons and computat ion of the above-mentioned correlation functions in the SNR24-orbifold CFT  are 
the main questions we consider in order to obtain the four-tachyon scattering ampli tude.  

The paper is organized as follows. In See. 2, we review the description of the Hilbert space of the 
orbifold model. In See. 3, we introduce the twist fields that  create the states of the Hilbert space and find 
their conformal dimensions. In See. 4, we calculate the scattering ampli tude and show tha t  it coincides 
with the Virasoro one. In the Conclusion, we discuss some unsolved problems. 

2. S N R D - o r b i f o l d  s i g m a  m o d e l  

We consider two-dimensional field theory on a cylinder described by the action 

1/ 
= (OTXtO, XI (1) - O o X I O o X ~ )  , S ~ dr da ~ -i ~ i 

where 0 _< a < 27r, i = 1 , 2 , . . . , D ,  I = 1 , 2 , . . . , N ,  and the fields X take values in S N R  D =_ ( R D ) N / S  N. 
As is usual in orbifold models [8, 9], the fields X i can have twisted boundary  conditions, 

x (a + = (2) 

where g belongs to the symmetr ic  group SN. 
Multiplying (2) by some element h E SN and taking into account that  X i and h X  ~ describe the same 

configuration, we observe that  all possible boundary conditions are in a one-to-one correspondence with the 
conjugacy classes of the symmetr ic  group. Therefore, the Hilbert space of the orbifold model  is decomposed 
into the direct sum of the Hilbert spaces of the twisted sectors corresponding to the conjugacy classes [g] 
of SN [6], 

7"[(SNRD)= 0 qrg[g]. 

[91 

It is well known that  the conjugacy classes of SN are described by part i t ions {N,~} of N, 

8 

N =  ~-~ nN,~, 
rt----1 

and can be represented as 
[g] = (1) N' (2) N 2 . . .  (s) Ns. (3) 

Here, Nn is the multiplicity of the cyclic permuta t ion  (n) of n elements. 
In any conjugacy class [g], there exists a unique element gc with the canonical block-diagonal form 

gc = d iag(~ , , . . . .  ,wl,w2,...�9 ,w2,..... ,cos,...,coS, ), (4) 

Nt t imes N2 times Ns t imes 

where wn is an n • n matr ix that  generates the cyclic permutat ions  (n) of n elements 

n - - 1  

ton -~ ~ Ei,i+l -I-J~nl 
i=1  

and Eij are matrix units. 
k n = 1 and tha t  only the matrices co n It is not difficult to show that  con generates the Z,~ group since co n 

from Z ,  commute  with co,~. Since the centralizer subgroup C 9 of any element g E [g] is isomorphic to Cac, 
we conclude that  

C9 = [ I  SN,, • Z N' '  , 
n----1 
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where the symmetric group SN,, permutes the Nn cycles (n). It is obvious that the centralizer Cg contains 
1-I,~=1 N,~!nN" elements. 

Due to factorization (3) of [g], the Hilbert space 7-/[9 ] _= 7-/tg" } of each twisted sector can be decomposed 
into the N,~-fold symmctric tensor products of the Hilbert spaces "H(,), which correspond to cycles of 
length n, 

6 H{N,,} = SN"7-/(n) = (,~) 
n = l  n = l  

SNn \ 
| | 7/(.)] 

/ 
Nn t imes  

The space 7-/(n) is a Z,~-invariant subspace of the Hilbert space for a sigma model of Dn fields X} with the 
cyclic boundary condition 

X } ( a + 2 r ) = X ~ + l ( a ) ,  I = l , 2 , . . . , n .  (5) 

The fields X i ( a )  can be glued together to make one field X(a) that  is identified with a long string 
of length n. The states of the space 7-/(n) are obtained by the creation operators of the string acting on 
eigenvectors of the momentum operator. These eigenvectors have the standard normalization 

(qlk) = a D ( q +  k) 

and can be regarded as states obtained by the operator e ikz acting on the vacuum state (which is not 
normalizable): [k) = eik~]o), (ql = <01e 

The Zn-invariant subspace is singled out by imposing the condition 

(Lo - Lo)lq2) = nmlqg), 

where m is an integer and L0 is the canonically normalized Lo operator of the single string. 
If D = 24, then the Fock space of the second-quantized closed bosonic string is recovered in the limit 

N --~ oo, n i /N  ~ p+ [6], where the finite ratio n i / g  is identified with the p+ momentum of a long string. 

The Zn projection reduces in this limit to the usual level-matching condition L(0 i) - L(00 = 0. The individual 

p~- light-cone momentum is defined by means of the standard mass-shell condition p+p( = L(o i). 

3. Twis t  fields 

Let us consider the CFT of D N  free scalar fields described by action (1). It is convenient to perform 
the Wick rotation r -+ --iT and to map the cylinder onto the sphere: z = e r+i', 2 = e ~-i~ 

The vacuum state 10) of the CFT is annihilated by momentum operators and by annihilation operators 
and must be normalizable. To identify this vacuum state with the vacuum state of the untwisted sector of 
the orbifold sigma model, we choose the normalization of 10) to be 

(olo) = R DN. 

Here, R should be regarded as a regularization parameter of the sigma model. We regularize the sigma 
model by compactifying the coordinates x} on circles of radius R. Then the norm of the eigenvectors of the 
momentum operators in the untwisted sector is given by 

(ql k) = (21r) -ON [2,~R 
JO 

N 

dDN x ei(q+k)x H D = an (ql + k , ) ,  
I = 1  

where k} = m } / R  and q} = n} /R  are momenta of the states, rn} and n} are integers, since we compactified 
the coordinates, and 

D 

8D(k) = RD H 8m'o 
i=1  
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is the regularized ~-function. The usual normalizat ion of the eigenvectors is recovered in the limit R ~ oc. 
As usual, the field X(z, 5) can be decomposed into left- and right-moving components ,  

m 

2X(z,  5) = X(z)  + x(5) .  (6) 

In what follows, we concentra te  our a t tent ion mainly on the left-moving sector. 
Let ag(z, ~) be a pr imary field [10] tha t  creates a vacuum of a twisted sector at the point  z, i.e., the 

fields Xi(z, 5) satisfy the monodromy conditions 

Xi ( ze2n i , -  --2~i ze )crg(0,0) =gX~(z ,~)cr~(0,0) .  

Note that  the twist field cry(z, 5) cannot  be represented as the tensor product  of the twist fields crg(z) and 
&g(5) creating the vacuum states of the left- and right-moving sectors, respectively. 

It is obvious that  the conformal dimension A 9 depends only on [g]. To calculate Ag, let us assume 
tha t  g has factorization (3). Then  A 9 is given by the equation 

n = l  

(7) 

where A(,)  denotes the conformal  dimension of the twist field a(n) tha t  creates the vacuum state  of the 
space "//(n) for the sigma model  of Dn fields with the cyclic boundary  condit ion (5). Let the twist field cr(,~) 
be located at  z = 0 and let us denote  the vacuum s ta te  a as I(n)) = cr(~)(0)10 ). Since the twist field cr(~) 
creates one long string,  we normal ize  the v a c u u m  state  I(n)) as follows: 

((It)l(,~)) = R D. (8) 

The fields X(z)  have the following decomposi t ion in the vicinity of z = 0: 

O X } ( z ) = - i l - E  i e x p { - 2 : i l m }  It O/m Z-- ~ -  

m 

1 , ( 9 )  

i ( m r  0) are the usual creat ion and annihi la t ion opera tors  with the c o m m u t a t i o n  relat ion where a m 

o~ i [ m, ~{] = r~ 'J~m+~,0 (10) 

and a~) is proport ional  to the m o m e n t u m  operator.  4 
i for m >_ 0. The vacuum state  I(n)) is annihi lated by the operators a m 

Since a(n) is a pr imary  field, the conformal dimension A(n) can be found from the equat ion 

((n)lT(z)l(n))- a ( ~ ) ( ( n ) l ( n ) ) ,  
z 2 

where T(z) is the stress-energy tensor. 
Using (9) and (10), we calculate the correlation function 

((,~)lox}(z)OXi(~)l(,~)) = -~'J ( z ~ ) ~ - '  

3This vacuum state is a primary state of tile CFT. 
4~ 0 = pi/2 in the string units a' = 1/2. 

46 



Taking into account that the stress-energy tensor is defined as 

D n 

1 ,~m ~ ~(OX~,(z)OX~(~) + T(z)= 2 ~  
i = 1  l = l  

one obtains 

1) 
(z 2 w) 2 ' 

where 
l ' l  

1 
Yi(z, 2) : ~ I~  1 X}(z, 2). (14) 

. k i } 
cr(n)[k](O,O)lO}='exp z ~ y i ( o , o ) : l ( n ) } ,  (13) 

The field Y(z) has a trivial monodromy around z = 0 and is canonically normalized, i.e., the part of the 
stress-energy tensor depending on Y is - (1/2):OY (z) OY(z):. 

It is obvious from (13) that the conformal dimension of the primary field 

o'(n)[k](z, 2 ) =  : exp{ i k-~n~nYi(z,2) } :a(,o( z, 2) 

is equal to 
k 2 D (  1 )  k 2 

A ( , ) [ k ] = A ( n ) + 8 n -  24 n - -  + - -  
8 T t '  

where decomposition (6) is taken into account. 
According to Eqs. (7) and (11), the conformal dimension of a s is given by 

A g � 8 8  _. Nn n -  
n : l  n : l  

We can also introduce a primary field that creates scalar particles with momenta k/,  a = 1 ,2 , . . . ,  
N1 + N2 q- "" -k N~ = Nstr, 

ki } 
ag[{k~}l(z,~)=-ex p i--a-~ E(z ,~) :~(z ,~) ,  

va-2 

where Tt I = ~ 2  = " ' "  = 7 t N t  = 1, ? t N ~ + l  = 7 ~ N ~ + 2  = ' ' '  = n N , + N  ~ = 2 ,  and so on, Y2 corresponds to the 
cycle (ha) and is defined by (14), and summation over i and a is assumed. The conformal dimension of the 
field %[{k~}l is equal to 

zXg[{k~}] = ~ N -  + E k~ (15) 
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A ( ~ )  = ~ n -  . (11 )  

The excited slates of this sigma model are obtained by acting on I(n)) with some vertex operators. In 
particular, the state corresponding to a scalar particle with momentum k is given by 

cr(n)[k](0 , 0)10 ) = -exp{ik} Xit(O, 0)}: I(n)}, (12) 

where summation over i and I is assumed, k} = mit/R is the momentum carried by the field X}(z,2), and 
ki = ~--~=1 k} is the total momentum of the long string. 

Using the definition of the vacuum state [(n)), we can rewrite Eq. (12) in the form 



It is obvious tha t  the two-point correlation function of the twist fields a m and Og 2 is not equal to zero 
if and only if gig2 = 1. Taking into account normalizat ion (8), we find 5 

<~- ,  (~)o~(o)> = R ~N~''. 

This means that  the fields ag-~ and ag have the OPE 

~ - , ( z , z ) ~ , ( 0 , 0 )  = 
RD(N~t~-N) 

Iz[ 4 A 9  
+ � 9  

The two-point correlation function of ag - , [{qa I ]  and ag[{k~}], consequently, is equal to 

---- 5 D ka) .  (crg-'[{q~}](~ I--[ n(qa + 
o~ 

(16) 

A twist field a 9 does not create a twisted sector of the orbifold C F T  since it is not  invariant with respect 
to the action of the symmetr ic  group. An invariant twist field can be defined by summing  all of the twist 
fields from one conjugacy class, 

1 
%1(z'~) = ~ .  Z ~ - , ~ ( z , ~ ) .  

h~SN 

Using this definition, we can easily calculate the two-point correlation function 

RDNst~ ~I 
(aM (~176 0 ) ) -  ~ .  Nn!nN', 

n = l  

w h e r e  1-I:=1 Nn !nN'~ is the number  of elements of the centralizer Cg. 
The definition of the twist field aM[{k~}] is not  so straightforward.  Let us consider the element  9r E [9] 

tha t  has the canonical block-diagonal form (4). There  are N1 + --- + N~ = N~t~ fields Y~(z, 2) tha t  have a 
trivial monodromy in the vicinity of the twist field a g .  According to (14), they  are defined as 

Y~(z, :) - : F_, X,(z,~). 

Now let us consider the fields X tha t  have the monodromy 

X(ze 2~i, 5e -2~i) =h-lg~hX(z ,  2). (17) 

We can see from (17) tha t  the fields Y~[h], 

ro[hl(z,Z)- 1 ~ (hx),(z,e), 
le(n~) 

have a trivial monodromy.  Then  an invariant twist field aM[{k~}] is defined as 

1 

h6SN 

k, } 
"exp~i--2-~ Y~[h](z, 5) :aU-,gch(Z, 2). (18) 

sit is clear that [g -1 ] = [g] and, therefore, Ag_, = Ay. 
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It is easy to verify that  the twist field a[gl[{k~}] is invariant with respect to the permutation of momenta 
ha, which correspond to cycles (ha) of the same length. 

The interaction vertex proposed by DVV [5] is defined with the help of the twist field Gig that corre- 
sponds to the group element glJ = 1 - E u  - E j j  + E I j  + E j l  transposing the fields XI and X j .  

The twist field a 9 has the following OPE6: 

1 
% ( z , ~ ) % ( 0 )  = izl~.a,,+2~, _2z~,,, ~ ( C g : ~ : % g : ( o ) + c  g:g' (0)) + - - -  , g~ ,g20g2gi �9 (19) 

Here, two leading terms appear because there are two different ways to go around the points z and 0. It is 
not difficult to see that  gig2 and g2gl belong to the same conjugacy class and, hence, A9,92 = Ag291 . 

Therefore, the twist field a~j acting on the state ag(0)[0 ) creates the states ag,jg(0)10 } and agg,j (0)10). 
An arbitrary element g has a decomposition (n l ) (n2) - ' -  (nk) that describes a configuration with k strings. 
If the indices I and J belong, for instance, to the cycle (nl) in the decomposition, then the element g1Jg 

has the decomposition (n~ 1)) (n~))(n2) . . .  (nk) with n~ 1) + n~2)= nl  and, hence, describes a configuration 
with k +  1 strings. If the index I belongs to the cycle (nl) and the index J belongs to (n2), then the element 
glJg has the decomposition (nl + n2)(n3) " -  (nk) and describes a configuration with k - 1 strings. Thus, 
the twist field a1J generates the elementary joining and splitting of strings. 

To describe the DVV interaction vertex, it is useful to return to Minkowskian space-time. Then the 
interaction is described by the translation-invariant vertex 

Vmt = AN1~--'~<j f dr da a I J(a+' G- 

where A is a coupling constant proportional to the string coupling and cr• = r-t-a are light-cone coordinates. 
If D = 24, then the twist field a1 j (a+ ,  a_)  is a weight (3/2, 3/2) conformal field and the coupling 

constant A has dimension -1 .  Performing the Wick rotation and the conformal mapping onto the sphere, 
again, we obtain the following expression for Viint (and for D = 24): 

Vint = - AN i~<j /d2z[z[crIJ(Z '2) '27r  

where the minus sign appears because a I J  has the conformal dimension (3/2, 3/2). 
Thus, the action of the interacting SNR24-orbifold sigma model is given by the sum 

S i n t  = So Jr- Vint .  

In the next section, we calculate the S-matrix element corresponding to the scattering of four tachyons and 
show that the scattering amplitude coincides with the Virasoro amplitude. 

4. Scattering amplitude 

In the second order in the coupling constant A, tile S-matrix element is given by the standard formula 
of quantum field theory, 

( f [ S [ i ) = - ~  ~ ( f  d2zld2z2]zl[[z2]T(Lint(Zx,51)12int(Z2,22)) i ) ,  (20) 

6Let  us s t ress  t h a t  t h e r e  a re  o t h e r  p r i m a r y  fields on  the  r.h.s,  of the  O P E ;  however ,  t hese  fields are  nonessen t i a l  in our  

cons ide ra t ion .  
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where the symbol T means the time-ordering, Izl[ > [z21, and 

s = Z a I J ( Z ' 5 ) "  I<J 
The initial state {i) describes two tachyons with momenta  kl  and k2 and is created by the twist field 
a[gol[kl, k2], 

li) = Coa[go][k~, k2](0, o)1o). 
The element g0 is taken in the canonical block-diagonal form 

go = ( n o ) ( N -  no),  

where no < N - no. 
The final state (fl describes two tachyons with momenta  k3 and k4 and is given by the formula (see [10]) 

( f [  = Cc~ lim {zool4A~176 
Zor ~ - -+OO 

The element goo has the canonical decomposit ion 

g ~ = ( n o o ) ( N - n o o ) ,  noo < N - n o o .  

The constants Co and Coo are chosen to be 

N! i N! 
Co = n o ( N  - no ) '  C ~  = n o o ( N -  noo) '  

which guarantees the s tandard normalization of the initial and final states. 
After the conformal t ransformation z --+ Z /Z l ,  Eq. (20) acquires the form 

()2 
(f[S]i):-~l ~AN f d2zld2z2{zll[z2{[zll2Aoo_2Ao_6(f ]T(/:int(1,1)s l i ) '  (21) 

where Ao and A~o are conformal dimensions of the twist fields cr[9o][kl, k2] and o-[gool[ka,k4], 

Ao N 1 1 k 2 k 2 = - - +  + 
no N -  no ~ 8 ( N -  no) '  

;,oo N 1 1 k~ k~ = + + . 
n~ N - n ~  ~ 8 (N-n~)  

(22) 

Let us introduce tile light-cone momenta  of the tachyons [5], taking into account the mass-shell condi- 
tion for the tachyonic states, 

no 

~.+ _ N - no 
r~ 2 

N ' 
k3 + _ noo 

N '  
g - ?Loo 

k + -  N 

k~ k, + - k~ _= - k ~  = - 8 ,  

k ;  k~ + - k~ - - k ~  = - 8 ,  

k ;  k :  - k~ -- -k~  = - S ,  

k ; k : -  k ~ - - k ~ - - - 8 .  
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Using the l ight-cone m o m e n t a  and the mass-shell  condit ion,  we rewrite (22) in the form 

k? +k; 
Ao = N +  - - ,  

8 N  

A ~  = N k3 + k~- 
8N 

Per forming  the change of variables z2/zl = u, we obta in  

(flSli) = - ~  -~r d2zl lzllZA~-zA~ d2ulul(flY(s163 

The  integral over zl is obviously divergent .  To unde r s t and  the meaning  of this divergence, remember  tha t  
we have made  the Wick rota t ion.  Re tu rn ing  to the a, 7- coordinates  on the cylinder,  we find for the integral 
over zl t ha t  

f d2zllZl, 2Aoo-2Ao-2 ~ i f d~-dae2ir(A~-"'o). 

In tegra t ion  over a and T gives us the conservat ion law for the light-cone m o m e n t a  k~-, 

/ drdae 2i'(/%~176 = 4N(2r)2~(k~ - + k 2 + k 3 + k~-). 

Therefore,  the S -mat r ix  e lement  is equal to 

<flS{i) = -i2A2N3(S(kl -t- k~ q- k 3 q- k4 ) / d2u I~1 <ft T (/~int( 1, 1)/~int( u, ~))li> �9 (23) 

To find the S -mat r ix  e lement ,  we have to calculate the correlat ion funct ion 

F ( u ,  72) = ( f lT ( s  1)/~int(U, ~2))1i) = 

=CoCoo E (a[g~l[k3'k4](~ 
I<J;K<L 

(24) 

We assume for definiteness t ha t  no < noo and lul < 1 in wha t  follows. 
Using definit ion (18) of aM[{k~}] and taking into account  t ha t  the in terac t ion  vertex is SN-invariant  

and tha t  any correlat ion funct ion of the twist fields is invariant  with  respect  to the global action of the 
symmet r i c  group 

(% %~ " % ,  ) = ( ~ h - , g , h ~ - ' g - , h  ~h-'g~ (25) 

we rewrite the correlat ion funct ion in tile form 

CoC~ 
F(u, ~) - N! E E (~176176176 

hooESN I<J;K<L 

We note  tha t  the correlat ion funct ion 

(agt ((x~)ag 2 (1, 1)a93 (u, ~)ag 4 (0, 0)) (26) 

does not  vanish only if 
glg2g3g4 = 1 o r  glg4g3g2 = 1. (27) 
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This can be seen as follows. Due to the O P E  (19) of ag, correlation function (26) reduces to the sum of the 
three-point correlation functions (agtag2Og3g4) and (O'gtO'g.20"g4g3) i n  the limit u -~ 0. This sum does not 
vanish if one of the following equat ions is fulfilled: 

glg2g3g4 = 1, glg3g4g2 = 1, glg2g4g3 -- 1, glg4g3g2 = 1. (28) 

From the other  side, in the limit u -~ 1, we obtain  the sum of the correlation functions (og, o-g2ga(yg 4) and 
(ag lO'gag2crg4). This sum does not vanish if 

glg29394 = 1, gtg4g2g3 = 1, glg3g2g4 = 1, glg493g2 = 1. (29) 

Comparing Eqs. (28) and (29), we obta in  (27). 
The contr ibut ion of the terms satisfying the equat ion h~o~g~hoogogKLgly = 1, however, coincides with 

the contr ibut ion of the terms satisfying h~lgooh~g lygKLgO = 1. To prove the s ta tement ,  we note that  the 
invariance of action (1) with respect  to the world-sheet pari ty symmet ry  z ~ 2, (or a -+ - a  in Minkowskian 
space- t ime)  leads to the equali ty 

= <%:'%;' (30) 

since the twist fields cr 9 t ransform into ag-L. Taking into account  Eqs. (25) and (30) and the fact tha t  the 
elements g and g-1  belong to the same conjugacy class, we obta in  the desired equality, 

I < J ; K < L  I < J ; K < L  

= . 

I<J;K<L 
Therefore, the function F(u, ~2) is given by the sum of the correlation functions of twist fields which can be 
schematically represented as 

ho,:~ESN I < J ; K < L  

where the elements hoo, 9IJ,  and gEL solve the equat ion h~lgoohooglgggLgo = 1. We can fix the values of 
the indices K and L using the action of the stabilizer of go and invariance (25) of the correlat ion functions 

h o o E S g  [ < J  

+ ( N  - no)(oh~,gooh OlYanooNO-go)+ 

+ (N  - (31) 

The first te rm in (31) corresponds to the joining of two incoming strings and the factor n o ( N  - no) 
appears  because, in this case, the index K takes no values, K = 1 , . . . n o ,  and the index L takes N - no 
values, L = no + 1 , . . . ,  N.  To fix K = no and L = N,  we need to use all of the elements  of Cg o. The second 
and the third terms correspond to spli t t ing the string of length N - no it, to two strings of lengths noo - no 
and N - noo and of lengths N - no - no~ and noo, respectively. To fix the values of K and L in these cases, 
we use the N -  no elements, which compose the subgroup Z n - ~ o  of Cuo , tha t  do not  act  on the cycle (no). 
Equat ion  (31) can be further rewri t ten in the form 

8 = n o ( N  - no )noo(N  - noo) 0"9~(I)O'I,I+N-n,~(:rnoNU9o)-'~ 

N --'iloo T1.r o 

-l- ~ (Ggoo(I)Cri,i+n (~noN(Tgo> -~- ~ (O'g~(j)~noJGn,~NCrgo>- ~- 
1=1 J = n o + l  

N 

+ (32) 
J = n o  +noo  + l / 
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N - no, k2 ( ? 

no, k1 C)- 

~.~ N - noo, k4 

~ )  nov, k3 

N - no, k2 

rto, kl 

.~  hoe, k3 

_ ~ N - n o o  , k4 

f-%--______ 
N - -  r~0, k 2  

no, k, ( ~ - -  

- • N  - noo, k4 

O n o o ,  k3 

N - no, k 2 ( % ~ ~  

no, kl ( ~  

) nc~, k3 

~ N  - noo, k4 

Fig. 1. The diagram representation of different correlation functions in Eq. (32). 

where the elements gm are found from the equation googlJgKLgO = 1. 
Some comments are in order. The factor noo(N-  noo) is the volume of the stabilizer Zn~ x Zg-,~oo of 

gin. The first two terms correspond to a splitting of the long string of length N into strings of lengths noo 
and N - noo. This can be achieved only if J - I = N - noo or J - I = noo. In the third and fourth terms, 
we fixed the value of I = no using the action of the subgroup Z,, o of Cg o. This gave the additional factor 
no. The third (fourth) term describes the joining of the strings of lengths no and n m -  no (N - no - noo) 
into one string of length noo (N - noo). Therefore, the total number of different correlation functions is 
equal to 2(N - no). The diagrams corresponding to these four terms are depicted in Fig. 1. 

We need to compute the correlation functions (and the same correlation functions with the interchange 
u ~ l )  

G(u, r~) = (aa~ [k3, k4](oo)c~xj(1, 1)ogL(u, fi)O-g o [kl, k2](0, 0)), (33) 

where all possible elements goo, gIJ, ggL, go are listed in (32). 
We employ the stress-energy tensor method [11] to calculate the correlation function (33). The idea of 

the method is as follows. Assume that we know the ratio 

f(z,  u) = (T(z)r162162162 (34) 
<r (oo)r (1)r162 

where T(z) is the stress-energy tensor and each r is a primary field. Taking into account that the OPE of 
T(z) with any primary field has the form 

T(z)r = z~r + -~0r + . . .  
z 
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0 

to / 

Fig. 2. The N-fold covering of the z-sphere by the t-sphere. 

we obtain a differential equat ion for the correlation function G(u, 72) = (r162162162 

0~ log G(u, f,) = H(u, f,), 

where H(u, f,) is the second term in the decomposit ion of the function f ( z ,  u) in the vicinity of u, 

A2 1 
f ( z , u )  -- + H(u, fz) + . . . .  

( z  - , , ) ~  z - ~, 

In the same way, we obtain the second equation for G(u, (,) using the stress-energy tensor T(5),  

o .  log c ( u ,  ~) = H(u,  a). 

A solution of these two equations determines the correlation function G(u, f~) up to a constant .  
To calculate ratio (34), we first find the Green's functions 7 of the form 

G ~ s ( z ,  w ) : (OXiM(Z)OXJs(w)~rg~[k3,k4](~176 ft)ago[kl,k2](O, O)> = 
<a9r162 [k3, k4](oo)~rla(1, 1 ) a K L ( U ,  fi)ag0[kl, k21(0, 0)) 

- < < a X ~ ( z ) a X , s ( , , , ) >  >. 

These Green's functions have nontrivial monodromies around the points .:~o, 1, u, and 0 and, in fact, 
are different branches of one multi-valued function. However, this function is single-valued on the sphere 

" i j  obtained by gluing the fields X} at z = 0 and z = oo. Therefore, to construct  GMs(z ,  w), we introduce the 
following map from this sphere onto the original sphere: 

t TM (t - ,0) N-"o (el - too) N - " ~  
z = ( t  - t o o ) N - , , ~  t ~ o ( t l  _ t o ) N - , , o  = . , , ( t ) .  (as) 

Here tile points t = 0 and t = to are mapped to the point z = 0; t = oo, t = too -+ z = oo; t = tl --+ z = 1; 
and t = x -~ z = u (see Fig. 2). The map (35) may be viewed as the N-fold covering of the z-sphere by 
the t-sphere on which the Green's function is single-valued. A more detailed discussion of (35) is presented 
in the Appendix. 

rWe consider the correlation functions for general values of D, keeping in mind tile application to the superstring case. 
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Due to tile projective t ransformations,  the positions of the points to, too, and tl depend on x, and it is 
convenient to choose this dependence as tbllows: 

t o = x - l ,  

(N - nzc)x 
tcx~ = :I: - -  

( N  - no)x  + no '  

N - no - n ~  nox  
tl = + 

7too Ttoo 

N ( N  - n ~ ) x  

n ~ ( ( N -  no)X + n o )  

This choice leads to the following expression for the rational function u(x):  

( )N ( .,-no u = u ( x )  = (,~o - '~o~) ' ~ ~  '~L= U - n o  N - n ~  x + 
no N - n o o ]  x - 1  n o 

x x 
X n o - -  Ttoo 

(36) 

Since no < noo, the map u(x)  can be t rea ted  as the 2 (N  - no)-fold covering of the u-sphere by the 
x-sphere, which means  tha t  the equat ion u(x)  = u has 2(N - no) different solutions. It is worthwhile to 
note tha t  this number  coincides with the number  of nontrivial correlation functions in (32) and, therefore, 
different roots of Eq. (36) correspond to different correlation functions in (32). We see tha t  the t-sphere 
can be represented as the union of 2 (N - no) domains,  and each domain  V I J K L  contains the points x 
corresponding to the correlation function (33). If we take the appropria te  sys tem of cuts on the u-sphere, 
then every root  of Eq. (36) realizes a one-to-one conformal mapping of the cut  u-plain onto the corresponding 

domain  VI J K L. 
Now let us choose some root  of Eq. (36). We can always cut  the z-sphere and numer ,  te the roots 

tR(z)  of Eq. (35) in such a way tha t  they have the same monodromies  as the fields X.  Then  the Green's 
functions are obviously not  equal to zero only if kl  + k2 + k 3  + k 4  = 0 and are given by 

t'M(Z)t's(W ) 

( t M ( ~ )  --  t s ( ~ ) )  ~ 

k~k~t'M(z)t 's(w) 
4 t M ( z ) ( t s ( w )  -- to) 

k~k~t'M(z)t 's(w) 
4(tM(Z) -- to)( ts(W) -- to) 

k~kJ4t'M(z)t's(w) 

4( tM(z)  -- to ) ( t s (w)  -- too) 

kin kJ2t'M ( z )t's ( W ) 

4 ( tM(z)  -- too)( ts(w)  -- to) 

k[k~t 'M(z)t 's(w) 
4 t M ( z ) t s ( w )  

i j r  r k 2 k l t M ( z ) t s ( w )  
4( tM(z)  -- to ) t s (w)  

k~kJ4t'M(z)t's(w) 

4 t M ( z ) ( t s ( w )  -- too) 
i j l  t k 4 k l t M ( z ) t s ( W )  

4 ( t M ( z ) -  t c~) t s (w)  

k~kJ4t'M(z)t's(w) 
4( tM(z)  -- too) ( t s (w)  -- too)" 

(37) 

It is easy to verify tha t  these functions have the singularity --(~iJ(~MS/(Z -- W) 2 in the vicinity of z - w = 0 
and proper monodromies  at tile points z = oo, 1, u, and 0. 

Recall tha t  the stress-energy tensor is defined as 

oN( 1) 
1 l i m ~  OX}( ' ( w ) +  - -  z ) O X i  ( z  - w )  2 " T(z)= 2w-~ 

i = 1  I = 1  
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Using this definition and (37), we obtain 8 

( D ( ( t ~ ( z )  ~ '  1 ( t ~ ( z )  ~2~ k2(t~(z))2 _ 
((T(z)))=E k, k , @ )  - 7  t-TM~) ) + 8(tM(z)) 2 

M 

kxk2(t~ (z)) 2 k~(t~(z))  2 
+ + 

4 t M ( z ) ( t M ( z )  - to) 8(tM(Z) - t0) 2 

k, k4 ( t~  (z)) 2 k2k4 ( t~  (z)) 2 + + 
4 t M ( z ) ( t M ( z )  -- too) 4(tM(Z) - to ) ( tM(z)  -- too) 

k2(tM(z))2 ) 
+ 8 ( t ~ ( z )  7 ~ ) ~  " 

The term 

( t ' ~ '  l ( t " ~  2 t'" 3 ( t " )  2 

t ' ]  - - ~ \ t ' ]  - F -2\t' 

is the Schwartzian derivative, as could be expected from the very beginning. 
To obtain the differential equation for correlation function (33), we expand ((T(z)}} in the vicinity of 

z = u. This expansion is given by 

( (T(z ) ) )  - 
D D ( 2a2 SaT) 

16(z- u)= 16(z : u)~ ~ + 70 2a] + 
1 ( k  2 k 2 2klk2 

+ 4a0(z - u)u  \ x  2 + (x - t0) 2 + x ( x  - to) 

2klk4 2k2k4 ) 
+ ~ ( ~  - too) + (~  - t 0 - ~ -  tool + ' 

k~ + + 
( x -  too7 

(as) 

where the coefficients ak are defined as 

a k  m 
( -1)  k-1 [" no N - no 

k + 2  t ~  + ( z - t o )  k+2 
N - nr:x:~ 

(~] ~-<>o7+~) 
The first term shows that the conformal dimension of the twist field (:rKL is equal to D / 1 6 ,  as it should be, 
and the other terms lead to the differential equation for G(u,  ~t), 

D (  2a2 3a~) 
u & , I o g G ( u , ~ ) = - ~  1+  a2 2% 3 + 

1 [k21 k~ 2klk2 

+ ~a0  ~ , ~  + (:~ - to) 2 + x ( x  - to) 

2klk4 2k2k4 ) 

+ ~ ( x  - to~) + (:~ - t o ) ( x  - too) " 

k~ + 
(x  - too)2 

(39) 

It is useful to make the change of variables u -+ u(x) .  Then, performing the simple but tedious 
calculations outlined in the Appendix, we obtain the following differential equation for G(u,  ~): 

G log c(,,(~), a(~)) - 
do dl d2 D d log u + - - +  + -o ~- 

16 dx x x - 1 x + N-,~o 

d3 d, D [ 1 
+ N _ n o _ n ~  + n 0 

x - N-no X -- n o - n ~  24 X -- 

1) 
- -  + - -  , (40) 

~1 X --  O~ 2 

8If all k~ = 0, the  expec t a t i on  value of  T ( z )  in ti le presence of  twist  fields can be equ iva len t ly  found by using t M ( z )  to 
map the s tress-energy tensor  oll the  t -sphere  onto  tile z-sphere  wi th  the  subsequen t  s u m m a t i o n  over  M (see e.g. [11]). 
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where 

O~ i - -  

f 
no . /  nonoo(N - noo) + ( - 1 )  

no - ,zoo V (no - noo)2(N - no) 

are roots of the equation x2ao = 0 and the coefficients di are given by the following formulas: 

D no k ] -  + k 2 -  + klk4, 
do = ~ + 8(N---noo) 8no 

( r  N - n ~ ( k ~  D )  ~ d l -  D noo k42_ 
24 8 ( N -  noo) 8no~ --3 + k3k4, 

= 8(N-= 
noo N - n ~  (k2 ~ )  + ~k2k3, 

da D + 8 - - ~ Z ~ 0 ~ 0 ) ( k  ~ 3 ) +  8noo 

D no ( k ]  D )  + noo (k~ _ D )  + ~klka.  
d 4 =  ~ + 8--n---~ ~0n0 

(41) 

Taking into account that  the second equation on G(u,,2) has the same form with the obvious substitution 
u ~ *2, x -+ a~, we obtain the solution of Eq. (40), 

G(u, f,) = C(go,goo)~SD(kl + k2 + ka + k4)x 

no g - no - noo no 
x x +  N - n o  N - n 0  n 0 - n o o  

2e.. (42) 

Here, x = x(u)  is the root of the equation u = u(x) that  corresponds to given values of the indices I, J ,  K,  
and L, and C(g0, goo) is a normalization constant that does not depend on u and ,2. 

To determine this constant, let us consider an auxiliary correlation function 

Go(u, *2) = (ago~ [ - k l ,  -k2](oo)a,a(1,  1)oi j (u ,  ~)ago[kl, k2](0, 0)), (43) 

where I = 1 , . . . , n 0 ,  J = no + 1 , . . . , N .  We can fix I = no, J = N using the action of Cg o. This 
correlation function corresponds to the case noo = no and the rational function u(x) is 

2n0 - N g - 2 n o  1 + N-no ~ (44) 
u( x ) = 1 + -N----no 1 1 

T. 

The root of Eq. (44) that corresponds to correlation function (43) behaves as 

1 1 
- - - ( u - 1 ) + o ( u - 1 )  for u--+ 1. (45) 

x 4no 

The expression for the correlation function Go(u,*2) derived fl'om (42) in the limit noo --+ 'no is 

D 
D _o  X N - 2 n 0  ] ~2 

Co(**,*2) = C( o)n 8 • 

Z ?~'0 2d2 X 
X [ x [ 2 a ~  1[ 2d' q- Y -  n-------o NN__~00- 2n0 2da, (46) 
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where the coefficient di is given by Eq. (41) with the obvious subs t i tu t ion  noo --4 no, 
k4 = - k 2 .  

Taking into account  the O P E  

k3 = -k l ,  and  

aly(1, 1)alj(u, ~) - -  
R-D 

+ �9 

and norlnalizat ion (16) of the two-point  correlat ion functions,  we obta in  

Co(u,  ~) 
R D 

lu - I I  ~ "  
(47) 

On the other side, using (45) and (46), we derive 

o0(~, ~)-~ C(go)n~ (4-~0 I~,- 
) -2(4~ +~2+~3- ~  R D D 

I I  lu  - II D C(g~176 (48) 

in the limit u --+ 1. Compar ing  (47) and (48), we see t ha t  the normal iza t ion  cons tan t  is 

D 
C(go)-- (4no) - x  �9 (49) 

Next, let us consider the l imit  u --4 0. Taking into account  the O P E  

["Ygr'ONgO [|" k2) 
CrnoN(U, fZ)ago[kl,k2](O) = D %"~n~176 kl~'l' [Ul.g_+2Ago[k,,k2l_2ag,,oNgo[k,+k2l'ag.oggo[kl + k2](0)+ 

Cgog-oN (kl  k2) 
no N , g o  

+ _~+2Ago[k,,k2]_2Ag.oNgo[k,+k2]Ogog.oN[kl + k2](O) + ' "  (50) 

we obta in  

C o ( ~,, "a ) -~ 
cgnoNg~ ( I .  

noN,go I,~l, k2)  
x 

I,u. I -~ +2Ag o [kt ,k2]-2A9. 0 N 9o [k, +k21 

• ( a g o ' I - k , ,  -k2](oo)CrnoN(1)ag,,o.go[kl + k2](O))+ 

ngog-o~ r,. k2) 
+ "-'no N,go \ ~ 1 ,  x 

[iLl ~" + 2 A  9o [k, ,k2]--2Ae,.,o N e o [k, +k2 ]  

• (eg o, [ - k , ,  -kal (oo)enoN(1)agog.o  . [k, + k2](0)).  (51) 

It is not  difficult to show tha t  the correlat ion functions (Ogo,anoNag.oNgO) a n d  (O'golO'lloNagognoN) are equal 
(.~go g .  o N (-yg"o N go 

to "~noN,go and "~nog,go, respectively, and,  moreover,  are equal to each other.  This  follows from (25) and (30) 

and from the obvious s y m m e t r y  proper ty  of the s t ruc ture  cons tan t  Vnog, g og~-ga~176 -k2) = ~,,oN,go'~g"~176 l, k2), 

(%o'en~176 = (Og.o.goa,~oN%;'  ) = 

( a g • o N g o l a n o N a g o )  = l:~Dg'~gOg"o N ~- ~ "--~no N , g  o 

F? D [~g"O N go 
(%o '.~-o N c'"o N %o ) . . . .  no N,9o" 

Therefore,  the correlat ion funct ion Go(u, ft) in the limit u --4 0, using tile s t ruc tu re  cons tan t  

(s2) 

f'g"~ Ng~ n" k2), C(no,  k l ;  N - no, k2) = "~,,oN,go ~,'~1, 
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becomes 
2RDC2(no, kl;  N - no, k2) 

lU ] ~ +2A~0 [kt ,k21- 2A9,,O N 90 {k, +k21' 

On the other hand,  taking into account  tha t  the root x(u) behaves as 

?7,0 [ N - 2 n  0 

- - 1  -+ N n ~  . x 
+ N - n o  

(N ~ l - no)  N l u l ~  

in the limit u --+ 0, we obtain  

(53) 

2~RDC(gO) N-~+4d2(N  no)-~+4"o~,N d2no-4'--~-ud2 Go(U, fz) ~ - (54) 

from (46). Compar ing (53) and (54), we obtain the s t ructure constant  

where 

N--,, _ D _  ~0_ 
C(no,k l ;  N - n0,k2) = 2 - ~ ~  N-~+2d~(N  - n0) - D - 2  N O d2no 24 2 N d2, 

d2 = d2(n0, k l ; N -  n0,  k2) = 

(55) 

(56) 

Now it is not difficult to express any three-point  correlation function of the form (ag-,g,jargo-9) through the 
s t ructure  constant  C(n, k; m, q). First, we note that  any twist field ag[{k~ }] has the following decomposit ion 
into the tensor product  of the twist fields a(,)[k]: 

Nstr 

= @ (57) 

where the element 9 has the decomposi t ion ( n t ) ( n 2 ) - -  (nN~) .  9 With the help of (52), we obtain the 
s t ructure constant  C(n, k; m, q) with arbi t rary n and m, 

C(n ,  k; m, q) = R -D ( a ( _ . _ , ~ ) [ - k  - q](cx~)a1j(1)a(n)[k] | a(m)[q](0)), (58) 

where I e (n) and J e (m). 
Using (57) and (58), we easily obtain the three-point correlation function 

@g_,9,j[{q~}](cx~)a,y(1)ag[{kc,}](0))-- @g[{kc~}](oo)a/ j (1)ag_,g , j [{qa}](0))= 

Nstr N~r 

= (a(-,~,--2)[q] @~ | a(,~2)[k2] @ a(n.)[k~](0)) -- 
0~=3 0~=3 

Nstr 

= 1-I ~ ( q a  + ka)(cr(-'~'-"2) [ql(~176174 = 
a = 3  

Nstr 

= C ( n , ,  k l ;  n2,k2)5ff(q + kl  + k2) I - I  6D(qa + ks) ,  
o = 3  

(59) 

9We use tile notation ( - n l ) ( - n 2 ) - "  (--~'Nstr) for tile decomposition of the element g-1. 
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where I �9 (nl)  and J E (n2). 
It is now clear that  the s t ructure  constant  C 9'J~ in the O P E  of aia and a 9 is equal to C(n~, kl ;  'n2, k2) I J , g  

- l  - i  
and that  the s t ruc tme  constant  C ~ (which coincides with C gIJg  9tJ due to (52)) in the O P E  I J , g - l g t y  I J , g - l g i j  

O ' l J ( U  , "~l,)(Yg-,g! [{q,~}](0) = ~ 6 q ' + q 2 - q ' 0  N 
J "~+2Ag- t~ t  / [{qo }]--2Ag[lqa }] 

-1 g 
• (CiJ,9_~g,s(qI,q2)ag-~[{qa}](O)+ 

g - I  

+ CiJ,g-19,j(ql,q2)agtyg-'gty[{qa}](O)) +' '"  (60) 

is -1 
C 9 IJ,g-'gtJ (ql ,  q2) : R-Dc(rq,  ql;  n2, q2)- 

~9,ooNgo and C g''~176 which are used to find the normalizat ion In particular,  the s t ructure  constants  "Jnoo N,go no +n~,N;go' 
constant  C(go, g~) ,  are given by 

C g " • 9 ~  = R-DC(noo - no k l ; N  - noo,k2),  n o o N , g o  

Cg"~176176176 k2) R-DC(N noo-no k l ; n o o , k 2 )  n o + n o o , N ; 9 o  k 1, = - -  , " 

(61) 

We are now ready to determine the normalizat ion constant  C(go, goo) by the factor G(u, f,) in the limit 
u --+ 0 on three-point  functions. According to (36), u --4 0 in the three cases 

n0  

N -  no '  
X ---4 (~:), 

N - n0 - noo X---+ 
N - no 

and, conversely, any root  XM -~ ZM(U)  of Eq. (36) tends to one of these values when u -+ 0. Evidently,  
these three possible asympto t i c  behaviors correspond to three different choices of the  indices K and L in 
Eq. (32). 

We begin with the case where K = no and L - N.  Using O P E  (50) and normal izat ion (16) of the 
two-point correlation functions, we obtain,  in the limit u ~ 0, 

k4) C(no, kl ;  N - no, k 2 ) C ( n ~  k3; N - noo, k4) G(u, ~) --+ 6RD(kl + k2 + k3 + [U I -~ +2bg  o [k, ,k2]--2Agno N 90 [k, +k21 

In this case, the root  x(u) has the following behavior  in the vicinity of u = 0: 

?lO [ N--n0 noo n0 ~/2 N 
+ N : n o  --+Nn~ N noon ( N - n o )  (N-noo)'-~lul -~. X 

l 

Using (42) and (63), we easily find 

(62) 

D 
~ C(go, g~) ( n o N ( N -  nr ) - -~  

G ( u , u ) ~ S D ( k l + k 2 + k 3 + k 4 , ~ u l S ~ - _ ~ \ ( N _ n o ) R ( n o _ n ~  ) • 

no no no ) (no : ;,oo ) ] \ N - no ) 
[" N - "O ) 2d2 

n ~  (N  - , "_9__:~ • ~ N n o N  - ~  no) N ( N - n ~ ) ~  

(63) 

(64) 
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It is not difficult to verify that  

1 
Ago[kl, k 2 1 -  Ag,,oNgoik, + k21 = - ~ d 2 ,  

Compar ing  (62) and (64), we obtain the normalizat ion constant.  as should be expected. 
general values of D, the corresponding expression is rather  complicated and is not wri t ten here. 
D = 24, the coefficient di is given by the following simple formulas: 

do = 1 + ~klk4 ,  

d 3 = 1 + lk2k3,  

d2 = 1 + ~klk2 ,  
1 

dl = 1 + -- kak4, 
4 

d4 = 1 + l klk3, 
4 

where kikj  ~ k i k j  - ( 1 / 2 ) k + k ;  - ( 1 / 2 ) k ( k  +. 
Using (65), we easily obtain 

However, for 
For 

(65) 

2-i'- ( N _ n o ~ 2 + � 8 9  k, 
�9 ( 6 6 )  C(go, goo) = n o ( N  - no)noo(N - noo)(noo - no) 2 noo - n o /  

Thus, we have found the normal izat ion constant  for the N correlation functions presented in the first and 
second terms of Eq. (32). 

Now let us de termine  tile normal izat ion constant  for noo - no correlat ion functions of the form 
(O-gcc(j)O'noJGn~NO'go). Using (60) and (61), we find 

G(u ,g )  -+ 5D(kl  + k2 + ka + k4)•  

C(noo - n o ,  k 2 + k4; N - ?zoo, -k4 )C(noo  - no, k2 + k4; no, k l )  • 
lU [ -~ +2Ag 0 [k, ,k21--2Ag.r ~ N 9o [k, ,k2 +k4 ,k4] 

in the limit u --+ 0. Taking into account  the behavior of the root x(u) in the vicinity of u = 0, 

{xl--> ( n ~ - n 0 ) " ~  _ N - n o  
N - noo ] M ~0--oo, 

we obtain 

(67) 

~RD(kl + k2 + k3 + k4)V(go,goo) x 
~'~0+~,+'2+d3+d,--8' 

I~1~ + "~--~ 

( x ( n ~  - n0F  ~  na o \ N  - n ~  

from (42). A simple calculation shows that  

2 ( d  0 + d  1 + d  2 + d  3 + d  4 -- ~ ) 

n o o  - - n  O 

(68) 

do + dl + d2 + d3 + d4 D 
A g o [ k l , k 2 ] -  Ag,,~Ngo[kl, k2 + k4,k4] = 12 

I Z e o  - -  n 0 

The normalizat ion constant  C(go, goo) can be found from (67) and (68). For D = 24, the computat ion is 
drastically simplified if we note tha t  

do + dl + d2 + d3 + d4 - 2 = - 1  - ~klk3,  

d2(noo - no, k2 + k4; N - n~o, - k 4 )  - nooN -_nOno (1 

d2(noo - no,k2 + k4; no,k1) -- noo (1 + 
n c x  ~ - -  T t  0 

+ klk3) 
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Then,  it can be easily shown tha t  C(go, g~) is, again, given by Eq. (66). 
We can find the normal iza t ion cons tan t  for the remaining N - no - noo correlat ion functions of the 

tbnn  (ag~(a)a,~oJa,~o+,~,Na9o) in the same manner ;  once again, it is defined by (66). 
Up to now, we have considered the correlat ion functions 

G . K L ( u ,  ~) = (%00 (oo)o,a(1)*KL(u,  ~ )~o (0 ) )  

with lul < 1. The correlat ion functions GIJKL(U, ft) with lul > 1 can be calcula ted in the same way and 
their dependence  on u is given by Eq. (42) as well. The  normal iza t ion cons tant ,  in this case, is derived 
by s tudy ing  the limit u -+ oo and it coincides wi th  the previously found cons tan t  (66). Therefore,  the 
t ime ordering can be omi t ted .  To comple te  the c o m p u t a t i o n  of the S -ma t r ix  e lement ,  we need to integrate  
the correlat ion function F(u, f~) given by (24) over the complex  plane. W i t h  the help of the m o m e n t u m  
conservation law, the mass-shell  condi t ion,  (65), and the equali ty 

1 d~ (no - ~oo)(~ - ~ l )2 ( z  - a2) 2 
u d~7 - s:(s:_ 1) ( ~ -  N - n o - . ~  

N-no ) ( ~ - - n o - n ~  "0 ) ( x +  N_no : 

we can rewrite Eq. (42) as 

GIJKL(U,~) = 5 ~ ( k l  + k2 + ka + k4)C(go, goo)(noo - no)2•  

d~ -2 Is: - <~*l~ls: - ~212 
x I'~1 -~  Is: - no 14 x 

nO - - n o o  

x(x - N-no-noonO ~ �89 kak~ . N-no ) ~ ' ~ '  ( ~ -  1)(~ + ,~o ~ 
X _ _ noN_no l 

S: -- S: -- 
nO - -  n o o  nO - - n o : )  

Now the integral f d2ululGuKi(u, f~) can be easily calculated by changing  the  variables u ~ x, 

d2u lulG,aKL(U, a) = aD(k~ + k2 + k3 + k4)C(go,  goo)(noo - no) 2 x 

•  d2zlz-a*12ls:-a2121x(s:-N- '~~176176 I~ I , . ~  . x no I N-no ) ,k ,k ,  ( X - - 1 ) ( X +  Nn_---~no ) �89 
K~ - -  - - - E ~ - -  7~ . . . . .  , (69) 

- -  X - -  r*o 
I J K L n o - - n ~  r~O - - t l o o  n O  - - r i c o  

where we have taken into account  tha t  under  this change of variables, tile u-sphere  is m a p p e d  onto the 
domain  VUKL. Since tile correlat ion funct ion 

F(~,,  ~,) - CoCoo 2n0(N - no)noo(N - noo) E GrJKL(U, (z) 
N! IJKL 

where the s u m m a t i o n  goes over the set of indices listed in (32), we have the integral  

/ d2ululF(u,f~) = 2 - 1 ~  + k2 + k3 + k4) ( N - no "~2+�89 

• f :s: 'x-  2'2 I' [ I 
_ N-no ) ~k,k, ( s : _ l ) ( ~ +  ~o ) �89 

Is: - - ~ -  F no - - n0 N-n~ 
n O _ f r o  ~ nO - -?2oo  X - -  n O  - - n o o  

Finally, per forming the change of variables 

(70) 

/Zoo -- 7t0 X(X -- N--n0-n~N-no ) 
z - -  

N - ~ t 0  x - no 
nO - - n o o  
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we obtain 
f" 2 - 9 5 D ( k l + k 2 + k a + k 4 )  / 'd2zlzl �89 1 z �89 

d2ululF(u ' f*)= ~-0-~---n--o)--~oo--(N--n--~-), - I - (71) 

The S-matrix element can be found using (23) and taking the limit as R -+ o% 

(f lSli)  = _i,X22-SNa6(k~ + kr  + k a + k a ) 6 D ( k l  + k2 + ka + k4) f d2z izl k.k, i1 _ zl ,3 . _ 

v/no(N - n o ) n o o ( N -  noo) 

= - i  )~22-SN5(~i+ +++k:()aD(Y'~iki) f d=z Izl�89 I1 - zl (72) 

C k k 2 k 3 k4 

We represent the light-cone momenta k + as k + = m i / N  and rewrite (72) as 
2 - 8  

_i.~ 2 Ya~,+~=+~a+m~,o(y~.ik:)5D(~7_.iki) f l 'k 
( f l s I 0  = d2z Izl~k'k'll  -- zl~ "~' .  (73) 

<+ k + J 

In the limit N -~ oo, the combination N6.~l+.~2+ma+m,, 0 goes to 6 ( ~  i k +) and Eq. (73) becomes 

(flSli) = - i  4k ~+k2+ka+k4+ d2z Izl �89 I1 - zl �89 (74) 

Taking into account that the scattering amplitude A is related to the S-matrix by (see, e.g., [12]) 

' i D + 2 ( ~ k ~ )  A(1, 2, 3, 4), (.flSli) 
v'/kl k 2 k3 k4 

+ + + + 

we finally have 

A(1, 2,3, 4) = ~X22-g f d2ztz1�89 I1 - zl�89 '~3k`, 

which is the well-known Virasoro amplitude. 

5. C o n c l u s i o n  

In this paper, we have developed the technique for calculating the scattering amplitudes of bosonic 
string states, using the interacting SNR24-orbifold sigma model. The scattering amplitude turned out to 
be automatically Lorentz-invariant. This gives strong evidence that the corresponding two-dimensional 
Yang-Mills model should possess the same invariance. 

It would be interesting to trace the appearance of loop amplitudes in the framework of the S N R  24- 

orbifold sigma model. Obviously, the one-loop amplitude requires the computation of the correlation func- 
tion for four Z2-twist fields sandwiched between the asymptotic states; technically, this results in the 
construction of noncomnmtative Green's functions in the presence of six twist fields. We note that can- 
cellation of possible divergences in the amplitude may require further perturbation of the CFT action by 
higher-order contact terms. 

The next important  problem to be solved is to consider the S N R  s supersymmetric orbifold sigma 
model and to prove the DVV conjecture. It is not difficult to introduce twist fields for fermionic variables 
and calculate their conformal dimensions. However, calculation of the four-point correlation functions of 
the twist fields is a more complicated problem and is now under consideration. We do not exclude the 
possibilty that simplest way to solve the problem is to bosonize the fermion fields. 

The authors thank I. Y. Aref'eva, L. O. Chekhov, P. B. Medvedev, and N. A. Slavnov for the valuable 
discussions. One of the authors (S. F.) is grateful to Professor J. Wess for the kind hospitality and the 
Alexander von Humboldt Foundation for the support. This work was supported in part by the Russian 
Foundation for Basic Research (Grant Nos. 96-01-00608 and 96-01-00551) and the International Science 
Foundation (Grant No. a96-1516) . 
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A p p e n d i x  

In this appendix,  we consider some propert ies  of map  (35) and outl ine the der ivat ion of differential 
equat ion (40) for the four-point  correlat ion functions (33). Let us consider m a p  (35), 

t n ~  - to) N - n ~  (tl - too) N - n ~  

z = (t - too) N-n~ t~~ - to) N - n ~  -~ u ( t ) .  
(A.1) 

This  map  is the N-fold covering of the z-sphere by the t-sphere. Obviously, it branches  at  the points  t = 0, 
to, too, and oc. To find the o ther  branch points,  we have to solve the equa t ion  

d log z 

dt  

no N - n o  N - noo 
+ 

t t - t o  t - too 

noot 2 + ( ( N  - no - noo)to  - N t o o )  t + nototoo 

t ( t  - to ) ( t  - too) 
(A.2) 

In general, there are two different solutions of Eq. (A.2), tl  and t2, and m a p  (A.1) has the form 

z - zi "., (t - t i )  2, z l  = 1  = u ( t l ) ,  z 2 = u = u ( t 2 )  

in the vicinity of these points.  Due to the projective t ransformat ions ,  we can impose  three  relations on 
the posit ions of the branch points.  However, we have already chosen the  points  0 and oc as two branch 
points; therefore, only one relat ion remains  to be imposed.  Since the  differential  equa t ion  on the  four-point  
correlation function is wr i t t en  wi th  respect  to the point  u, it is convenient  not  to fix the posi t ion of the 
point  t2 - x. Then,  the remain ing  relat ion tha t  leads to the ra t ional  dependence  of poin ts  to, too and tt 
on x is 

to = x - 1. (A.3) 

The  point  x is assumed to be a solut ion of Eq. (A.2). Therefore,  f rom (A.2) and (A.3), we can immedia te ly  
derive tha t  too is expressed th rough  the point  x as follows: 

( N  - n o o ) z  
= - . (A.4) 

too x ( N  - n o ) x  + no 

The  second solut ion of Eq. (A.2) can now be easily found. It is 

N - no - noo n o x  N ( N  - n ~ ) x  
t l  ---- + - - - -  = 

noo noo n o o ( ( N  - n o ) x  + no)  

n o ( z  - 1) ( (N - n o ) x  + no + noo - N )  

noo ( ( N  - n o ) x  + no)  
(A.5) 

The  rat ional  funct ion u ( x )  is defined by the equat ion  

= _ t o ) N - , , o ( t ,  _ 

( x  - t o o ) N - " o ~ t ~ ~  -- to)N- '~o  " 
(A.6) 

Using (A.3)-(A.5),  we derive the relations 

( N -  1) - noo )x -  no) 
tl  - t o  = 

n ~ ( ( N -  n0)x + no) 

( ( ~ o -  ~ ) ~ -  no) ( (N  - ~0)x + ,~o + noo - N )  
t 1 - t o o  ---- 

n ~ ( ( N -  n o ) x  + no)  
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Then ,  the rat ional  funct ion u(x)  becomes 

u = u(x )  = (no - noo) n~176176 nn~~ \ N  - noo x :N-"~ • 

x z - - -n  
X n o oo 

(A.7) 

To obta in  differential  equa t ion  (40), we need to know the decompos i t ion  of the  roots tK(z )  and tL(z)  
in the  vicinity of z = u. Let us take tile logar i thm of bo th  sides of Eq. (A.1), 

l o g Z  = n 0 1 o g  . . . . .  t + ( N  no) l o g t - t ~  (N  n o o ) l o g t - t ~ 1 7 6  (A.8) 
u x x -- to x -- too 

Decompos i t ion  of the 1.h.s. of (A.8) a round  z = u and the r.h.s, of (A.8) a round  t = x gives 

~-j (-1)k+~ ( L ~ )  k oo 
~. = ( t - - x ) 2 E a k ( t - - x ) k ,  

k = l  k = 0  

(A.9) 

where 
( - 1 )  k - 1 / '  no N -  no 

a k -  ~2 ~ +  (x---~o~ +2 
N - noo ) 

(d- 7oo-F+~ " (A.IO) 

It is clear from (A.9) t ha t  t (z)  has the  decompos i t ion  

OO 

t -  7: = E ck(z  - u)~.  (A.11) 
k = l  

Subs t i tu t ing  (A.11) into (A.9), we find 

1 2 c 1 = , 
uao 

c 2 - -  
a l  

1 
2a0clc3 -- 2u 2 + 4u2a---~o u2a2. 

2uao'  (A.12) 
5a 2 a2 

The  other  coefficients of this expans ion  are not  impor t an t  for us. 
Then ,  using decompos i t ion  (A.11) and Eq. (A.12), we obta in  

1 
t' ] - 2 ( z  - u )  2 + o 0 ) ,  

( tu~ 2 1 3 ( c  2 

t'] -4(z u)  2 + -  - -  Z - -  U C 2 

c~ c3 _ 1 1 + - -  . 
c 2 cl 4u ao 2 2% 3 

Finally, tak ing into account  tha t  only the two roots  tK(z)  and tL(Z) in the set of N roots tM(z) have 
decompos i t ion  (A.11), we obta in  (38) and (39). The  coefficients ak can be rewr i t ten  as the following 
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functions of x: 

a 0 

a I 

a 2 

no(no + noo - N)  no (N  - no) ( N  - no)(noo - no) + + = 
2(N - noo)x 2 ( N  - noo)x 2(N - noo) 

( N  - no)(noo - no) (x - a i ) ( x  - a2), 
2 (N  - noo)z 2 

n0( (N  - noo) 2 - n 2) ng (N  - no) 

3(N - noo)2x 3 (N  - noo)2x 2 

n o ( N  - n o )  2 ( N  - n o ) ( ( N  - n o ~ )  2 - ( N  - no) 2) 

( N  - noo)2x 3 ( g  - noo) 2 

n o ( ( N -  no~) 3 - n 3) n3 (N  - no) 3 n 2 ( N -  no) 2 

4 (N  - noo)3x 4 + (N - noo)3x 3 + 2 (N  - noo)3x 2 ~- 

n o ( N -  no) 3 ( N -  n o ) ( ( N -  noo) 3 - (N - n0) 3) 
+ 

( g  - n ~ ) 3 x  4 ( g  - n ~ )  3 

tA.13) 

To obtain differential equation (40), we need to use the following impor tan t  equalities for d log u /dx ,  which 
can be derived using (A.7) and (A.13): 

1 du no + noo - N N 

u d x  x x -  1 

N - no - no~ 
"[- N - n o - n o o  + 

X -- N - n o  

N 
+ + 

nO 
X + N - n o  

'/~,0 - -  ?2oo  

X - -  n o  ' 
n o - - n c ~  

4(N - noo)2x4a 2 

( N  - n 0 ) 2 ( n o  - noo)Z(  - -  -no-noo N-no ) ( X - - n o  

(no -- noo)(x -- a l )2 (x  -- a2) 2 

x ( x -  1 ) ( x -  N - n o - , ~  n0 ~___em_)" 
 -no ) ( x  - ) ( x  + no - noo N-no 

no - -noo  N--r~o ! 

1 du 

u dx 

Finally, to obtain (40), we use the Lagrange interpolat ion formula for the rat io of two polynomials,  

P ( x )  P ( x i )  1 

where each xi is a simple root  of Q(x)  and deg P < deg Q. These equalities drast ical ly  simplify the  derivation 
of Eq. (40). 
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