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VIRASORO AMPLITUDE FROM
THE SVR2?*-ORBIFOLD SIGMA MODEL

G. E. Arutyunov! and S. A. Frolov?

The four-tachyon scattering amplitude is derived from the S NR2?_orbifold sigma model in the large N
limit. The closed string interaction is described by a vertex that is a bosonic analog of the supersymmetric
vertex recently proposed by Dijkgraaf, H. Verlinde, and E. Verlinde.

1. Introduction

Compactification of M(atrix) theory [1] on a circle results in the N = 8 two-dimensional supersymmetric
SU(N) Yang-Mills model [2]. It was recently suggested in [3-5] that in the large N limit, the Yang-Mills
theory describes the nonperturbative dynamics of type IIA string theory, while the string coupling constant
was argued to be inversely proportional to the Yang-Mills coupling. This suggestion appears to be very
natural since, in the IR limit, the gauge theory is strongly coupled and the IR fixed point may be described
by the M = 8 supersymmetric conformal field theory on the orbifold target space SYR®. In the large N
limit, the Hilbert space of the orbifold model is known [6] to coincide with (to be precise, to contain) the
Fock space of the free second-quantized type ITA string theory. Using these facts, Dijkgraaf, E. Verlinde,
and H. Verlinde (DVV) [5] have suggested that perturbative string dynamics in the first order of the string
coupling constant can be described by the SR8 supersymmetric orbifold conformal model perturbed by an
irrelevant operator of conformal dimension (3/2,3/2). An explicit form of this operator V was determined
in (5] and it fits the conventional formalism of the light-cone string theory nicely.

The described approach does not appear to be limited to the supersymmetric case only. In particular,
one can suggest [7] that the M(atrix) theory formulation for closed bosonic strings is provided by the large
N limit of the two-dimensional Yang-Mills theory with 24 matter fields in the adjoint representation of the
U(N) gauge group. In this case, the IR limit of the gauge theory results in the SV R?4-orbifold conformal
model. The closed bosonic string interactions are described via perturbation of the conformal field theory
(CFT) action with a bosonic analogue of the DVV vertex [7].

An important problem posed by the above-described string interpretation of the S™-orbifold sigma
models is to obtain the usual string scattering amplitudes directly from the models. This problem seems
to be nontrivial because the S™V-orbifold models are non-Abelian.

The aim of the present paper is to derive the four-tachyon scattering amplitude from the SVRZ2%-
orbifold CFT perturbed by the bosonic analogue of the DVV interaction vertex.

Obviously, the first step in constructing the scattering amplitudes consists in defining the incoming
and outgoing asymptotic states |¢) and |f). The free string limit g; — 0 implies that the asymptotic states
should be identified with some states in the Hilbert space of the orbifold CFT and, therefore, should be
created by some conformal fields. Then, by conventional quantum field theory, the gZ-order scattering
amplitude A can be extracted from the S-matrix element described as a correlation function of n conformal
fields V(z;) with subsequent integration over the insertion points z;,
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Construction of the asymptotic states |i) and |f) that can be identified with incoming and outgoing
tachyons and computation of the above-mentioned correlation functions in the SV R2*-orbifold CFT are
the main questions we consider in order to obtain the four-tachyon scattering amplitude.

The paper is organized as follows. In Sec. 2, we review the description of the Hilbert space of the
orbifold model. In Sec. 3, we introduce the twist fields that create the states of the Hilbert space and find
their conformal dimensions. In Sec. 4, we calculate the scattering amplitude and show that it coincides
with the Virasoro one. In the Conclusion, we discuss some unsolved problems.

2. SNRP-orbifold sigma model

We consider two-dimensional field theory on a cylinder described by the action
1 . iy . .
S = oy /deo (0: X70: X} — 0, X0, X7}), (1)
T

where 0 <o <27, i=1,2,...,D,1=1,2,...,N, and the fields X take values in SNRP = (RP)N/Sy.
As is usual in orbifold models [8, 9], the fields X* can have twisted boundary conditions,

X*(o +27) = gX'(0), (2)

where g belongs to the symmetric group Sy .

Multiplying (2) by some element h € Sy and taking into account that X* and hX* describe the same
configuration, we observe that all possible boundary conditions are in a one-to-one correspondence with the
conjugacy classes of the symmetric group. Therefore, the Hilbert space of the orbifold model is decomposed

into the direct sum of the Hilbert spaces of the twisted sectors corresponding to the conjugacy classes [g]
of § N [6],

H(SYRP) = €D Hyg).
)
It is well known that the conjugacy classes of Sy are described by partitions {N,} of N,

N = i niN,,
n=1

and can be represented as
[9] = ()M ()N - (). (3)
Here, N, is the multiplicity of the cyclic permutation (n) of n elements.
In any conjugacy class (g}, there exists a unique element g. with the canonical block-diagonal form

ge = diag(wy,...,wy,we, ..., W, ..., Ws...,W;), (4)
———— —— ————
N times Njtimes N, times

where w, is an n x n matrix that generates the cyclic permutations (n) of n elements

n—1

Wn = Z Ei,i+1 + Enl

i=1
and E;; are matrix units.

It is not difficult to show that w, generates the Z, group since w™ = 1 and that only the matrices wk

from Z, commute with w,. Since the centralizer subgroup C, of any element g € [g] is isomorphic to Cg.,
we conclude that

s
Cg = H SNn X ZTI':/"’
n=1
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where the symmetric group Sy, permutes the N, cycles (n). It is obvious that the centralizer C, contains
[13 -, Na'n™» elements.

n=1
Due to factorization (3) of [g], the Hilbert space H(y = Hn, ) of each twisted sector can be decomposed
into the N,-fold symmetric tensor products of the Hilbert spaces H(,), which correspond to cycles of
length =,

s s Snn
Himy =@ SMHem =) (Z*(n) ®- ®H(n)l) :

n=1 n=1

—

N, times
The space H(n) is a Z,-invariant subspace of the Hilbert space for a sigma model of Dn fields X} with the
cyclic boundary condition ' .
Xi(o+2m)=X;,,(0), 1=12,...,n (5)
The fields X (o) can be glued together to make one field X (o) that is identified with a long string

of length n. The states of the space H(,) are obtained by the creation operators of the string acting on
eigenvectors of the momentum operator. These eigenvectors have the standard normalization

(qlk) = 6°(q + k)
and can be regarded as states obtained by the operator e’** acting on the vacuum state (which is not

normalizable): [k) = e***|0), (q| = (0]e'3=.
The Z,-invariant subspace is singled out by imposing the condition

(Lo — Lo)|¥) = nm|¥),

where m is an integer and Lo is the canonically normalized L operator of the single string.

If D = 24, then the Fock space of the second-quantized closed bosonic string is recovered in the limit
N — 00, n;/N — p} [6], where the finite ratio n;/N is identified with the p} momentum of a long string.
The Z,, projection reduces in this limit to the usual level-matching condition L((]i) - l_Lg) = 0. The individual
p; light-cone momentum is defined by means of the standard mass-shell condition p} p; = L(()i).

3. Twist fields

Let us consider the CFT of DN free scalar fields described by action (1). It is convenient to perform
the Wick rotation 7 — —i7 and to map the cylinder onto the sphere: z = e, z = 77?0,

The vacuum state |0) of the CFT is annihilated by momentum operators and by annihilation operators
and must be normalizable. To identify this vacuum state with the vacuum state of the untwisted sector of
the orbifold sigma model, we choose the normalization of |0) to be

(0]0y = RPN,

Here, R should be regarded as a regularization parameter of the sigma model. We regularize the sigma
model by compactifying the coordinates z} on circles of radius R. Then the norm of the eigenvectors of the
momentum operators in the untwisted sector is given by

27R

N
(qlk) = (2m)PN / 4PNz a9z = TT 68 (ar + ki),
0 I=1

where k¢ = m}/R and ¢} = n}/R are momenta of the states, m} and n} are integers, since we compactified
the coordinates, and

D
5 (k) = RP ][ bmr0
i=1
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is the regularized é-function. The usual normalization of the eigenvectors is recovered in the limit R — oo.
As usual, the field X (z, z) can be decomposed into left- and right-moving components,

2X(2,3) = X(2) + X(2). (6)

In what follows, we concentrate our attention mainly on the left-moving sector.

Let 04(z,2) be a primary field [10] that creates a vacuum of a twisted sector at the point z, i.e., the
fields X*(z, z) satisfy the monodromy conditions

X (ze¥™, 267 2™)0,4(0,0) = gX*(z,2)a,(0,0).

Note that the twist field o4(z, z) cannot be represented as the tensor product of the twist fields o4(z) and
G4(2) creating the vacuum states of the left- and right-moving sectors, respectively.

It is obvious that the conformal dimension Ay depends only on [g]. To calculate Ay, let us assume
that g has factorization (3). Then A, is given by the equation

AQ == Z NnA(n), (7)
n=1

where A(,,) denotes the conformal dimension of the twist field o(,) that creates the vacuum state of the
space H(n) for the sigma model of Dn fields with the cyclic boundary condition (5). Let the twist field oy,
be located at z = 0 and let us denote the vacuum state® as |(n)) = 0(,)(0)|0). Since the twist field T (n)
creates one long string, we normalize the vacuum state |(n)) as follows:

((n)l(n)) = R®. (8)
The fields X (z) have the following decomposition in the vicinity of z = 0:
. 1 . 2mi Cm_
0X}(z) =i ;amexp{—TIm}z n (9)

where o, (m # 0) are the usual creation and annihilation operators with the commutation relation

[aim af;] = m5ij5m+n'0 (10)

and o}, is proportional to the momentum operator.4
The vacuum state |(n)) is annihilated by the operators o, for m > 0.
Since 0(,) is a primary field, the conformal dimension A(ny can be found from the equation

(T (2)|(n)) = é(;l—)((n)l(n)),

where T'(z) is the stress-energy tensor.
Using (9) and (10), we calculate the correlation function

13

() 0X3(2)dXw)[(n) = —69 — ")),

nz(z% — wﬁ)

3This vacuum state is a primary state of the CFT.
“al = p'/2 in the string units o’ = 1/2.
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Taking into account that the stress-energy tensor is defined as

T(z) :——lll)lglzZZ<C)X1 (2)0X}(w) + T 1w)2)’

1=17I=1 -

D 1
Ay = —{n-—).

The excited states of this sigma model are obtained by acting on |(n)) with some vertex operators. In
particular, the state corresponding to a scalar particle with momentum k is given by

one obtains

o(ny[k](0,0)]0) = : exp{ik} X}(0,0)}: |(n)), (12)

where summation over ¢ and I is assumed, k} = m}/R is the momentum carried by the field X}(z, z), and
= 3"7_, k} is the total momentum of the long string.

Using the definition of the vacuum state |(n)), we can rewrite Eq. (12) in the form

kL
7 0,0010) = exo =7 (0,0) i ), (13)
where "
7= 2 Xi9) (14)
\/_ I=
The field Y (2) has a trivial monodromy around z = 0 and is canonically normalized, i.e., the part of the

stress-energy tensor depending on Y is —(1/2):9Y (2)0Y (z2):.
It is obvious from (13) that the conformal dimension of the primary field

o) k](z, 2) = :exp{i K

Tn Z }:a(n)(z, zZ)

is equal to

k2 D 1 k?
Ak = A —=—|n--
ol (n)+8n 24( >+8n

where decomposition (6) is taken into account.
According to Eqs. (7) and (11), the conformal dimension of o4 is given by

D >~ N,
ZN n(n-n)=m(v-2 )
n=1
We can also introduce a primary field that creates scalar particles with momenta k%, @ = 1,2,...
N1+N2+"'+NSENSU)
ko vig - _
\/n_aY"‘(z’Z) 04(z2, 2),

where ny =ny = -~ =ny, =1, ny,+1 = nN42 = -+ = U, +N, = 2, and so on, Y corresponds to the
cycle (ny) and is defined by (14), and summation over 7 and « is assumed. The conformal dimension of the

field o4({kq}] is equal to
. N, k2
Ag[{ka}] = 224<N -y —n—> +) (15)

8n
n=1 @ a

oylficat)(z.2) = exp
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It is obvious that the two-point correlation function of the twist fields o, and oy, is not equal to zero
if and only if g;¢g» = 1. Taking into account normalization (8), we find®

(og-1(00)a4(0)) = RDNser
This means that the fields og-1 and o, have the OPE

RD(Nstr-N)

04-1(2,2)04(0,0) = +

|ZI4A9
The two-point correlation function of o4-1{{qq}] and o4[{kq}], consequently, is equal to

(0g-1[{aa}](c0)oy[{ka}}(0 HéR (Qo + Ka)- (16)

A twist field o4 does not create a twisted sector of the orbifold CFT since it is not invariant with respect

to the action of the symmetric group. An invariant twist field can be defined by summing all of the twist
fields from one conjugacy class,

o(g1(2, 2) :N‘ Zah'
h€ESN

Using this definition, we can easily calculate the two-point correlation function
s
H N,'nNn

where 7 _; Na!n™» is the number of elements of the centralizer Cy.

The definition of the twist field o(g)[{ks}] is not so straightforward. Let us consider the element g. € [g]
that has the canonical block-diagonal form (4). There are Ny + --- + Ny = N, fields Y, (2, z) that have a
trivial monodromy in the vicinity of the twist field oy, . According to (14), they are defined as

RDNsu-

(07g)(00)0((0))

Now let us consider the fields X that have the monodromy
X (2e®™,ze72™) = h™lg.h X (2, Z). (17)

We can see from (17) that the fields Yq[h],

Ya[h](zaz) =

> (hX)i(z,2),

T
¥ Ie(na)

have a trivial monodromy. Then an invariant twist field oigil{ka}] is defined as

sgl{ka}l(z, 2) = 5 Z exp{ \/_ Yalhl(z }iah‘lgch(z’i)' (18)

heSy
51t is clear that [g='] = [g] and, therefore, Ay =47y
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It is easy to verify that the twist field opg[{kq}] is invariant with respect to the permutation of momenta
k., which correspond to cycles (n,) of the same length.
The interaction vertex proposed by DVV (5] is defined with the help of the twist field o7, that corre-

sponds to the group element g;; =1 — Ejf — Ejy + Ery + Ej; transposing the fields X; and X .
The twist field o, has the following OPE®:

~ 1
Ty, (Za 2)092(0) = |Z|2A91 +244, —2A

9192 (Cgll%zzagngz (0) + 031299‘209291 (0)) +o (19)
Here, two leading terms appear because there are two different ways to go around the points z and 0. It is
not difficult to see that g;g» and g,g, belong to the same conjugacy class and, hence, Ay 4, = Ag, .
Therefore, the twist field o7 acting on the state 04(0)]0) creates the states og,,4(0)|0) and o4, ,(0)0).
An arbitrary element g has a decomposition (n;)(n2) - - - (nk) that describes a configuration with & strings.
If the indices I and J belong, for instance, to the cycle (n;) in the decomposition, then the element g; ;g
has the decomposition (n(ll)) (n(lz))(nz) -+ (ng) with n( ) 4 n(1 ) = = n, and, hence, describes a configuration
with k+1 strings. If the index I belongs to the cycle (nl) and the index J belongs to (n2), then the element

9179 has the decomposition (n; + nz)(n3) - - - (ng) and describes a configuration with k — 1 strings. Thus,
the twist field o;; generates the elementary joining and splitting of strings.

To describe the DVV interaction vertex, it is useful to return to Minkowskian space-time. Then the
interaction is described by the translation-invariant vertex

Ving = Z/drdaa” 04,0_),

I1<J

where A is a coupling constant proportional to the string coupling and o4 = 740 are light-cone coordinates.

If D = 24, then the twist field o7 (04,0_) is a weight (3/2,3/2) conformal field and the coupling
constant A has dimension —1. Performing the Wick rotation and the conformal mapping onto the sphere,
again, we obtain the following expression for Vi, (and for D = 24):

mt‘——_z /d2 IZlO’]J Z, z

I<J

where the minus sign appears because o7y has the conformal dimension (3/2,3/2).
Thus, the action of the interacting S R?*-orbifold sigma model is given by the sum

Sint = So + Vine.

In the next section, we calculate the S-matrix element corresponding to the scattering of four tachyons and
show that the scattering amplitude coincides with the Virasoro amplitude.

4. Scattering amplitude

In the second order in the coupling constant A, the S-matrix element is given by the standard formula
of quantum field theory,

1t = -2 (A3 (1| [ @z balalT (o, 2t 20 | 1) (20

6Let us stress that there are other primary fields on the r.h.s. of the OPE; however, these fields are nonessential in our
consideration.

49



where the symbol T means the time-ordering, |z;| > |22/, and

Lint(2,2) = Y _014(z,2).

I<J

The initial state |z) describes two tachyons with momenta k; and ky and is created by the twist field

I1gol k1, ko), .
) = Coopge1[k1, k2](0,0)]0).
The element gg is taken in the canonical block-diagonal form
g0 = (no)(N — no),

where ng < N — ng.

The final state (f| describes two tachyons with momenta k3 and k4 and is given by the formula (see [10])

(fl = Cw . li—r%noo | Zoo |18 (0lo(g,.11k3, ky) (200, Zoo)-
The element g, has the canonical decomposition

Goo = (Moo )(N = Neo)y, Too < N — ngo.

The constants Cy and C, are chosen to be

N! N!
Co=\| ——~ Co =4 — 7,
0 no(N — ng)’ Noo (N — Noo)

which guarantees the standard normalization of the initial and final states.
After the conformal transformation z — z/2;, Eq. (20) acquires the form

(f1S]i) = %(%)2/&, dzzg|21||z2||21|2A°°‘2A°_6<f ‘ T(ﬁmt(l,l)ﬁim<z—2,z—2)) !z>

Z1 41

where Ay and A, are conformal dimensions of the twist fields Olg0) (k1. k2] and Olgo0) K3, k4,

1 1 k2 k3
Ag=N_ & _ o kK
0 ng N—n0+8n0+8(N—n0)’
1 1 k2 k2
Ap=N—- — — 3 4
°° Moo N—noo+8noo+8(N-noo)

(21)

(22)

Let us introduce the light-cone momenta of the tachyons [5], taking into account the mass-shell condi-

tion for the tachyonic states,

T -
kfzﬁ, kTki — ki = -k = -8,
N —
k=0 kyki — k2= k= 8,
N
Moo _
k;:—w, kyki — k3= k2= -8,
N — ng _
kj:—*N . kiki—Xi=-k2= -8
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Using the light-cone momenta and the mass-shell condition, we rewrite (22) in the form

ki +ky
Ay =N — 2
0 + — 8N )

ki + kg
A .=N-3Tm"
bt 8N

Performing the change of variables z3/z; = u, we obtain

(f1S|i) = 2(;1:) /d2z1 |z112Aw—2A°—2/d2u|u|<fiT(z:i,,t(1,1)Lm(u,a))|z').

The integral over z; is obviously divergent. To understand the meaning of this divergence, remember that

we have made the Wick rotation. Returning to the o, 7 coordinates on the cylinder, we find for the integral
over z; that

/d221 |zl|2A“"’_2A°_2 - i/deaeziT(A“_A“.

Integration over o and 7 gives us the conservation law for the light-cone momenta &,

/deO’ T (Boo=B0) — yN(27)25(ky + kg + k3 + k7 ).
Therefore, the S-matrix element is equal to
(FI1) = =2XEN*6(kT + k7 + K5 + k) [ dulul (1T G (1, 1) s, 0) 9 (23)

To find the S-matrix element, we have to calculate the correlation function

F(u,t) = (fIT(Lint(1, 1) Ling(u, w))|3) =

=CoCo0 . (0(geilks, kal(00)T(015(1, 1)k L(u, 1)) o(ge) k1, k2)(0, 0)). (24)
I<J;K<L

We assume for definiteness that ng < ne, and |u| < 1 in what follows.

Using definition (18) of o(4)[{ks}] and taking into account that the interaction vertex is Sy-invariant
and that any correlation function of the twist fields is invariant with respect to the global action of the
symmetric group

(0'910‘92 - 'O'g"> = <Uh—‘glh0h—lggh < 'Jh—lgnh>7 (25)

we rewrite the correlation function in the form

F(u,a) COCOO

Z Z ah doshos (k3, ka)(00)ors(1, )oK (u, B)og k1, ke](0,0))
hoo €SN IKJ; K<L

We note that the correlation function

(09,(00) g, (1, 1)agy (u, W), (0,0)) (26)

does not vanish only if
91929394 =1 or g1949392 = L. (27)



This can be seen as follows. Due to the OPE (19) of o4, correlation function (26) reduces to the sum of the
three-point correlation functions (o4,04,04,4,) and {0g,04,09.g,) in the limit u — 0. This sum does not
vanish if one of the following equations is fulfilled:

91929394 = 1, 91939492 =1, §1929493 =1, 91949392 = 1. (28)
From the other side, in the limit u — 1, we obtain the sum of the correlation functions (0g4,04,4,0,,) and
(0g,0454274,)- This sum does not vanish if
91929394 = 1, 91949293 =1, 91939294 =1, 91949392 = L. (29)
Comparing Eqgs. (28) and (29), we obtain (27).
The contribution of the terms satisfying the equation A geohoogogixLgrs = 1, however, coincides with
the contribution of the terms satisfying h!goohoogrsgrrgo = 1. To prove the statement, we note that the

invariance of action (1) with respect to the world-sheet parity symmetry z — z (or ¢ — —o in Minkowskian
space-time) leads to the equality

(Ugla-g2...agn) = <a.gl_log,;l ...Ug;1>? (30)

since the twist fields o4 transform into o4-1. Taking into account Egs. (25) and (30) and the fact that the
elements g and g~! belong to the same conjugacy class, we obtain the desired equality,

E (o Tg119xL85 ~IOTJOKLOg,) = E , (UQOQKLQIJUIJUKLUgO“) =
I<JK<L I<J;K<L
= Z <Ug()_‘9KLQIJUIJUKLO-QO)'
I<J;K<L

Therefore, the function F'(u,u) is given by the sum of the correlation functions of twist fields which can be

schematically represented as
E E goohmo'I.IUKLo'go)a
heo €SN I<J; K<L

where the elements ho,, g7, and gx 1, solve the equation h 'goohoogrsgrrgo = 1. We can fix the values of
the indices K and L using the action of the stabilizer of go and invariance (25) of the correlation functions

S = E E TL() - Ng (0’h hw01-707l0N090)+

hoo€Sny I<J
+ (N = no)(0y-1, p T1J0n NOg)+
+ (N - no)<Uh;olg°°h°°01JU"0+"w:N0-90>)' (31)

The first term in (31) corresponds to the joining of two incoming strings and the factor ng(N — ng)
appears because, in this case, the index K takes ng values, K = 1,...ng, and the index L takes N — ng
values, L =ng+1,...,N. To fix K = ng and L = N, we need to use all of the elements of Cyo- The second
and the third terms correspond to splitting the string of length N — ng into two strings of lengths ne — no
and N — ny, and of lengths N — ng — ne and n, respectively. To fix the values of K and L in these cases,

we use the N —ng elements, which compose the subgroup Zn_,, of Cy,, that do not act on the cycle (ng).
Equation (31) can be further rewritten in the form

Tloo
S= Tl()(N - nO)noo(N - nOO)(Z<Ug,x,(1)JI.I+N—nooUrLoNUgo>+
I=1
N-n, L
+ Z (0 gea (1T, I 4100 FrigNTgo) + Z (090 (J)Tnod Tn o NTgo )+
I=1 J=npg+1
N
+ > <Jgoo(~l)o-"0~]o-”0+"oo.Nago>)’ (32)
J=ng+4rie,+1
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N —ng, ks — oo, Ky

N
ng, ki 3) Thoo, K3

N —ng, ks Moo, K3
g, K1 N — ng, ky
N——no,kg l”—CDN_noovk/i

nOakl 5”0011(3

N —ng, ks () neo, ks

Fig. 1. The diagram representation of different correlation functions in Eq. (32).

where the elements g, are found from the equation goo9ry9x1r90 = 1.

Some comments are in order. The factor ne (N — 1) is the volume of the stabilizer Z,_ x Zy_,,_ of
goo- The first two terms correspond to a splitting of the long string of length N into strings of lengths nq,
and N — ny,. This can be achieved only if J — I = N — ny, or J — I = ny,. In the third and fourth terms,
we fixed the value of I = ng using the action of the subgroup Z,, of C, . This gave the additional factor
ng. The third (fourth) term describes the joining of the strings of lengths ng and ne — ng (N — ng — neo)
into one string of length no, (N — ny,). Therefore, the total number of different correlation functions is
equal to 2(N — ng). The diagrams corresponding to these four terms are depicted in Fig. 1.

We need to compute the correlation functions (and the same correlation functions with the interchange
ue 1)

G(u, fL) = (0'900 [kg, k4](00)0’1](1, 1)0’KL(u, ’l_L)O’gO [kl, kg](o, O)), (33)

where all possible elements 9., 977, 95, go are listed in (32).

We employ the stress-energy tensor method [11] to calculate the correlation function (33). The idea of
the method is as follows. Assume that we know the ratio

(T(2) oo (00)$1(1) B2 () $o(0))
(Poo(00)1(1)d2(u)do(0))

where T'(z) is the stress-energy tensor and each ¢ is a primary field. Taking into account that the OPE of
T'(z) with any primary field has the form

flz,u) = (34)

T(:)4(0) = S9(0) + 109(0) + -,
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Fig. 2. The N-fold covering of the z-sphere by the t-sphere.
we obtain a differential equation for the correlation function G(u, @) = ($eo(00)¢1(1)P2(u)d0(0)),
O, log G(u, i) = H(u, ),
where H(u, @) is the second term in the decomposition of the function f(z,u) in the vicinity of u,

— Az 1 17 e
f(z,u)—(z_u)z—i-z_uH(u,u)—i- .

In the same way, we obtain the second equation for G(u, %) using the stress-energy tensor T(Z),
0z log G(u, @) = H(u,u).

A solution of these two equations determines the correlation function G(u, %) up to a constant.
To calculate ratio (34), we first find the Green’s functions’ of the form

Gij (z w) _ <8X}\4(2)8X§(w)0’9w[k37k4](oo)011(1’1)0KL(U>ﬂ)ogo[klakZ](OaOD —
MS <Ggoo [k3» k4](00)0’[J(1, 1)UKL(U" ﬂ)ago [kla kZ](O»O»
= ((0X}4(2)0XE(w))).

These Green’s functions have nontrivial monodromies around the points ~o, 1, u, and 0 and, in fact,
are different branches of one multi-valued function. However, this function is single-valued on the sphere

obtained by gluing the fields X} at 2 = 0 and z = co. Therefore, to construct G’)\J,Is(z,w), we introduce the
following map from this sphere onto the original sphere:

(= tg)V M (b — b )V e
(t _ too)N_”°° tfllo(tl _ tO)N—nO

= u(t). (35)

Here the points ¢t = 0 and ¢ = t; are mapped to the point 2 =0;t =00, t =to 2 z=00;t =t; + 2z = 1;
and t =z — z = u (see Fig. 2). The map (35) may be viewed as the N-fold covering of the z-sphere by

the ¢-sphere on which the Green’s function is single-valued. A more detailed discussion of (35) is presented
in the Appendix.

"We consider the correlation functions for general values of D, keeping in mind the application to the superstring case.
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Due to the projective transformations, the positions of the points fp, ., and ¢; depend on 2z, and it is
convenient to choose this dependence as follows:

lo =2 — 1,
(N —neo)z
too - - 3
(N - no).’E + ng
, _N—no—noo+n0x N(N —ng)z
1 Moo Moo  Moo((N —ng)T + ng)’

This choice leads to the following expression for the rational function u(z):

N-n Q N
nk N-n /T +
u = u(z) = (no — Neo) ™" Rec <—"—'—0) (——Nﬂ> X

ng°® \N — nog z—1
T — N-ng—ne \ N-no—ne ng—"reo
N—no n()
o r— 0 . (36)
T ng — Neo

Since ng < Neo, the map u(z) can be treated as the 2(IN — ng)-fold covering of the u-sphere by the
z-sphere, which means that the equation u(z) = u has 2(N — ny) different solutions. It is worthwhile to
note that this number coincides with the number of nontrivial correlation functions in (32) and, therefore,
different roots of Eq. (36) correspond to different correlation functions in (32). We see that the t-sphere
can be represented as the union of 2(N — ng) domains, and each domain Vi i contains the points z
corresponding to the correlation function (33). If we take the appropriate system of cuts on the u-sphere,
then every root of Eq. (36) realizes a one-to-one conformal mapping of the cut u-plain onto the corresponding
domain Vijxr.-

Now let us choose some root of Eq. (36). We can always cut the z-sphere and numerate the roots
tr(z) of Eq. (35) in such a way that they have the same monodromies as the fields X. Then the Green’s
functions are obviously not equal to zero only if k; + k3 + k3 + k4 = 0 and are given by

G (2 ):—6’7 th (2)ts(w) _k’ik{t’M(z)tg(w)_
Mt (tu(2) = ts(w))®  dta(2)ts(w)
Kkt ()ts(w) Kkt (2)ts(w)
4tM(Z)(t5( )—to) 4(tM(Z)—t0_)t5(’w)
B klkjt’ " (2)ts(w) B kikjth, (z)ts(w )
4(ta(2) — to)(ts(w) —to) At (2)(ts(w) — tas)
B k‘k]t’ v (2)ts(w) k’kjt’ v (2)ts(w)
4(tm(2) — to)(ts (W) — tao)  4(tar(2) — too)ts(w)
B k4k’t' (z tﬁq(w) B k4k1th(z) ( )

It is easy to verify that these functions have the singularity —6“éprs/(z — w)? in the vicinity of z — w =0

and proper monodromies at the points z = 00, 1, u, and 0.
Recall that the stress-energy tensor is defined as

1 D N » ' 1
T(z) = -3 in_rflzz Z(@X}(z)@X}(w) + (———2>

z—w)
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Using this definition and (37), we obtain®

een - (5 ((E6) -5 (465)) » Sl

k(i () K ()
Atp(2)(Em(2) — to)  8(tm(2) — to)?
k1k4(t/M(Z))2 + k2k4(t/M(z))2 +

Atp(2)(Em(2) — too)  4{tar(2) — to)(tar(2) — too)
ki(th(2))? )
8(tm(z) —teo)?/

AN 1/t 2htul 3 /¢ 2
A R AR A

is the Schwartzian derivative, as could be expected from the very beginning.
To obtain the differential equation for correlation function (33), we expand {(T'(z))) in the vicinity of
z = u. This expansion is given by

The term

D D 20, 3a?
= — 1 —_ e —
(TN 16(z —u)?  16(z — u)u ( + a? 2a8> *
1 (kK Roky K
dag(z —u)u\z? (z—t9)2 z(z—tg) (T —1tx)?
2k1k4 2k2k4
e Eee) T (%8)

where the coefficients ax are defined as

. (—l)k_l Mo N —ng _ N — ng
ar = k+ 2 rk+2 (IE _ to)k+2 (ZL‘ - too)k+2 .

The first term shows that the conformal dimension of the twist field o, is equal to D/16, as it should be,
and the other terms lead to the differential equation for G(u, @),

D 2
u0y logG(u, 1) = — (1+z&—2 &)—l—

16 a2 243
L b ki k3 2k, ks k2 N
dag \ 22  (z—t0)® z(x —tg) (z~tee)?

2k k
1ky 4 2koky ) (39)

(T —teo) (2 —to)(T — too)

It 1s useful to make the change of variables u — wu(z). Then, performing the simple but tedious
calculations outlined in the Appendix, we obtain the following differential equation for G(u, i)

D d d d d»

arlogG(u(zr),ﬂ(ai)):—Ealogu—kf-}-m_l+$+ ot
N—‘no
ds dy D({ 1 1
- = 40
+I_N_—A7_3;_:m+x—ﬁ9a 24(x~a1+$—-ag>’ (40)

81f all k; = 0, the expectation value of T'(z) in the presence of twist fields can be equivalently found by using tar(z) to
map the stress-energy tensor on the ¢-sphere onto the z-sphere with the subsequent summation over M (see e.g. [L1]).
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where

o = no—ioﬁg + (—l)i\ﬂn:(_)_n:oij)vz(_]\;lf,)m)
are roots of the equation z2ag = 0 and the coefficients d; are given by the following formulas:
o= 5 g (4 5) (4 5) ke
t= g s (%) e (43 ke
o (8 5) e (4 5) e “
=gyt S o <k§ ) %) ’ %(1@ ) %> gk
B (s )i )

Taking into account that the second equation on G(u, @) has the same form with the obvious substitution
u — 4,7 — I, we obtain the solution of Eq. (40),

G(u, ) = C(go, 9oo )05 (k1 + k2 + k3 + ky) x

x |ul~F |z — ay| "1 |z — ap| "B |z|?% |z — 1)2% x

2d, 2ds 2d4

1o
N—-no

N —ng — ng
N—’no

No
X

T - T —

(42)

g — Nleo

Here, z = z(u) is the root of the equation u = u(z) that corresponds to given values of the indices I, J, K,
and L, and C(go, 9co) is a normalization constant that does not depend on « and .
To determine this constant, let us consider an auxiliary correlation function

Go(u, ) = <Ugo—‘[_kl» ~ks)(00)ors(1, 1)or(u, @)og, ki, ka](0,0)), (43)

where I = 1,...,n9, J =mng+1,...,N. Wecan fix I = ng, J = N using the action of Cgy. This
correlation function corresponds to the case no, = ng and the rational function u(z) is

N-2n n 1\ N
2ng— N 1 1+ s
_ 1 “ T Nenez ) 44
wz) (1+N—n0$> < 1-1 (44)

The root of Eq. (44) that corresponds to correlation function (43) behaves as

L L Dtou—1 for uol (45)
T 4TLO

The expression for the correlation function Gy(u, @) derived from (42) in the limit ne — 14 is

D
Q) = Dly-Bly - N =2m0 | ¥
Go(u,u) = C(go)R"|u|” % |z 2N o)
2d, 2d;
N —2n
2dy |, _ 1]2% "o _r s 46
X |z|*®|z — 1] $+N—no T N n , (46)




where the coefficient d; is given by Eq. (41) with the obvious substitution ne, — ng, k3 = —k;, and
k4 = —kg.
Taking into account the OPE

R——D

UIJ(I, 1)01J(U,'l7,) = !_.II_Q
u— 4

and nornalization (16) of the two-point correlation functions, we obtain

_ RP
Go(u, @) » ——%. (47)
lu— 1]
On the other side, using (45) and (46), we derive
1 —2(do+di +dp+d3— 2 ) RD .
Golu, @) = Clan)R° (7-fu—1]) = A Clan)ang)® (48)
4ng lu—1]7
in the limit v — 1. Comparing (47) and (48), we see that the normalization constant is
Cl(go) = (4no)~%. (49)
Next, let us consider the limit © — 0. Taking into account the OPE
anONQO (k k )
_ _ noN,go0 1, K2
JnON(u’ U)ago [kl’ kZ](O) B lul%+2Ago[k1,k2]_2Agn0N90[k1+k2]Ug"ONgo [kl + k21(0)+
Cgog"DN(k k )
noN,go 1, K2
|Ul%+2Ago[kx,k2]—2A9n0N90[k1+k2]Ugog"ON[kl +ko](0) + -+, (50)
we obtain
anoNQO(kl k )
Iy noN,go 2
Go(u, ) — ‘u|%+2Ago[kl,kzl—ZAgnoNgO[kwkz] x
X (095‘ {—kh -k2](oo)aﬂoN(1)GQyzoNQo[kl + k21(0)>+
Crgzzg\;\,og;: (klv k2) %
lul%+2A90[k1,k2]—2AgnoN90 [k1+k2]
X (741 (=K1, ~ka)(00) T (1) gp g, [kt + K] (0))- (51)

. e : .
It is not difficuit to show that the correlation functions (ago_lonoNagnoNgo) and (ago.xornoNogognoN) are equal

to Cig%‘f;’: and Ci:‘}fj;;’, respectively, and, moreover, are equal to each other. This follows from (25) and (30)

and from the obvious symmetry property of the structure constant Cg;%\'gg;’(—kl, —ks) = CZ;‘}\,N;?(k;,kz),

(UQO_IUHONUQHONQO) = (UgrloNQOO.nONUg(;l> -

. D ~9089ng N

- { (O gronag ! TnaNTg0) = ROCLIGST, (52)
- — D 9ng NG
<ogg_'gno~0”0N090> =R CnoN‘go .

Therefore, the correlation function Gy(u, @) in the limit v — 0, using the structure constant

C(”‘Oakl; N - nOakz) = Ci:([]\ll\:ggs (kl'» k2)3
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becomes
2RPC?(ng,k1; N — ng, ks) (53
‘u|‘§+2Ago[klak2]_2A9nON90[k‘+k2]. )

GO(ua ’(_l,) -

On the other hand, taking into account that the root z(u) behaves as

n N-2ng 2ng-2N
z + & | 5 Nng ¥ (N-ng) ® Jul ™,
N - g

in the limit © — 0, we obtain

- D_4ng
— D 444, _2+410_N_d2 & 4N ds
N~ (N —ng) 12 Nof2n

from (46). Comparing (53) and (54), we obtain the structure constant

5D+12 N-—n D _9onp
C(ng,ki; N — ng, k) = 9= 52 N‘%”d?(N _ no)‘%‘2——q~ dzno D 270y, (55)

k)

where

ds = da(no, ki; N — ng, ko) =

D no , D\ N-ng(., D) 1
==-__—2 _(K-=)- k2 — =) + Skiko.
24 8(N —ng) <k2 3 ) 8ng ( 1m g )t gkake (56)

Now it is not difficult to express any three-point correlation function of the form (o4-14, ,0750,) through the

structure constant C(n, k; m, q). First, we note that any twist field o4({k, }] has the following decomposition
into the tensor product of the twist fields o(,)(k]:

Nst.r

ogl{ka}] = @) T(na)lkal, (57)

where the element g has the decomposition (n;)(n2)---(nn,).° With the help of (52), we obtain the
structure constant C(n, k;m, q) with arbitrary n and m,

C(n,k;m,q) = R™P(0(_n_m)l—k — @)(00)015(1)0(n)[k] ® o(my[a)(0)), (58)

where I € (n) and J € (m).
Using (57) and (58), we easily obtain the three-point correlation function

<09“9:J[{Qa}](OO)UIJ(l)Ug[{ka}](0)> = (Ug[{ka}](OO)UIJ(I)Ug“g”[{Qa}](0)> =
Nser Nasir
= (0 (—ny =)W Q) T(=10)[0a)(00)0 15 (1) () (k1] ® () (k2] ) Ty (Ka) (0)) =
o=3

=3
NS\‘.I’

= H 6}2((101 + ka)<0'(_,“_,12)[q](OO)O'j_;(l)U(nl)[kl] ® 0(112)[k2](0)> =
a=3

Nser
= C(n1,ki;na, k)5 (q + ki + ko) [ [ 6F (qa + ka), (59)

a=3

IWe use the notation (—ny)(—n2)- - (—npn,,, ) for the decomposition of the element gt
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where I € (ny) and J € (n3). .
It is now clear that the structure constant C%,’gg in the OPE of o7 and o4 is equal to C(n;,ky; na, ko)

=1 . - - -1 .
and that the structure constant C7; _, (which coincides with C?f,"gg_,ggl'JJ due to (52)) in the OPE

~ 5Q1+Q2—q,0
71(0,8)0y15,,[{4aH(0) = D | B2, 1 e )12, T
q1.,92

x (C) 1y, (a1, Q2)og-1 [{aa}}(0)+

+C oy, (A1, a2)Tg,g-1g,, [{@a)(0)) + - (60)

1S
1

C?;,g"lg”(qlan) = R—DC’(nl,ql;n2,q2).

In particular, the structure constants CZ’;”NN 5;’ and ng?ktl"ojﬁ;z, which are used to find the normalization
constant C(go, goo), are given by

Crsiirgn (k1,K2) = R™PC (100 = 10, k1 N = oo, ka),

an0+n°o.N90

(61)
Tlo+n°°,N;go(k1’k2) = R“DC(N —Neo — no,kl;noo,kz).

We are now ready to determine the normalization constant C(gg, goo) by the factor G(u, @) in the limit
u — 0 on three-point functions. According to (36), u — 0 in the three cases

Mo
N—ng’
T — o0,

T = —

N—n0~noo
N—TLO

T —

and, conversely, any root zp = zp(u) of Eq. (36) tends to one of these values when u — 0. Evidently,

these three possible asymptotic behaviors correspond to three different choices of the indices K and L in
Eq. (32).

We begin with the case where K = ng and L = N. Using OPE (50) and normalization (16) of the
two-point correlation functions, we obtain, in the limit v — 0,

ky; - , K C ooakQN“ ooak
G () — 68 (ky + Ky + ey + kg) 0 K1 N = 110, K2)Olrnog Ko NV — T, Kea)

D24, [k ke]-2A [ley +k2] (62)
lul 8 go L¥1.%2 Ing N0 LT
In this case, the root z(u) has the following behavior in the vicinity of u = 0:
N-ng _ngo ng - oo 1
T+ Nnon = Nng ¥ ne ¥ (N —ng) N2N(N—noo) ~ |u|1{r (63)
— Mo
Using (42) and (63), we easily find
D
. C90:9o) [ MoN(N —neo) | 7
G(u,u) = 65 (ks + ky + ks + k ’ x
) = Sl rie o ) e 2 \ IV — mal?no - no)
X L) 2o N 2 no(N — ne) >2d4 (N — nw>2d3 X
N —ng N —ng (N —ng)(no — noo) N —ny
N . o e\ 22
X (Nn0 M e (N=ng)™ 7 (N —ng) N ) . (64)
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It is not difficult to verify that
1
Ago [kl’ k2] - AgnoNg(] [kl + k2] = _Nd%

as should be expected. Comparing (62) and (64), we obtain the normalization constant. However, for
general values of D, the corresponding expression is rather complicated and is not written here. For
D = 24, the coefficient d; is given by the following simple formulas:

1 1 1
dO =1+ Zk1k4, dl =1+ Zk3k4, dz =1+ Zklkz’

1 1 (65)
d3 =1+ Zkgkg, dy =1+ Zklkg,
where k,‘kj = klk] - (1/2)]6:-]{:]_ — (1/2)k1‘k1+
Using (65), we easily obtain
9-11 N - ng 244 (k1 +ka)kq
C(9o0, =
(90:9cc) no(N — no)Noo(N = Noo) (Moo — 10)? ("oo - nO) (66)

Thus, we have found the normalization constant for the N correlation functions presented in the first and
second terms of Eq. (32).

Now let us determine the normalization constant for n., — ng correlation functions of the form
(09 (J)Tno Tno NTgo)- Using (60) and (61), we find

G(U,ﬂ) — ég(kl + ko + k3 + k4)><
N C(ne —no, kg + kg; N — noo, —k4)C(ne — ng, ka + kyg;no, k)

|U!%+2A90 [kllkZ]‘2A9nooN90 [kl‘k2+k4’k4] (67)

in the limit v — 0. Taking into account the behavior of the root z(u) in the vicinity of u = 0,

Neno« —1

— nee ( N —ng '\ noo—ng 1

|z| - ((noo — ng)"™ "”;LZ:—O (———N — ) ) |u7o=mes
o

we obtain

5£(k1 + ko + k3 + k4)C(g0, 9oo) %

G(u,u) — D
p , 2(dg+d +do+dz+dg—2)
jul 7
N 2(dp+d) +da+d3+dg - £)
( )n n ngo"" N — N TTee Roo —ng ( )
X [ (Mg —ng) 0 " | ——— 68
* ng° \ N — ne

from (42). A simple calculation shows that
do+dy+dy+dz+ds— 2
Neo — N ’

The normalization constant C(go, goo) can be found from (67) and (68). For D = 24, the computation is
drastically simplified if we note that

Ago [kl’ k2] - AgnooNQO [kl’ k2 + k4’ k4] =

1
do+d1+d2+d3+d4—2:"1—Zklks,

N — 1
d2(Noo — 0, ko + ka; N — noo, —ky) = = <1 + —klk:z),
Moo — Tg 4
Moo 1
d2(neo — ng, ko + ke;no, k) = ———— <1 + _klkS)-
Noo — Ng 4
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Then, it can be easily shown that C(go, 9o0) 18, again, given by Eq. (66).

We can find the normalization constant for the remaining N — ny — 1o, correlation functions of the
forin <O'g°O(J)O'n0JO'n0+fl°°,N0gO) in the same manner; once again, it is defined by (66).

Up to now, we have considered the correlation functions

G]JKL(U, t_l.) = (O'goo (OO)U[J(].)UKL(‘U., ﬁ)Ugo(O))

with |u| < 1. The correlation functions Gryrr(u, @) with |u| > 1 can be calculated in the same way and
their dependence on u is given by Eq. (42) as well. The normalization constant, in this case, is derived
by studying the limit ©« — oo and it coincides with the previously found constant (66). Therefore, the
time ordering can be omitted. To complete the computation of the S-matrix element, we need to integrate

the correlation function F(u,a) given by (24) over the complex plane. With the help of the momentum
conservation law, the mass-shell condition, (65), and the equality

ldu _ (no —noo)(x—aﬂz(x—QZ)z

ua_m(x—l)(z——l—u_" —n )(a:—n—o—’_’%o—o—) <x+ﬁﬂn—o)’

we can rewrite Eq. (42) as

Grixe(u, @) = 68 (k; + ky + k3 + k4)C(go, goo ) (oo — 110)° %
-2

du | l_llx—a1|2|x—a2|2
-_— u
dzx |z — —°—n0’_‘n°° |4
z(z — BEpasyem ) | HRk (o - 1) (o + 55) | Bt
% r — —no r— —no
ng—Neo no—Neo

Now the integral [ d*u|u|GrskL(u, @) can be easily calculated by changing the variables u — z,

/d2u lu|Grykr(u, @) = 68 (ki + k2 + ka3 + kqg)C(g0, goo) (Moo — 10)2 X

N-ng— 3 Lk
X 2 |8 0nlPlz — a2z - AT 2Eke | (2 - 1)(z + o) | 2keke (69)
v ’ |z — —2e 4 T — o T — g )
1JKL no—"no 0 —Too y———

where we have taken into account that under this change of variables, the u-sphere is mapped onto the
domain Vijg . Since the correlation function

CoCoo _
F(u,u) = 3\” 2no(N — 1) N (N — ngo) Z Grixr(u,a),

I1JKL

where the summation goes over the set of indices listed in (32), we have the integral

X

/d2u |u|F(u, @) = 2—1063(1(1 + ko + ks + ky) ( N —ng >2+§(k1+k3)k4
) \/no(N — 10) Moo (N — To) \ oo — Mo

N-ng— 1e & 1,
2z — o Plz — ap)?|z(z - N ) 2hikar(p — 1)z + —Q—N’ino) skaky .
x | d°zx |z — —Da |4 I — _mo o (70)
ng—reo 0 —Too o—ne
Finally, performing the change of variables
Moo — Mg z(z — J_—&N'j\?‘_;: )
N—-ng r— —n
ng—"Neo
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we obtain

' 2958 (k ko + k k " L

/d2u|u|F(u,a) r (£ ko + ks + k) /d2z|zlf’“"“|1 2| Bhske (71)
ﬂ — Ng noo(N - noo) -

The S-matrix element can be found using (23) and taking the limit as R — oo,
/\2 EN36(ky +ky + k3 +k7)0P (k) +ky+ k :
(FIS|i)y = (k1 + + +kg )07 (ky + ko + 3+k4)/d22|z|%k‘k“|1—z|5k3k4:
V1N — 19)neo (N — neo)
AZ27BNS(Y k)P (50, ki)
i

= _ /d2z|z|%'°l'°4|1 z|7kske. (72)
N >

We represent the light-cone momenta k& as k} = m;/N and rewrite (72) as

/\2 8N(5m - ‘ki_ §b -k, 1
(f1Sli) = ctmatmatm0( 2k )0 (2 )/d2z|z|f’°"°*|1 2| 2koks.

VE Rk RS

In the limit N — oo, the combination Ném, 4m;+ms+ma,0 g0es to (3, k) and Eq. (73) becomes

' _/\22—95D+2 ~k’~‘ .
(f'Sl'L) = —1 \/T%Z_F ) /d22 |Z|§k1k4|1 Z|2k3k4 (74)
klTkSkTEk

Taking into account that the scattering amplitude A is related to the S-matrix by (see, e.g., [12])
O K

\/ ki kg k3 kg

A(1,2,3,4) =,\22—9/dzzlz|%k1k4|1 RELT

(£ISl) = A(1,2,3,4),

we finally have

which is the well-known Virasoro amplitude.

5. Conclusion

In this paper, we have developed the technique for calculating the scattering amplitudes of bosonic
string states, using the interacting SV R?!-orbifold sigma model. The scattering amplitude turned out to
be automatically Lorentz-invariant. This gives strong evidence that the corresponding two-dimensional
Yang-Mills model should possess the same invariance.

It would be interesting to trace the appearance of loop amplitudes in the framework of the SVR?24-
orbifold sigma model. Obviously, the one-loop amplitude requires the computation of the correlation func-
tion for four Zy-twist fields sandwiched between the asymptotic states; technically, this results in the
construction of noncommutative Green’s functions in the presence of six twist fields. We note that can-
cellation of possible divergences in the amplitude may require further perturbation of the CFT action by
higher-order contact terms.

The next important problem to be solved is to consider the SYR2 supersymmetric orbifold sigma
model and to prove the DVV conjecture. It is not difficult to introduce twist fields for fermionic variables
and calculate their conformal dimensions. However, calculation of the four-point correlation functions of
the twist fields is a more complicated problem and is now under consideration. We do not exclude the
possibilty that simplest way to solve the problem is to bosonize the fermion fields.

The authors thank 1. Y. Aref’eva, L. O. Chekhov, P. B. Medvedev, and N. A. Slavnov for the valuable
discussions. One of the authors (S. F.) is grateful to Professor J. Wess for the kind hospitality and the
Alexander von Humboldt Foundation for the support. This work was supported in part by the Russian
Foundation for Basic Research (Grant Nos. 96-01-00608 and 96-01-00551) and the International Science
Foundation (Grant No. a96-1516) .
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Appendix

In this appendix, we consider some properties of map (35) and outline the derivation of differential
equation (40) for the four-point correlation functions (33). Let us consider map (35),

B tno(t _ tO)N_nO (tl _ too)N—noo
= ) B -t

= u(t). (A1)

This map is the N-fold covering of the z-sphere by the ¢-sphere. Obviously, it branches at the points ¢ = 0,
to, teo, and 0o. To find the other branch points, we have to solve the equation

dlogz _ng N-ng N-ng _
dd  t  t-tg t—too
Moot + (N = ng — neo)to — Ntoo) t + notote

- Ht— fa){E— o) | 42

In general, there are two different solutions of Eq. (A.2), t; and ¢, and map (A.1) has the form

Zz — Z; ~ (t—-ti)z, Z1 = 1 :u(tl), Z9 :u:u(tg)

in the vicinity of these points. Due to the projective transformations, we can impose three relations on
the positions of the branch points. However, we have already chosen the points 0 and co as two branch
points; therefore, only one relation remains to be imposed. Since the differential equation on the four-point
correlation function is written with respect to the point u, it is convenient not to fix the position of the
point 2 = z. Then, the remaining relation that leads to the rational dependence of points #g, to, and ¢;
on z is

to = — 1. (A3)

The point z is assumed to be a solution of Eq. (A.2). Therefore, from (A.2) and (A.3), we can immediately
derive that t., is expressed through the point z as follows:

B (N —neo)x
too_m_(N—n()).’E-*—TL(). (A.4)

The second solution of Eq. (A.2) can now be easily found. It is

. _N—no—noo+noa: N(N — ny)z
b Noo Mo  Noo((N — ng)z + ng)

_ no(z — 1) (N = ng)z 4+ ng + ne — N)

A5
Too ((N — ng)T + no) (A.5)
The rational function u(z) is defined by the equation
™ (1 — to) V"o (ty — too)N Moo
= ) A6
ue) (T = too)NPootO(ty — tg)N -0 (A

Using (A.3)-(A.5), we derive the relations

(N —ng)(z - 1)((n0 — N )T — no)
oo ((N = no)z + ng)
((no = noo)z — o) ((N = no)T + 19 + Neo — N)
Noo ((N = no)z + ng) )

1 —to =

?

tl—too:
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Then, the rational function u(z) becomes

N—n n N
nite (N —n T+
u=1u(x) = (Ng — Neo )™ "> 2 ( 0 ) (_’V_'ﬂ) %

ng® \ N — neo z -1
z — N=no—ne \ N-ng—ne no—neo
N—ﬂ,o nO
X\ — r— — . (A7)
z ng — Neo

To obtain differential equation (40), we need to know the decomposition of the roots ¢4 (z) and tr(2)
in the vicinity of z = u. Let us take the logarithm of both sides of Eq. (A.1),

log = = nglog — + (N — ng) log ——= — (N — ng) log . (A.8)
U T T —to T -l

Decomposition of the L.h.s. of (A.8) around z = u and the r.h.s. of (A.8) around t = z gives

o0 k 00
(~1)k* (2~
3 : - =(t—-2)* ) ak(t—x)F, (A.9)
k=1 k=0
where .
_ (=1)k=1 ( ng N —ng N — ng
T k2 \gFe (x —to)+2 (z—too)kt2 )’ (A-10)
It is clear from (A.9) that ¢(z) has the decomposition
> k
t—r:ch(z—u)f. (A.11)
k=1
Substituting (A.11) into (A.9), we find
c%z—l—, 62:_2:1 )
ua
0 y (A.12)
1 dai a
2(106103 = ——>

2 2.3 22"
2u dutay u‘ag

The other coefficients of this expansion are not important for us.
Then, using decomposition (A.11) and Eq. (A.12), we obtain

sg_c_azi<1+2_gz__§1§_),
ag 2ay

Finally, taking into account that only the two roots tx(z) and t7(z) in the set of N roots ta(z) have
decomposition (A.11), we obtain (38) and (39). The coefficients ai can be rewritten as the following
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functions of z:

no(ng + 1o — N)  no(N —1ng) (N —ng)(nteo — o) _

T TN —neo)z? (N = neo)z 2(N — o)
- (Nz_(;oz(Zoo);nO) (z - an)(z — o),
_ no((N —ng)®> —nd)  n§(N -ng)
T TSN — 1o ) 243 (N = 11o) 222 "
B no(N —ng)?2 (N —no)((N — neo)? — (N — n90)?) (A.13)
(N —ny)?z 3(N — neo)? k
no((N —ne)® —nd) | nd(N-no)  3n§(N —no)?
g = —

4(N - ny, )3zt + (N —ne)3z3  2(N - noo)3x2+
no(N ~n9)® (N - no)((N — nw)® — (N = no)°®)
(N — ne )3z 4(N — ny )3 '

To obtain differential equation (40), we need to use the following important equalities for dlogu/dx, which
can be derived using (A.7) and (A.13):

ldu _ng+ne-N N N
udz z r~-1 z+ 52
N —ng — neo Y — Moo
B e A v
ldu 4(N — neo)?z*al B
udz (N - ng)(ng — noo)a(z — 1)(z ~ Nope=iem)(z — —Pa)(z + gi0-)
(no = N ) (& — o) (z — @2)®
" 2o - 1)(o - Mopsia)(p - B )(p+ g2

Finally, to obtain (40), we use the Lagrange interpolation formula for the ratio of two polynomials,

P(z) _ Z P(z;) 1
Q(z) g Q'(z:) v — z;’
where each z; is a simple root of @{z) and deg P < deg Q. These equalities drastically simplify the derivation
of Eq. (40).
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