
Calcif Tissue Int (1986) 38:44-51 
Calcified Tissue 
International 
�9 1986 by Springer-Verlag 

The Ultrastructure of Osteochondrosis of the Articular-Epiphyseal Cartilage 
Complex in Growing Swine 

C. S. Carlson, 1 H. D. Hilley, 2 C. K. Henrikson, 3 and D. J. Meuten t 

IDepartment of Microbiology, Pathology, and Parasitology; 2Department of Food Animal and Equine Medicine; and 3Department of 
Anatomy, Physiological Sciences and Radiology, School of Veterinary Medicine, North Carolina State University, 
Raleigh, North Carolina 27606 

Summary. Osteochondrosis of the articular-epiph- 
yseal cartilage complex (A-E complex) is a signifi- 
cant clinical disease in swine. It has been suggested 
that osteochondrosis is the underlying cause of os- 
teochondritis dissecans in humans. The purpose of 
this investigation was to characterize the ultrastruc- 
tural changes in the earliest macroscopically visible 
lesion of the epiphyseal cartilage in osteochondrosis 
of the A-E complex in swine. Osteochondri t ic  
epiphyseal cartilage from the distal femora and hu- 
meri of growing crossbred boars was collected, em- 
bedded in plastic, and studied light and electron mi- 
croscopically. The predominant lesion was chon- 
dronecrosis, characterized by chondrocyte death 
and loss of matrical proteoglycan. Transition from 
normal to abnormal cartilage was abrupt. Lipid ac- 
cumulated in chondrocytes within and adjacent to 
lesions, but not in chondrocytes distant from le- 
sions. Intracellular lipid accumulation was an im- 
portant feature of the lesion and may play a role in 
its initiation. It is hypothesized that intracellular 
lipid accumulation results from hypoxiaJanoxia and 
may precede matrix degeneration, which precedes 
cell death. 

Key words: Ultrastructure - -  Cartilage - -  Osteo- 
chondrosis - -  A-E complex--Osteochondritis dis- 
secans. 

Osteochondrosis is a focal failure in endochondral 
ossification that may result in the formation of an 
osseocartilaginous flap (osteochondritis dissecans) 
[1-3]. Etiologies such as trauma, ischemia, and he- 
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reditary factors have been proposed [4-10]; how- 
ever, the cause and pathogenesis of this disease re- 
main unknown. In human beings, necrosis of bone 
subjacent to articular cartilage is considered by 
most investigators to be the underlying defect [11- 
14]. Lesions in cartilage are interpreted to be sec- 
ondary to the "primary" bone lesion. These obser- 
vations are based on clinical, radiographic, and sur- 
gical findings in patients that have had symptoms 
of osteochondritis dissecans for extended periods 
of time, an average of 18 months in one study [9]. 
Investigations of the early lesions in humans are not 
available. 

Studies of naturally occurring osteochondrosis in 
animals have concluded that lesions in cartilage pre- 
cede subchondral bone lesions [2, 3, 15-19]. The 
earliest macroscopic lesion of osteochondrosis is a 
focal thickening of epiphyseal cartilage extending 
into the subchondral bone. By light microscopy, 
there is decreased calcification and cartilage ne- 
crosis, distinguishing this process from nonpatho- 
logical irregularities in epiphyseal cartilage which 
are composed of populations of viable chondro- 
cytes [15, 16, 18]. This focal thickening is followed 
by formation of a fissure extending from subchon- 
dral bone to the articular surface. It is following 
fissure formation and exposure of subchondral bone 
to synovial fluid that animals become lame and the 
condition is termed osteochondritis dissecans [20]. 
At this time, chronic changes may include ossifi- 
cation of the cartilaginous flaps, bone marrow fi- 
brosis, remodeling of trabeculae, and sclerosis of 
the subchondral bone [3, 17, 20]. These chronic 
changes are identical to those found in human 
beings with osteochondritis dissecans [1, 10, 11]. In 
the early lesions observed in animals, there is no 
evidence of subchondral bone changes [2, 3, 20]. 
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It has been suggested that the reported differ- 
ences in osteochondritis dissecans between human 
beings and animals are due to the time at which the 
lesions are examined [20]. In clinical trials with an- 
imals, the disease has been studied at various points 
in time, beginning with a focal area of chondrone- 
crosis observed histologically in the epiphyseal car- 
tilage above the region of proliferating chondr0- 
cytes [18], progressing to macroscopic extensions 
of epiphyseal cartilage into subchondral bone, fis- 
sure formation, and subchondral bone changes [2, 
3, 15-19]. In human beings, the time from age of 
onset of symptoms to removal and examination of 
the osteochondral fragment is usually a period of 
years [9, 21, 22]; therefore, the disease is always 
studied in a chronic stage. 

We support the hypothesis that osteochondrosis 
is the same disease in human beings and animals 
[20] and suggest that swine may be a useful model 
for understanding the pathogenesis of this disease 
in humans. Osteochondrosis is a major cause of 
lameness in swine and occurs with high incidence 
in young, rapidly growing pigs [2, 3, 23, 24]. Similar 
to people, the A-E complex site most frequent- 
ly affected in swine is the medial femoral condyle 
[13, 15]. 

In this study, we examined the earliest macro- 
scopic lesion of osteochondrosis in two predilection 
sites [15, 24, 25] of growing swine. Although pre- 
vious investigators have described in detail the light 
microscopic changes in osteochondrosis, there are 
few reports on the ultrastructure of the lesion [26, 
27]. There are no previous reports on the ultrastruc- 
ture of osteochondrosis at the level of the epiphy- 
seal cartilage of the A-E complex in any species. 

Fig. 1. Early lesion of osteochondrosis in a pig with focal thick- 
ening and necrosis of epiphyseal cartilage extending into normal- 
appearing subchondral bone. Samples for this study were taken 
from areas of chondronecrosis (C) and included adjacent normal 
epiphyseal cartilage and underlying subchondral bone. H & E 
( x 36). 

Materials and Methods 

Twenty newly weaned 3-4-week-old Hampshire-Duroc boars 
were obtained from one farm. The boars were reared in pens 
with concrete floors covered with a thin layer of straw or wood 
shavings and were allowed access to outside concrete yards. 
Corn-soybean-based rations (with constituents at National Re- 
search council-recommended concentration [28]) and water were 
provided ad libitum. Ten boars at 5 months of age and ten boars 
at 6 months of age were killed with intravenous (IV) injections 
of barbiturate solution or exsanguination after electrical stun- 
ning. All of the animals were clinically normal and no animals 
were ever lame. Serial lmm thick slabs of cartilage from the 
medial femoral condyle and humeral trochlea were collected 
with an osteotome in a frontal plane. Slabs included the entire 
thickness of articular and epiphyseal cartilage and a small 
amount of subchondral epiphyseal bone. Slabs were immediately 
immersed in 2% purified glutaraldehyde-2% paraformaldehyde 
in 0.1 M phosphate buffer (pH 7.4). They were then examined 
with a dissecting microscope for evidence of increased thickness 

Fig. 2. Chronic lesion of osteochondrosis with thickened epiph- 
yseal cartilage, subchondral bone sclerosis, and cleft formation 
(osteochondritis dissecans). H & E (x  9). 

of cartilage extending into subchondral bone (osteochondritic 
lesions; Figs. 1, 2). Lesions were dissected from the slab by 
removing the adjacent normal cartilage and the overlying artic- 
ular cartilage, with the subchondral bone left intact. Four fem- 
oral and four humeral lesions were collected from eight different 
pigs. These specimens were cut into 1 • 1 x 3 mm blocks and 
left in primary fixative for one h. After fixation, blocks were 
rinsed, postfixed in 1% osmium tetroxide-l.5% potassium fer- 



46 C.S .  Carlson et al.: The Ultrastructure of Osteochondrosis 

rocyanide [29] for one h, rinsed again, rapidly dehydrated in 
ascending concentrations of ethanol, cleared in propylene oxide, 
and embedded in epon. Blocks were sectioned with a diamond 
knife in a plane perpendicular to the most superficial surface of 
epiphyseal cartilage. Thick sections,  0.5 p,m, were cut and 
stained for light microscopy [30]. Silver to gray thin sections 
were cut for electron microscopy. Selected thick (0.5 ~m) sec- 
tions were stained for the presence of lipid [31]. Thin sections 
were placed on formvar coated 2 mm • 1 mm single slot grids, 
stained with uranyl acetate-lead citrate, and examined with a 
Zeiss 10A transmission electron microscope. 

Results 

Lesions of osteochondrosis collected from femora 
and humeri were similar morphologically. No dif- 
ferences based on collection site or age were de- 
tectable; therefore, cartilage from both sites is de- 
scribed together. Gross, paraffin-embedded histo- 
logical, and radiographic lesions from these animals 
have been reported previously [15, 32]. 

Light Microscopy 

The most common light microscopic finding in 
these samples was populations of necrotic chondro- 
cytes. Seven of the eight samples contained a large 
population (over half the section) of these cells in 
one or more blocks. These cells had a darkly 
staining condensed appearance with little evidence 
of nuclear or cytoplasmic components other than 
cytoplasmic lipid (Fig. 3A). Lipid was present in 
about half of the necrotic cells in any given section 
and was identified by staining dark blue with a lipid 
stain [31]. Necrotic cells were surrounded by a wide 
area of pale staining pericellular matrix giving them 
a shrunken appearance. Further evidence for cell 
shrinkage was the fact that many of the cell profiles 
in a plane of section were missing, leaving only 
pale, oval-shaped areas of pericellular matrix. 

The territorial matrix in the necrotic cell areas 
was pale staining and had a thready, fibrillar ap- 
pearance, as opposed to the smooth, homogeneous 
appearance of normal matrix. (Blocks containing 
these areas presented sectioning difficulties, as the 
tissue was prone to compression and tearing.) Pop- 
ulations of dead chondrocytes were found in all of 
the maturation regions (resting, proliferating, hy- 
pertrophic, or calcifying). 

Also found within these samples were popula- 
tions of chondrocytes which were free of morpho- 
logical abnormalities. The transition from normal- 
appearing to abnormal-appearing cartilage was usu- 
ally abrupt, with morphologically normal cells and 

matrix immediately adjacent to necrotic cells and 
fibrillar matrix. The transitional cells bordering the 
lesion area often contained large amounts of lipid 
as compared with chondrocytes further from the 
lesion; however, the greatest amount of lipid was 
seen in necrotic chondrocytes. Occasionally, there 
was a more gradual transition between "normal" 
and abnormal cartilage. Here, cells closest to the 
area of chondronecrosis had wide halos of pericel- 
lular matrix, the width decreasing around cells pro- 
gressively further from the lesion. 

In lesions that included the hypertrophic and cal- 
cifying cell regions there were chondrocyte clusters 
(groups of greater than 20 cells with normal mid- 
hypertrophic cell morphology in healthy matrix) 
bordering necrotic cell areas. The chondro-osseous 
junction in these lesions was characterized by an 
abrupt transition from noncalcified to calcified ma- 
trix, with an apparent decrease in the number of 
invading capillaries. In lesions involving the resting 
and proliferating cell regions, the chondro-osseous 
junction appeared normal. No evidence of osteo- 
necrosis was observed in any of the sections. 

One lesion area out of the eight sampled con- 
tained a large population of vacuolated cells adja- 
cent to the dead chondrocytes.  These cells ap- 
peared viable at the light microscopic level but con- 
tained numerous vacuoles which sometimes 
exceeded half the cell area in a plane of section. 

Electron Microscopy 

Cells identified as dead cells at the light microscopic 
level lacked cell membranes, nuclei, or cytoplasmic 
organelles, and appeared as electron dense, irreg- 
ularly shaped aggregates. Large droplets of lipid 
were common and sometimes exceeded half the cell 
area in a plane of section (Fig. 3B). The pericellular 
matrix size was usually much larger than that ad- 
jacent to chondrocytes free of morphological le- 
sions and was composed of fine filamentous mate- 
rial, generally lacking collagen fibrils and some- 
times containing necrotic cell debris (Fig. 3C). 
Irregularly shaped, nonmembrane-bound electron- 
dense aggregates observed in the pericellular matrix 
of some late hypertrophic and calcifying zone cells 
in normal epiphyseal cartilage [29, 33, 34] were ab- 
sent in necrotic areas and rare in the more normal 
appearing cartilage collected from lesion areas. 

Territorial matrix in necrotic cell areas lacked the 
majority of the proteoglycan components, with only 
collagen fibrils and a small amount of proteoglycan 
remaining (Figs. 4A, B). There was no evidence of 
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Fig. 3A. Hypertrophic zone of  cartilage in a pig with osteochondrosis  with an abrupt transition from normal chondrocytes  (left) to an 
area of  chondronecrosis  (right). Necrotic cells lack recognizable cell structure and are surrounded by a wide area of  pale-staining 
pericellular matrix (c). Dark staining intracellular lipid is present  in both normal (large arrowheads) and necrotic (small arrowheads) 
cells. Methylene blue and Azure-2 stain ( x 680). B. Electron micrograph of  a necrotic chondrocyte similar to those indicated by small 
arrows in A. This cell contains lipid (L) and lacks cell membrane or organelles ( • 16,375). C. Pair of  necrotic chondrocytes  similar to 
those indicated by (c) in A. These cell remnant  profiles lack lipid and possess a wide area of pericellular matrix (p) separated by a 
narrow band of coarse,  fibrillar territorial matrix (arrowheads) ( x 4750). 

matrix calcification in necrotic cell areas, nor was 
there evidence of extracellular lipid. 

Chondrocytes directly bordering populations of 
necrotic cells had normal morphology other than 
increased amounts of large lipid droplets. Territorial 
matrix adjacent to these cells was distinctly more 
coarse than what is considered normal [33]. 

Chondrocytes forming cell clusters (>20 cells in 
a plane of section) had normal ultrastructural mor- 

phology and were uniformly in a mid-hypertrophic 
stage of development. These cells had a large 
amount of rough endoplasmic reticulum. Collagen 
fibrils formed a rim around these cell clusters. Di- 
rectly adjacent to these were necrotic cell areas 
with matrix lacking the proteoglycan component 
(Fig. 5). No detailed evaluation of collagen was in- 
cluded in this study; however, it appeared that fibril 
diameter was smaller than usual in lesion areas. 
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Fig. 5. Cells at the edge of a cell cluster that bordered a lesion. 
These cells have normal mid-hypertrophic morphology. Fibrils 
form a rim around these cells (arrowheads) marking the transi- 
tion to abnormal matrix (x 4330). 

Fig. 4. Electron micrographs of territorial matrix ( • 37,000). A. 
Lesion area with decreased matrical proteoglycan. B. Normal. 

V a c u o l a t e d  cel ls  f o u n d  in one  l e s ion  l a c k e d  per i -  
ce l lu la r  ma t r ix .  C o l l a g e n  f ibr i ls  c h a r a c t e r i s t i c  o f  ter-  
r i tor ia l  m a t r i x  w e r e  l o c a t e d  d i r ec t l y  a d j a c e n t  to  the  
cel l  m e m b r a n e .  Vacuo le s  o c c u p i e d  the  m a j o r i t y  o f  
the  c r o s s - s e c t i o n a l  a r e a  o f  the  cel l  and  some  con-  
t a i n e d  e l e c t r o n  d e n s e  a g g r e g a t e s  as  w e l l  as  f ine  
s t r ands  o f  ma te r i a l .  T h e y  d id  no t  d i s to r t  the  cel l  to  
the  deg ree  tha t  cel l  p r o c e s s e s  w e r e  los t  (Fig.  6). 

Discussion 

The  mos t  s igni f icant  f ind ings  in this  s t u d y  o f  o s t eo -  
c h o n d r o s i s  o f  the  A - E  c o m p l e x  w e r e  i n t r ace l l u l a r  

Fig. 6. Electron micrograph of a vacuolated cell t~'om a les~on. 
Vacuoles (V) may contain dense material (d). Cell processes are 
present (arrowheads) (x 7090). 

l ipid a c c u m u l a t i o n ,  ma t r i x  d e g e n e r a t i o n ,  and  chon-  
d r o n e c r o s i s .  E x c e s s i v e  l ipid wi th in  v iab le  c h o n d r o -  
c y t e s  r e p r e s e n t e d  the  mos t  cons i s t en t  ce l lu la r  evi-  
d e n c e  o f  p r o x i m i t y  to an a r e a  o f  c h o n d r o n e c r o s i s .  
A l t h o u g h  l ip id  is c o n s i d e r e d  a n o r m a l  and  c o n s t a n t  



C. S. Carlson et al.: The Ultrastructure of Osteochondrosis 49 

inclusion in chondrocytes [35-39], lipid accumula- 
tion has been observed to be one of the most fre- 
quent changes found in degenerating chondrocytes 
[40]. Intracellular lipid accumulation has been ob- 
served in several human chondrodysplasias [41- 
46]. Stanescu et al. [47] have described a possible 
hereditary disorder in people that produces an ac- 
cumulation of complex lipids in articular chondro- 
cytes along with precocious arthrosis. Although 
lipid accumulation may represent a nonspecific de- 
generative change in cartilage, several studies on 
articular cartilage indicate a possible role for lipid 
in the initiation of chondrocyte  degeneration. 
Bonner et al. [35] noticed a progressive intracellular 
lipid accumulation with age in articular chondro- 
cytes in human beings and suggested a pathological 
significance correlating the area of intracellular lipid 
accumulation with the area in which the earliest le- 
sions of osteoarthritis appear. Stockwell et al. [48] 
reported an increased amount of intracellular lipid 
with subsequent cell death in articular cartilage fol- 
lowing experimental severance of the anterior cru- 
ciate ligament in dogs. Intraarticular injection of 
lipid into rabbits leads to subsequent uptake of lipid 
by chondrocytes, loss of glycosaminoglycans from 
the matrix, and chondrocyte degeneration [49-51]. 
The conclusion drawn from these studies is that li- 
poarthrosis produces pathological changes in chon- 
drocytes.  Hypothes ized  mechanisms include a 
membranolytic effect of oleic acid in triglycerides 
containing this acid [50] or an alteration in chon- 
drocyte metabolism, possibly caused by the uptake 
of abnormally large amounts of fat and reesterifi- 
cation of fatty acids [49]. 

Intracellular lipid increased in amount within le- 
sions, as well as in chondrocytes  adjacent to 
lesions. The source of the excess  lipid in A-E 
complex lesions of osteochondrosis is not known 
(increased synthesis vs. increased supply of pre- 
cursors), nor is the sequence of events leading up 
to this accumulation known. In a study of osteo- 
chondrosis in dogs, an increase in intracellular as 
well as matrical lipid was demonstrated by histo- 
chemical staining in areas with lesions, as compared 
with normal cartilage [52]. This increase was inter- 
preted to result from a metabolic response of the 
chondrocyte to an altered microenvironment. We 
speculate that intracellular lipid accumulation pre- 
cedes matrix degeneration which precedes cell 
death. Following these events a fissure forms in the 
necrotic cartilage, leading to changes in subchon- 
dral bone including bone marrow fibrosis, remod- 
eling of trabeculae, and sclerosis. The cartilage flap 
may ossify as a chronic sequela if provided with a 
blood supply. 

Matrical degeneration and chondronecrosis were 
consistent lesions in this study. These changes have 
been observed previously in osteochondrosis of the 
porcine A-E complex [7, 21-23]; however, these 
reports did not include electron microscopy. It is 
evident from this study that matrical proteoglycan 
is diminished in lesions. The proteoglycan compo- 
nent of cartilage matrix is correlated with compres- 
sive strength [53, 54], possibly stabilizing the inter- 
action between collagen and chondronectin [55]. 
Loss of this component leads to an increased me- 
chanical stress on chondrocytes [56-58]. We hy- 
pothesize that, subsequent to proteoglycan loss 
from the matrix, the chondrocytes degenerate. Fol- 
lowing these events, trauma may cause cartilagi- 
nous flap formation. 

The mechanism of proteoglycan degradation is 
unknown but it must occur extracellularly [55], The 
destruction is probably due to enzymes either in 
cartilage or synovial fluid [59-60]. In vitro experi- 
ments demonstrate the dependence of matrix deg- 
radation on live chondrocytes [61-63]. If this is true 
in vivo, matrix degradation must precede chondro- 
cyte death. The mechanism of lesion repair appears 
to involve cell clusters with accelerated synthesis 
of matrix components [15]. The capability of this 
tissue to repair is related to the severity of the lesion 
and the subsequent stress placed upon it. 

The abrupt transition from normal cells and ma- 
trix to areas of chondronecrosis is compatible with 
a vascular insult. Experimentally, lesions grossly 
and histologically similar to osteochondrosis have 
been reproduced in animals by surgical blockage of 
vasculature [64-66]. In addition, recent histological 
evidence associates cartilage canals which do not 
appear to be functional with areas of chondrone- 
crosis in spontaneous A-E complex lesions in swine 
[18]. We hypothesize that the underlying condition 
altering the environment of chondrocytes in osteo- 
chondrosis is hypoxia/anoxia due to decreased 
blood supply. This hypoxic environment leads to 
intracellular lipid accumulation and matrix and 
chondrocyte degeneration. The cause of the failure 
in vascular supply is not known at this time. Trauma 
may aggravate the condition, leading to osteochon- 
dritis dissecans. 

The vacuolated cells observed in one lesion in 
this study are similar to those observed in some of 
the human mucopolysaccharidoses [67, 68]; how- 
ever, the vacuolization observed in our study is less 
severe and does not distort the chondrocytes to a 
comparable degree. As in the human mucopolysac- 
charidoses, the appearance of these vacuoles is 
consistent with that of altered lysosomes. The sig- 
nificance of this finding is unknown. It is possible 
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that vacuolization is a nonspecific lesion of chon- 
drodysplasias. 

In summary, we were able to study the early le- 
sions of osteochondrosis in young pigs prior to the 
onset of cleft formation or lameness. At this time, 
there were focal areas of thickened epiphyseal car- 
tilage, containing chondronecrosis and matrix de- 
generation, extending into subchondral bone. Intra- 
cellular lipid accumulation was a prominent feature 
of chondrocytes within and adjacent to lesions, but 
not distant from lesions. Intracellular lipid accu- 
mulation is a feature of degenerating chondrocytes 
and may be an important factor in the pathogenesis 
of osteochondrosis. A better understanding of os- 
teochondrosis in animals should lend insight into 
the pathogenesis of the disease in human beings. 
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