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Necessary Conditions for Infinite-Dimensional 
Control Problems* 

H. O. F a t t o r i n i t  and  H. Frankowska: l :  

Abstract. We consider infinite-dimensional nonlinear programming problems 
which consist of minimizing a functionfo(u) under a target set constraint. We obtain 
necessary conditions for minima that reduce to the Kuhn-Tucker conditions in 
the finite-dimensional case. Among other applications of these necessary conditions 
and related results, we derive Pontryagin's maximum principle for a class of control 
systems described by semilinear equations in Hilbert space and study convergence 
properties of sequences of near-optimal controls for these systems. 

Key words. Lagrange multiplier rule, Kuhn-Tucker conditions, Maximum prin- 
ciple, Optimal controls, Approximately optimal controls. 

1. Introduction 

We consider  in this paper  the fol lowing abstract nonlinear programming problem: 
Let V be a comple te  metr ic  space,  let E be a Hi lber t  space, le t f ,  fo be two con t inuous  
functions,  

f :  V--* E fo: V ~ R, (1.1) 

and  let Y(the target set) be a subset  of  E. Charac te r ize  the e lements  ~ of  V tha t  satisfy 

fo(U--) = m = minfo(u  ) (u ~ U) (1.2) 

subject  to f(u) e E (1.3) 

The main  app l ica t ion  in mind  is the con t ro l  p rob lem where 

f(u) = y(t,, u), fo(u) = yo(-[,, u), (1.4) 

with y(t, u) given by a semil inear  init ial  value p rob lem in E, 

y'(t, u) = Ay(t, u) + f ( t ,  y(t, u), u(t)), y(O) = yO, (1.5) 
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and yo(t, u) being a suitable cost fuctional; here, the space V is a suitable control 
space of F-valued functions defined in 0 < t < T, where Tis the time (or one of the 
times) taken to hit the target Y optimally. More generally, the maps y(t, u), yo(t, u) 
may be systems as defined in [FI];  this formulation also includes, for instance 
control problems for delay differential equations. 

The main result of the problem (1.2)-(1.3) is a result of Kuhn-Tucker  type 
(Theorem 2.4) for solutions ~ (assumed to exist). This result, when applied to the 
maps (1.4) yields a version of Pontryagin's maximum principle for optimal controls 
if(.). It also applies to the time optimal problem, but it may yield empty results, 
thus a separate treatment is necessary. This motivates consideration of the following 
abstract time optimal problem: Let { II,} be a sequence of complete metric spaces, let 
E be Hilbert space, let {f,} be a sequence of continuous functions, 

f . :  II. --, E, (1.6) 

and let Y a be subset of E. Assume that 

f ,(V,)n Y = ~  (1.7) 

for all n. Characterize the sequences {fi"}, fi" e V,, that satisfy 

L(~") -- , ;  (1.8) 

in the norm of E for some y ~ Y. 
Motivation is provided by the usual time optimal control problem: if ~ is a time 

optimal control and {t.} is a sequence of times with t. < t, t. --* t, then y(t., ~) r Y, 
while, on the other hand, we have Ily(t,, ~) - 311 = II y(t,, ~) - y(T, u)ll ~ 0 as n --* oo 
since the optimal trajectory y(t, ~) (as any other trajectory) is continuous. The result 
for the abstract time optimal problem is Theorem 2.6. 
The results in this paper and those in IF1] compare as follows: 

(a) The treatment in IF1] applies to systems and a particular type of variation 
(spike variation) of controls. The present results apply to arbitrary functions 
and cost functionals (thus nonevolutionary problems can also be handled) 
and to arbitrary variations of all parameters. 

(b) The results in IF1] apply to very restricted target sets, whereas arbitary closed 
target sets are handled here. 

(c) The separate treatments of the point target and set target cases in IF1], are 
unified. 

In the case of finite-dimensional problems, our results are related to work by 
Clarke (see [C2] and bibliography therein) and Clarke and L6wen [CL] where a 
"proximal normal analysis" approach to minimization problems is carried out, 
leading to different approximate multiplier rules. 

Since the results in this paper are obtained using Ekeland's variational principle, 
which refers to approximate solutions of minimization problems, the same approach 
yields information about sequences {u"} of suboptimal elements u" that satisfy 
(1.2)-(1.3) approximately, that is, 

fo(U") <_ minfo(u ) + ~., dist(f(u"). Y) _< e. 



Necessary Conditions for Infinite-Dimensional Control Problems 43 

for a small en. (see Section 5 for a precise formulation). Results on suboptimal 
sequences are treated in Sections 5 and 6. In Section 5 we obtain sequence maximum 
principles (or sequence Kuhn-Tucker  theorems) for the separate elements of a 
suboptimal sequence {un}. In Section 6 these sequence maximum principles are 
upgraded to convergence principles, that is, it is shown that (a suitable subsequence) 
of the Kuhn-Tucker  multipliers is convergent to a nonzero multiplier; convergence 
is weak or strong depending on the type of hypotheses that are placed on the target 
sets and on the functionsf0,f.  Finally, we point out in Section 6 how convergence 
principles can be used to show strong convergence of sequences of suboptimal 
controls in the case of the systems defined by (1.5). We note in passing that results 
on suboptimal controls are probably much more interesting that results on optimal 
controls. In fact, optimal controls may not exist, and when they do, they are almost 
always impossible to compute explicity in truly infinite-dimensional problems. 
Thus, information on suboptimal controls (that can be approximated numerically) 
is more useful. Finally, this information also bears on the problem of robustness of 
control systems, that is, insensitivity of optimal controls with respect to small changes 
in the parameters of the system. 

2. The Maximum Principles 

We recall some definitions from nonsmooth analysis. Let Y be an arbitrary subset 
of a Hilbert space E. Given . ~  H, the continoent cone to Y a t  ~ is the set Kr(Y) 
defined as follows: w e Kr(Y ) if and only if there exist a sequence {hk} of positive 
numbers with hk ~ 0 and a sequence {Yk} C Y such that (Yk -- Y)/hk -" W as k ~ 
(equivalently, if and only if there exist a sequence {hk} as above and a sequence 
{wk} c E such that w k ~ w and y + hkW k ~ Y). Kr(Y) is a closed (in general, non- 
convex) cone. The Clarke tangent cone Cr(Y) to Yat y ~ Y consists of all w ~ E such 
that, for every sequence {hk} of positive numbers and every sequence {Yk} ~ Y such 
that h k ~ 0, Yk ~ Y, there exists a sequence {Yk} C Y such that (Yk -- Yk)/hk ~ W 
(equivalently w e Cr(~) if there exists a sequence {Wk} ~ H with w k ~ w and Yk + 
hkWk ~ Y). It can be shown that Cr(Y) is convex and closed (see p. 407 [AE]). It 
is obvious from the definitions that Cr(Y)= Kr(Y). These cones are in general 
different, although if Y is a convex set we have 

Cr(.V) = Kr(~) = C1 [~Uo 2 ( Y - Y ) I  (2.1) 

[AE, p. 407]. The negative polar cone Nr(y ) = Cr(Y )-  of all z e E with (z, w) < 0, 
w e Cr(y--), is called the Clarke normal cone to Yat  y. 

Let V be a metric space, let E be a linear topological space, and let g: V ~ E be 
an arbitrary map, not necessarily defined for all u e V. Given a point u e V where 
g(u) exists, a vector r ~ E is called a (first-order) variation o fg  at u if and only if for 
some ~5 > 0 and for all h, 0 < h < ~, there exists an element v = v(h) E V where O is 
defined as well and 

d(v(h), u) <_ h, (2.2) 
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lira h-X(g(v(h)) - g(u)) = ~. (2.3) 
h ~ O  + 

The variation set of all variations of g at u is called Og(u). For  instance, if g is a 
function defined in R m, a directional derivative at u in any direction v, [Ivl[ = 1, 
belongs to Og(u). 

Finally, we recall Kuratowski 's  lira inf Z. ,  where {Z.} is a sequence of subsets of 
a metric space V: z ~ lira i n f ~  7.. if and only if there exists a sequence {z.}, z. ~ Z.,  
such that  z = l i m . . ~  Z. .  A similar definition applies to lim i n f w ~  Z(w), where 
{Z(w); w ~ W} is a family of subsets of a metric space V indexed by elements of 
another  metric space W. 

Theorem 2.1. Let the target set Y be closed and let ~ be a solution o f  the abstract 
nonlinear programming problem (1.2)-(1.3). Then there exist a sequence {3.} of  
positive numbers with r ~ O, a sequence {u"} c V, a sequence {y"} c Y such that 

d(u", ~) + Ily" -f(~)ll < 6., (2.4) 

and a sequence {(/~., z.)} = R x E satisfyin9 

~. _> 0, II(~., z.)ll = 1, (2.5) 

such that, for every (q", ~") E c ~ O ( f o , f ) ( u "  ) and every w" ~ Kr(y"),  

re'l" + <z., ~" - w"> >_ 3.(1 + IIw"l[). (2.6) 

Moreover, for every cluster point (l~, z) of  the sequence {(#., z.)} in R x E (E endowed 
with its weak topology) we have 

I1 > O, z e Ur(f(~))  (2.7) 

and for  every (q, ~) ~ lira inf._.~ c ~ O ( f o , f ) ( u " )  

/zr/+ (z, ~)  _> 0. (2.8) 

Proof .  Given an arbitrary sequence {t.} of positive numbers  tending to zero we 
define for each n the real-valued function F. by 

F.(u, y) = {(max(0,fo(u) - m + e.))2 + [If(u) - yH2} ~/2 (2.9) 

in the space V x Y endowed with the product distance d((u, y), (u', y')) = d(u, u') + 
ItY - Y'H; this space is a complete metric space and m is the min imum in (1.2). The 
function F. is continuous and positive in V x Y and 

F.(~,f(~)) = ~. _< infF .  + ~., (2.10) 

thus, by Ekeland's principle [E2] there exist (u", y") e V x Y (n = 1, 2 . . . .  ) such that 

F.(u", y") <_ V.(~,f(~)) = ~., (2.11) 

d(u", ~) + IlY" - f (g ) l [  < -v/~., (2.12) 

F . ( v , Y ) > - F . ( u " , Y " ) - x / r ~ ( d ( ( v , u " ) +  IlY-Y"II)) ( ( v , y ) e  V x Y). (2.13) 

Let w" ~ Kr(y"),  so that there exist a sequence {hk} of positive numbers  with hk ~ 0 
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and a sequence {Wk} in E with w k ~ w n and yn + hkWk ~ y. Applying (2.13) to the 
function (2.9) we obtain 

{(max(0,f0(v ) - m + e,)) 2 + I I f (v )  - yn _ hkwkll2}a/2 

_> {(max(0,f0(u n) -- m + en)) 2 + I l f ( u  n) - y' l l2} xz2 - x / ~ ( d ( ( v ,  u n) + hk Ilwk II)). 
(2.14) 

Let (r/n, ~n) E d ( f o , f ) ( u n ) .  We write (2.14) for v = v(hk), v(h) being the function used 
in the definition (2.2)-(2.3) of  variation. Substituting in (2.14), dividing by hk, and 
letting k ~ ~ we obtain (2.6) with 

( ~ ,  zn) = (An, Xn)/ll(An, xn)ll, (2.15) 

(2 n, Xn) = (max(0,fo(u") --  m + e , ) , f ( u  n) --  yn). (2.16) 

Obviously,  (2.6) extends to c ~ a ( f o , f ) ( u n ) .  
Inequali ty (2.8) is obtained from (2.6) setting w n = 0 and taking limits as n --* oo. 

The first condit ion (2.7) is obvious; thus it only remains to prove the second, i.e., 
that  z e Nr(f(~)).  Let w e Cr(f(~))  and let {hA} be a sequence of positive numbers  
such that  

hJIl(A~, xn)ll "-' 0 (n ---, ~ ) ,  (2.17) 

where (2n, xn) is the vector (2.16); as l[(2n, xn)ll = Fn(u n, yn) < ~n --' 0 we have hn ~ 0 
as well, thus by definition of  Cr(f(~))  we can pick a sequence {w n} in E such that 
w n ~ w, y"  + hnw n ~ Y. Then we obtain from (2.13) that 

Fn(u n, yn + h , w  n) 

= {[[(2n, xn)[[ 2 - 2 h n ( f ( u  ~) - yn, w n ) + h21lw~ll2}x/2 

= 1l(2n, x,)[l{1 - 2(hJll(2n, Xn)ll)(zn, W n ) + h211wnl12/lt(2,, xn)ll2} x/2 

= ll(;tn, xn)ll{1 -- (hUIl(;tn, Xn)ll)(zn, Wn) + o(hJIl(2~, xn)ll)} 

> Fn(u ~, yn) _ x /~hn  ilwn ii 

= 11(2n, xn)tl - v/~(hJIl(;tn, xn)lDIl()-n, xn)ll IIw" II. (2.18) 

Subtract ing l[(2n, xn)l[ from both sides, dividing by hn/ll(gn, xn)[], and letting n ~ oo, 
we deduce that 

(z, w) _< 0. (2.19) 

Since w ~ Cr(f(~))  is arbitrary,  z ~ Nr(f(~)).  The  proof  of  Theorem 2.1 is complete. 

This result is inadequate  in two senses. The first is its dependence on the un- 
known sequence {u'} (although, as we shall see below, in some cases large subsets 
of lim inf,.~o c ~  d ( f o , f ) ( u  n) that do not  depend on {u "} can be identified). The 
second is that the vector  (#, z) may vanish, rendering (2.8) inoperative. In order  to 
avoid this, we need addit ional  assumptions on Y. 

Let {An; n = 1, 2 . . . .  } be a sequence of sets in E. Fol lowing [F1]  we say that  {An} 
has f i n i t e  codimension in E if and only if there exists a closed subspace H with 
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has nonempty interior in H, where FI n is the projection of E into H. 
The following result is a generalization of Lemma 5.6 in IF1]. 

Lemma 2.2. Let the sequence {A.) have finite codimension. Assume that the follow- 
in9 condition holds: 

U (I - FIu)(A,) is bounded. (2.21) 
n ~ l  

Let {z.} be a sequence in E such that 

0 < c _< IIz.ll -< C, (2.22) 

sup (z., y )  < e. ~ 0. (2.23) 
yEAn  

Then every weakly convergent subsequence of {z.} has a nonzero limit. 

Proof. We denote the subsequence by {z.} as well. Write 

z. = x. + ~, (x. ~ H, ~. E H x). 

Since {z,} is weakly convergent, so are {x,} and {~.}. If~.  --* ~ :~ 0 we are through; 
thus we may assume that 2, --* 0, where convergence is strong on account of the 
finite dimension of H x. It follows that 

[Ix. l[ > c' > 0 (2.24) 

for sufficiently large n. We note that (2.23) can be extended from A. to c ~ ( A . ) ;  
also, if (2.21) is bounded, the set 

U (x  - n . ) ( ~ ( A . ) )  
n > l  

will be bounded as well. Using the fact that ~. ~ 0 in (2.23) we deduce that for all 
y" ~ ~ (A.) 

(x. ,  r I . (y" ) )  = (z., y")  - (~., ( I  - rlH)(y")) 

_< sup ( z . , y ) +  

Accordingly, it follows that 

( x . , x )  <_ 6. ~ 0  

sup (~.,  (I - Fin)y) ~ O. (2.25) 
y �9 conv(A n) 

(x e An). (2.26) 

Let B(2, p) = {x e H; Ilx - ~ll ~ p} (p > 0) be a ball in H contained in An. Then it 
follow from (2.26) that 

(x . ,  ~> + pllx.II = (x . ,  ~ + px./ l lx. l l)  < 6. --, 0 

which, in view of(2.24) shows that (x . ,  ~)  does not tend to zero. Accordingly, (x.} 
cannot be weakly convergent to zero. This ends the proof. �9 

An = N 1-1a(c~(A.))  (2.20) 
n ~ l  
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Remark 2.3. Boundedness of the set (2.21) cannot in general be given up; see the 
example in [F],  p. 163]. However, we can bypass the boundedness assumption by 
requiring that for some x ~ H and p > 0 the sequence 

{A,.x.o} = {A, n B(x, p)} (2.27) 

should be of finite codimension, where B(x, p) is the ball in H with center x and 
radius p. Here, B(x, p) can be replaced by (H (9 Bz(2, p)), where B• p) is the ball 
of center x and radius p in H • Of course, this is stronger than assuming finite 
codimension of the original sequence {A,}. See Lemma 5.5 of IF1] for a variant of 
Lemma 2.2 where {A,} consists of only one set but where boundedness of (2.21) is 
unnecessary. 

Theorem 2.4. Let the assumptions of Theorem 2.1 hold. Assume that, for every 
sequence {u ~} c Vwith d(u", ~) --* O fast enough and every sequence {y"} c Y with 
y" ~ f(~), there exists p > 0 such that, either (a) the sequence 

{A} = {{0} x c ~ ( K r ( y "  ) n B(0, p)) - ~ O(fo,f)(u")} (2.28) 

has finite codimension in • x E and satisfies (2.21) or (b) the sequence (2.27) has finite 
codimension for some x ~ H, p > O. Then the vector (#, z) in (2.8) does not vanish. 

Proof. It suffices to note that (2.6) implies 

< ( ~ ,  z.), (,~., q ) >  _< 6.(1 + p) --, 0 

and apply Lemma 2.2 and Remark 3.3. 

((K., (.) ~ t~.) 

Theorem 2.4 may be called a Kuhn-Tucker theorem for (1.2)-(1.3); we may also 
call it a maximum principle in view of the principal application. 

The analog of Theorem 2.1 for the time optimal problem is 

Theorem 2.5. Let the target set Y be closed and let {~"} be a solution of the abstract 
time optimal control problem. Then there exist a sequence {6.} of positive numbers 
with 6, -* 0, a sequence {u"}, u" ~ V~, a sequence {y"} c r such that 

d,(u", fi) + [1 y" - .vii < 6,, (2.29) 

and a sequence {z,} = E with 

IIz. 11 -- 1 (2.30) 

and such that, for every ~" ~ c ~  Of,(u") and every w" ~ Kr(y,), we have 

( z . ,  ~" - w")  >__ 6.(I + IIw"ll). (2.31) 

Moreover, for every cluster point z of {z,} in the weak topology of E we have 

z e Nr(.v) (2.32) 

and, for every ~ ~ lira inf,. |  cony Of,(u"), we have 

(z, r  > 0. (2.33) 
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Proof. The  p roo f  is similar to that of Theorem 2.1. The functions F. are defined by 

F.(u, y) = IlL(u) - yl] (2.34) 

in the spaces V~ x Y, endowed with distance d.((u, y), (u', y')) = d.(u, u') + IlY - y'll. 
We have 

F.(ff", y) = IIf(ff") -- Yll = ~., (2.35) 

where e. ~ 0 in view of(l.8). Applying Ekeland's variational principle we obtain an 
element (u", y") ~ V~ x Y such that (2.11)-(2.13) hold (with d. instead of d). Given 
w" ~ Kr(y") ,  the sequences {hk}, {Wk} are the same in Theorem 2.1. The  inequality 
corresponding to (2.14) is 

IIf(v) - Y" - hkw~ll > Ilf(u") -- Y"II -- x/~.(d.(v, u") + hk[IWkH). (2.36) 

If r e Of.(u") we write (2.36) for v = V(hk) (see the comments  after (2.14)), divide 
by hk, and let k ~ ~ .  The result is (2.31), with 6. = x / ~ ,  

z. = x. / l lx .  II, (2.37) 

x.  = f . (u" )  - y". (2.38) 

To  show that  z ~ Nr(~) we take w e Cr(Y), a sequence {h.} of positive numbers  with 

h./tlx,  l[ ~ 0 (n --* ~ )  (2.39) 

and a sequence {w"} in E such that w" ~ w, y" + h.w" e Y. Then  

F.(u", y" + h.w") = {llx.ll 2 - 2h.( f (u")  - y", w")  + h2nHwnll2} U2 

= llx.ll{1 - 2(h./l lx.l l)(z, ,  w")  + h211w"ll2/llx.llZ} x/2 

= IIx.ll{1 - (h./llx.ll)<z., w")  + o(h./llx.ll)} 

>_ F.(u", y") - x / ~ h .  II w" II 

= IIx. tl - x/c~(h./llx, ll)llx. II IIw" II (2.40) 

and we argue in the same way as after (2.18). This ends the proof.  �9 

Theorem 2.6. Let  the assumptions of Theorem 2.5 hold. Assume that for every 
sequence {u"}, u" ~ V~, with d.(u", ~") ~ O fast enough and every sequence {y"} c Y 
with y" ~ ~ there exists p > 0 such that, either (a) the sequence 

{A.} = { c ~ ( K r ( y " )  c~ B(0, p)) - c o n v  Of.(u")} (2.41) 

has finite codimension in E and satisfies (2.21) or (b) the sequence (2.27) has finite 
codimension for some x ~ H, p > O. Then the vector z in (2.23) does not vanish. 

Proof. Here,  (2.31) implies that  

<z.,  ~.> < ,~.(1 + p) --, 0 (~. ~ t~.), 

thus the result follows from Lemma 2.2 and Remark  2.3. �9 
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When  the target  set Y is convex much addit ional  informat ion about  the sequence 
{(#., z.)} in Theorem 2.1 and the sequence {z.} in Theorem 2.5 can be obtained.  
Moreover ,  the proofs  of the corresponding results are simpler. We note  first that, 
by virtue of  (2.1), the Clarke normal  cone Nr(Y) consists of  all z ~ E such that 
(z,  y - y )  < 0 for all y ~ Y. Given  x ~ E we denote  by y = r l r (x  ) the element of  Y 
of min imum distance to Y, called the projection o fx  into Y; we have x - y ~ Nr(Y). 

Theorem 2.7. Let the target set Y be convex and closed, and let ~ be a solution of 
the abstract nonlinear programming problem (1.2)-(1.3) Then there exist a sequence 
{6.} of  positive numbers, a sequence {u"} c Vsuch that 

6. --* O, d(u", ~) ~ O, (2.42) 

and a sequence of vectors {(/4,, z.)} c R x E with 

14, > O, z. ~ Nr(Flr(f(u"))), 11(/4,, z.)[I = 1, (2.43) 

and such that, for every (rl", ~") E c ~  O(fo,f)(u"), we have 

/4,r/" + (Zn, ~")  > 6.. (2.44) 

Proof.  Let {~.} be a sequence of positive numbers  with s, --* 0. This time we use 
the function 

F.(u) = {max(0,fo(u ) - m + s.))2 + d(f(u), y)2}l/z, (2.45) 

where m is the min imum is (1.2) and d(x, Y) denotes  the distance f rom x to Y in E. 
Since ff is an opt imal  element, f (if) ~ Y andfo(fi-) = m, hence 

F.(ff) = ~, _< inf F. + ~., (2.46) 

thus we can apply  Ekeland's  variat ional  principle to deduce the existence of an 
element u" ~ V such that  

F.(u n) <_ Fn(~ ) = s., (2.47) 

d(u n, ~) < W/~n, (2.48) 

F.(V) > F.(u") - w/'~.d(v, u n) iv E V). (2.49) 

Define a function G.: V ---, R by 

G.(u) = {max(0,fo(u) - m + ~.))2 + [If(u) - lqr(f(u"))ll2} ~/2. (2.50) 

Using (2.49) we obta in  

G.(v) > {(max(0,fo(v) - m + e.)) 2 + d(f(v), y)2}1/2 

= Vn(v ) >_ Fn(U") - ~ n d ( v ,  u") 

= {(max(0,fo(u") - m + ~,))2 + tiT(u") - r / r ( / (u" ) ) l l2}  1~2 - . , /~ .d(v.  u") 

= C(u") - u") (v V) (2.51) 

Let (r/", ~") be an element ofO(fo , f ) (u"  ) and let v(h) be as in Theorem 2.1. We write 
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(2.51) for v = v(h) and divide by h, obtaining 

~ "  + (z. ,  ~")  >__ - ~ (2.52) 
with 

(~ ,  z.) = (;t., xA/ll(2., x.)ll, (2.53) 

(2., x.) = (max(0,fo(U") - m + e.),f(u") - Fi r ( f  (u"))), (2.54) 

so that all the statements in Theorem 2.7 are satisfied with 6. = x/~.. �9 

We observe that (2.44) and the seemingly more general inequality (2.6) are 
equivalent here; in fact, y" = Fi r ( f  (u")) and z. e Ny(Flr(f(u")) ). 

The counterpart of Theorem 2.7 for the abstract time optimal problem is 

Theorem 2.8. Let the target set Y be convex and closed, and let {~"} be a solution 
of the abstract time optimal control problem. Then there exist a sequence {6.} of 
positive numbers, a sequence {u"} ~ V such that 

6. --* O, d(u", ~") ~ O, (2.55) 

and a sequence of vectors {z"} c E satisfying 

z. ~ Nr(rlr(L(u"))),  IIz. II = 1 (2.56) 

and such that, for every ~" ~ c ~  df.(u"), we have 

(z., r > - 6.. (2.57) 

The proofis similar to that of Theorem 2.7; we use the functions F,(u) = d(f(u), Y), 
a.(u) = [ I f (u) -  I'Ir(f(u"))ll. 

Remark 2.9. All of our results only involve elements which are close to the optimal 
element ff in the distance of V. Accordingly, we can formulate a local version of the 
abstract nonlinear programming problem, where we replace the whole space V by 
the ball B(~, 6) for 6 sufficiently small, with no change in the results or proofs. This 
allows us, for instance, to dispense with global solvability conditions in differential 
systems (see Section 4, Lemma 4.1). 

3. Nontriviality of the First Multiplier 

In results such as Theorem 2.4 we are only guaranteed that (#, z) 4: 0. The case 
p = 0 is exceptional in that the necessary conditions do not involve the cost 
functionalfo. In the case/~ > 0, the multiplier rule obtained in Section 4 is called 
normal. We examine here a condition, introduced in [F8], that guarantees normal- 
ity. 

Let {u"} be a convergent sequence in V. Define 

P({u"}) = C1 [~U0 2 I - l e ( l i m i n f c ~ a ( f o , f ) ( u " , )  ] ,  (3.1) 

where we denote by He the canonical projection of R x E into E. 
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Theorem 3.1. Let the assumptions of Theorem 2.4 be satisfied and let ~ be a solution 
of  the abstract optimal control problem. Assume that,for every sequence {u ~} c V such 
that d(u ~, ~) ~ O fast enou#h, we have 

Nr(f(~))  -~ Cl(Cr(f(~)) - P({u~})). (3.2) 

Then, for every cluster point (l~, z) of the sequence { (14,, z,) } in Theorem 2.4, we have 

# > 0. (3.3) 

Proof. Let {u"} be the sequence in Theorem 2.4 corresponding to the multiplier 
(#, z). If # = 0, then z =~ 0 and 

(z, ~)  > 0 (3.4) 

for all ~ ~ FIE(lira inf,_~ c ~  cg(fo,f)(u")), thus for all ~ ~ P({u'}).  Since z ~ Nr(f(~))  
and (3.2) holds, there exist sequences {wk} c Cr(f(~)) and {~} c P({u~}) such that 
z = limk-oo (wk - r Taking k sufficiently large, we may write ~k = w~ - z + v4 
(llvkll < ~llzll) with ~ < 1, so that 

<z, ~k) = <z, wk) - Ilzll 2 + (v , ,  z )  < - ( 1  - ~)llzll z (3.5) 

since z ~ Nr(f(~)).  This obviously produces a contradict ion with (3.4). �9 

Remark 3.2. Since Cl(Cr(f(~))  - P({u~})) is a (closed, convex) cone, (3.2) will hold 
if 

0 ~ Int ( f l (Cr( f (~))  - P({un}))). (3.6) 

This last condit ion is equivalent to 

Cl(Cr(f(ff)) - P({u~})) = E. (3.7) 

We note finally that when Int(Cr(f(~))  ) :A ~ ,  (3.6) or (3.7) are equivalent to 

Int(Cr(f(ff))) c~ P ({u~} )#  ~ .  (3.8) 

In fact, it is obvious that (3.8)implies that 0 e Int(Cr(f(~))  - P({u" })), which in turn 
implies (3.6). On the other  hand, if(3.8) does not  hold there exists z e E, z ~- 0, such 
that 

<z, w)  < (z,  ~)  (w e Cr(f(u)), r e P({u*})). 

It follows that (z, v ) <  0 for v e C r ( f ( g ) ) - P ( { u ~ } )  (a for t ior i  also for v s 
Cl(Cr(f(g)) - P({u~})), thus 0 r Int(Ci(Cr(f(O)) - P({u~}))). 

Similar considerations apply to the case Int(P({u~})) :/: ~ .  

We note that the assumptions of Theorem 3.1 involve the poin t f (g) ,  which is in 
general not  known in advance; thus in applications we must verify the assumptions 
for every possiblef(~),  that is, for every point  of Y. 

4. Systems Described by Abstract Differential Equations 

Consider  the semilinear initial value problem 

y'(t) = Ay(t) + f( t ,  y(t), u(t)) (0 < t < T), 

y(O) = yO, 

(4.1) 

(4.2) 



52 H.O. Fattorini and H. Frankowska 

where A is the infinitesimal generator of a strongly continuous semigroup {S(t); t > 0} 
in a Hilbert space E andf( t ,  y, u) is a function from [0, T] x E x U into E, where 
U (the control set) is a bounded subset of another Hilbert space F. The control space 
W(0, T; U) is the set of all (equivalence classes of) strongly measurable F-valued 
functions u = u(t) defined in 0 < t < T and such that u(t) ~ U a.e. (almost every- 
where). This space is equipped with the Ekeland distance 

d(u, v) = meas{t; u(t) ~ v(t)} (4.3) 

(see EEl] and [E2]) which makes it complete. We assume that the functionf(t, y, u) 
has a Fr6chet derivative dyf(t ,  y, u) with respect to y and thatf(resp, ayf)  is contin- 
uous (resp. strongly continuous) and bounded on bounded subsets of ['0, T] x 
E • U. Solutions of(4.1)-(4.2) are, by definition, solutions of the integral equation 

y(t) = S(t)y o + ~ i  S(t - a)f(a,  y(a), u(a)) da (0 < t < T). (4.4) 

The solution corresponding to u is called y(t, u). Given u in W(0, T; U) the hy- 
potheses guarantee existence and uniqueness of a solution of (4.3) in an interval 
0 < t < ?, where possibly t" < T. For assumptions that guarantee existence in the 
whole interval see, for instance, IF2] and IF3]. However, we shall not require global 
existence. 

Lemma 4.1. Let ~(.) ~ w(O, ?;; U) be a control whose trajectory y(t, ~) exists in 
0 < t < ~ Then there exists e > 0 such that i f  u( ' )  E W(O, ?;; U) and d(u, ~) < e, then 
the trajectory y(t) = y(t, u) also exists in 0 <_ t <_ E 

The proof is an elementary application of Gronwalrs inequality and is omitted. 
Lemma 4.1 in combination with Remark 2.9 allows us to work in a ball B(~, e) 
instead of the whole space W(0, ~ E) in case global solvability does not hold. 

We apply the results in Sections 2 and 3 to the optimal control problem described 
in Section 1 with cost functional 

yo(t, u) = f l  fo(a, y(a, u), u(a)) da, (4.5) 

wherefo(t, y, u) is a real-valued function defined in [0, T] • E • U possessing a 
Fr~chet derivate Oyfo(t, y, u) with fo (resp. Oyfo) continuous (resp. strongly con- 
tinuous) and bounded on bounded subsets of [0, T] • E • U. The space V is 
W(0, T; U) and the maps f ,  fo are defined by (1.4). In the time optimal case, the 
sequence {f~} of maps is given by 

f~(u) = y(t n, u), (4.6) 

where {tn} is a sequence in 0 < t < ?0-the optimal time) such that t, ~ ?. Continuity 
(in fact, Lipschitz continuity) of these maps is proved in I'F1]. We define a set of 
variations ~(?, s, u, v) ~ Of(u) (with 0 < s < ?and  v ~ U) taking v(h)(t) = us.h.~(t) in 
(2.2)-(2.3), where Us.h.o(t ) is the spike variation of the control u(.) defined by Us.h.v(t) = 
V in s -- h < t < s, U,.h.~(t) = u(t) elsewhere. It is proved in IF1] that if s is a left 
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Lebesgue point of the functionf(s, y(s, u), u(s)) in 0 < s _< t, then ~(T, s, u, v) exists 
and equals 

~((,, s, u, v) = S(-(,, s; u){f(s ,  y(s, u), v) - f (s ,  y(s, u), u(s))}. (4.7) 

where S(t, s, u) is the solution operator of the linear equation 

z'(t) = {a + O,f(t, y(t, u), u(t))}z(t), (4.8) 

that is, the only strongly continuous solutions of the operator equation 

S(t, s; u)z = S(t - s)z + f l  S(t - tr)3yf(G y(o', u), u(a))S(tr, s; u)z da 

in0_<s_< t_< T. 
Note that ~(t, s, u, v) can only depend on the equivalence class of u; thus the 

variation ~(t, s, u, v) will exist when s is a Lebesgue point of any function in the 
equivalence class. 

Variations ofyo(T, u) are constructed in the same way and denoted by ~o(t, s, u, v); 
it is also shown in IF1] that if s is a left Lebesgue point of bothf(s,  y(s, u), u(s)) and 
fo(S, y(s, u), u(s)) in 0 _< s _< T, then ~o(t, s, u, v) exists and equals 

~o(t, s, u, v) = fo(s, y(s, u), v) - fo(s, y(s, u), u(s)) f- t 

+ (O,fo(a, Y(G u), u(tz)), ~(tz, s, u, v))  &r. (4.9) 

In order to interpret the maximum principle (2.8) we must identify elements of 
lim sup,.~o c ~  0 ( f  o , f )  (u"), or lim sup,_~ conv af,(u ~ ) for (2.33). We do this below. 

Let {t.} be a sequence in 0 <_ t <_ 7, and let {u"} be a sequence in Lemma 4.2. 
W(0, t.; U) such that 

( 7 -  t.) < co, d.(u", < co. (4.1o) 
n = l  n = l  

Then there exists a set e = e({t.}, {u"}) of  full  measure in 0 <_ s <_ t such that 

~ ( t , , s ,u" , v ) -~ ( (7 , , s ,~ , v )  ( see ) ,  (4.11) 

~o(t., s, u ", v) ~ (o(t, s, ~, v) (s e e). (4.12) 

Proof. By (4.10), ifd. = {t; 0 _< t _< t., ~(t) # u"(t)} w (t., 7 ] , then~meas(d . )  < ~ .  
Accordingly, the set 

0 
m ~ l  n ~ m  

has measure zero. Let e(u") (resp. eo(u")) be the set of left Lebesgue points of 
f (a ,  y(a, u"), u"(a)) (resp.fo(o', y(a, u"), u"(a))) in [0, t.], and let e. = (e(u") c~ Co(U")) w 
It,, 7]. Define 
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Obviously, e is total in [0, t ] .  Assume that s ~ e. Then there exists no such that 
s e e(u") c~ Co(U") and s r d, (n >__ no). Accordingly, (4.7) and (4.9) hold for each u" 
and u'(s) = ft(s) for n > no. To take limits in (4.7) and (4.9) we use continuity of the 
solution operator. S(t, s; u) is continuous in 0 < s < t < T, u ~ W(0, T; U), u mea- 
sured in the Ekeland distance (see [FI]).  �9 

Lemma 4.2 shows that if t, = t a n d  {u'} satisfies (4.10), then 

(Go(F, s, u", v), ~(-(, s, ft, v)) e l imin f  a( fo , f ) (u")  (4.15) 
n ~ o o  

for every s e e. Likewise, if {t,} and {u"} satisfy (4.10), 

~(t, s, ft, v) ~ lim inf af,(u"). (4.16) 

Using (4.15) we deduce from (2.8) that 

I z ~ ( f , , s , u , v ) + ( z , ~ ( t , s , u , v ) ) > O  (sEe ,  v e V j .  (4.17) 

It is shown in IF1] that (4.17) can be written in the more familiar form 

Mfo(s, y(s, ft), ft(s)) + (z(s),f(s,  y(s, ft)), ft(s)) 

= min {~fo(s, y(s, ft), v) + (z(s),f(s,  y(s, ft), v))}, (4.18) 
v c U  

where z(s) is the solution of the adjoint initial value problem 

z'(s) = --(A* + O,f(s, y(s, g), g(s))*)z(s) - #O, fo(s, y(t, ft), u(s)) (0 <_ s <_ T), 
(4.19) 

z(t) = z. (4.20) 

In the time optimal problem, we deduce from (2.33) that 

(z, ~(t, s, ft, v)) >_ 0 (s ~ e, v e V) (4.21) 

which can be written in the form 

(z(s), f(s,  y(s, ft), ft(s))) = min (z(s), f(s,  y(s, ft), v)) (4.22) 
v c U  

for s e e, where z(s) is given by (4.19)-(4.20) withfo = 0. 
We look below at conditions (2.28) (resp. (2.41)) that guarantee that the multiplier 

(#, z) in (2.8) (resp. the multiplier z in (2.33)) is nontrivial. By virtue of (4.7), the set 
H r ( c ~  O(fo, f)(u '))  will contain all elements of the form 

-f-I S(~ s; u ' ){ f (s ,  y(s, u"), v(s)) - f ( s ,  y(s, u"), u"(s))} ds (4.23) 

with v(') e W(0, T; U). 
For ~ e W(0, ~-; U) consider the control system 

z'(s) = {A + Oyf(s, y(s, ~), ~(s))}z(s) + v(s) (0 < s <_ -t), (4.24) 

z(0) = w, (4.25) 
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for a fixed control ~. Given a control space V and a set Z ~ E denote by R(?, a; V, Z) 
the reachable subspace of(4.24)-(4.25) corresponding to all v(') ~ V and w e Z. Then 
the set of all elements of the form (4.23) is ?-IR(?, u"; V", {0}), where the control 
space V" consists of all functions of the form 

v(s) = f(s,  y(s, u"), u(s)) - f(s, y(s, u"), u"(s)) (4.26) 

with u(s) ~ W(O, -t; U). In certain cases involving abstract hyperbolic equations it is 
possible to show that all the R(?, u"; V"; {0}) contain a fixed open set; thus the 
conditions in Theorem 2.4 are satisfied for any target set Y and the multiplier in 
(2.8) is nontrivial. On the other hand, if Y is "sufficiently large," Theorem 2.4 will 
hold without conditions on R(t, u"; V"; {0}). For details, see Section 4 of IF1]. 

The preceding observations apply as well to the time optimal problem. 
In relation with the results in Section 3, we have 

Theorem 4.3. Under the conditions of Theorem 2.6, assume that 

Nr(y(~ , ~)) c Cl(Cr(y(?, ~)) - R(t, ~; V, {0})), (4.27) 

where P'consists of  all integrable functions v(s) satisfying 

v(s) ~ C l r  UL~>O 2 { c ~ f ( s ' y ( s ' u ) ' U ) - f ( s ' y ( s ' f i ) ' u ( s ) ) } l "  (4.28) 

Then (2.8) holds with lz = 1. 

Proof. It is enough to show that P({ u'}), defined as in (3.1), contains R (t, ~; V, {0}); 
this follows from the definition of P({u"}) and from an approximation argument. 

Remark 4.4. Let 
U(s) = c ~ f ( t ,  y(s, ~), U). (4.29) 

Using the definition of a contingent cone, we show that the control space V in 
Theorem 4.3 consists of all integrable functions v(s) such that 

v(s) ~ Kv(s)(f(s, y(s, ~), ~(s))) a.e. in 0 < s < T. (4.30) 

Remark 4.5. The treatment of optimal control problems as nonlinear program- 
ming problems (1.2)-(1.3) does not take advantage of the fact that the arrival time 
t-may not be fixed (except of course in the time optimal problem). For control 
systems described by ordinary differential equations, the difference between the 
free-time and the fixed-time problem is given by the fact that the Hamiltonian is 
zero. In infinite-dimensional spaces, the Hamiltonian cannot in general be defined 
for systems described by (4.1)-(4.2) and even when it can, it may not be directly 
related to the maximum principle under use; thus the vanishing of the Hamiltonian 
can only be proved in very special situations (see [FT] for details). 

We show finally how the results in Section 2 apply to a control system where not 
only the control but the initial condition is a variable. The system is defined by (4.1) 
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with the variable initial condition 

y(0) -- x ~ X, (4.31) 

where X is a closed set in E. Trajectories of this control system are denoted by 
y(t, x, u). We take a cost functional of the form 

yo(t, x, u) = g(t, y(t, x, u)), (4.32) 

where g(t, y) has a Fr6chet derivative Oyg(t, y) in [0, T]  x E and #(t, y), Oya(t, y) are 
continuous. We minimize yo(t, x, u) among all controls u ~ W(0, t; U) and initial 
conditions x e X with target condition 

y(t, x, u) e Y, (4.33) 

where Y is a closed set. We assume that an optimal initial condit ion-control  pair 
(.~, ~-) exists and denote by Tthe (not necessarily unique) optimal arrival time to the 
target, and by y the hitting point y(T, ~, u-). To apply Theorem 2.1, the basic space 
is V = X x W(0, t-; U) with the product distance, andf ,  fo are 

f (x,  u) = y(~ x, u), fo(X, u) = yo(t, x, u). (4.34) 

Let x belong to X and let w be an element of the contingent cone Kx(x); moreover, 
let v ~ U and u ~ W(0, t-; U). Let s be a left Lebesgue point off(s ,  y(s, x, u), u(s)). 
Then, if we set 

q = (63yg(-(,, y(~ x, u)), ~) (4.35) 

= S(t, 0; u)w + S(~ s, u){f(s, y(s, x, u), v) - f ( s ,  y(s, x, u), u(s))}, (4.36) 

(q, ~) ~ O(fo,f)(x, u). Theorem 2.1 produces a multiplier (#, z) such that (2.8) holds 
for every (r/, r ~ c-fiftY a(fo,f)(x", u") and every w" e Kr(y"), where x" ~ ~, y" --* y, 
u" ---, ~ as fast as desired. Denote by Sx(~) the set 

Sx(~ ) = lim inf c ~  Kx(x ). (4.37) 

Let w ~ Sx(~). Consider a sequence {x,} in X with x, --. ~- and a sequence {w,}, 
w, ~ Kr(x"), with w, ~ w. Taking limits in (4.35)-(4.36) we deduce that the element 
(q, ~), where 

rl = (O,g(~ y(?, 2, if)), ~), (4.38) 

= S(t, 0; ~)w + S(?, s, ~){f(s, y(s, ~, ~), v) - f ( s ,  y(s, ~, ~), ~(s))}, (4.39) 

belongs to lim inf , .~  O(fo,f)~, x", u") for almost all s in 0 < s < ?. Inequality (2.8) 
can be reworked in the form 

(l~Oyg(~ y(~ ~, ~)) + z, S(-(,, O, g)w + S(~ s, ~)f(s, y(s, y(s, ~, ~), ~(s)) ) 

= min (l~OyO(~ Y(?,, x, ~)) + z, S(-(,, O, g)w + S(-(,, s, g)f(s, y(s, ~, ~), v)). 
w ~ S x ( i )  

Finally we note that assumption (2.20), guaranteeing (#, z) r 0, can be checked as 
in the observations following (4.25): we show that the set I I e ( e ~  O(fo,f)(t, x", u")) 
contains R(t, u"; V", Kx(x")). Finally, the following analog of Theorem 4.2 holds: 
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if 9 is the control space defined there and 

Nr(y(t, 2, if)) _~ CI(Cr(y ~ 2, ~)) - R~, if; 9; Sx(2))), 

then the vector (/~, z) satisfies/a > 0. 

Remark 4.6. The results in this section extend to the case where U is unbounded 
and, controls are taken from the space WI(0, t-; U) = W(0, t-; U ) n  LI(O, -{; U). As- 
sume an optimal control ~(.) exists. It is easy to see that Lemma 4.1 can be extended 
to this situation. Given now the e provided by Lemma 4.1 and an arbitrary constant 
N, consider the subspace V,. N of W(0, t-; U) consisting of all u(.) with 

d(u, ~) < e, I]u(t)]] < N where u(t) ~ ~(t). 

Then VN is a complete matric space. Applying (2.8) into the system defined by (4.1)- 
(4.2) we obtain (4.18) for Ilvll < N, thus for all N, since N is arbitrary. 

5. Suboptimal Controls: the Sequence Minimum Principle 

For the control system (1.4), a sequence {u"(')} ofcontrols, u" E W(0, t., U), is called 
(t., e.)-suboptimal if 

dist(y(t., u), Y) <_ ~., yo(t., u) <_ m + ~., (5.1) 

with e. --, 0, where m is the minimum in (1.2). The same definition applies to the time 
optimal problem. 

In the last two sections we study the problem of convergence of sequences of 
suboptimal controls. We formulate the problem in the following abstract way: Let 
{ V.} be a sequence of complete metric spaces, let E be a Hilbert space, and let {f.}, 
{fo.} be two sequences of continuous functions, 

f.: V. ~ E, fo.: V. ~ It~. (5.2) 

Let Y be a subset of E, and 

m = inf{fo.(U); n > 1, u ~ V.,f.(u) ~ Y}. (5.3) 

Characterize the sequences {u"}, u" E V., such that 

fo.(U") <_ m + ~., (5.4) 

dist(L(u"), Y) < e. --, 0. (5.5) 

A sequence {u"} as above is called {s.}-suboptimal. For the system (1.4) V. = 
W(O, t., U),f .(u) = y(t . ,  u), andfo.(U) = yo(t., u). 

The corresponding version for the time optimal problem is: Let { V.} be a sequence 
of complete metric spaces, let E be a Hilbert space, let {f.} be a sequence of 
continuous functions, 

f,: V, ~ E, (5.6) 

and let Y be a subset of E. Assume that 

f.(V.) n Y = ~ .  (5.7) 
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Characterize the sequences {u"}, u" �9 V., that satisfy 

dist(L(u"), Y) < e. --, 0. (5.8) 

For (1,4), V. = W(O, t., U),f .(u) = y(t. ,  u), where t. < ? =  optimal time. The prob- 
lem is the same as the abstract time optimal problem except for condition (5.8); 
the corresponding condition in Section 1 is 

f.(u") --* y �9 Y. (5.9) 

However, the difference is not essential, since we will assume (5.9) in Section 6 in 
order to obtain convergence results. 

The strategy to prove convergence is essentially that of [F2]- [F4] ,  although in 
these works the conditions on the target set Y are very restrictive, whereas here Y 
is just a closed set. The proof consists of three steps. In the first we establish a 
sequence maximum principle (Theorem 5.1 below), which is a separate approximate 
maximum principle for each of the members of the suboptimal sequence { u" }. Each 
approximate maximum principle will involve a multiplier (14. z.) (a multiplier z. in 
the time optimal case). The second step (which we treat in next section) consists in 
upgrading the sequence maximum principle to a convergence principle, where we 
prove that (a subsequence of) the sequence of multipliers {(/4,, z.)} or {z.} is 
convergent; the convergence principle is weak or stron9 depending on whether the 
convergence of the sequence of multipliers is weak or strong. In the third step, 
we translate convergence of the sequence of multipliers into convergence of the 
sequence {u"} for the system (1.4). 

In our first result, the assumptions on the target set are those in Theorem 2.1. 

Theorem 5.1. Let  the target set Y be closed. Let {u"} be a {~.}-suboptimal sequence, 
and let 6. = 81/+e.1/2. Then there exist a sequence {~"}, ~" �9 V., a sequence {)7"} = Y 
such that 

d.(fi", u") + 11)7" -L(ff")ll -< 6., (5.10) 

and a sequence {(/4,, z.)} = R • E with 

~.  _> 0, I1(~., z.)ll = 1, (5.11) 

and such that/f(r/", ~") �9 O(fo.,f.)(t~") and w" �9 Kr()7"), then 

p,.~" + ( z . ,  ~" - w " )  _> - 6.(1 + IIw"ll). (5.12) 

Proof. The proof of Theorem 5.1 is essentially the same as that of Theorem 2.1. 
The role of the functions (2.9) is played by 

F.(u, y) = {max(0,fo.(U) - m + e.))2 + IIf.(u) - YlI2} 112 (5.13) 

in the spaces V. x Y. Again, each F. is continuous and positive. In view of(5.5) there 
exists a sequence {y"} c Y such that 

I IL(u" )  - y"[I <- 2~., (5.14) 

hence 

F.(u", y") < ((2e.) z + (2e.)2) 1/2 = w/Be. = 6. 2. (5.15) 
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Using Ekeland's variational principle we deduce the existence of an element 
(u", Y") e K x Y such that 

F.(~", 97") < F.(u", y") <_ 62, (5.16) 

d.(t~", u") + 1197" - f .O") l l  -< 6., (5.17) 

V.(v,y)>_F.(~",y,")-a.(d.(v,~")+ I ly-97"ll)  ((v,y)~ V. • Y). (5.18) 

The sequence {~"} is that claimed in the statement of Theorem 5.1. The rest of the 
proof is essentially the same as the that of the first part of Theorem 2.1, thus we 
omit the details: the vector (/~., z.) is 

(m,  z.) = (2., x.)/ll(,~., x.)ll, (5.19) 

with 

(2., x.) = (fo.(~") - m + e.,f.(~") - 97"). �9 (5.20) 

The following result corresponds to the time optimal problem. 

Theorem 5.2. Let  the target set Y be closed. Let {u"} be a {e.}-suboptimal sequence 
and let 6. = 81/%]/2. Then there exists a sequence {~"}, ~" ~ V., a sequence {97"} c Y 
such that 

d.(t~", u") + 1197" -f.(u")tl  _< 6., (5.21) 

and a sequence {z.} c E such that 

IIz. II = 1, (5.22) 

and such that, for r ~ c ~  Of.(~") and w" ~ Kr(97"), we have 

(z . ,  U - w" )  >_ - ~i.(1 + Ilw"ll). (5.23) 

The proof follows closely that of Theorem 4.3 and we omit it; the basic functions 
are defined by (2.34). The vector z. is 

z. = xJt lx .  II, (5.24) 

with 

x.  = L ( a " )  - 7 .  (5.25) 

Remark 5.3. As in Section 2, simplified proofs can be used when the target set Y 
is convex, and we obtain additional information on the multiplier z.. In Theorem 
5.1 we use the functions 

F.(u) = {max(0,fo.(U ) -- m + en)) 2 + d(f(u), y)2} 1/2 (5.26) 

instead of (5.13). The sequence {y"} is unnecessary; we obtain simply a sequence 
{t~"}, 5" e V., such that 

d.(~", u") _< 2x/~. (5.27) 
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and a sequence {(It,, z,)} c • x E such that (5.11) and (5.12) hold with w" = 0; 
moreover, 

z, e Nr(l-lr(f,(~"))). (5.28) 

The vector (/~,, z,) is given by (5.19)-(5.20) with .~" = I-It(f02")). The same observa- 
tions apply to Theorem 5.2: in particular, (5.28) holds. 

6. Convergence Principles 

In this section we study convergence of (suitable subsequences of) the multiplier 
sequence {(It,, z,)} in Theorem 5.1 and of the sequence {It,} in Theorem 5.2. In case 
of weak convergence, we show that the limit multipliers do not vanish. 

In all the results below, we need the following compactness assumption. 

Let {~"} be an arbitrary sequence, ~" ~ V,. Then there exists a subsequence of 
{~"} (denoted by the same symbol) and an element y ~ Y such that 

f,(T2") ~ y strongly in E. (6.1) 

Our first result upgrades Theorem 5.1 to a weak convergence principle. 

Theorem 6.1. Let the target set Y be closed, and let the compactness assumption hold. 
Assume in addition that for every sequence {t~"}, ~" ~ V,, and for every convergent 
sequence {.~"} c Y there exist subsequences (denoted by the same symbols) and a 
number p > 0 such that, either (a) the sequence 

{A.} = {{0} x c ~ ( K r ( Y "  ) n B(0, p)) -- cony 0(fo.,f.)(tT")} (6.2) 

has finite codimension in • x E and satisfies (2.21) or (b) the sequence (2.27) has finite 
codimension for some x ~ H, p > O. 

Let {(it,, z,)} be the sequence constructed in Theorem 5.1. Then there exists a 
subsequence (which we denote with the same symbol) such that 

(It,, z,) --* (It, z) ~ 0 weakly in R x E, (6.3) 

where 

It > 0, z ~ Nr(Y ). (6.4) 

Proof. It is essentially the same as that of Theorem 2.4. We start with the sequences 
{~"} and {y"} in Theorem 5.1; note that in view of(6.1) and of(5.10) we may assume 
that {37"} is convergent so that, selecting further subsequences if necessary, we ensure 
that the sequence {A,} in (6.2) satisfies the assumptions in Theorem 6.1. We obtain 
from (5.12) 

<(u., z.), (~", ~")> _< 6.(1 + p) -~ o ((~", ~") ~ zx.), 

thus the result is a consequence of Lemma 2.2 and Remark 2.3. �9 

The companion result for the abstract time suboptimal problem is 
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Theorem 6.2. Let the target set Y be closed, and let the compactness assumption hold. 
Assume in addition that for every sequence {~"}, ~ " e  V,, and for every convergent 
sequence {~"} ~ Y there exist subsequences (denoted by the same symbols) and a 
number p > 0 such that, either (a) the sequence 

{A,} = { c ~ ( r r ( . ~ "  ) c~ B(0, p)) - e ~  cOf,(t~")} (6.5) 

has finite codimension in E and satisfies (3.21), or (b) the sequence (3.27) has finite 
codimension for some x ~ H, p > O. Let {z,} be the sequence constructed in Theorem 
5,2. Then there exists a subsequence (which we denote with the same symbol) such that 

z, ~ z ~ 0 weakly in E (6.6) 

with 

z E Nr(7). (6.7) 

The proof  is similar to that  of Theorem 6.1. 
Let Z be a convex set in a Hilbert  space H and let 7 be a point  on the boundary  

of Z. We say that  Z is f lat  at 7 i f  and only if the normal cone Nr(7) at y i s  a half-line, 
that is, for some ( ~ H we have 

Nr(Y) = (Y - 7 ) -  = {2(; 2 > 0}. (6.8) 

The vector ( (normalized to lICIE = 1) is called the outer unit normal vector to Y at Y. 
We say that Z is strongly f lat  at 7 i f a n d  only if it is flat and, for every O, 0 < 0 < ~/2, 
there exists b = b(O) > 0 such that  

7 + F ( -  ~, 0, b) c Y, (6.9) 

where F(z, 0, b) is defined by F(z, 0, b) = {y ~ H; (z, y )  > Ilyll cos 0, Ilyll < b}. 
Obviously, if Y is strongly flat at Y, it is flat at Y. The converse may not  be true: if 
H = 12 and Yis the convex set of  all sequences {x,; n > 0} with Xo > max(0, x,  - 1/n), 
then Y is flat (but not  strongly flat) at 0. 

Lemma 6.3. Let A ~_ H be strongly flat at O. Then,/ f{z ,}  satisfies 

IIz. rl ~ r 

for some r > 0 and 

we have 

(6.10) 

( z , , y )  < t ,  ---, 0 ( y e A ) ,  (6.11) 

z , ~ r ~  stronoly, (6.12) 

where ~ is the normal vector to A at O. 

Proof. It is enough to consider the case r = 1. Also, by uniqueness of  the limit, it 
suffices to show (6.12) for a suitable subsequence of {z,}. Not ing  that  (6.9) must  be 
satisified at y = 0 for 0 < n/2 arbitrary,  we deduce that for every such 0 there exists 
p > 0 with B ( - p ( ,  p sin 0) = {y ~ H; IIY + pCII - p sin 0} c F ( - ( , 0 ,  b) c A. 
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Accordingly, We have 

<z,, - p ~ >  + p sin 01lz.ll = <z . ,  - p ~  + p sin Oz,/llz,}l> < 6,. (6.13) 

Using (6.13) for a sequence {0,,}, 0m ~ ~/2, we deduce that there exists a subsequence 
of {z,} (named in the same way) such that 

< z . ,  - O - ~  - 1 

which ends the proof of Lemma 6.3. �9 

Theorem 6.4. Let {A,} be the sequence of sets in Theorem 6.1. Assume that the set 

A = ('] c ~ ( A , )  (6.14) 
n > l  

is strongly f lat  at O. Let { (/~,, z,)} be the sequence constructed in Theorem 5.1. Then 

(~,, z,) ~ (#, z) # 0 strongly in • x E. (6.15) 

Proof. The result follows from Lemma 6.4; in fact, since II(/~,, z,)[] = 1 we may 
assume that (for a subsequence)/~, --./1 so that Ilz, ll ~ r = 1 - #. 

Similar reasoning leads to 

Theorem 6.5. Let {A,} be the sequence of sets in Theorem 6.2. Assume the set (6.14) 
is strongly f lat  at O. Let {z,} be the sequence constructed in Theorem 5.2. Then 

z, -o z r 0 strongly in E. (6.16) 

The results in this section generalize those in [-F2]-[F4], where convergence of 
multipliers is obtained under much more restrictive conditions. We note that 
Theorem 6.1 can be considered a generalization of a well-known result on con- 
vergence of Kuhn-Tucker  multipliers for perturbed nonlinear programming prob- 
lems [L, p. 317]. 

We consider a control system described by the quasilinear initial value problem 
(4.1)-(4.2). We assume that there exists an a priori bound on the solutions, 

Ily(t, u)ll < C (0 < t < ~) 

which guarantees global existence. See [F2] and [F3] for indications on how to 
establish this bound. The compactness assumption is proved in [F3] for 

f(t ,  y, u) = f(t ,  y) + Bu, (6.17) 

thus we only sketch the extension to the general case. 

Lemma 6.6. Let t-> 0, l(t-) = {(s, t); 0 _< s < t < t'}. Assume that the semigroup S(t) 
is compact for all t > O. Then the operator 

(I'Iv)(s, t) = [ '  S(t - a)v(a) da (6.18) 

I 

Jo 
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from L2(0, ~ F) (with its weak topology) into C(I(T); E) (the space of all E-valued 
continuous functions defined in I(?) with it usual supremum norm) is compact. 

Proof. The result is a minor generalization of Lemma 6.1 in [F2]. 

The compactness assumption is a consequence of the following result. 

Lemma 6.7. Assume that S(t) is compact for t > O. Let {t.} be a sequence with 
t. ~ ?, {u"} a sequence of controls, u" ~ W(O, t.; U). Then there exist an E-valued 
continuous function y(t) in 0 < t < -{and a subsequence of{u"} (that we denote by the 
same symbol) with 

y(t, u") ~ y(t) (6.19) 

uniformly in 0 < t < ~. 

Proof. We note that 

y(t, u") = S(t)y ~ + J l  S(t - a)f(a, y(a, Un), Un(~7)) dtr. (6.20) 

Select a subsequence of {fttr, y(tr, u"), u"(tr))} converging weakly in L2(0, ?; F) to 
v(.) and apply Lemma 6.6. The limit is S(t)y ~ + (Hv)(0, t), which is not necessarily 
a trajectory of the system. �9 

The compactness assumption can be proved without compactness of the semi- 
group, but only for certain cost functionals and control sets. See, for instance, the 
result in [F3, Theorem 3.2] for the time optimal problem, where Y is a closed ball 
andf(t ,  y, u) is linear in u, but where S(t) is an arbitrary semigroup. 

We sketch below how the convergence principles are used in [ F 2 ] - [ F 4 ]  and 
IF6] to deduce strong convergence of sequences of suboptimal controls in the time 
optimal case. Expressions like "u" ~ ~" (where, for instance, ~ belongs to L2(0, ~ F) 
and u" ~ L2(0, t.; F)) are understood by thinking of the u" as elements of L2(0, ?;/7) 
extending the function (u = 0 in t > t .  i f ? >  t.) or chopping it offat  ? i f ? <  t,. 

We deduce from the sequence maximum principle (5.23) and from (4.7) that 

(S(t . ,  s; ~")*z.,f(s,  y(s, ~"), v) - f ( s ,  y(s, ~"), ~"(s))) > - 6., (6.21) 

in this case, 
(S( t . ,  s; ~*)*z., v - u"(s)) > - 6. (6.22) 

with 6. ~ 0, where S(t, s; u) is the solution operator of (4.8). With a compact 
semigroup and a nonlinearity of the form (6.17) it is Shown in [F2] that S(t., s; ~")* 
is compact and that S(t., s; ~")* is convergent to S ~  s; ~)* in the uniform topology 
of operators, where ~ is the weak limit of a subsequence of {t~"}. 

Let U be an arbitrary set in F. Given a vector y :~ 0, define 

U(y, 6 ) = { u ~ U ; ( y , v - u )  > - 6  ( v ~ U ) }  

(for the geometry of the situation see [F2]). Assume that U is such that 

diam U(y, 6) -~ 0 (fi --, 0) (6.23) 
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for all y e F, y ~ 0, and the solution operator S(t, s; u) satisfies 

S(t, s; u)*z ~ 0 if u ~ W(0, ?; U), s < t, z v~ 0, (6.24) 

then, if the weak convergence principle holds, S(t, s; ~")*z, in (6.21) converges 
strongly to S(?, s; ~)*z (z, = weak lim z,) and it follows from (6.23) that a sub- 
sequence of {~"} is convergent in LP(0, ?; F), 1 < p < ~ ;  it suffices to apply (6.23) 
with y = S(?, s; ~)z. 

The following result differs from those in [F2]-[F4] ,  and [F6] in that it deals 
with a general nonlinearityf(t,  y, u) in a situation where optimal controls may not 
exist. 

Theorem 6.8. Assume the Hilbert space E is separable. Let {t,} be a sequence with 
t, ~ ~ and let {u"} be a sequence with u" ~ W(O, t,; U). Then there exist a subsequence 
of {u" } (which we denote by the same symbol) and a linear bounded operator 

B*: E --* L~(0, ?; E) (6.25) 

such that, for each z ~ E, 

S*(t, s; u")z ~ S*(t, s)z (6.26) 

uniformly in I(T) = {(s, t); 0 < s < t < t-}, where S*(t, s) is the only continuous solution 
of the equation 

S*(t, s)z = S*(t - s)z + S(t - e)*(B*S*(e, s)z)(e) de. (6.27) 

We note that (B*z)(t) stands for the image ofz in L~(0, t-; U) by the operator B* 
in (9.7). Note also that, for fixed t, z --. (B*z)(t) may not be a bounded operator; in 
fact the operator z ~ (B*z)(t) may not even be defined for any t, since the function 
t --. (B*z)(t) may be defined in a different set (of full measure) of 0 < t < ~-for each 
z. The symbol (B*9(e))(e) (as on the right-hand side of (6.27)) denotes the value 
at e of the function e --. (B*z(e))(a). That this makes sense even for a single e is 
not obvious (the functions B*z(a) are defined modulo null sets that depend on 
z(e)), thus this point needs clarification. We prove below that, in fact, for each 
9 ~ L~(0, t] E) the function (B*o(a))(a) is well defined a.e., essentially bounded, 
and the operator 

g(e) -.-, (B* g(a))(a) (6.28) 

is bounded from L| t] E) into itself. Let 0(a) = ~ X~(a)Yk be a step function (a 
finite linear combination of characteristic functions of disjoint measurable sets). 
Then (B*g(a))(a)= ~Xk(a)(B*yk)(a) is a well-defined element of L~(0, t-; E) for 
almost all a e [0, t-] and 

II(a*g(a))(e)ll < II~ Zk(tr)(B*yk)(a)ll < ~ Z~(a)llB*yk II | 

< ~ z~(e)lln* II II Yk II = liB* I1(~ ;~(e)[[ Yk II) = 11 B* I1110(o911, 

where IIB*II is the norm of the operator (6.25). Let now 9(a) be an arbitrary integ- 
rable function. Select a sequence {9~,} of step functions such that Ore(e) --* 9(e) a.e. 
T h , ~ n  I l lR*r t  l,-r'l~l,,r~ _ _  (R*.,7 (trl l( , .r / l l  ~" 11/:!'1111,'7 let1 - -  n (tr i l l  ~r~ t h a t  [ R * n  (rrllrrl~, i~ 
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convergent a.e. to a measurable function, declared to be (B*o(a))(a). Obviously this 
definition does not depend on the approximating sequence and we have 

II(n*o(a))(a)ll < IIn*llllo(a)ll. (6.29) 

This gives meaning to the integral equation (6.27) and allows us to solve it in the 
usual way by successive approximations. 

Proof of Theorem 6.8. Let {go,,; m > 1} be a complete orthonormal system in E. 
Using the diagonal process, select a subsequence of {u"} (denoted the same) such 
that for each m the sequence 

B(a, u")*go,, = ayf(a, y(a, u"), u"(a))*go,, (6.30) 

converges weakly in L2(0, T; E) to a limit b,,(a) e L2(O, t; F) as n ~ oo. In view of the 
boundedness of { u"} and { y(t, u ") } and of the hypotheses on 0rfwe know that each 
b,,(a) e L~~ T; E). More generally, since for any finite sum ~ a,,go,, we have 

B(a, u")*(~ a,,go,,) = Oyf(a, y (a, u"), u"(a))*(~ ~,,go,,) ~ ~ c~,,b,,(t) 

weakly in LZ(0, t; F) as n ~ ~ ,  it follows again from uniform boundedness of 
B(t, u") that there exists a constant C such that II~,,b,,(t)J[ _< CIl~a,,go'*ll a.e. in 
0 _< t _< t. Using this for tails of the series ~ c~,.go'* we conclude that the partial sums 
o f ~  ~,.b'* are a Cauchy sequence in L~(0, t-; E), thus we can define an operator B* 
of the required form (6.25) for arbitrary y e E by developing y in a Fourier series, 
y = ~ ct,,go,,, and setting 

We claim that for each y e E we have 

B(t, u")*y ~ (B*y)(t) weakly in L2(0, t-; E). (6.31) 

This is obvious if y = y'* is a finite linear combination of the go'*. Now let y 
be an arbitrary element of E and e > 0. Developing y in Fourier series we can 
write y = Ym + Y,,, where y,, is a finite partial sum of the series and II.v,, It -< e. Let 
v(a) e L2(0, t; E). We have 

( B(cr, u")*y - (B*y)(~), v(~) ) d~ = ( B(~, u")*Ym - (B*y'*)(a),  v (~) )  dG 

+ (B(~ ,  u")*~'* --  (B*~'*)(~), v (~) )  d~. 

(6.32) 

The second term in (6.32) can be bounded by Cllvll~, the first can be estimated by 
an expression of the same form taking m > too(n). 

The proof ends as follows. Consider the integral equation defining the solution 
operator S*(t, s; u"): 

s; u")z = S*(t - s)z + I t S(t - a)*B(a, u")*S*(a, s; u")z da. (6.33) S*(t, 
do 
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This equa t ion i s  solved by successive app rox ima t ion  start ing with (S*)o(a, s; u' )z  = 
z. We define the sequence {(S*)m(t, s; u"); m > 1} by 

(S*)m+l(t, s; u~)z = S*(t - s)z + f l  S(t - tr)*B(a,u~)*(S*)m(a, s; u~)z da. (6.34) 

Selecting a subsequence of the sequence {u~}, we m a y  assume  that  
B(a, u*)*(S*)o(a, s; u ' )z  is weakly convergent  in L2(0, t-; E); hence by L e m m a  6.6, 
(S*)l(t, s; u~)z is uniformly convergent  as n --, ~ in the interval 0 < t < F. Refining 
the subsequence and apply ing  L e m m a  6.6 at each step, and then selecting a d iagonal  
subsequence we conclude that  all the sequences {(S*)m+l (t, s; u~)z, n = 1, 2 . . . .  } are 
uniformly convergence in 0 < t < ?. We then take advantage  of the uni form con-  
vergence of the approx ima t ions  {(S*),~(t, s; u")}. Since the details are s imilar  to those 
in the p roo f  of  T h e o r e m  6.2 in IF2] ,  we omi t  them. �9 

We are now in a posi t ion to establish a convergence result. Let {u n} be the 
(t n, en)-suboptimal sequence {u ~} with en ~ 0 .  We start  with (6.21). T h e o r e m  6.8 
shows that  we have S(tn, S; ~ ) *  ~ S*(t, s) strongly, uniformly in 0 < s < t n. Assum- 
ing now the target  set Y satisfies the necessary assumpt ions  for the s t rong con- 
vergence principle (Theorem 6.5) we m a y  assure, if necessary passing to a sub- 
sequence, that  {z,} is s t rongly convergent  to z # 0. On the other  hand,  by  L e m m a  
6.7, if necessary passing again to a subsequence,  we m a y  assume that  y(t, f~*) is 
uniformly convergent  to a cont inuous  function y(s). Thus, we may  rewrite (6.21) as 
follows: 

(S*(-f,, s)z, ( f ( s ,  y(s), v) - f ( s ,  y(s), ~n(s))))  _> - ~n -"  0. (6.35) 

Assuming the set U s =f ( s ,  y(s), U) satisfies (6.23) and that  (6.24) holds for  S(t, s), 
Le(O,/-; U)-convergence off (s ,  y(s), t~"(s)) is obtained.  
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