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Elimination in Control Theory* 

Sette Diopt  

Abstract. For nonlinear systems described by algebraic differential equations (in 
terms of "state" or "latent" variables) we examine the converse to realization, 
elimination, which consists of deriving an externally equivalent representation not 
containing the state variables. The elimination in general yields not only differential 
equations but also differential inequations. We show that the application of differ- 
ential algebraic elimination theory (which goes back to J. F. Ritt and A. Seidenberg) 
leads to an effective method for deriving the equivalent representation. Examples 
calculated by a computer algebra program are shown. 

Key words. Equivalent system representations, Latent variable elimination, State 
elimination, Elimination theory, Differential polynomial algebras. 

1. I n t r o d u c t i o n  

Continuous-time nonlinear systems can be represented by several different types of 
differential equations. In particular, we often consider systems of equations of the 
type 

Pi(w, ~ . . . . .  w (~), (, ~ . . . . .  ((P)) = 0 ,  i = 1, 2 . . . . .  (E)  

where, as in Willems' work [W1], w stands for the external variables of the system 
and ~ denotes a set of latent variables whose introduction comes from modeling 
techniques. Alternatively, we also encounter external representations 

pi(w, ~i, . . . . .  w c~)) = 0, i = 1, 2 . . . . .  (E') 

where w still stands for the external variables which need not be, a priori, partitioned 
into input and output variables (see [WI]). Finally, we consider the standard state 
representations 

{ ~  = F/ (u ,  x) ,  i = 1, 2 . . . . .  n,  (s) 
yj = By(u, x), j = 1, 2 . . . . .  p, 

where u and y are, respectively, inputs and outputs of the system and the xi's are 
the state variables. A natural and fundamental question that arises is the one of 
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equivalence of representations: in what precise sense do two systems of equations 
represent one and the same system? This is not an easy question, and a full answer 
to it seems to be lacking. Many papers in the literature treat the related problem of 
transforming one of the above representations to another one. Realization theory, 
which consists of deriving a state representation of type (S) from an external 
representation of type (E'), is one of these transformation processes. Because of the 
great popularity of state representations, realization theory is abundantly studied 
in control theory literature (for the nonlinear context, see, for example, I-$9], [FW], 
[$6]-[$8], [J2], [FI],  [V1]-[V3], [CL], [G], and [WS]; see also the criticisms in 
Fliess' work IF2], [FH]). The converse question to realization is precisely what we 
call elimination. More generally, elimination consists of deriving equivalent repre- 
sentations of type (E') from those of type (E). The main point of our paper is to 
argue that it is natural to supplement (E') by inequations. We explain this intuitively 
next. 

In the context of constant coefficient linear systems, Proposition 3.3 of i-W2] and 
p. 107 of [BY] show through matrix computations that an arbitrary constant linear 
system represented by (E) can be described by equations of type (E'). In the more 
general context of bilinear systems, I-FR] and Theorem 1 of [$8] show that the 
previous conclusion holds. What about general nonlinear systems of type (E)? This 
question is investigated in [CMP] where the restricted form (S) of (E) is assumed, 
and in [V2]-[V3] where some constant rank conditions are assumed; the previously 
mentioned works rest on the implicit function theorem. The latter question is also 
addressed by Glad [G]. Glad and the author had recourse to differential algebra; 
the main difference between their respective works is that in [G] the underlying 
question of equivalence is not considered. Analogous questions for difference equa- 
tions are treated in [$6] and [$7], using techniques from algebraic geometry. 

From a differential algebraic geometry point of view, passing from (E) to (E') is 
a projection operation. Let us associate to (E) its differential algebraic set, V(E), 
defined to be the set of zeros of(E), and similarly for (E'); then V(E') is the projection 
of V(E) onto the w coordinates (more precise definitions are given below). A suitable 
definition of the external behavior of the system of equations (E) is the latter 
projection V(E') of V(E); furthermore, two systems of equations of type (E) are said 
to be externally equivalent if and only if they have the same external behavior. What 
is clear from this point of veiw is that we cannot expect to get merely a set of 
equations as an equivalent representation of(E) which no longer invokes the latent 
variable (, since it is well known that the projection of an algebraic set is in general 
not an algebraic set (that is, V(E') may not be defined by equations only, which is 
in contrast to the previous linear and bilinear cases). To obtain such an equivalent 
representation of (E), (E') should include inequations. A simple example showing 
this is the hyperbola defined by the equation xy = 1 for which the elimination of y 
(that is, the projection of the hyperbola onto the abscissa axis) leads to the inequa- 
tion x ~ 0. (See basic books on algebraic geometry, such as IM, Section 2.C.] or 
[$5, Section 1.5.2.1, for these algebraic questions.) Our main result then reads as 
follows: when eliminating the ( from equations (E) we are led to a finite family of 
systems of equations and inequations of type 

pl(w, vO . . . . .  w ~)  = O, p2(w, v0 . . . . .  w tp~) = 0, ... ,  and q(w, ~ . . . . .  w ~ )  ~ O. 
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This appears to be a new result in control theory. Every inequation defines a region, 
in terms of the external variables, in which equations (E) are externally equivalent 
to the set of equations associated to the given inequation. In other words, from a 
representation of type (E) we are led to a representation of type (E') but valid only 
locally, since the external equivalence is valid only where the inequations hold. This 
locality aspect, often referred to in the literature, has here received a definite 
meaning. 

After the latter fact is clarified, it remains to find an effective method to determine 
the external behavior of a system defined by equations (E) (or, in what amounts to 
the same thing, we need an effective method for deriving from (E) an externally 
equivalent representation which no longer contains a given latent variable). For- 
tunately, such a method is readily available to us via differential algebraic elimination 
theory, which is a theory developed at the beginning of differential algebra studies 
in the 1930s, with Ritt and, later, Seidenberg (and others). So we just have to apply 
one of the known algorithms to obtain a mechanical method for deriving external 
equivalent representations of a given system of equations (E). This applies immedi- 
ately to the elimination question in control theory. (This is true at least for systems 
which can be described by algebraic differential equations with coefficients in a 
differential field of characteristic zero; for some systems described by differential 
equations where expressions with transcendental elementary functions occur, it 
seems possible, according to works by Wu et al., to reduce the problem of elimina- 
tion to the previous algebraic case by some technique of variable transformations. 
For more details see [WW].) This is what we do in this paper. Instead of the powerful 
algorithm developed by Ritt [RI] [R2] (and revisited by Seidenberg [$4]), we adapt 
an algorithm due to the latter author (who published it in 1956) for the following 
reason: it is simple and it rests on elementary notions of differential algebra, 
especially differential polynomial algebras; we do not claim, however, that this 
algorithm is the best one in any efficiency sense. 

Related results for discrete-time nonlinear systems, obtained by Sontag [$6], 
[$7], have already been applied to identification and other areas by many authors 
(see [DD] and [LB]). Thus present work should also be applicable to practical 
problems. Note however that the work [$6] and [$7] did not notice the importance 
of adding inequations, which is the main point of the present work. 

We recall that differential algebra was introduced into systems theory in 1985 by 
Fliess [F2]. For the reader who is not familiar with this part of mathematics, we 
recall the few notions necessary for what follows (for more details see [R1], JR2], 
or [K]). We then give details on the algorithm and some illustrative examples. 

The material of this paper, which was announced in I'D1], is part of a doctoral 
dissertation [D2-I. 

2. Basic Differential Algebra 

Differential algebra was initiated by Ritt [R1], [R2] during the 1930s. Algebraic 
language was then known as being particularly suitable for describing properties 
of algebraic equations. The purpose was therefore to extend these basic methods in 
order to apply them to differential equations. The easiest differential equations we 
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can deal with are certainly algebraic ones, i.e., those defined by differential poly- 
nomials. Well-known algebraic concepts are extended to differential ones essentially 
by adjoining differential operators to algebraic laws operations such as addition 
and multiplication. Basic differential algebra then consists of the study of the 
resulting structures. Differential polynomials turn out to be the suitable differential 
algebraic objects generalizing polynomials. We first briefly recall the notions of 
differential ring, field, etc. 

Let R be a ring (that we call the underlying ring). A map a of R into itself is called 
a derivation on R if and only if the following two axioms are satisfied: 

1. For all a, b ~ R, O(a + b) = Oa + Ob. 
2. For all a, b E R, O(ab) = O(a)b + aOb. 

A ring R equipped with a derivation is called an (ordinary) differential ring and is 
still denoted by the same symbol. A ring is always a differential one, for the zero 
map (which sends to zero any element of R) is clearly a derivation; the resulting 
differential ring structure is in no way different from the underlying ring structure. 
This indicates the generalization of algebra provided by differential algebra. If we 
replace the word ring by field in the above definitions we obtain the notion of 
differential field. In an analogous way as for rings, we define differential modules, 
differential linear spaces, differential algebras, and so on. 

In what follows, rings and algebras are assumed to be commutative and with unit 
element, algebras are associative, and fields are commutative. For brevity, "d-..." 
denotes "differential..." and the derivation is indicated by a dot. 

3. Differential Polynomial Algebras 

We next indicate the standard notations that we adopt here. R[(Z~)~,]  is the 
polynomial algebra in the family of indeterminates (Zi)i ~ i indexed by the arbitrary 
set I, with coefficients in the ring R. The elements of R [(Zi)i~t] are the finite sums 
of finite products of the Z~ with coefficients in R. Formally, let E {s) be the set of 
families of elements of E, all zero (assume that E possesses an element called zero) 
but a finite number of them, indexed by the arbitrary set J. The monomials of 
R[(Zi)i~1] are 

Z ~ =  1-I z/",  
i ~ l  

where # = (#i) e Nm; and the elements of R[(Zi)~I]  are 

P = ~ a~,Z ~', 
# ~ Nlll  

where a = (at) ~ R ~ ~'"~ is the family of coefficients of P; these are all zero but for a 
finite number. 

To define the differential polynomial algebra denoted by R{(Zi)i~t} with R a 
differential ring, we let it set-theoretically be the R-algebra R[(Z~V~)o.v~ , . N]. The 
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(z")" = Z 
( i , v ) ~ l  x I~l 

for any # ~ I~l t~ n); and 

differential monomials are then the objects 

l-I 
(i, v I E l  x N 

where /~ = (gi.,)~ I~1 u• We can now easily define a derivation o n  R{(Zi)iel} 
which extends the one on R. Let 

, z l  �9 1-I z) 
( j ,  2) ~ I  x N, ( j ,A)  # ( i , v )  

= E ( a . z .  + a.(Z")') 
e N (n 

for any P = ~a~Z"  ~ R{(Zi)i,1}. It is straightforward to check that this is a deriva- 
tion on R{(Zi)i~} which extends the one on R. Then R{(Zi)i~t} together with this 
derivation is called the differential polynomial aloebra in the family of indeterminates 
(Z i )~  with coefficients in R. Its elements are the d-polynomials, and the Zi's are 
more precisely the d-indeterminates. We denotes Z ~ = 1, Z~ ~ = Z~, Z,~ = Z} j), and 
so forth. As usual, we identify R {(Z~)~l} with R i f / i s  the empty set, with R{Z} if 
I consists of a single element, and with R {Z1, Z2, . . . ,  Z,} if/consists ofn elements. 

We now show a few results which generalize known algebraic situations and 
which are used later. First, some definitions on R{Z}. For  any P ~ R{Z}\0 (where 
0 is the zero subalgebra of R {Z}), we define 

~ (0, d) ifP ~ R [ Z ] \ 0 a n d d  = d} P (degree of P in Z), 

co(P) = "](r, d) i fP ~ R[Z,  Z u), Z (2) . . . .  , Z( ' ) ] \R[Z,  Z (1), Z (2) . . . . .  Z( ' -n] ,  

L r _> 1, and d = d~c,,P. 

Therefore we have defined a map 

co: R { Z } \ 0  --, N 2 

which will play a central role in what follows (as will be seen in the Proposition 
below, co curiously behaves like the deoree function in usual polynomial procedures). 
For  any P ~ R{Z}\0, the integer r in co(P) = (r, d) is called the order of P; and the 
integer d the degree of P. The order of P is merely the highest derivative of Z that 
appears in P; and the degree of P is the degree in Z (') where r is the order of P. For 
any P e R{Z}\0, the initial of P is the coefficient (element of R{Z}) in P of Z ~')~ 
where (r, d) = co(P), and the separant of P is the d-polynomial OP/OZ (') (it can easily 
be seen that if R is a d-ring having the ring of integers Z as a subring (such d-rings 
are said to be of characteristic zero or to be Ritt aloebras), then whenever P is in 
R{Z}\R the separant of P is merely the common initials of the derivatives P") (i > 1) 
of P). In the following, 1%12 is assumed to be lexicooraphically ordered. That is, 
(n, m) < (n', m') if and only if either n < n' or n = n' and m < m'. According to this 
ordering of I~ 2, it is clear that, for any P in R{Z}\R, the initial I and the separant 
S of P respectively satisfy: 

either I = 0 or o2(I) < co(P), 
either S = 0 or co(S) < co(P). 
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We now quote the following important  result, similar to the division algorithm 
in usual one-indeterminate polynomial algebras (see Proposition 10, Section IV.1.6, 
of [B]) for a nondifferential version, see also JR1], JR2], or Section 1.9 of I-K] for 
another division algorithm valid for partial differential polynomials). 

Proposition. Let  R be a d-ring, P, Q ~ R {Z}. I f  the separant S o f  Q is not zero and 
i f  I denotes the initial o f  Q, then there exist P* e R {Z}, z, er ~ I~ such that 

I 'S~P = P* mod[Q]  with either P* = 0 or P* ~ 0 and co(P*) < co(Q). 

That  is, assuming P and Q v~ 0 and co(Q) = (r, d) and co(P) = (r', d'), there exist  
d-polynomials Uo . . . . .  U,,_ r, P*, and natural integers t and er such that 

I 'S~P = UoQ~r'-~) + UIQ~"-'-I~ + . . .  +u , . _ ,Q  + P* 

with either P* = O or P* r O and co(P*) < co(Q). 

Proof. To prove this we proceed by steps. 

1. Case P = 0 or P ~ 0 and co(P) < co(Q). The existence of the U, P*, l, and tr is 
obvious if P = 0 or P ~ 0 and co(P) < co(Q) for it then suffices to take U to be zero, 
P* to be P, and l and a also to be zero. Therefore we assume P :# 0 and co(P) > co(Q). 

2. Case P v~ 0 and P and Q have the same order. We then show the following. 

I f  A, B are both in R{Z}\R  with co(A) = (s, t') >_ (s, t) = co(B) (A and B are o f  the 
same order, s) and J is the initial o f  B, then there exist  V, R, and j such that 

JJA = VB + R with either R = O or R ~ O and co(R) < co(B) 

(such V and R are unique whenever R is integral and we f i x  j ,  e.g., j = 
max(t '  - t + 1, 0)). 

Let A o = A. Let d o = initial o fA o and t o be the difference between the respective 
degrees in Z ~s) of A o and B, and 

Ro = JAo  - JoZ~S~'~ 

If either R o = 0 or R o :# 0 and co(Ro) < co(B), then the process ends. Otherwise, we 
nevertheless have 

d~,,,R 0 < d~ . 

We now set A x = Ro. We then reiterate the above process. 
We thus repeat the latter at most (t' - t) times, until we have 

R i = O  or R i : # 0  and co(Ri)<co(B) 

since at each step d~,,,R~ is decreased at least by one. The quantities j, 7, and R 
mentioned above are then given by 

j = i + 1, V = JiJoZ~S~'~ + Ji-lJ1Z(')'l  + "" + JiZ (s)'', R = Ri. 
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Not ice  that  if the initial of A i contains J as a factor, then the cor responding  exponent  
j can be taken to be 0. 

3. General case. N o w  let og(P) = (r', d')  and og~Q) = ~o(r, d) with r '  > r. Q~,'-r) is of  
order  r '  and of degree ! (in Z~")). By case 2, for a 0 = d'  - 1 + 1 = d', there exist Qo, 
R o such that  

S '~  = QoQ ~''-'~ + Ro with Ro �9 R [ Z ,  Z ~1~ . . . .  , Z ~''-1~] 

(since Q~r,-,) is of  degree 1 in Z~r')). If  R o is of order  < r, the p roo f  is complete.  
Otherwise,  there exist Q~, R1, and a~ such that  

S~ = QI Q~,'-,-1) + Rx with R 1 �9 R [ Z ,  Z~I~, . . . ,  Z~"-2~]; 

we then have 

S"o+"'P = S~ ~''-') + QxQ ~''-'-~) + R 1 with R1 �9 R [ Z ,  Z ~1~ . . . . .  z ( r ' - 2 ) ] .  

We repeat  this process i times, i _< r '  - r, until 

Sa'Ri-a = QiQ ~i) + Ri with R i �9 R [ Z ,  Z ~) . . . . .  Z~'~]. 

Then,  for a = Y',~=o % we have 

S~p = U~Q~,'-,) + U~Qt "'-~-1~ + . . .  + U[Qt " ' - ' -o + R i w i t h R i � 9  

where the U' have obvious values. By case 2 again, we have 

I'S~P = UoQ ~''-'~ + .-- + UjQ ~''-'-~ + P* with either P* = 0 or P* r 0 and o~(P*) < ~o(Q). 

The  propos i t ion  is thus proved.  �9 

We come back to the general polynomial  a lgebra and specify what  we call a zero 
of a system of d-polynomials .  Let  (E) be the following system of d -po lynomia ls  of 
R{(Z,),~,}: 

t"1, P2 . . . .  , P,,  (=-) 

let A be a differential R-algebra.  A zero (or solution) of (~) over  A is a tuple ~ = (~i)~" ~ 
of elements ~ of  A such that  

e l ( 0 = 0 ,  / 2 ( 0 = 0 ,  . . . ,  P , ( 0 = 0 -  

We also say that  (E) is satified by ~, and (E) has a zero if there is a differential 
R-a lgebra  over  which we can find some ~ which is a zero of  (~,). We need to invoke 
systems of d-polynomials  of  type 

P~, P2, -- . ,  P,; Q; (E) 

by definition, a zero of such a system is an element ~ = (~i)i~1 over  a differential 
R-a lgebra  such that  

PI(~) = 0, P~(0  = 0 . . . . .  Pt(O = 0 and Q ( 0  4: 0. 

I f / i s  finite (R{(Zi)~t}  = R{Za,  Z~ . . . . .  Z.}), R is a field k, and if we consider  only 
solutions over  differential k-algebras  which are d-fields then, after Rabinowitch,  we 
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can use the famous trick that by adjoining the indeterminate Z,+I, and setting 

P,+, = Z.+ 1Q(Z x, Z 2 . . . . .  Z . )  - 1, 

i f (  = ((1, ~2,-.., (.) is a zero of (Z'), then, for (,+~ = 1/Q(( I ,  ~2 . . . . .  ~.), (~1, ~2 . . . . .  
~.+l) is a zero of 

/'1, P2, ---, P.  Pt+,. (EE) 

Conversely, if(~l, (2 . . . . .  ~.+1) is a zero of (EYe), of course (~a, ~2 . . . . .  ~.) is a zero of 
(X); that is, we can replace (E) by a system of polynomials of type (E). The point is. 
that, to make the induction work in the elimination procedure below, we need 
systems of polynomials such as (Z) instead of(E). This is made clear in the next two 
sections. 

4, On Elimination Theory 

Let 
Pi(w, ~) = 0 (6~ 

be a system of algebraic equations (without derivations and where w = (w 1, w 2 . . . . .  ws) 
and ~ = (~1, ~2 . . . . .  ~,)) with coefficients in an algebraically closed field k. To 
eliminate the ~ from the equations (o ~) amounts to finding the equations of the 
projection ((w, ~) ---, w) of the algebraic set V(8) (defined to be the subset of kS +" of 
common zeros (w, if) of the P in (g)) onto k". It is a basic well-known fact in algebraic 
geometry that the projection of an algebraic set is not algebraic in general (recall 
the hyperbola example in the introduction, and [M, Section 2.C], [$5, Section 1.5.2], 
or any other book on that field). Elimination of the variable ~ results in a finite 
family of systems of algebraic equations and inequations in the w with coefficients 
in k. Constructive algebraic methods of elimination to derive the equations of the 
projection of V(~) from those of(g) (see the theory of resultant polynomials in l-V4], 
ILl,  and [J1], and I-T] and [$2] for algebraic elimination theory over real closed 
fields) are also well known (see [-$3] for example). Since algebraic equations are 
particular cases of differential algebraic equations, 

P,(w, ~) = 0, (E) 

the latter phenomenon still takes place in the differential context. Moreover, the 
above theoretical justification can be extended to differential algebraic equations. 
For this the ground differential field k (which contains the coefficients of equations 
(E)) is replaced by another differential field q/called its universal differential f ie ld  
extension (a complete definition of this object would be too long to give here; see 
[K] where existence ofqZ is also proved) which plays a role analogous to the algebra- 
ically closed field k in the nondifferential case. The differential aloebraic set in qZ '+" 
associated to the differential algebraic equations (E) is analogous of the algebraic 
set in kS +" associated to (g). Examples of systems of equations of type (E) (even of 
type (S)), which are not nondifferential ones can easily be found; one is given later 
in the text. Algorithms extending to the differential context the known effective 
methods of elimination in the nondifferential case also exist. One is found in the 
pioneering work by Ritt. Seidenberg has revisited this problem of constructivity of 
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elimination theory in his notable paper [$4] where he gives (among other things) 
a simple method valid for ordinary differential equations that we shall adapt to the 
field of control theory. It is clear from what precedes that an elimination algorithm 
treats systems of equations and inequations 

I P,(w, ~) = o, 
P~(w, ~) o, 

P,(w, ~) = o, 
a(w, ~) ~ 0 

(z) 

instead of systems of merely equations such as (E). Departing from systems of 
equations of type (E), we therefore choose to add the trivial inequation 1 :/: 0 to (E). 

Before doing this we should notice the following. The notion of a differential 
algebraic set allows us to define, in an easy way, the control theory concept of 
external behavior of a system and, furthermore, the idea of external equivalence of 
representations of systems. Let a system be given by its equations (E); its external 
behavior is nothing but the image of V(~) through the projection mentioned above. 
A rather simple definition of external equivalence is the following: two representa- 
tions of a system are said to be externally equivalent if their external behaviors are 
equal on any universal differential field extension ~ of the ground field k. This 
definition can be made more subtle, but would need more sophisticated algebra (see 
[D2] for references). 

From the classical result recalled above, we borrow the terminology (first sug- 
gested in [R1]) of a family of resultant systems for a system of d-polynomials with 
respect to some indeterminates. 

Definition. Let 
P1, P2 . . . . .  PI; Q (E) 

be a system of d-polynomials of Z{ W 1, W 2 . . . . .  Z1, Z2, ... } in finitely many in- 
determinates. A finite family of systems of d-polynomials 

PJ, . . . . .  Pi, j; qJ, (R j) 

where the p are in Z { I4:1, W 2 . . . .  }, is called a family of resultant systems for (~) in 
the Z if and only if, for any d-field k of characteristic zero, any d-extension field K 
of k, and any values w in k of the W, a necessary and sufficient condition for the 
existence of ~ in a d-extension field of K, such that (w, ~) is a zero of (~), is that the 
w is a zero of (Rs) at least for one j. 

There are some immediate properties related to this notion: 

Remark 1. It is clear that for any system of d-polynomials (E), any d-polynomial 
P ~ Z { W x, W 2 . . . . .  Zl ,  Z2 . . . .  }, a family of resultant systems for (E) is obtained by 
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joining the respective families of resultant systems for 

el,  P2 . . . . .  P,, P; Q, (Z') 

e , ,  P2 . . . . .  Pt; P" Q (Z") 

together; that is, if (R~) and (R~) are the respective families of resultant systems for 
(Z') and (Z"), then (Ri) is a family of resultant systems for (2:), where (R j) consists 
of all the systems of d-polynomials that occur in (R~) or in (R~). To describe the use 
of this property, we say (2:) splits into (2:') and (2:"). 

Remark 2. If the P~'s do not involve the Z, a family of resultant systems for (Z) is 
obtained as follows: we regard Q as a d-polynomial of A {Z~, Z: . . . .  } where A = 
Z { I4'1, W 2 . . . .  } and denote its coefficients by QI, Q2 . . . .  (they are in A and finite in 
number); then the 

P1, P2 . . . . .  Pt; ~)j (Ri) 

form a family of resultant systems for (2:) since we are in a field of characteristic zero. 

5. The Elimination Procedure 

We can now state and prove the following fundamental theorem of elimination 
theory. 

Theorem. Any system of differential polynomials 

P~,/'2 . . . . .  P,; Q, (Z) 

with PI, P2 . . . . .  Pt, Q e 7/{wl, w 2 . . . . .  z l ,  z2 . . . . .  z.} (the W are finite in number) 
possesses a family of resultant systems in the Z: 

PJ, . . . . .  Pi, j; qJ (R j) 

which we can compute within a finite number of  steps, using only the coefficients of 
the P and Q and d-field operations (+, ' ,  and derivation). 

We have followed l-$4], making slight changes, in the proof below. 

Proof. We first show by induction on n that it suffices to have a procedure for 
eliminating one variable. Let us assume such a procedure to be available. Regarding 
ZI, Z2 . . . . .  Z,-1 as indeterminate coefficients, i.e., as additional W, we then have 
a family of resultant systems in Z, 

PA, . . . .  PA~; q J, (R j) 

where pj,, . . . ,  Pi, j, q~ e 2~{W 1, W2, . . . ,  Z 1, Z2 . . . . .  Zn-1 }. By the induction hypoth- 
esis, there is, for each (R j), a family of resultant systems of (R j, 1) in ZI, Z2, . . . ,  Zn-l; 
it is then clear that the (R j.l) are a family of resultant systems of (E) in ZI, Z2, 
. . . .  Z n. It now remains to prove the theorem for n = 1. We denote Z 1 by Z and 
Z { W1, W2 . . . . .  Z} by Z { W, Z} where W stands for all the indeterminate coefficients. 
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Procedure  O: Nota t ion .  Renaming the polynomials, we assume/51,/52 . . . . .  /5, and 
P1, P2, -.-, Pz to be, respectively, the previous P[s which do not involve Z and those 
which involve Z, with possibly t = 0, i.e., the case where no Pi involves Z. The system 
of d-polynomials (Z) in the theorem then becomes 

/st,/52 . . . . .  /5,, Pa, P2 . . . . .  Pt; Q. (E) 

We also assume P1 to be of the least to, that is, to(Px) < to(P~) for all i. We set 

to(Z) = to(Pt) = (r, d) and n(X) = (r, d, t). 

I and S also stand for the initial and the separant of P~, respectively. We make an 
induction on the triplet re(Z) (which is permitted since N 3 equipped with the 
lexicographical order is a well-ordered set). We continue through procedures 1, 2, 
or 3 according to the respective cases t = O, t > 2, or t = 1. 

Procedure  I: t = 0. The procedure for eliminating Z ends here. For it then suffices 
to take the (R j) to be 

151,/52 . . . . .  /5,; 0j, (Ri) 

where the ~) are the elements of Z{W} which occur as coefficients of Q when we 
write Q as an element of 7/{W} {Z} (see Remark 2). 

Procedure  2: t >_ 2. 
systems of d-polynomials: 

P1, P2 . . . . .  /5,, I, S, P,, P2 . . . . .  P,; Q, 

Px, P2 . . . . .  P,, I, Px, P2 . . . . .  e,; S " Q, 

/5,,/52 . . . . .  /5,, S, P , ,  P2 . . . . .  Pt; I " Q, 

P , ,  P2 . . . . .  /5,, P1, P2 . . . . .  P,; I " S" Q. 

According to Remark 1, (Z) splits into the following four 

(X') 

(x-) 

(x") 

(x"') 

We recall that the polynomial S cannot vanish (identically) since we have assumed 
characteristic zero. For (Y/), (Y."), and (E") the index function ~z has been decreased 
(lexicographically) since r and to(S) are both tess than (r, d); therefore we go 
through procedure 0. At last, let (Z~") be 

/51, P~ . . . . .  /5. P,, P~ . . . . .  1,*; I. s- Q, (x;") 

where the P* are the remainders of the divison of each Pi, i > 2, respectively by/'1 
according to the polynomial division algorithm previously presented. Since (X"') 
and (E"') have the same families of resultant systems, we may replace (X"') by (X~"). 
We have for all i, i > 2, either P* = 0 or to(P*) < to(P1); therefore we again return 
to procedure 0. 

Procedure  3: t = 1. 

and 

In this case, (Z) splits into 

Pl,/55 . . . . .  /5,, I, P,-I. z"~; Q (x') 

L ,  ~ . . . . .  ~,, e,; I.Q. (x") 
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We dispose of (Z') by induction since, anyway, og(Z') has been decreased. For (E"), 
we distinguish three cases: 

(a) If Q is of order strictly less than/ '1,  then we can replace (Z") by 

P,, P2 . . . .  , P,; I " Q. (~.'~') 

For, if (w, () is a zero of (Z") over some d-field L (of characteristic zero), then it is 
clear that (w, () is a zero of (E~"). Conversely, let (w, () be a zero of (Z.") over L. As 
an element of L(Z, Z (1) . . . . .  Z ('-x)) [Z (')] (with coefficients in L depending on w; 
and where Z, Z ~1) . . . . .  Z ~'-1) are (nondifferential) indeterminates), PI(Z ~')) has an 
irreducible factor which we still denote by the same symbol PI(Z ~)) and which has 

L(Z, ~ . . . . .  Z('-I)). There is one and a zero (1., in some field extension of the field .--{1) 
only one derivation in L' = L(Z, Z(X), . . . ,  Z ~'-1), (1.,) which extends the one in L 
and such that Z tl) is the derivation of Z, for each i, 2 < i < r -  1, Z ") is the 
derivation of Z "-1), and (1,, is the derivation of Z t'-l) (for more details see [St]). 
We then can set 

C~ = Z, 

so that the iterated derivatives of ~ in the differential field L' thus obtained are 

~I = z`l) . . . . .  (~,--i) = z(r-l), (~')= C1,r, (~r+l) ~--- ~l,r, (~r+2) = ~I . . . . . . .  

Therefore 
el(w, (1) = 0, 

that is, (w, (1) is a zero of(Z") since 

~(I) ..-, Z(,-I)) I(Z, L . . . . .  Z('-I~)Q(Z, Z (I), ~ O. 

(b) Except for the trivial case in which the d-polynomials Px,/~z, .-. ,/~, cannot 
have a common zero, (E") has a zero if and only i fP  I contains a factor not occurring 
in Q(Px and Q being considered as elements of the (nondifferential) polynomial 
algebra Z{W1, W2, ...} [Z, Z (1) . . . . .  z ( r - 1 ) - ] ) ;  in other words, (Z") has a zero if 
and only if 1~ does not divide (again in the nondifferential polynomial algebra 
Z { W 1, W 2 . . . .  } [Z, Z ~1) . . . . .  Z(,-1)]) Qd. Denoting by Q* the remainder of the divi- 
sion of Qa by P1, (Z") can then be replaced by 

P l ,  . . . .  , P,;  (zC) 

(c) If Q is of order strictly greater than Px, then again by the polynomial division 
algorithm above we can replace Q by Q' in (Z") and go back to one of the cases (a) 
or (b) above. Q' is the remainder of the division of Q by P~; it satisfies co(Q') < og(P). 
Thus the theorem is completely proved. �9 

6. Examples 

Here, we give some examples as illustrations of the procedure. The calculations have 
been made by a computer algebra system program; details can be found in [D2]. 

Example 1. The following linear example is borrowed from Example 4.2, Chapter 
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2, of [R3]; (x,.(2 are the variables to be eliminated: 

{ ( 1 + ( , + ( ' 2 + 2 ~ 2 = ~ + u ,  

f i  + 3r + 2 ~  + ~'~ + 4g= + 4 ~  + ~= + 2;~ = ~ + 2/i + a + 3u, 

y = - - ( ~ - 3 ~ , - ( , - ( t 2 " )  4("2 4 ( 2 + ( 2 + f i ' + 2 / i + t i + 2 u .  

Here is the program output, which is an externally equivalent representation of the 
previous system: 

y + 3-0 + 2y = 2fi + 3u. 

Example 2. We show in this example the existence of state representation from 
which, if the state variable is eliminated, the result is a system of equations and 

inequations. We consider the following system of equations: 

{ ~1 = ~1~2, 

~= = ~ ,  

y = (~ + (~. 

An externally equivalent representation of the previous system which no longer 
contains either ( is the following: 

(-0 - 2 y ) ( - 0  - 2 y  - 1 )  - y = 0 ,  

2 0 -  4 y -  1 :~ 0. 

Example 3. The following example illustrates a cance l la t i on  problem which re- 
mains to be solved (if possible): 

( = u~ ~ + u2~, 
y .~- (2 ,  

Elimination of A~ leads to a family of three resultant systems whose disjunction 
describes the external behavior of the initial system: 

Resultant system 1: 

Resultant system 2: 

Resultant system 3: 

y = 0 .  

" -0 = - 2u2y, 

- 2uy  = 0, 

4y 4: 0. 

4U4y -- 4u2y-0 -- 4u2y 3 -b -02 _ 0, 

8u2y2(2u2y  -- -0) ~ O. 

Notice that there is some redundancy in the result delivered by the procedure: 
the disjunction of the three resultant systems is equivalent to the unique following 
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equation: 
(~ - 2u2y) 2 - 4u2y 3 = 0. 

To solve this problem we have to find a method of cancellation for the redundant 
systems that appear in the calculations. This is a very difficult problem not  examined 
here. 

7. Conclusion 

The long-standing control theory problem of elimination has been examined using 
techniques from differential algebraic elimination theory. Seidenberg's algorithm is 
suggested as a mechanical means for deriving externally equivalent representations 
of a system defined by differential algebraic equations with coefficients in a differ- 
ential field of characteristic zero (recall that this conclusion may be extended to 
certain equations involving transcendental elementary functions, following work by 
Wu et al.). We could also have used Ritt's algorithm I-$4]. 

Three questions are brought to mind: one concerns the uniqueness of the family 
of resultant systems, the second concerns the number of systems of equations and 
inequations which form the family, and the third relates to the necessary and 
sufficient conditions for the equations (E) to possess a family of resultant systems 
consisting of one and only one system of equations (without an inequation). To the 
first question, the answer is clear: neither equations of an arbitrary system nor the 
family of resultant systems are in any way unique. Given equations (E), by the 
elimination procedure we get a family of resultant systems (R j). It is clear that, for 
any j, if we add to (or remove from) the corresponding (R j) d-polynomials which 
are a linear combination of the Pi (in (R j)) in the ambient differential polynomial 
algebra, we then obtain a new family of resultant systems for the same system. The 
answer to the second question is not provided by the procedure (see the last 
example). Nevertheless, it seems that we can without difficulty rewrite the procedure 
in order to get rid of many (but perhaps not all) possible redundant equations; this 
would simply be too long. What is clear is that we obtain enough systems of 
equations and inequations to describe exactly the external behavior of (E); this is 
by definition of the family of resultant systems. The third question is a difficult one. 
In other words, the question is to describe the class of d-algebraic sets (those defined 
by equations of type (E)) of affine spaces W +n whose projections onto k ~ are d- 
algebraic sets, k being an arbitrary d-field. 

Acknowledgment. The author would like to express his indebtedness to Professor 
M. Fliess for his assistance and supervision of this work. 
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