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Worst-Case Design in the Time Domain: 
The Maximum Principle and the Standard Hoo Problem* 

Gilead T a d m o r t  

Abstract. This paper presents a time-domain, optimal-control approach to worst- 
case design, an alternative to frequency-domain H,, techniques. The generic linear- 
quadratic set-up of the "standard H** problem" is discussed. The results include a 
characterization of suboptimal values, as well as a parametrization of all subopti- 
mal compensators, in terms of two coupled indefinite Riccati equations. Both the 
usual infinite-horizon, time-invariant case and the finite-horizon, time-varying 
case, are treated. The latter is beyond the scope of frequency-domain analysis. 

Key words. H| control, Min-max optimization, Maximum principle analysis. 

1. Introduction 

One significant research thrust in systems and control  during the past decade has 
been the study of worst-case design problems within "Hoo control theory," a frequency- 
domain methodology  which has allowed application of deep complex-function and 
operator-theoret ical  results. (See the surveys [ F D ]  and [H]  and the textbook [F-].) 
Our  goal is to present some results that suggest an alternative t ime-domain approach 
to worst-case design, following the lines of  classical opt imal-control  theory. Advan- 
tages of this approach  seem to include mathematical  simplicity, as well as an 
expansion of the scope of worst-case design. 

We focus on the "s tandard H~o problem" which sets a generic framework for 
l inear-quadratic (LQ) worst-case design. Central issues, such as robust  stabilization, 
model matching, and tracking, can easily be transformed into a "s tandard  problem" 
form [F];  it is also a natural  worst-case counterpar t  of  the stochastic L Q G  optimiza- 
tion problem. Our  results include a characterization of  suboptimal  values and a 
parametr izat ion of  suboptimal compensators  in terms of  two indefinite Riccati 
equations. In particular, low-order  compensators  are identified. 

Detailed description of  the "s tandard problem," the results, and references to 
related works are deferred to the following section. We use the remainder of this 
introduct ion for a brief discussion of  some underlying ideas in our  approach.  
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Force Office of Scientific Research under Contract F49620-86-C-011. 
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U.S.A. Currently at the Department of Electrical and Computer Engineering, Northeastern University, 
Boston, Massachusetts 02115, U.S.A. 
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w: a d i s t u r b a n c e  

u : a c o n t r o l  
f u n c t i o n  

~1 I ~ z: a system S: a l i n e a r  s y s t e m  o u t p u t  
r I ,, 

I '" L y : an  a v a i l a b l e  
K: a l i n e a r  c o m p e n s a t o r  l -  o b s e r v a t i o n  

I 

F ig .  l 

Our notations are fairly standard. The space of square integrable functions 
f :  X ~ Y is denoted by L2(X, Y). Notations of X and/or Y are suppressed when 
obvious (which will mostly be the case). L 2 norms and induced operator norms are 
denoted by I1"11, When X = [t o, t l ]  then I{" I1,, to -- t < tt ,  are thee norms in L2Ct, t l] .  
The Euclidean norm in R ", for an integer ~, is denoted by l" l, and ( ", �9 ) stands for 
both the inner product in R ~ and in L 2. The transpose of a matrix, as well as the 
adjoint of an operator, are denoted by a prime, e.g., A'. Given a positive-definite 
matrix M, we denote I '1 . ,  II ' l l .  = ( ' ,  M ' >  1/2. 

Figure 1 provides a pictorial description of the "standard problem" set-up. Given 
S, the designer's goal is to minimize the closed-loop impact of disturbances (w) on 
the output (z) by an appropriate choice of the compensator, K. That impact  is 
measured by the induced operator norm relative to L 2 signal norms. The design 
constraint is closed-loop internal stability. This can be summarized as an effort to 
attain the optimal value Yo in 

I[zll 
Yo = min max - - .  (1.1) 

stabi l izing K w ~ L z  I lwl l  

(In order to make the mapping w --* z linear, and not merely affine, definition (1.1) 
is made with the technical assumption that the initial internal state in S is zero.) 

Ho~ theory uses a frequency domain statement of the problem: stability means 
analyticity of associated transfer functions over the right half of the complex plane, 
and the induced operator  norm of the mapping w --. z is equal to the corresponding 
transfer function's Ho~ norm. The problem is thus analyzed by use of function- 
theoretic, and related algebraic and operator-theoretic, tools. 

There is another view which leads to a different technical approach. The "standard 
problem" features a competition between disturbances and controls on the output  
norm. The following definitions and observation help in casting that competi t ion 
in rigorous terms. Given y ~ R denote 

Jr(xo, w, u) = r211wll 2 - Ilzll 2, 

where Xo is the initial internal state in S and z is the output trajectory that 
corresponds to Xo, the disturbance w, and the control u. When defined, Jr is an 
indefinite quadratic form in its three variables. Ifxo = 0 and u = Ky is a closed-loop 
control, Jr becomes a quadratic form in w alone. This next observation simply 
rewrites the definition in (1.1). 

Observation O. Y > Yo if and only if there exists some internally stabilizing compen- 
sator K such that Jr(O, w, u = K y) becomes a uniformly positive definite form in w, that 
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is, such that 
Jr(O, w, u = Ky)  > ~2IIwlt2 

for  some f i x e d  6 v~ 0 and all w ~ L2. 

(1.2) 

"Good controls" are therefore those that increase Jy, whereas "bad disturbances" 
decrease its value. We derive most of our results as consequences of a detailed study 
of the MinMax problem 

Min Max Jy(x o, w, u). (1.3) 
wEL2 u~L2 

A natural framework for investigating (1.3) is that of time-domain, optimal- 
control theory. Indeed, the present discussion follows, step-by-step, classical LQ 
optimal-control analysis. It thus relies on inherently "dynamic" (rather than 
"algebraic") tools such as Pontryagin's maximum principle, the principle of dynamic 
programming, and some straightforward Lyapunov stability analysis. 

Given the wide scope of optimal control theory, we believe that the approach 
suggested here may be instrumental in considerably expanding worst-case design 
research, well beyond the LQ, time-invariant, infinite-horizon confines of current 
H~ theory. As a first step, we show here how the LQ, finite-horizon, time-varying 
counterpart of the "standard problem" can easily be handled. This natural problem 
has been studied extensively in classical optimal control literature (see [KS], [LM-I, 
and [KFA]); it is just as relevant in worst-case design (see, e.g., [NJM'I). Being 
outside the scope of frequency-domain analysis, this case has by and large been 
ignored in H~o research. 

The paper is organized as follows. Following the description of the problem and 
main results for the time-invariant, infinite-horizon case, in Section 2, the complete 
proof is given in Section 3, which is the main part of the presentation. The extension 
of results and proofs for the time-varying, finite-horizon case are discussed in 
Section 4. Our developments are carried under certain simplifying assumptions. In 
Section 5 we briefly remark on the general case, where these assumptions may fail. 
To conclude, in Section 6, we recap some of the main ideas and techniques. 

2. The Infinite-Horizon, Time-lnvariant Standard Problem and Main Results 

The system S in Fig. 1 is assumed to be governed by the following equations: 

2 = A x  + Blu  + B2w, 

y = C l x  + C2 w, (2.1) 

z = D l x  + D2 u. 

Here x ~ R n, u e R", w ~ Rt, y ~ Rk, z ~ R; are the system's state, control, disturbance, 
observation, and output signals, respectively. The coefficients A, B~, C~, D~, are 
matrices of appropriate dimensions. For the moment we assume that the system is 
defined over the positive time ray [0, oo), and that it is time-invariant. 

Admissible feedback operators are those which can be realized as input-output 
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mappings of linear systems: 

[; = Mp + Ng, p(O) = O, 
(2.2) 

u = Qp + Ry. 

An admissible feedback operator is internally stabilizing if it can be realized by a 
system of the form (2.2), so that the matrix 

I .~ = N C 1 

is stable. Such a realization provides an internally stabilizing feedback compensator 
for (2.1). (Stability of~r means that both the internal states x ar{d p in S and K, and 
the output functions z, y, and u, react in an L2-bounded fashion to disturbances 
introduced at any point in Fig. 1, as wall as to state perturbations.) 

Given an internally stabilizing feedback compensator K we denote by Tr the 
closed-loop mapping Tr: L2 ~ L2, w ~-~ z. Following from (1.1), a value 2: is strictly 
suboptimal (7 > 70) if there exists such K that assures IITKII < 7. (Here It'11 is the 
induced operator norm. The operator Tr becomes linear when x(0) = 0. 

The standard problem is this: find the optimal value 70 and internally stabilizing 
compensators K, such that IITK[I = 7o- It is usually treated in a relaxed version: 
characterize all suboptimal values 7; given such 7, describe all internally stabilizing 
compensators K for which IITK)I < 7. This sets the framework to the present 
discussion. 

The reader should notice the resemblance of our problem to the stochastic LQG 
prob lem:  llzll 2 is a quadratic cost on the trajectory and the control. If the statistical 
distribution of distrubances is assumed known, the LQG framework suggests 
minimizing the average of Ilz)l 2. In the present framework, however, this knowledge 
is not assumed. Instead, our goal is to reduce the worst value of I)zll 2, say, for all 
unit energy disturbances. (Due to linearity, the Max in (1.1) can be taken over 
{w ~ L2: Ilwtl = 1}.) The standard problem is therefore a natural worst-case coun- 
terpart of the LQG problem, as mentioned in the introduction. 

We work under some technical assumptions that simplify the discussion con- 
siderably. These assumptions are counterparts of standard separation and non- 
singularity hypotheses in the LQG framework. They can be made without any 
loss of generality, and in Section 5 we (briefly) explain how to treat the general 
case. 

Assumption A 

(i) D'2[Dt, D2] = [0, I], 
(ii) C2[B'2, C~] = [0, I], 

(iii) D'ID 1 > ~1I for some el > O, 
(iv) B2B' 2 > e2I for some e2 > O. 

This next theorem summarizes our results, pertinent to the time-invariant, 
infinite-horizon problem, as stated above. 
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Theorem I 

(a) The value ~ > 0 is strictly suboptimal in (2.1) if and only if there exist negative 
definite matrices P2 and P2 which satisfy 

PIA + A'P, + P,(BIB'~ - : iB2B'2)Px  =D'aD 1 (2.3) 

and 

_ 1 1 , 
P2(A -~2B2B'2Pa)' + (A  -~B2B'2Pa)P2 + P2(C'xC1--~PIBaB1Pa)P2 

= B2B' 2 (2.4) 

and such that the matrices 

and 

A: = A -~a2B':P~ + P2 C',C, - P, BIB'IP, 

(b) 
are stable. 
K is an internally stabilizin 9 
I[ TK l[ < Y if and only if it can be realized as 

( '  ) l )=(Al  + P2CIC, )P-  I +~P2Px  Bxv+ P2C]y, 

q = Clp + y, v = Koq, 

u = --B'aPlp + v, 

compensator which assures the norm bound 

(2.5) 

where K o is an admissible operator realized by a stable system, and such that 
Ilgoll < ~'. 

(c) Assume that direct state observation is available. That is, substitute Assumptions 
A(i) and A(iv) by "Ca = 1 and C2 = 0." Then: (i) ~ is strictly suboptimal if and 
only if there exists a neoative-definite solution to (2.3) and A 1 is stable, and 
(ii) I f  y is strictly suboptimal, then the state-feedback u = B'1P~x is internally 
stabilizin9 and assures I] Tr]l < Y. 

The proof is given in Section 3. 
The reader may note that when the choice K o = 0 is made in the parametrization 

(2.5), the resulting compensator is in Luenberger form. That is, the compensator is 
an "optimal state-feedback" applied to an "optimal state-estimator." Indeed, fol- 
lowing from the proof it will be very easy to establish that u = B'aP~x is, in a sense, 
an optimal state-feedback control, and that - p  is an optimal estimate of x. This 
substantiates the (intuitive) relation of the "standard problem" to LQG optimization. 

With that choice (Ko = 0) the degree of K reaches a generic minimum, that is 
deg(K) = n. It has recently been of great interest [LH], [VR] to find nth-order 
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suboptimal compensators, and our parametrization appears to do the job. More- 
over, an exceptionally good zeroth-order compensator is suggested in part (c): when 
the state x is available, the estimator part of K becomes redundant. Hence we a r e  
left with the "optimal state-feedback" u = B'xPlx. 

A few words about related work are in order. The relation of H~ optimization 
to algebraic'Riccati equations is studied in a series of papers by Khargonekar, 
Petersen, Rotea, and Zhou EPI], [KPR], EKPZ], EZKI. I was particularly moti- 
vated by enlightening comments in [KPZ] that suggest a game-theoretic interpreta- 
tion of H~o optimization. Part (c) of Theorem I originally appears in EKPZ]. Ball 
and Cohen characterized suboptimal values, and parametrized all suboptimal 
compensators in terms of the two algebraic Riccati equations, in EBC]. This line of 
research was later pursued by Verma and Romig [VR]. 

During the preparation of this paper, a revised version of [Tl, the work of Glover 
and Doyle [GD], and its extension, jointly with Khargonekar and Francis, became 
available in part, in the form of the conference note [DGKF].  I was encouraged 
and inspired by that report. Indeed, the present results are closely related to those 
of EDGKF]. (The reader may note that the second Riccati equation in EDGKF] is 
different from ours: in our notation it is 

P2A'+AP2+'2(C'xCI-~D'IDI)P2=B1B'2. (2.4) ~ 

Unlike our (2.4), equation (2.4) 0 is independent of(2.3). Yet the relation between the 
two sets is simple, namely 

P2 = Pt + Pz -1 

and the obvious coupling between (2.3) and (2.4) is substituted in EDGKF'I by the 
condition P2 -t > (1/r2)Pl .) 

A very different, Hankel-extension approach has been taken by Limebeer et al. 
ELKS]. 

Finally, let us mention that our results are reminiscent of long-established game- 
theoretic observations [M 1], [M2], [RL]. This fact stands in support of the game- 
theoretic, optimal-control approach taken in the present discussion. 

3. Proof of Theorem I 

3.1. First Half of Necessity in Part (a) 

We start with the implication "ify > Yo, then there exists P1 > 0, a solution to (2.3), 
such that A 1 is stable." Our starting point is Observation 0, above, and the MinMax 
problem (1.3). 

Assume ~, > To. Fix x(0) = x o e R n and w ~ L 2, and consider the following LQ 
optimal-control problem: 

Max J~(xo, w, u) = ~,211wll 2 - Min I]zll z. (3.1) 
u~L2 u~.L2 

By Assumptions A(i) and A(iii), Ilzll 2 = [lull 2 + IlDxxll 2 is a nonsingular quadratic 



Worst-Case Design in the Time Domain 307 

cost on the control and the state of S. Since y > )'0, there exists some closed-loop 
stabilizing control. In particular, our system is stabilizable. 

Classical LQ optimal-control theory therefore tells us the following (see, e.g., 
Chapter 3 o f  [LM]~: there exists a negative-definite matrix L, that satisfies the 
following algebraic Riccati equation: 

L A  + A ' L  + LB IB ' IL  = D'~D 1, (3.2) 

such that Az  = A + BIB'IL is a stable matrix. Let 

f: r(t) = e~;~'-~ dr, (3.3) 

let x be the solution of 

~ = ALx  + B1B'Ir + B2w, x(O) = Xo, (3.4) 

and set 
rl = L x  + r. (3.5) 

Then r/satisfies the adjoint Hamil ton-Jacobi  equation 

fl = O'~O~x - A'tl (3.6) 

and x(t), r(t), and r/(t) --. 0 as t --. oo. It thus follows from Pontryagin's maximum 
principle that the unique optimal control in (3.1) is u = B'tr/, and that x is the 
associated optimal trajectory. 

Throughout  this part of the proof it is assumed that u, x, and z are the optimal 
control, state, and output trajectories associated with (x o, w): We denote (x, u, r/) = 
~(Xo, w) and z = f~(Xo, w), and make note of the following direct consequence of 
the classical results. 

Proposition I. ~ :  R n • L 2 --* L 2 • L 2 x L 2 and ~ :  ~" x L 2 --* L 2 are continuous 
linear operators. 

We now try to solve the "Min" part in (1.3). Denote 

J ~  o, w) = ~,2 Ilwll2 - t l~ (xo ,  w)ll 2, 

J*(xo)  = Inf J ~  o, w) = Inf Max Jy(x o w, u), 
wEL2 wEL 2 u~L2 

and 
IIIwlll = J~  w) 1:~ 

The following are key observations 

Proposition 2. Ill" Ill defines a norm on L2,  that is equivalent to the usual L z norm. 

Proof. By Proposition 1, [[[wll] 2 is a quadratic form is w. By Observation 0, there 
exist an internally stabilizing K and 6 :~ 0, such that 

Jy(O, w, u = K y )  > ~211wll~. (3.7) 
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Following from the definition of  ~ in (3.1), therefore 

~,2 Ilwll = >_ IIIwlll 2 > J~(0, w, u = Ky) > ~211w112. I 

Proposition 3. For each x o �9 R ~ there corresponds a unique disturbance, w* �9 L2, 
such that Jr~ w*) = J*(xo). Moreover, J~ �9 ( -  oo, 0] and d~*(Xo) = 0 / f  and 
only if  x o = O. 

Proo~ 
J ~  w) = y211wl12 - t l~(xo,  w)ll 2 

~2 ilwtl 2 _ ( l l~(xo ,  0)11 + I1~(0, w)ll) 2 

> ~,2 ilwll 2 _ ( l l~(xo ,  0)11 + (y2 _ ~2)iz2 llwlli2 

= r 2 Ilwll2(1 - ( l l ~ ( x o ,  0)ll/~'llwll + (1 - -  ( 5 2 / 7 2 ) x / 2 ) 2 ) .  (3.8) 

The r ightmost  term in (3.8) becomes positive for large Ilwll, hence Jr*(xo) > - o o .  
Take w = 0, then J~ 0) = -Ilad(xo, 0)112 < 0, and equali ty holds only i fxo  = 0. 
So J;'(Xo) < O, and < 0  i fxo :/: 0. I fxo  = 0, then J*(xo) = infwlllwlll 2 = 0. 

Now, assume {w~} c L 2 is a minimizing sequence. Then  

IIIw~ - wplll 2 = r211w~ - wall s - I1~(0, w~ - wa)ll 2 

= r 2 llw~ - wall 2 - II~(Xo, w, )  - ~(Xo,  wa)ll 2 

= r 2 IIw~ll 2 - I I~(xo,  w~)ll 2 + r 2 Ilwall 2 - II~(Xo, wa)l[ 2 

- 2(~ '2(w~, wa> - ( ~ ( X o ,  w~), ~(Xo,  wp) ) )  

= J~  w, )  + J ~  wp) 

- 2(~,2 (w~, wp) - (~(Xo, w~), ~(Xo, we))). (3.9) 

Also 

J~189 ~ + wp)) = �88 IIw~ + wpll 2 - II~(Xo, �89 + wp))ll 2 

= �88 IIw~ + wpll 2 - II~(Xo, w,)  + ~(Xo,  wa)ll 2) 

= �88 iIw~ll 2 _ l l ~ ( x o ,  w~)tl 2 + r 2 IIw~ll 2 - t l ~ ( x o ,  w~) l l  2 

+ 2(~,2(w,,  w e )  - ( ~ ( X o ,  w~), ~ (Xo,  we) ) ) )  

= �88176  w,)  + J~  wp) 

+ 2 ( r~ (w~ ,  w e )  - ( ~ ( w o ,  w,),  ~ (Xo,  wp)>)). (3.10) 

Combining (3.9) and (3.10), we get 

IIIw~ - wplll 2 = 2(J~ w~) + J~ wB) - 2J~ �89 + wt0)) 

_< 2 ( j ~  w~) + J ~  w e) - 2JT(Xo))  - ,  0. 

Therefore  {w,} is a Cauchy sequence in the (L2, II1" [11) topology.  By Propos i t ion  2, it 
is a Cauchy  sequence in the usual L2 sense, and w= ~ w* for some w* �9 L2. More-  
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over, since any shuffling of minimizing sequences creates yet another minimizing 
sequence, our reasoning implies that w* is unique. 

Finally, the continuity of ff implies 

J~  w*) = ~2 i lw, ii 2 _ Ilff(Xo, w*)ll 2 

= I im (y2 ilw, ll 2 _ ilfa(xo, w = ) l l  2 )  
at 

= l i m  J~ w,) = J*(xo). �9 
at 

The reader may note that our reasoning here mimics very similar arguments that 
have been used in establishing existence and uniqueness of LQ optimal controls (see, 
e.g., Chapter 3 of [LM]). 

We define a mapping ~ by w* = ~ffx o. Then, given x o we denote (x*, u*, r/*) = 
~ ( x  o, w*) and z * =  ff(Xo, w*). The pair (w*, u*) is the unique solution to the 
MinMax problem 0.3). We now prove a "maximum principle" characterization 
of w*. 

Proposition 4. w = w* if  and on ly / f  w = -(1/y2)B~r/where (x, u, rl) = ~ ( x  o, w). 

Proof. (Only if.) Denote w ~  -(1/y2)B'2rl *, (x ~ u ~ r/~ = ~'(Xo, w~ and z ~  
ff(Xo, w~ Using the fact that u* = B'F/*, we get 

�9 ~2  [wO(t)[2 _ izO(t)l z + 2 d  (r/.(t), xO(t)) = _[(z o _ z.)(t)l z + iz,(t)12 _ ]12 [wO(t)[2 

(3.11) 

and 

d , . 
"eelw*(t)l 2 - I z * ( t ) l  2 + 2~<r /  (t), x (t)} = 2:2[(w ~ - w*)(t)t 2 + lz*(t)l  2 

_ yz iwO(t)t2. (3.12)  

Subtract (3.11) from (3.12) and integrate over [0, oo); since (x* - x~ = 0 and 
~7*(t), x*(t) and x~ ~ 0 as t ~ ~ ,  there holds 

JC'(Xo) = J~  w*) = J~  w ~ + ~,~ IIw~ - w*ll 2 + IIz ~ - z*ll z 

The minimality of J~*(xo) implies w* = w ~ 
The proof of the / f  part is straightforward. �9 

Corollary 5. ~ :  A n --+ L 2 is a linear (hence continuous) operator. 

Denote 

Plxo = Lxo + f :  ea'~tLBz(.~Xo)(t) dt. (3.13) 

By the corollary, P1: R"--* ~" is a linear mapping and it admits a matrix representation. 
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Proposition 6. Given Xo, w * =  ~eXo and (x*, u*, r/*)= ,~(x0, a'~'Xo); then 17"= 
P1x*, u* = B'IPlX* and w* = -(1/y2)B'2P1x *. 

Proof. It follows from (3.3) and (3.5) that r/*(0) = P~x*(O). As it was established 
that u* = B'~r/* and w* = -(1/~,2)B~r/*, the proposition holds at t = 0. 

Having arrived at x*(t), at some later time t > 0, the considerations may start 
afresh: define the problem (1.3) over (t, ~ )  with the initial state x*(t), etc. Then the 
conclusion follows that the unique MinMax control and disturbance satisfy u*(t) = 
B'~Plx*(t) and w*(t) = (1/~,2)B~Ptx*(t), for all t > 0. 

It remains to show that r/* = Ptx* throughout. In the previous paragraph we 
have established 

(JC'x*(t))(z) = - ~2B'2P~x*(t + z). (3.14) 

Substitute x*(t) for Xo in (3.13); then (3.14) implies 

P1x*(t) = Lx*(t) -- -~ e'4;~LB2B'2Plx*(t + z) dz 

Iff 
= Lx*(t) - -~ eAZ"-~ dz. (3.15) 

Denote t I = P~x*. Then it follows from (3.15) that tl is a solution to the adjoint 
Hamilton-Jacobi equation (3.6), with 7(0) = P~x*(O). Thus 1/= 7" throughout. �9 

Corollary 7. The matrix A 1 = A + (B1B i - (1/?2)(BtBI)P1 is stable. 

Proofi Following from the previous observation, x*(t) satisfies 

Yc*(t) = A~x*(t). (3.16) 

Given any initial state x o in (3.16), z* = ~(x o, ~'Xo) is an L 2 function. By Assump- 
tion A(iii), llz*ll 2 > exllx*tl 2. So solutions of (3.16) all belong to L2. That is, A 1 is 
stable. �9 

Proposition 8. P1 is a neoative-definite solution of the first Riccati equation (2.3). 

Proof. It follows from (3.15) an (3.16) that 

d ,~,t (DID, 1 A,el)ea,, .  (3.17) ~e~e  = 

Obviously, there also holds 

-~Ple  ' = PlAte  a'` = P1A + e~ BIB'~ - B2B'2 Pt ea". (3.18) 

Combine (3.17) and (3.18) at t = 0 to establish that Pt satisfies (2.3). �9 
dl- 

It follows from results of Potter [P2, Theorems 1 and 2] that P~ is symmetric if 
all the eigenvalues of A1 belong to some half of the complex plane. (Potter's 

(J-7034/K625/LMK/1088/p. 10) 
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discussion is made  under the assumpt ion  that the associated Hami l ton ian  matrix 
has only simple eigenvalues. This assumpt ion  can easly be relaxed.) By Corol lary  7 
that  condi t ion is met, so P~ is symmetric.  

Using the symmetry  of P~ we get 

d 
- ~ ( x * ,  P lx* ) ( t )  = Iz*(t)l 2 - 721w*(t)l . 

The stability of (3.16) implies that x*(oo) = 0, whence 

(xo,  PlXo) 7211w*II 2 IIz*II 2 * = - = iv(Xo). (3.19) 

By Observa t ion  3, the r ight-hand side of (3.19) is negative whenever  x o 4: 0. 
This concludes the first half of the proof  of necessity in part  (a). 

3.2. An Intermezzo: On the Max imum Principle 

Let Xo �9 R" be an initial state in (2.1), and let u and w be L 2 control  and  disturbance 
such that  x �9 L2 and l im t ,~  x(t) = 0. We denote Uo = u - B'IPIX and w o = w + 
(l/7Z)B'2Plx. These are the m o m e n t a r y  deviations of  u and w from their MinMax  
opt imal  values. Then integrat ion of (d/dO(x,  P~x) along [0, oo) yields 

J~(x o, w, u) = y2 [[wl[2 _ [[z[[2 = (Xo, Plxo ) + 721lw0H2 _ [[Uo][:" (3.20) 

Equat ion  (3.20) manifests the max imum principle in our  setting, and plays a 
fundamenta l  role in the analysis hereafter. (It seems to be just as impor tan t  in the 
work of [ D G K F ] . )  

It is worthwhile to point out the geometr ic  interpretat ion of the max imum 
principle, so we digress and elaborate  on this. Let x* be the M i n M a x  opt imal  
t rajectory of (2.1), with x*(0) = Xo, u* = B'~Plx*, and w* = (1/T2)B'zPlx *. Then set 
Ax = x - x*, Au = u - u*, Aw = w -  w*, Az = z - z*. It is then easy to see that  
(Au)o = Au - B'IP1Ax = u - B'1PIx = Uo and likewise, that (Aw)o = w 0. Apply 
(3.20) to the A-trajectory: since Ax(0) = 0, it implies 

Jr(0, Aw, Au) = 7211woll 2 - Iluoll 2 

We have also established (see (3.19) that  

J~(x o, w*, u*) = (Xo, PlXo>. 

Thus (3.20) can be ;ewri t ten as 

Jr(xo, w, u) = Jv(xo, w*, u*) + Jr(O, Aw, Au) (3.21) 

with the implicat ion 
72(w *, Aw) - (z*, Az)  = 0. (3.22) 

Equat ion  (3.22) tells us (as is well known in L Q  opt imal -cont ro l  and  game theory) 
that the quadra t ic  form Jr induces a geomet ry  on the space of inputs, relative to 
which the opt imal  input pair  is o r thogona l  to all o ther  inputs. Equat ion  (3.21) 
implies that, provided stability is maintained,  the order  of the "Min"  and "Max"  in 
the opt imizat ion problem (1.3) can be interchanged.  Thus  it proves  the "saddle 
point"  proper ty  of  (w*, u*). 
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3.3. Proo f  o f  Part (c) 

It remains to establish here: 

Proposition 9. Assume that P~ is a negative definite solution of  the first Riccati 
equation (2.3), such that A~ is a stable matrix. Then u = B'IPIx is an internally 
stabilizing state-feedback that assures the norm bound II T~II < ~/. 

Proof. If u = B'~PIx, then there holds 

:c = A3x  + B2w, (3.23) 

where A 3 = A + BzB'~P ~ satisfies the Lyapunov equation 

( ' )  P~A3 + A'3P~ = DID~ + P~ B1BI + -~B2B'z P~. (3.24) 

By Assumption A(iii), the right-hand side of (3.24) is > ezl. Thus, it is a s tandard 
observation [LM, p. 1981 that (3.24) implies stability of A 3, hence internal stability 
with the suggested state-feedback. 

Since A 3 is stable, the conditions under which (3.20) is valid are satisfied with any 
L 2 disturbance and the control feedback u = B'xPzx. In particular, when x(0) = 0, 

J~(O, w, u = B'zPzx) = y2 ilwoll 2. (3.25) 

Substituting w o - (1/?2)BEB'2P~x for w, (3.23) can be rewritten as 

:: = A ix + B2wo. (3.26) 

The stability of A I implies continuity of the mapping w o ~ w, whereby there exists 
6 # 0 such that ~,21tWo112 > ~Zllwll z for all Woe L2. Thus J.~(0, w, u = B'IPIx) > 
cSz II w ll 2, and the proposition follows from Observation 0; in fact I[ Tx I[ 2 < ?z _ c52. 

3.4. Completion o f  the Proo f  o f  Part (a): The Second Riccati Equation 

Our goal here is to identify a modified system where ~, is strictly suboptimal, if it is 
strictly suboptimal in (2.1), and where the role of (2.4) is analogous to that of  (2.3) 
in (2.1). 

Indeed, assume that y is strictly suboptimal in (2.1), and let K be an internally 
stabilizing compensator in that system, with IITKII 2 _< y2 _ 6z ( fo r  some 6 ~ 0). 
Given u = K y  and w ~ L2, we maintain the notation u o = u - B'2Plx and Wo = 
w + (1/~,2)B'2PIx, as in Section 3.2. We shall eventually show that the desired 
modified system is a transposed form of a realizaton of the closed-loop mapping 

T~ Wo ~ U o. 
Here is an intuitive motivation: as follows from Observation 0, we are interested 

in Min,,L2J~(xo, w, u = Ky). Having (3.20) at hand, we can alternatively study 
Minwo, L2, u =ry (?2 Ilwoll 2 _ Ilu0112), which is an estimation problem. As is well known, 
estimation problems are solved via the treatement of associated LQ optimal-control 
problems in the transposed system. 
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Let us denote  by W o c L 2 the image of the closed-loop mapp ing  f rom L 2 to L 2 

taking w --* Wo. 

Observation 10. Tbe mapping TO: L 2 " *  L2, w 0 "-~ U is linear and closed. Mo/eover, 
T~  is bounded if  and o n l y / f  W o = L2, in which case IIT~ < ~,. 

Proof.  The  ope ra to r  T ~ is linear and closed since, it is realized by the following 
linear system (denoted So): 

x = ( A - ~ 2 B 2 B ' 2 P 1 ) x  + B,u + B2wo, 

(3.27) 
y = Czx + C2wo, u = Ky,  

u o = B~Pzx + u. 

(Notice that  C2wo = C2 w, by Assumpt ion  A(ii). So x, y, and u are exactly as in (2.1), 
given w = w o - (1/~2)B'zPlx.) 

Assume x(0) = 0. By Observa t ion  0, the left-hand side of(3.20) is then not  smaller 
then 62 Uwll 2. Since K is internally stabilizing in (2.1), the mapp ing  w ---, w o from L 2 
to L2 is continuous.  So there exists some r / # 0  such that  621tw112 >_ r/211woll 2. 
Therefore,  for all w o ~ W o, the r ight-hand side of (3.20) is not smaller  than r/2 Ilwoll 2. 
Assume W o = Lz.  Then  it is Observa t ion  0, again, that  tells us that  II T ~ LI < ~'. 

Conversely,  assume that  T ~ is bounded.  Then trajectories of  (3.27) are governed 
by the equat ion 

2 = A l x  + (B1T ~ + B2)wo. (3.28) 

Since T ~ is bounded  and A1 is stable, the mapp ing  w o ~ x is cont inuous.  Conse-  
quently, w o ~ w --- w o - (1/y2)B2B'2Px x is a cont inuous inverse of  w --* w o. Hence 
W o = L 2. �9 

Proposition 11. The feedback K is internally stabilizing in (3.27). (In particular, T ~ 

is bounded, W o = L2, and lIT011 < ~'.) 

Proof. By (3.20), if w o = 0, then Jr is nonpositive.  Under  the assumpt ion  that  the 
proposi t ion is false and K is not  internally stabilizing in (3.27), we construct  an L2 
trajectory where Wo = 0 and yet Jy is positive. A contradict ion then proves  that  the 
proposi t ion is true. This  will take some work. 

Let the internal ~tructure of  K be as in Section 2: 

lJ = M p  + Ny, 

u = Qp + Ry. 

We recall that  since K is internally stabilizing in (2.1), the following matr ix  is stable: 

s /  = N C1 

Denote  
.~ = [ B2 + B1RC21 

L N C 2 _]" 
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In order for K to be internally stabilizing in (3.27), we need that ~r = ,~r + 
~[-(1/72)B'2P~, 0] be stable as well. 

Assume now, in contradiction to the proposition, that ~ o  is unstable and l e t  

d ~ 1 7 6  bean~176176176176176 Po T > 0, let the dynamics of  

dr(t) = (xr(t)~ 
\ p r ( t ) ]  

be governed by the differential equation 

d = d o  d (3.29) 

along the interval [0, T3, with dr(0 ) = d o. 
Since d o is an unstable vector for ~r the L2[0, T3 norm Itdrl t grows to in- 

finity with the increase of T. We claim that the same holds for Jlxrll and Jlw r = 
-(1/~2)B'zPlxrl]. Indeed, (3.29) can be rewritten as 

d = ~r + ~w, (3.30) 

with the feedback law w = -(1/T2)B2B'2Plx. Were Ilxrll, and thereby Ilwrll, uni- 
formly bounded for all T, the stability of d would imply uniform boundedness of 
IJdrlh in contradiction to our assumption. 

With d r and Wr we associate, in the natural way, a control function Ur = 
[RC1, Q ] d r  + RC2wr (=RYr + Qpr) and an output z r = Dlxr + D2u r. 

Let us extend the definitions of all these trajectories through (T, o0), as follows. In 
a very similar way to what we did in Section 3.1, we establish existence and 
uniqueness of a solution ~* ~ L 2 to the optimization problem 

min J ? ( X T ( T ) ,  ( ,  u = [RC~, Q]d + RC2( ) (3.31) 
~ L 2  

subject to the differential equation (3.30) (with ( substituting for w). Let wr(t) - 
(*(t - T )  for t > T, let dr be the continued solution of (3.30), and let u r and z r  be 
extended accordingly. 

We now denote dr = dr.o + dr . l ,  so that dr, o is the trajectory of the homo- 
geneous part of (3.30) (i.e., with w = 0), initiated at dr.o(0) = do, and so that dr.  l is 
the solution of (3.30) with w = w r and d r . i ( 0 )=  0. With these trajectories we 
associate, as above, ur, o, Zr.o, ur, i, and zr. ~. We immediately notice that Xr, 1, wr, 
and ur, 1 satisfy (2.1) with the feedback control ur, i = KYr. t- Thus 

4(0, wr, ur.~) > 62 llwrll 2, (3.32) 

and the right-hand side of (3.32) becomes arbitrarily large with the growth of T. 
The trajectories dr, o and Zr, o are actually independent of T. And since ~r is a 

stable matrix, these are L2 functions. Thus Ilzr. x lt grows to infinity as T grows, and 
it becomes the dominant part in Ilzrll. Consequently, 

lim (a(T):= r21lW/'JJ2--JIgTJ}2 
r+~o \ ~ i l w - - - ~ - - - 1 l ~ 2 J  = 1. (3.33) 
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Combin ing  (3.32) and (3.33), for large T we get 

J~(xo, Wr, u~) > a(T)~21twr[I 2 > 0. (3.34) 

Let us now define trajectories x, u, w, and z in Lz as follows: a long [0, T] ,  X = Xr, 
u = UT, W = Wr, and z = ZT. F o r  r > T we let x continue as a solut ion of 

2 .= A l x  (3.35) 

with u = B'IPlx, w = -(1/~Z)B'2Plx, and z = Dlx  + D2u. 
The matr ix  A 1 is stable, so our  t rajectory satisfies the assumpt ions  for (3.20). 

Moreover ,  w o = 0 throughout ,  as desired. (Recall the explanat ion  at the beginning 
of this proposi t ion ' s  proof.) Now,  it was established in Section 3.1 that  

y2 [IwlI~T, ~) -- I[zlltr.~ = J*(x(T) )  

= Min Max  J(x(T) ,  (, ~) 
~L2 r 

> Min Jy(xr(T  ), ~, u = [ R C t Q ] d  + RC2()  
~EL2 

= r 2 IIWTII~T.oo) -- IIzTIlt2r, oo)- 

Invoking  both  (3.20) and (3.34) we thus get 

0 > (Xo, e l x o )  - Iluoll 2 = J~(xo, w, u) 

> Jy(xo, wr, Ur) > a(T)6211wr[I 2 > 0; 

which is the contradic t ion we sought.  �9 

Through  the remainder  of  this section, we use # to denote  system transposit ion.  
Thus  Tr ~ is realized by 

( 1 )  _ 
x = A - -s 5c + C'1~ - P1BI#, 

~ = Bi~ + ~, ~ = K#~ ,  (3.36) 

~ = B;~  + Ci~,, 

where K e is the t ransposed compensa to r  

= M'~  + Q'~, 

= N'p + R'y. 

Observat ion 12. I f  y is strictly suboptimal in (3.36), then there exists a negative 
definite solution P2 for  (2.4), such that A2 is stable. 

Proofi Just check that  (2.4), given (3.36), is the coun te rpa r t  of  (2.3), given (2.1). 

The  p roof  of  par t  (a) is therefore comple ted  with 
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Proposition 13. K # is internally stabilizing in (3.36) and l i T  ~  tl < ~. 

Proof. The closed-loop transfer functions in (3.27) and (3.36) are the transpose of 
each other. As is well known IF], the induced operator norm of an input -output  
operator is equal to the H~o norm of the associated transfer function. Hence II Z ~ # II = 
I IT~ 2 < ~.. Internal stability in (3.36), given K #, is equivalent to stability of ~r 
the latter was established in Proposition 11. �9 

3.5. Necessity in Part (b): The Parametrization 

Proposition 14. Every internally stabilizing feedback operator K in (2.1) that as- 
sures 11TKI[ < ~' can be realized in the form (2.5). i 

Proof. Let K be an internally stabilizing compensator with IlZKll < ~, let the 
constructions of Section 3.4 be in force, and set Wo = w - (t/y2)B'IPIPz ~ and uo = 

- CtP2~ in (3.36). Applying Observation 10 and Proposition 11 to (3.36) we see 
that the mapping Ko~: ~o ~ tTo is realized by a stable system, and that llgo # II < W- 

Consider now the following compensator K~,  as an alternative to K # in (3.36). 
Later we shall show that the input-output  mappings in K # and in K ~ are identical. 

= (A'~ + C'tC~P2)P + C't~ - P~Bt.~, ~(0) = O, 

0 = - B ' ~ ( I + - ~ P ,  P 2 ) P +  Y, ~ = K~o gl, (3.37) 

f~ = C1P2P + ~. 

We can easily check that when ~(0) = 0 and 12 -- K~.17 then/5 = .~ in the closed- 
loop system. (Indeed, verify that ~ = ~ - /~  satisfies a homogeneous differential 
equation with ~(0) = 0.) Therefore, 

O = - B ' ~ ( I + - ~ P I P 2 ) p + ~  

= - B ' ~ ( I + ~ z P ,  P2)Y~ + (B'~ + ~ ) 

1 
= -"~BIPtP2:~ + w = Wo, 

whence 
= C~Pz,q + Ko~o �9 (3.38) 

By definition of Ko ~, (3.38) means u = K*y.  In short, when ~(0) = 0 the inpu t -  
output operators K* and K~ coincide over the image of the closed-loop mapping 
g' - '  )~ = ~ + Bi~ in (3.36). 

But when ~(0) = 0, that mapping is a Volterra operator of the second type, and 
is therefore Lz-invertible when restricted to any finite time interv~al [0, T]. Causality 
thus implies that K ~ and K~ agree throughout. The proposition follows since K~ 
is the transpose of (2.5). �9 



Worst-Case Design in the Time Domain 317 

3.6. The Proof of Sufficiency in Parts (a) and (b) 

We assume the existence of negative definite matrices, P1 and P~, which satisfy the 
Riccati equations (~.3) and (2.4), and such that the associated matrices A, and A2 
are stable. 

Proposition 15. Assume that K is a compensator of the form (2.5). Then K is 
internaly stabilizin9 in (2.1) and assures the closed-loop bound 11 T~ 11 < ~'. In particular, 
? > ~o under our assumptions. 

Proof. Recall the form (2.5) of K: 

/~ = (Al + P 2 C ~ C 1 ) p - ( I + ~ P 2 P t ) B , v +  P2C'IY, 

q = Cap + y, v = Koq, 

u = -B ' ,PIp  + v, 

with Ko being the input-output  mapping of a stable linear system such that 
{]Kol] < ?. Assume K is implemented, let x and p be the respective states of(2.1) and 
of (2.5), and let r be the internal state in Ko. Internal stability means exponential 

(i) (i) decay of the triplet (t), given any initial state (0), and w = O. Since Ko 

is assumed stable, exponential decay of the pair (x!t!~, hence of q(t)= Cx (p(t)+ x(t)), 
\ p t t ) /  

implies exponential decay of r(t). We therefore focus only on x and p. In fact, it will 

be more convenient to work with d = ( x "]. 
\ x + p  / 

When w = 0 there holds 

d = d d +  ~v, 

where the matrices d ,  ~ ,  and ~ are 

F A + B1B'IP 1 

v = KoCgd, 

- -  B1 B'I P1 -] 

1 -- ]-~B2B'2p 1 + P2C'ICI A ?- 

(3.39) 

['1_. 1 and ff [0, C1]. = _ ~ p ~ p ~ | B '  = 

(These notations are different from those made in previous sections[) We denote two 
more matrices: 
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and 

[-I , 1 , 1 ,~=l~ "~ ol ol "]--~ "~P1B2B2P1 ~P1B2Bt2P21 
! 
j 

Obviously, ~K is positive definite. From Assumptions A(iii) and A(iv), so is ~/. 
There holds 

d (d, ~ V ' d ) ( t ) = - ( d ,  "l//'d)(t)- -~ l (v -B~Pip) ( t )12- lCx(x+p) ( t )12§  ~ Iv(t), 2. 

(3.40) 

In view of the casualty of Ko, the relation v = KoCt(x + p), and the norm bound 
[IKo[[ < 7, there also holds 

Iv(z)[ 2 dz < ]CI(x + p)(z)l 2 dr (3.41) 

for all t > 0. Introducing (3.41) into an integrated form of (3.40), we have 

(d, ~ d ) l ~  < - f l  (d, ~:d)(x) dz. 

Therefore d(t) decays exponentially, as claimed. 
It remains to establish that II TKII < y. For that purpose we reverse the construc- 

tions of earlier subsections. 
The counterpart of (3.20) in the transposed system (3.36) is 

y211~11 = _ ilell 2 = ~,2 i1%112 _ ila0llZ + (~(0) ,  e2:~(0)>. (3.42) 

Assume that 2(0) = 0. We established in Section 3.5 that then ~o = Ko~o �9 Also, by 
our assumption II K o  ~ II = Itgotl  < 7. Thus there exists & :~ 0 such that the right-hand 
side of (3.42) is not smaller than 6211%112 

Now we reuse an argument from the proof of Observation t0, converted to the 
present context: there holds (when .~(0) = 0) 

-~. t # A'22 + (C1Ko - Pan~)#o. 

Since A z is stable and the mapping Ko~: Lz ~ L2, Wo -'* ~ is bounded, it follows that 
Wo ~ ~ = Wo + (1/~2)B'IP1P2 ~ from L 2 --* L 2 is a bounded operator. So 62 II~oll 2 > 
r/2 II',~ll 2 for some fixed r/:~ 0, and (by Observation 0) HT~ 2 = II Z ~  112 _< 72 - -  rt 2. 

Now we are in a similar situation in the original setting of(2.1): Tr replaces T ~  
T ~ is the counterpart of Ko ~, and A 1 replaces Az. Using (3.20) and (3.28) we conclude 
t h a t  117"~ < ~, i m p l i e s  IITKII < ~- 

This completes the proof of Theorem I. �9 

4. The Finite-Horizon, Time-Varying Case~ 

Consider the system S when restricted to some finite time interval [to, t l] ,  and allow 
time-varying L~-coeffiCients (e.g., A = A (t) ~ L~ It o, t 1-I) both in (2.1) and in admis- 
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sible compensators. The statement of the standard problem in this context remains 
essentially the same as before, with the understanding that now L 2 --- L2[to, tl]. 
Stability, however, ceases to be a factor in our considerations: linear bounded- 
coefficient Systems*are stable over finite time spans, for any reasonable notion of 
stability. 

Before giving our results (which are natural counterparts of those in Theorem I) 
we need the following definitions. Let f~: L2[to, t l ] -~L2 [ to ,  t~] be the time- 
reversing operator, f~f(t)= f ( t  0 + tl - t ) .  It is a unitary isometry. Let T be a 
bounded operator on L 2. We denote T # =  f~T'f~. Obviously, # is a norm- 
preserving conjugation: T ** = T and ]l T~ II = TJl. When M(t) is a time-varying 
L~-matrix, the consistent definition is M# (t) = f2M'(t) = M'(t 0 + t~ - t). These 
definitions are needed since the previous notion of # ,  via transposition of transfer 
functions, is not available here. 

We easly note that if an operator T has a linear-varying system realization over 
[to, tl], say 

D = M p + N f ,  

g = Qp + Rf, 

where M, N, Q, and R are L~ matrices, then T $ is realized by the #-transpose 
system 

~ =  M # P  + QC~f, 

O= N#p  + R # f  

Theorem II 

(a) The value y > 0 is a strictly suboptimal in (2.1) over [to, i t ]  if  and only if there 
exist uniformly bounded, negative definite solutions, P~ and P2, to the following 
two dynamic matrix Riccati equations: ( l )  

P, =DID 1 - P , A - A ' P , - P I  B a B I - ~ B 2 B I  P,, P,( t , )=O, (4.1) 

( P1 = - B2BI + P2 \ -~ B~SiP1 

, +  P 2 ( C ' , C , - ~ P , B , B ' , P , ) P 2 ,  P2(to) = 0  (4.2) 

(b) An admissible compensator assures the closed-loop norm bound II Trll < y if and 
only if it can be realized in the form 

~ = (At + P2CiC~)p - I + -~TP2P~ Blv + P2Ciy, p(to) = O, 

q = C~p + y, v = Koq, (4.3) 

u = -B'IPIp + v, 

where Ko is an admissible feedback operator with IIgoll < Y- 
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(c) I f  the system's state is available; i.e., i f  Assumptions A(ii) and A(iv) are replaced 
by "C 1 = I and C 2 = 0," then ~ is strictly suboptimal if  and only if  P1 exists, 
as claimed, in which case the state feedback u = B'IPlx assures II TKll < ~' in a 
closed loop. 

Proof. The main lines of the proof are those of the proof of Theorem I. We are 
therefore content to highlight parts where changes are needed. 

1. Instead of a single MinMax problem (1.3), we consider a parametrized set of 
problems 

Min Max Jr.,(x,, w, u), (4.4) 
wc~ L2[ t , t  l] u e  La[ t , t t ]  

i 
where x(t) = x, ~ R n is a midinterval constraint in (2.1) and where 

Jr,,(x,, w, u) -- ~,2 Ilwll,2 - Ilzll, 2. 

(Recall that II'lh is the norm in L2[t, q].) In this context, future intervals become 
shorter when time advances.) 

2. The Riccati equation (3.2) becomes dynamics 

L = D~D I - LA  - A 'L  - LIJIB'IL, 

with the terminal-time conditon L(tt)  = 0. The fundamental matrix Oz(~, t), gen- 
erated by AL = A + BIB~L, will substitute for eaL('-'), t~ for oo, and to for 0 in the 
constructions (3.3) and (3.4). 

3. Instead of two fixed operators ~- and ad, we need two families of operators 
{~(t)} and {~(t)}: given (t, x,, w)E (to, t~) x R" • Lz[to, ta], let r, x, and q be 
defined by (3.3), (3.4), and (3.5), modified as explaned in part 2, and with the initial 
condition in (3.4) substituted by the midinterval constraint x(t) = x,. Let u = B'lr/ 
and let z --- D~x + D2u. Then for any T ~ [to, t~) the triplet (x, u, z)lt,.t,) is optimal in 
rain. Ilzll~ given the data (z, x(~), wlt,.,,l). In particular, (x, u, z)lt,.,,l is optimal given 
(t, x,, wli,,,,l)- 

We thus define (x, u, r/) = ~( t ) (x , ,  w) and z = f#(t)(x,, w). These operators satisfy 

Proposition 1 ~ {~(t)} and {(r are uniformly compact families of  linear oper- 
ators, and the functions t ~ ~ ( t )  and t ~ ~(t) are norm continuous. 

(The easy proof is left to the reader.) 
4. In accordance with (4.4), the definitions of jo ,  j , ,  and 111.111 become time 

parametrized: 
J~ w) = r 2 Ilwlh 2 - Ilfg(t)(Xo, w)lh 2, 

J*,(Xo) = inf J~ w), 
w 

and 
IIIwlll, = J~ w) 1/2- 

P r o p o s i t i o n s  2, 3, and 4 remain valid with essentially unchanged proofs. But  now, 
the disturbance wt* that minimizes JO t is determined only over [t, tl]. We extend its 
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definition to the entire interval as w*(T) = 0 for 3 < t (other consistent extensions 
are also possible) and denote w* = aff(t)x,. 

5. We need a stronger statement than Corollary 5. 

Corollary 5 ~ {~vC'(t)} is a uniformly compact family o f  linear operators and the func- 
tion t ~ .Xa(t) is norm continuous. 

Proof. Linearity of each YC'(t) follows, as before, from the uniqueness of w* and 
from Proposition 4 (w* = (1/?2)B~r/*). Uniform boundedness follows from the uni- 
form boundedness of the family {f~(y)}, and from the inequality (3.8). Uniform 
compactness then follows from the uniform compactness of {~(t)} and the uniform 
boundedness of {.~(t)}, via 

1 B, ~ ( t ) x ,  = - - ~  rllt,,,a, (x, u, rl) = .~(t)(x,,  ae'(t)x,). 

Assume t~ ~ t and {~} m {r e R": I l l  -- 1}. Without loss of generality, r ~ r 
Let w~ = aCa(t~)r By Proposition 5 ~ {w~} is a compact sequence in L2, and has an 
accumulaton point, say w. Following from Proposition 4 and the uniform continuity 
of {~(t)}, it follows that wlt,o.,) = 0 and wltt,,,j = -(1/y2)B'2tlltt.,,j, where (x, u r/) = 
~(t)(r w). That is, w = .,~(t)r This assures the norm convergences .,~(t~) ~ ~(t) .  

6. The constant matrix P: is now replaced by a matrix-valued function, defined 
by 

Pl(t)r = L(t)r + ~'L(3, t)L(z)B2(3)(~,~'(t)~)(T) d3. 

Following from Corollary 5 ~ the function t ~ Pl(t) is continuous over the closed 
interval I-to, t:]. In particular, it is uniformly bounded. Proposition 6 (r/*(t)= 
P:(t)x*(t)) remains valid with essentially an unchanged proof. Corollary 7 (A 1 is 
stable) is redundant. 

7. In the proof of Proposition 8 (P1 is a negative-definite solution of the first 
Riccati equation) we have to establish differentiability of P~ (t). Indeed, let ~:(t,  3) 
he the fundamental matrix generated by A I. Then it follows from the facts that 
~* = A l x *  and that r/* = PI x*, that t ~ P1( t )~( t ,  3) is differentiable. Hence so is 

PI (t) = Px (t)~l (t, T)~: (z, t). 

8. The reader should bear in mind that in the remaining parts of the proof of 
Theorem II, #-conjugation is as defined at the beginning of this section. That is 
T # = f~T'f~ for an operator T: L2 '-' L2, and M # ( t )  = M'(to + t: - t) for a matrix 
M(t). With that modification the rest of the proof remains practically unchanged 
(except of course, those parts pertinent to stability are omitted). �9 

5. The Case where Assumption A Fails 

The straightforward ideas in this section are taken from [KPZ],  where more detail 
is available. 

Assumptions A(i)-(iv) can be divided into two pairs: A(i) and A(iii), which are 



322 G. Tadmor 

pertinent to the first Riccati equation and the associated optimization problem (1.3), 
and A(ii) and A(iv), which play an analogous role in the transposed system, and are 
pertinent to the second Riccati equation. 

Let us focus, then, on A(i) and A(iii). The assumption D'2D~ = 0 is merely a matter 
of convenience: this way Iz12= IDxxl2 + ID2ul 2. If it fails, choose L such that 
D'2(Dx + D2L) = 0. Then introduce an artificial .input, v, so that u = L x  + v. The 
formalism of the problem and its basic properties remain essentially unchanged 
when A ~ = A + B~L replaces A, and 9 ~ = D~ + 92 L replaces Dx. In this setting 
Izl 2 = I9~  2 + 192012. 

Assume that D'2D~ = 0. Then full column rank of 92 is necessary for nonsingularity 
of the optimal-control problem min,+L 2 Ilzll 2, while full column rank of D~ assures 
tha t  i n p u t - o u t p u t  boundedness  implies in ternal  s tabi l i ty (for t h i n  tl z II 2 >_ ~ x II x II 2). 
Both are essential properties. Suppose they fail. Then we use the following. 

Observation. Let Q and R be positive-definite matrices. Then y is strictly suboptimal 
in (2. I) if and only if  there exist e, ~ :b 0 and an internally stabilizing feedback u = K y, 
so that 

~,2 Ilwll 2 _ ilzll 2 _ ~2(llxll  ~ + tlull~) -> 62 Ilwll 2. (5 .1)  

Proof. 
ing K such that IITKII 2 < ~,2 _ 262 for some 6 :/: 0. That is 

~,211w112 - Ilzll 2 >_ 262[Iwll 2 

By internal stability, u: L2 ~ L2, w ~ x, are bounded mappings. Thus 

e2(llxll~ + Ilull~) -< 6211wll 2 (5.3) 

for some e # 0. Combine (5.2) and (5.3) to get (5.1). Conversely, assume that (5.1) 
holds. Then it is obvious that IIT~II < ~,, and y is strictly suboptimal. �9 

Assume y were strictly suboptimal. Then there exists an internally stabiliz- 

(5.2) 

Given Dt and D 2 w e  can construct (see [KPZ] for detail) matrices Q and R, such 
that given e :/: 0 there exist D] and D~ satisfying D~'D~ = 0 and 

ID]xl 2 + ID[ul 2 ---- Izl 2 + ~(Ixl~ + lull). 

Thus, both D~ and 9[  have full column rank. Moreover, by the observation, y 
is strictly suboptimal in the original setting of (2.1) if and only if there exists 
some e # 0 small enough, so that y is suboptimal when D] and D[ substitute for D 1 
and D 2. 

Finally, when D2 has full column rank, we can always substitute v = (D'2D2)~t2u 
for u, and I for 92, to get Ilvll 2 = IID2ull 2. 

As mentioned above, the main role of Assumptions A(ii) and A(iv) comes when 
treating the transposed system (3.27). There they are the exact counterparts of A(i) 
and A(iii). The preceding short discussion explains how to handle a situation where 

either of them fails. There is one case where A(ii) (explicitly, B2C' 2 = 0) was used 
before, which is in deriving the exact form of (3.24). The md'dificatons required 
are insignificant: simply write y = (C1 + (1/y2)C2B'2P1)x + Cl wo, and modify the 
definitions of ~r and ~ accordingly, in the statement and the proof of Proposi- 
tion 11. 
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6. Conclusions 

The proofs presented above, although very basic mathematically, and relying on 
well-known ideas, gre rather lengthy. This stems from the intricate nature of the 
problem (see I'BC], [GD], and [VR]) and from the fact that we could not rely on 
previous results on worst-case design using optimal control theory. In these con- 
cluding notes we wish briefly to recap some of the main ideas and techniques 
employed. 

I. Translating the problem into an LQ game-theoretic formalism, the analysis is 
based on a search for a compensator which provides the "best control" in response 
to the "worst disturbance." It is later established that this compensator and a family 
of its perturbations, also guarantee acceptable behavior in response to other 
disturbances. 

2. Following the usual pattern in optimal-control theory, the output-feedback 
problem is divided into a state-feedback problem and a state-estimation problem. 
Again, as usual, the latter is converted into a dual optimal-control problem. 

3. The first part of the proof aims at establishing existence, uniqueness, and a 
"maximum principle" characterization of the "worst (MinMax) disturbance." Our 
analysis mimics that commonly used in classical LQ optimization. In particular, 
the idea of using a quadratic-cost index as an alternative norm (Ill" [][) dates back to 
the early 1960s (see, e.g., the proof of Theorem 1 of [LM], pp. 174-177). 

4. Integration of (d/dO(x,  P x )  is also an old and common technique (see, e.g., 
p. 200 of [LM]). It relies on the underlying geometry of the maximum principle. In 
classical optimal-control theory it is used in establishing (Xo, P x o )  = J*(Xo). This 
is the use made in our proofofProposition 8 (P1 < 0). We also invoke it in obtaining 
the two fundamental equalities, (3.20) and (3.42), that enable relating II TKll to II T~ 
and IIT~ to IIg0~ II. 

5. In the interplay between the systems (2.1) and (3.27) (or (3.23)) and between 
(3.36) and (3.37), continuity of the mapping w ~ Wo and 5 ~ 5 o is crucial. Here we 
use either the (given) internal stability of the system (in the directions w --* w o and 
5 - .  5o) or the stability of A 1 and of A 2 (for  the converse). Essentially the same 
argument is repeated in the proofs of Observation I0 and Propositions 9, 15, and 
implicitly, in 14. 

6. The solutions of suitable Riccati equations are natural candidates for Lyapunov 
kernels. In the proof of Proposition 15 (internal stability with the parametrized 
compensators) we ~ s t  fill in the necessary detail. 

7. Rectangular (nonsquare) systems and nonminimal realizations are trouble- 
some when frequency-domain analysis is employed. Notice that the dimensions of 
a system play no role in our developments in the time domain. The price that we 
pay is in our stability analysis: when nonminimal realizations are allowed, input- 
output stability is weaker than internal stability. We had to ensure that the latter, 
stronger, property prevails. 
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