
Math. Control Signals Systems (1989) 2:47-69 Mathematics of Control,
Signals, and Systems
�9 1989 Spdnger-Vedag New York Inc.

On Supremal Languages of Classes of Sublanguages
that Arise in Supervisor Synthesis Problems with

Partial Observation*

Hangju Chot and Steven I. Marcus?

Abstract. This paper characterizes the class of closed and (M, N)-recognizable
languages in terms of certain structural aspects of relevant automata. This charac-
terization leads to algorithms that effectively compute the supremal (M, N)-
recognizable sublanguage of a given language. One of these algorithms is used,
in an alternating manner with an algorithm which yields the supremal (Eu, N)-
invariant sublanguage, to compute the supremal sublanguage of a given language
that is both (Eu, N)-invariant and (M, N)-recognizable. Finite convergence of the
resulting algorithm is proved. An example illustrates the use of these algorithms.

Key words. Discrete-event systems, Supervisor synthesis, Languages, automata,
Partial observations.

1. Introduction

Many complex man-made dynamical systems evolve not according to differential
equations, but according to the intricate interaction of discrete events. In this paper
we consider such discrete-event dynamical systems, examples of which are flexible
manufacturing systems and computer/communication networks. In these examples
the discrete events are the completion of a task or the arrival of a message. The state
of the system, which changes only at asynchronous discrete instants of time, consists
of numbers and discrete variables, such as the number of parts waiting at each
station and the readiness status of each station. Models and control algorithms for
such systems have been developed by Ramadge and Wonham [RW], [WR1],
[WR2] (see also Smedinga IS]); in this work, a dynamical system (or plant) is
modeled by a finite automaton with certain controllable events, the occurrence of
which can be disabled by means of control action. The control task is formulated
as that of synthesizing a controller (called a supervisor), which can observe each
occurrence of events in the plant, in such a way that the behavior of the closed-loop

* Date received: June 1, 1987. Date revised: December 3, 1987. This research was supported in part
by the Air Force Office of Scientific Research under Grant No. AFOSR-86-0029, in part by the National
Science Foundation under Grant No. ECS-8412100, and in part by the DoD Joint Services Electronics
Program through the Air Force Office of Scientific Research (AFSC) Contract No. F49620-86-C-0045.

t Department of Electrical and Computer Engineering, University of Texas at Austin, Austin. Texas
78712-1084, U.S.A.

47

48 Hangiu Cho and S. I. Marcus

system is minimally restrictive while being confined to a prespecified language (i.e.,
prespecified set of strings of events). The reader is assumed to be familiar with the
work of Ramadge and Wonham.

Recently, two papers I-CDFV], I'LW] have considered, in the framework of
Ramadge and Wonham, supervisor synthesis problems of discrete-event processes
in which the observation of events is assumed to be imperfect. They gave necessary
and sufficient conditions for the language to be realized by means of constructing
suitable supervisors.

It turns out, however, that the classes of sublanguages of a given language L
which satisfy the necessary and sufficient conditions do not, in general, possess
supremal elements, and therefore the minimally restrictive solutions may not exist.
On the other hand, the classes of sublanguages of L where the closure of each
element is (Eu, N)-invariant and (M, N)-recognizable [CDFV] (or equivalently,
controllable and normal with respect to N and M in [LW], if we restrict ourselves
to the case where M is a projection) are not only subsets of the classes of languages
mentioned above, but are algebraically well-behaved so that they possess supremal
elements. Thus the consideration of the supremal elements of the latter classes of
sublanguages has been appreciated in [CDFV] and [LWI as a convenient way to
obtain minimally restrictive solutions in smaller classes or to investigate the exis-
tence of the solution to the problems. The computational aspects of the afore-
mentioned suprernal sublanguages, however, have not yet been fully developed: an
algorithm to compute the supremal sublanguage that solves the (restricted) super-
visor synthesis problem of [CDFV] has been presented in [CDFV] under the
assumption that M -I [M(E,)] ~ Z u u {e}.

We present in this paper an algorithm that is shown to compute effectively the
supremal sublanguage considered in [CDFV] without the above restriction. In
addition, our algorithm possesses a simpler and more graphical structure than that
of [CDFV]; this structure enhances understanding of the problem and is well-suited
to computer implementation. Moreover, our results are extended to solve the
(restricted) Supervisory Marking Problem [RW] where L is not necessarily closed.
In the following we give definitions of various objects that are necessary for the
subsequent development, and specifically state the problem studied in the paper.

Let Y. be a (nonempty) finite set of events, called an alphabet, and let Z u c Y~ (Z,
represents the set of uncontrollable events). The set of all finite strings of events in
Z is denoted by Z*. The empty string is denoted by e. A subset O c Z* is called a
language over Z. The closure of O, denoted by tg, is the set of strings that are prefixes
of strings in O. If O = 6, O is said to be closed. Also, for any s ~ Z*, we denote by
Isl the length of string and by ~- the set of strings that are prefixes of s. O is regular
if O is the language Lm(G) marked by some finite automaton G (see the definitions
in Section 2). Let A be a finite set, and let M: Z ~ A u {e} be a function; M is a mask
or observation function, which will represent partial observations by the supervisor
of events in Z. Then M can be extended to E* in a natural way; i.e., M(e) = e and
M(sa) = M(s)M(tr) for all s e Z*, tr ~ Z (this function was introduced in [CDFV]
to model imperfect observations, and was specialized to a projection in [LW]). For
O = N c Z*, 0 is (M, N)-recognizable if N c~ M -l [M(O)] = O. Also O is (Z~, N)-
invariant if OY. u n N ~ O.

Supremal Languages of Classes of Sublanguages 49

Now let L c N c E*. We assume that L and N are regular and closed. The
assumption that L is closed will be dropped later in Section 5 when we discuss an
application to Supervisory Marking Problems. Consider the classes ofsublanguages
of L defined as follows:

R(L) = {0 c LIO is closed and (M, N)-recognizable},

_D(L) = {0 c LIO is closed, (E u, N)-invariant, and (M, N)-recognizable}.

It was shown in [CDFV] that the supremal elements of_R(L) and _D(L) (denoted by
Sup R(L) and Sup D(L), respectively) exist and that Sup _D(L) solves the (restricted)
supervisor synthesis problem posed in [CDFV]. That is, if G denotes a finite
automaton (or plant), N = L(G) denotes the language generated by G, Go denotes
the corresponding controlled discrete-event process [RW], _S denotes a supervisor,
L(S_/Q) denotes the set of sequences of events that can occur when S is coupled
to Go, then the (restricted) supervisor synthesis problem of [CDFV] is that of find-
ing, for L c L(G), a complete supervisor _S such that L(S/Gc) is the largest (M, N)-
recognizable language contained in L.

Our objective is to find an effective way to compute Sup D(L). For this purpose,
we give a characterization of (M, N)-recognizable languages in Section 2, suggest
two algorithms that compute Sup _R(L) in Section 3, and present an algorithm to
compute Sup_D(L) in Section 4. Also, in Section 5, we discuss a method that
computes Sup_R'(L) and Sup _D'(L) using these algorithms, where L is not neces-
sarily closed and

R'(L) := {O c LIO is (M, N)-recognizable},

_D'(L) := {O c LIO is (Eu, N)-invariant and (M, N)-recognizable}.

We note that if L is closed, then Sup R_'(L) = Sup R_(L) and Sup _D'(L) = Sup _D(L).

2. Strict-Subautomata and a Characterization of
(M, N)-Recognizable Languages

A Nondeterministic Finite Automaton (NFA) G is a 5-tuple G = (Q, Z,f , qo, Qm),
where Q is a finite set of states, Z is an alphabet, q0 e Q is the initial state, Qm c Q
is the set of final (marked) states, and f : Z x Q ~ P(Q) is a transition function (where
P(Q) is the power set of Q). f is extended to Z* x Q in the standard way (see, e.g.,
[HU]), and the extension is denoted by the same symbol f. For a e E and q E Q,
we say that f(a, q) is defined and write f(a, q)!, if f(tr, q) is nonempty, G is said to
be a Deterministic Finite Automaton (DFA) if for any a ~ Z, q ~ Q, f(a, q) is a
singleton set {r}, r e Q whenever f(tr, q)!. In this case we write f(a, q) = r to mean
that f(tr, q) = {r}. We denote by �9 the empty automaton which has as its set of
states the empty set. L(G), the language generated by G, and Lm(G), the language
marked by G, are defined by

L(G) := {w ~ E*lf(w, qo)!},

Lm(G) := {w ~ E*[there exists q ~ Qm such that q ef(w, qo)}.

50 Hangju Cho and S. I. Marcus

Clearly, L(O) = ~ . We often write Lm(G) as]GI. Also, we note that L(G) is closed.
By Tr G, we mean the trim component of G defined by

f(Q E, ft,, qo, Qm c~ Q,,) if Q,, # S'~,
Tr G := t~,

otherwise,

where Q,, := {q ~ Qlthere exist s, t e E*, r e Qm such thai: q ~f(s, qo) and r ~f(t , q)}
and f~, := f l~ • e,,- Clearly, I Tr G I = I GI and Tr G is effectively constructible IE]. G
is said to be trim if G = Tr G. In this case, IGI = L(G). In this paper all automata
are assumed to be trim unless otherwise stated.

Consider two NFAs A = (Qa, E,fa, qao, Qam) and B = (Qn, E, fn, qBo, QBm) with
IBI c IAI. We say that B is a subautomaton of A if

(i) fn(s, qBo) = fa(s, qao) for all s ~ IBI.

Also, we say that B is a strict-subautomaton of A if, in addition to (i),

(ii) ifs ~ Ial and s 6 IBI, there exist g~ ~ such that fA(g, qao) r Qn.

Note that ~ is a strict-subautomaton of any NFA. If A and B are deterministic,
a detailed description of a subautomaton can be given as follows. Consider the
conditions

(iii) Q8 c Qa, qao = qBo and
(iv) for all q ~ QB, a ~ Y., fB(a, q) = fa(a, q) whenever fB(a, q)!.

Then it is easy tO check

Lemma 2.1. Let A and B be deterministic. Then B is a subautomaton of A if and
only if the conditions (iii) and (iv) hold.

Remark 2.1. Given two NFAs C 1 and C 2 with 1C21 c 1C11 , we can always obtain
two DFAs A and B with IAI = IC~I, Inl = IC21 such that B is a strict-subautomaton
of A. For example, first construct two DFAs D 1 = (Q1, Z, f t , q~, Qtm) and D2 =
(Q2, E,f2, q~, Q2m) such that IDol = IC~l and 1921 = IC21 (the existence of such
DFAs and the procedure for obtaining them are well known; see, e.g., [HU'I); then
define A := Tr (QA, E, fa, qo, QAm) and B := Tr (QB, 7-,fB, qo, QBm) by

Qa := Q1 x (Q2 w {qs}), q~ ~ Q2, Qam := Qlm x (Q2 w {q,}), qo := (q~, q~),

Qa := Q1 • Q2, QBm := Qlm • Q2m,

:{(rl , r2)lrl cA(a , ql), r2 CA(a, q2)} if q2 ~ Q2 and f2(a, q2)[,
fa(a, (qt, q2)):= ({(rl , qs)lrl ~f1(a, qt)} otherwise,

fB(a, (qx, q2)) := {(rl, r2)lrl cA(a , qt), !"2 Ef2(o', q2)}.

Now let L c N c Y.* be regular and closed, and let G := (Q, E,f , qo, Q) and
Gs := (Q~, Y-,f. qo, Qs) be NFAs such that JG[= N, [Gsl = L, and Us is a strict-
subautomaton of G. The following equivalent statements are convenient and sug-
gestive for the subsequent development.

Supremal Languages of Classes of Sublanguages 51

Lemma 2.2.

L is (M, N)-reco#nizable

for all s ~ N, t ~ L, M(s) = M(t) implies s ~ L,

r for all d ~ M(L), {s ~ NIM(s) = d} c L,

,=. for all d ~ M(L), {s ~ NIM(s) = d} = {s ~ LIM(s) = d}.

Thus, if there were a way of obtaining two sets of strings {s ~ NIM(s) = d} and
{s ~ LIM(s) = d} for each d ~ M(L), then it would become an easy task to check if
L is (M, N)-recognizable. This observation motivates the following (standard) con-
struction of two DFAs T and T~ that generate M(N) and M(L), respectively.

Let T := (X, A, h, x o, X) and T~ := (X~, A, h,, Xso, Xs) be defined as follows:

X := P(Q) - {~}, X5 := P(Qs) - {~},

Xo := {q 6f(s , qo)lM(s) = e}, Xso := {q eL(s, qo)iM(s) = e},

h(6, x) := {q e f(s, q')lq' e x and M(s) = 6},

h5(6, xs) := {q eft(s, q')lq' e x, and M(s) = 6}.

Then it follows from a simple induction argument that, for all d e A*,

h(d, Xo) = {q e f(s, qo)lM(s) = d},

had, Xso) = {q e f~(s, qo)lM(s) = d}.

Since G~ is a subautomaton of G, it is clear from the construction that h~(d, Xso) c
h(d, xo) for all d e I T~I. From now on we assume that T and T~ are trim; i.e., we
identify T and T~ with their trim components.

Lemma 2.3. Let d e I TI. Consider the following statements:

(1) h~(d, Xso) ~ h(d, Xo).
(2) {s ~ IGIIM(s) = d} r 1621.
(3) There exists ~1 ~ d-such that h(~l, Xo) ~ X,.

Then (1) ~ (2) ~ (3).

Proof. (1)~(2) Suppose that {s ~ IGllM(s)= d} c IG, I. Since Q is a subauto-
maton of G, this implies that f (s , qo) = fAs, qo) for all s ~ IGI whenever M(s) = d.
Thus h(d, xo) = {q ~ f(s, qo)lM(s) = d} = {q ~ f,(s, qo)iM(s) = d} = hs(d, xso), which
contradicts the assumption.

(2)=(3) Let s eiG[be such that M (s) = d and s r IG~I. By the definition of
strict-subautomaton, there is s ~ s such that f(g, qo) r Qs. Let d = M(s'), then a ~ d-
and f(g, qo) ~ h(d, Xo). Noting that X~ c P(Q~), we have that h(d, Xo) ~ Xs. �9

Corollary 2.1. Let d ~ I Zl. I f hs(d, Xso) = h(~l, Xo) for all ~I ~ d, then {s ~ I GII M(s) =
d} ~ 1651.

52 Hangju Cho and S. I. Marcus

Proof. Suppose that {s ~ IGIIM(s) = d} r [G,I. By Lemma 2.3, there exists d e aT
such that h(d, Xo) r X,. Note that a ~ I TI since [TI is closed. Thus h(d, xo) is non-
empty. Hence h(d, Xo) ~ h~(~l, X~o), which contradicts the assumption. �9

Now we are ready to establish a characterization of(M, N)-recognizable languages.

Theorem 2.1. L is (M, N)-recoonizable if and only if T~ is a subautomaton of T. In
this case, T~ is also a strict-subautomaton of T.

Proof. Note that IT, I is closed, so that i fd e IT~I, then d ~ IT~I for all d e d- Thus

T~ is a subautomaton of T

r for all d e I T~I, h~(d, x~o) = h(d, Xo) (definition of subautomaton),

for all d e IT~I, {se lGl lM(s)=d}c lG~l (Corollary 2.1 and Lemma 2.3),

,~ L is (M, N)-recognizable (Lemma 2.2).

Also, it is obvious from the Lemma 2.3 and the definition of s tr ict-subautomaton
that if T~ is a subautomaton of T, then it is also a str ict-subautomaton of T. �9

3. Algorithms for Sup _R(L)

In this section two algorithms which compute Sup R__(L) are presented. We assume
that L c N ~ E*, and L, N are regular and closed. We first give an equivalent
description of Sup R_(L).

Let K := {s E LIN n M "1 [M(~-)] c L}. Then we have

Lemma 3.1. K = Sup_R(L).

Proof. First we show that K ~R(L). Clearly, K c L and K =/~ . Thus it remains to
prove that K is (M, N)-recognizable. Suppose now that s ~ K, t s N, and M(s) = M(t).
Then N n M - I [M (- {)] = N n M - I [M (f)] c L . Note that teNnM-a[M(-O], so
t E L. Hence, from the definition of K, t s K. By Lemma 2.2, K is (M, N)-recognizable.

Next, let O s R(L) and let s ~ O. Then s e L. Also, g c O since O is closed. Thus
N n M -1 [M(~-)] c N n M -1 [M(O)] = O c L. Hence s ~ K, and therefore O c K.

Theorem 2.1 motivates the consideration of the following algorithm to obtain
sup R(L).

Algorithm A (Sup__R(L)). Given NFAs G and Gs, Gs a s t r ic t -subautomaton of G,
with IGI -- N and IGsl = L:

Step 1. Construct two DFAs T := (X, A, h, Xo, X) and T~ := (Xs, A, hs, X,o, Xs)
as illustrated in Section 2.

Step 2. Obtain a DFA ~ by eliminating states and/or edges of T~ so that ~ is the
largest subautomaton of T that is also a subautomaton of T,; more specifi-

Supremal Languages of Classes of Sublanguages 53

cally, if Xo q: X~o, then ~ := ~. If Xo = X,o, ~ := Tr (~ , A,/~,, Xo, ,g~) is
defined by
(A) .~s := X ~ n X .
(B) For all x ~)~, 6 ~ A, h~(5, x)! if and only if h~(~5, x)! and h~(~, x)

= h(6, x). In this case, h~(5, x) := h,(6, x).
S'tep 3. C o m p u t e / ~ = L n M -~ I-I ~1]. (/~ can also be effectively computed; the

detailed procedure and some related material will be discussed later.)

F rom the definition of ~ , it is clear that I T~I is closed and that ~ is a subauto-
maton of T and of T~ as claimed. The following lemma can be proved by a simple
induction argument.

Lemma 3.2. Let d ~ ITI. Then d e 1~1 if and only if h~(d, Xso) = h(~l, Xo) for all
~l ~ d_ In this case, h~(d, Xo) = h~(d, X~o) for all ~t ~

Corollary 3.1, ~ is a strict-subautomaton of T.

Proof. It suffices to show that the condit ion (ii) holds. Let d ~ I TI and d r t~l . Then,
by Le_ mma 3.2, there is d' e d such that hs(d', X~o) ~ h(d', Xo). Since d' ~ d for all
d' e d', (ii) holds by Lemma 2.3. []

Also, we have, from Lemma 3.2 and Corollary 2.1,

Corollary 3.2. I f d ~ I~1, then {s ~ NIM(s) = d} = L.

The following theorem states that the above algorithm indeed yields Sup __R(L).

Theorem 3.1. /~ = Sup R_(L).

Proof. It suffices to show tha t /~ = K. Let s e/<. Then s e L and M(s) ~ I~l. Now
suppose that t ~ N n M -~ [M(g)] . Then t ~ N and M(t) = d for some d s M(g) =
M(s). Since I~1 is closed, d ~ I~1. By Corol lary 3.2, t e L. Thus s s K, and therefore

Conversely, if s e K, then s e L and N r M -1 [M(g)] c L. Let d = M(s). Then
d e I T~I. Note that

N n M - I [M (g)] c L if and on ly i f { w E I G I I M (w) = d} c IG~I for all d e d .

Thus if f (w, qo) c h(d, xo), d e d-, then M(w) = d and w ~ IGI, and therefore w e IGsl
from the above observat ion. Since G, is a subautomaton of G, this in turn implies
that f (w, qo) = f~(w, qo) c h~(cl, X~o). Hence h(d, x0) c h~(d, X~o) for all d ~ d. Since
the reverse inclusion is always true, it follows that h(d, Xo) = hs(d, X~o) for all a ~
By Lemma 3.2, d e I~1. Thus we have shown that s e /~ , and therefore that K c / ~ .

[]

Now we give a me thod of construct ing an NFA V~ that generates the language
L n M - I [I ~]] . Assume that ~ r �9 (i.e., Xo = xso). For later purposes, we also

54 Hangju Cho and S. I. Marcus

construct an NFA V that generates the language N. Thus we let NFAs V:=
(Y, E, g, Yo, Y) and V~ := Tr (Y,, Z, g,, Yo, Y~) be defined by:

. Y : = X x Q , Y, :=)7, x Qs , yo:=(xo, qo),

g(a, (x, q)):= { (x', q')[x' = h(M(a), x), q' ~ f(a, q)},

gs(a, (xs, q)) := {(x', q')lx' = hs(M(a), xs), q' ~ fs(a, q)}.

Then it is straightforward to check

Lemma 3.3.

(i) g(s, Yo) = {(x, q)lx = h(M(s), Xo), q ~ f(s, qo)},
g,(s, Yo) = {(x, q)lx = h~(M(s), Xo), q ~ f,(s, qo)}-

(ii) IVl = Ial and [V~I = Zc~ M-X[l~l] .
(iii) V~ is a strict-subautomaton of V.

Remark 3.1. Since all procedures involved in each step are clearly effectively
computable, we have, in fact, given an effectively computable algorithm to obtain
Sup R(L).

A more efficient algorithm can be obtained when a pair of NFAs equipped with
stronger structural properties are available from the beginning. Let G = (Q, E,f ,
qo, Q) be an NFA. For d e M(IG[), we define a set Q~(d) by

Q~(d) := {q e Qlq e f(s, qo), M(s) = d}.

Thus, if we consider T = (X, A, h, x o, X) to be a DFA constructed from G as in
Section 2, then Q6(d) is precisely equal to a state h(d, Xo) of T whenever Q~(d) is
nonempty. Now we say that G is M-recognizable if for all d I, d 2 E M(IG[), Q~(dl) n
Q~7(d2) = ~ whenever Q6(dl) ~ Qc;(d2). Thus the Q~(d)'s, in this case, form equiva-
lence classes in Q. Also note that it is always possible to get an M-recognizable NFA
from a given NFA, even though the condition looks difficult to satisfy. For example,
the NFA V constructed in the previous section is M-recognizable, which will be
proved in the following.

Lemma 3.4. V is M-recognizable.

Proof. Using Lemma 3.3, we have that, for d e M(I VI),

Qv(d) = {(x, q)lx = h(d, Xo), q e f(s, qo) where M(s) = d}.

Now suppose that dx, d2 e M(I VI) and Qv(dl) ~ Qv(d2). Then either h(d 1, xo)
h(d2, Xo) or Q~(d~) = {q e Qlq ef(s, qo), M(s) = dt} ~ {q e Qlq e f (t , qo), M(t) =
d2} = Q6(d2). Note from the definition ofh that Qo(d) = h(d, Xo) for all d e M(I GI) =
M(I VI). Thus either case implies h(dl, xo) ~ h(d2, Xo). Hence Qv(dl) c~ Qv(d2) = ~ .

Consider again the finite automata G, Gs, T, T, and ~ discussed before. Here, we
make an additional assumption that G is M-recognizable. We demonstrate a method

Supremal Languages of Classes of Sublanguages 55

for obtaining an NFA (~ which is constructible directly from G, G,, and T, and which
generates the language/~ = L n M -~ [I LI]. We begin with the following lemma.

Lemma 3.5. Let d ~ ILl and q ~ Qo(d). If there exists d' E 1~1 and 6 ~ A such that
q ~ h,(d'6, X,o), then d'6 e ILl.

Proofi Note that q e QG(d'6) since h,(d'~, X,o) c h(d'6, Xo). Thus Qa(d) = QG(d'6)
by the assumption that G is M-recognizable. Now suppose to the contrary that
d'~ ~ ILl. It follows from Lemma 3.2 and Lemma 2.3 that there is d e ~ such that
h(d, Xo) ~ X,. But d' ~ ILl. Thus d --- d'6. Consequently, h(d'6, Xo) ~ X,, and there-
fore h(d, Xo) q~ Xs since h(d, Xo) = Q~(d) = Q~(d'6) = h(d'6, Xo). Hence h(d, Xo) :A
h,(d, x,o). By Lemma 3.2, d ~ I~1 which contradicts the assumption. Thus it must
be the case that d'6 ~ ILl- �9

Now we define an NFA 0~ := Tr (O~, Z,J~, qo, 0.~), Q, c Q,, by:

(a) q e Q, if and only if there exists d ~ ILl such that q ~ Qa(d).
(b) For all q e ~ and a e Z, f~(a, q)! if and only if f~(a, q)! and fs(a, q) n 0_., ~ ~ .

In this case, f~(a, q) := f,(a, q).

If qo ~ Q, by rule (a), then (~ := 0. Note that qo e 0, if and only if L :~ 0-

Lemma 3.6. For all w e Z*, f~(w, qo)! if and only if f~(w, qo)! and M(w) e ILl. In
this case, ~(w, qo) = f~(w, qo).

Proof. We use induction on Iwl. If Iwl = 0, the assertion trivially holds.
Let w e Z* and a ~ Z. Suppose that f~(wa, qo)!. Then f~(w, qo)! and there exists

q' e f~(w, qo) such that f~(a, q)!. By induction hypothesis, f~,(w, qo)! and M(w) ~ I~1.
Also,~(w, qo) = f,(w, qo) so that q ef,(w, qo). By (b), f~(a, q)! and there exists ~ e 0~
such that ~ eft(a, q'). Thus f~(wa, qo)!. Note that ~ ~f~(wa, qo), so ~ e h~(M(wa), X~o).
Moreover, by (a), there exists d e I~1 such that g/~ Q~(d). Using Lemma 3.5, we have
M(wa) ~ ILl,

Conversely, suppose that f~(wa, qo)! and M(wa) ~ ILl. Then f~(w, qo)t and M(w) e
ILl. By induction hypothesis, f~(w, qo)! and ~(w, qo) = f,(w, qo). Let q' ~f~(w, qo),
and note that f~(a, q') c f~(wa, qo) c h~(M(wa), X,o) c Q~(M(wa)). By (a), f~(a, q') c
O.~. It follows from~b) that for all q' eft(w, qo),f,(a, q') = ~(a, q') whenever f~(a, q')!.
Thus it is clear that f~(wa, qo)!- Moreover, f~(wa, qo) = {q sf~(a, q')lq' sf~(w, qo)} =
{q e~(a, q')lq' eL(w, qo)} = ~(wa, qo). �9

We now have the following theorem.

Theorem 3.2. 10,I = Sup R(L).

Proof.

welG~l "~ w e l G ~ l a n d M (w) e l L I (Lemma 3.6)

~. w~IG, I n M - I [I L I] = R

,=, w ~ Sup R_(L) (Theorem 3.1).

56 Hangju Cho and S. I. Marcus

The previous construction of the NFA ds requires the DFA ~ to be available.
However, it is possible to obtain ds without the knowledge of ~. Note that, for
d~lTI,

d ~ 1~1 -=, hs(d, X~o) = Q~(d) for all d e d- (Lemma 3.2)

"~ QG(~) ~ Q s for all aEd-

("=-" is trivial. " ~ " is immediate from the proof of Lemma 2.3
if we note that Q~(d) = h(d, Xo)).

Thus, (a) in the definition of ~ can be replaced by:

(a)' q ~ 0~ if and only if there exists d E IT[such that q ~ Q~(d) and Qo(~l) ~ Q,
for all d e d.

This condition can be further simplified since we take as ~,s the trim component
of the automaton constructed by (a) and (b). Consider:

(a)" q ~ ~.s if and only if q ~ Q~(d) implies Qo(d) c Q,.

Recall that the QG(d)'s form equivalence classes in Q. Thus it is clear that the states
of d~ generated by (a)' are contained in those generated by (a)". It is also easy to
verify that the additional states generated by (a)" are precisely those which are not
accessible from the initial state qo, and therefore are excluded from the state space
of the resulting trim automaton. Note that the condition in (a)" can be checked
simply by inspecting the state h(d, Xo) of T which contains q. Thus the following
algorithm effectively computes Sup _R(L).

Algorithm B (Sup R(L)). Given NFAs G and G, where [G[= N, IG~[= L, G~ is a
strict-subautomaton of G, and G is M-recognizable:

Step 1. Construct a DFA T := (X, A, h, x o, X) as illustrated in Section 2.
Step 2. Construct an NFA ~,~ := Tr (~ , ~,,f~, qo, (~), (~, ~ Qs, according to (a)"

and (b). If qo ~ ~.~ by rule (a)", then ~,, := ~. Since a nonempty Q~(d) is a
state of the DFA T, the determination of~.~ might be done in the following
way: check each state x e X to see if x contains any q r Q,. If so, remove
all q ~ x c~ Q, from Q~.

Our introductory comments concerning the simplicity of the structure of our
algorithm relative to that of [CDFV] clearly refer to our Algorithm B.

4. An Algorithm for Sup _D(L)

In this section, an algorithm that effectively comPutes Sup _D(L) is presented. Recall
that

R(L) = {0 c LIO is closed and (M, N)-recognizable},

_D(L) = {0 c LIO is closed, (Eu, N)-invariant, and (M, N)-recognizable}.

We define two more classes of sublanguages of L as follows:

_C(L) = {0 ~ L I O is closed and (Eu, N)-invariant},

_C'(L) = {O c LIO is (Eu, N)-invariant}.

Supremal Languages of Classes of Sublanguages 57

So far, we have presented two algorithms that compute Sup R_(L). Also, we note
that Wonham and Ramadge [WR1] have presented an efficient algorithm which
computes Sup _C'(L) effectively when L, N are regular and N is closed. Moreover,
it is not difficult to see that if L is closed, then Sup C'(L) is the same as Sup C_(L).
Thus we are naturally led to the consideration of the strategy where the algorithm
of Wonham and Ramadge and one of the algorithms developed in Section 3 are
applied in an alternating manner to compute Sup D(L). In the following we explore
this idea in detail.

We again assume that L, N are regular and closed. Also, all automata are assumed
to be deterministic in this section, which makes the algorithm of Wonham and
Ramadge [WR 1, Section 6] readily applicable. Note that this additional assumption
is not a restriction, since for each NFA A, there is a DFA B such that IAI -- IBI.
A standard procedure that converts an NFA into a DFA can be found easily
(e.g., see [HU]).

Now we summarize Wonham and Ramadge's algorithm as follows.
Consider DFAs A = (Qa, E, fA, o qA, QAm) and B = (Qn, E, fn, qO, Qs,,) with 1131 c

IAI. We say that B refines A if for all s, t~ IBI, fB(S, qO)=fB(t, qO) implies
fds, qO) = fA(t, qO). If B refines A, then there is a unique function @: Qn--* Q~
satisfying ~b(fn(s, qO)) = fa(s, q~ for all s e [B--[.

Algorithm C (Sup_C'(L)) (Wonham and Ramadge). Let G = (Q, Z,f , qo, Q) and
C O = (Z o, Z, 9o, z~ Zo.,,) be DFAs such that IGI = N, [Col ~ N, and Co refines G.
For eachj > 0, define a DFA Cj+I := Tr (Zj+l, E, g~+l, z~ Zj+I.,,) by

:= {z E z Iz(j(z)) z~ = n

~gj(a, z) if gj(a, z) ~ Zj+,,
gj+l(a, z) := (undefined otherwise,

where E(q) and E(z) are the sets of events for which the transition functions are
defined at the states q ~ Q and z e Zj, respectively, and ~j: Zj--* Q is the unique
map defined as above.

It was shown in [WR1] that each Cj+I refines G and that there exists k ~ N
such that ICj] =]Ck] for al l j >__ k and]Ckl = Sup C(]Co]).

Remark 4.I. If Co is a strict-subautomaton of G, then Co refines G. It is also easy
to check that C i is a strict-subautomaton of G for all j.

Now we present an algorithm that computes Sup D(L).

Algorithm D (Sup_D(L)). Let DFAs G and G ~ be such that IGI = N, IG~ - L,
and G ~ is a strict-subautomaton of G. Le t j = 0.

Step 1. Compute Sup C([C~[) (use Algorithm C). Denote the resulting DFA by

Step 2. Compute Sup R([G~[) (use Algorithm A or Algorithm B). Denote the
resulting DFA by G~ +1. Also, if G is not M-recognizable, construct a DFA
G' such that IG'[--- [G[and G' is M-recognizable. Otherwise, let G' := G.

Step 3. Set j := j + I. Go to step 1 with G replaced by G'.

58 Hangju Cho and S. I. Marcus

Remark 4.2. The DFA G' in step 2 can be identified with the au tomaton V in
Section 3.

Note that we can always use Algorithm B in step 2 after the first iteration. In this
case, the procedures after the first iteration will be simply those of removing states
from the set of states of the au tomaton constructed in the previous step. Hence it is
clear that the algorithm stops in a finite number of iterations. Since the algorithm
converges, we must now also show that it does indeed converge to Sup _D(L).

Let Kj = IG]I, g~ = IG~I, and let S = Sup _D(L). Then K o = L, K~ = Sup _C(Kj)
and K~+ 1 = Sup __R(K~). Note that, for all j, K~+ 1 c K~ = Kj, so the sequence {K~}
is monotone decreasing.

Lemma 4.1.

(1) S c Kj for allj > O.
(2) / f K i = Ki+ 1 , then K i c S.

Proof. (1) Clearly, S ,- Ko = L. Suppose that S c Kj,j > O. Then S = Sup _D(S)
Sup _D(Kj) c Sup C(Ki) = K~ and therefore S = Sup D(S) c Sup _R(S) c
Sup R(K~) = K~+ I. Thus S c Kj+I. Therefore we have proved that S c K i for all
j > 0 .

(2) Suppose that K~ = K~+ 1, then Ki = K~ = K~+I. Thus Kt = K~ = Sup _C(Ki)
and Ki = Ki+l = Sup R(K~) = Sup R(KI). Hence, Ki = Sup _D(Ki) E_D(L). There-
fore Ki c Sup _D(L) = S. �9

In view of Lemma 4.1, we conclude that if the algorithm stops after a finite number
of iterations, or, equivalently, if there is i > 0 such that K~ = K~ for all j > i, then
Ki = Sup _D(L). Thus we have

Theorem 4.1. The sequence {Kj} finitely converges to Sup _D(L). Thus Algorithm D
effectively computes Sup _D(L).

Remark 4.3. Algorithm D is more general than the algorithm of [CDFV] , since
the latter is only valid under condition

(i) M -1 [M(Z~)] ~ Z u u {5}.

However, in this special case, the algorithm of [CDFV] yields Sup D(L) without
an iterative procedure. It is interesting in this context to note that if the mask M
satisfies an additional condition

(ii) M(a) ~ e for all tr ~ Z - Z, ,

then Algorithm D can be shown to yield Sup _D(L) after a single iteration of the
procedure.

An alternative proof of convergence of the algorithm, which provides additional
insights, is given in the Appendix A. Now we give an example which illustrates
the use of Algorithm D.

Supremal Languages of Classes of Sublanguages 59

G

qJq' q3 %

q8

131 ~l =.. ~
~ . . ~ , , ~ q t q3

qo"
q6

Fig. I. G and G ~ (Example).

13z

Example. Let E = {a x, a2, fix, f12}, E. = {az, f12}, and let M (a ,) = M (a 2) = 6,
and M (f l ,) = M(f l2)= 62. Notice that in this case M-X[M(E.)] ~ E . w {e} (i.e.,
the condition of [CDFV] is not satisfied), Two regular languages N and L over E,
with L c N, are given as follows:

L = a2fl~fl*(fl2 + a2) + axfl•.

Figure 1 displays two DFAs G and G ~ which generate languages N and L,
respectively. Note that G ~ is a strict-subautomaton of G. Also, it can be easily
checked (Algorithm C) that G ~ = G, ~ In other words, L is (E,, N)-invariant.

We use Algorithm A to compute Sup.._R(JG~ Two DFAs T and T~ with
ITJ = M(N) and ITs1 = M([G~ are displayed in Fig. 2. We note here that the
Qo(d)'s, d ~ M(N) (which are states of T when they are nonempty), do not form
equivalence classes on the set of states of G, since they are not disjoint. Thus G
is not M-recognizable. Also, it is clear that T~ is not a subautomaton of T. We

~t remove the edge x4 --+ x5 from T~ so that the resulting automaton ~ is the largest
subautomaton of T that is also a subautomaton of T~. The DFA ~ is also dis-
played in Fig. 2. From ~ , we obtain the DFA G), which generates the language
IG~ c~ M -1 [I ~ l] = Sup _R(IG~ according to the method given in Section 3. Since
G is not M-recognizable, we also construct a DFA G' (in the same way as for G))
such that IG'I = N. The corresponding DFA T' which generates the language

60 Hangiu Cho and S. I. Marcus

Xo 81 xl ,52 x2 �9 I~* ID*
{%} {qt' q2} {%, q2}

r,

x,o 8x x~ 82 x 2
{qo} {ql. q2 } {%' q2}

82

~ 2 X6
/it -~1 {qs, qs}

x ~z~ '~%, q4, q~ } >,,,, [82
{q5 } 82 {qTh J 82

82

82 x3 ~ 2 ~ ~ ~ x 4

8z x.~ X5 {%}

{q2' q4. q6)

51

7;

x o 8t xt 82 x2 Ib.o It,~
{%} {ql, q2 } {q3, q2 }

82

82 ~"-'~ll{q2, q4, q6)

8{q, I'q~}X~

8 t ~ � 9 x5

Fig. 2. T, T~, and ~ (Example--first iteration).

M(I G'I) = M(N) is constructed accordingly. The DFAs G~, G', and T' are displayed
in Fig. 3. This completes the first iteration of the algorithm. Note that T and T'
have the same structure, but different labels for states. Note also that states of
T' now represent equivalence classes on the set of states of G'. Thus we see that
G' is M-recognizable. We use Algorithm B hereafter for obtaining Sup R_(G~),
j > l .

We remove the state 7 of G~ using Algorithm C to get G~, which is displayed
in Fig. 4. Observe that the state x,~ (= {7, 8, 9}) of T contains the state 7 of G'
which is not in the set of states of G~. Thus we remove states 8 and 9 of G~ as
well (Algorithm B). The resulting automaton G~ is also displayed in Fig. 4. This
completes the second iteration.

The same process is repeated in the third iteration, and the resulting automata
G~ and G~ are shown in Fig. 5. Now, Algorithm C gives G~c = G~; i.e., IG~I is
(Xu, N)-invariant. Since IG31 -- Sup _R(IG~I) is (M, N)-recognizable, it is clear that

= G~ for j > 4. Hence, Sup_D(L) = IG,31 - (~a + ~2)/~x.

Suprernal Languages of Classes of Sublanguages 61

Gs I

2

[31 [~l
~ c

3

~2

12

lh

G'

2

01 [$1
3

T'

x'o 8x x'x fi2 x'2 82
{0} {1, 2} {3, 4}

S 2 ~ 81 x~
8 ~ 7 , 8, 9}

6.

{121 ga { 1 3 1 ~ j) ga

Fig. 3. G), G', and T' (Example--first iteration).

5. Application to the Supervisory Marking Problem

In this section we seek a generalization of the algorithms developed so far so that
the resulting algorithm provides minimally restrictive solutions within a smaller
class to the following Supervisory Marking Problems (SMP) [RW] with partial
observation: given L c Lm(G), L.,(G) = L(G), and a mask M, find a proper super-
visor _S (i.e., _S is complete and Lm(__S/Gc) = L(S/Gc) n Lm(G) = L(S_/G~)) such that
Lm(S_/Go) ~ L. It turns out, as is the case for the supervisor synthesis problem of
[CDFV], that the class DD(L) of sublanguages 0 of L which satisfy the necessary
and sufficient condition for the existence of proper supervisors _S with Lm(S_/Gc) = 0

62 Hangju Cho and S. i. Marcus

m

2

G)

2

Fig. 4.

3

P*

4

lh

~o

12

Ih

12

131 131
I J r

G], and G] (Example--second iteration).

does not, in general, possess a supremal element [CDFV], [LW] (see also Appendix
B). In other words, the minimally restrictive solution does not necessarily exist for
SMP. Thus it is again natural and convenient to restrict ourselves to a subclass of
DD(L) that has a unique supremal element [LW].

Let L c L m c N ~ Y:*, Lm = N. We assume that L and N are regular and N is
closed. Here, L is not necessarily closed. Let O c L,,. We say that O is Lm-closed
if 6 n Lm = O. Consider the following classes of sublanguages of L:

_R'(L) := {O ~ LIO is (M, N)-recognizable},

DD'(L) := {O c LIO is L~,-closed, () is (Eu, N)-invariant and (M, N)-recognizable},

_D'(L) := {O c LIO is (Yu, N)-invariant and (M, N)-recognizable}.

G)
�9 p �9 �9

o, . . o, .

2 4 ~ 2 4

Fig. 5. G~ and G~ (Example--third iteration).

Supremal Languages of Classes of Sublanguages 63

These classes of sublanguages of L are closed under arbitrary union and possess
supremal elements. Also, if we identify L m and N with Lm(G) and L(G), each language
of the class DD'(L) is a solution to SMP; i.e., .DD'(L) ~ DD.(L) [LW] (see also
Appendix B). Thus we consider Sup DD'(L) as a minimally restrictive solution
to the "restricted" SMP. Consider now the class _D'(L) of sublanguages of L.
Clearly, DD'(L) ~ _D'(L). However, the requirement for a sublanguage O of L to be
in D'(L) is not sufficient to guarantee the existence of a supervisor S such that
L~(S/Gc) = O. Nevertheless, it is shown in Appendix B that if L is Lm-closed, then
Sup DD'(L) = Sup _D'(L), and that we may assume without loss of generality that
L is Lr,-closed. Since the problem of obtaining Sup D'(L) is easier than that of
obtaining Sup DD'(L) (there are less constraints in the former problem), we discuss
hereafter an algorithm that effectively computes Sup D_'(L).

The algorithm that is developed in this section is essentially parallel to the one
presented in the previous sections for Sup_D(L). The only major difference is
that Algorithm A or the new version of Algorithm B does not, in general, yield
Sup R__'(L) with a single iteration of the procedure any more. Consider an operator
f~: P(E*) ~ P(E*) defined by

f~(R) := {s ~ RIN c~ M - ' [-M(~-)] c /~}.

Clearly, fl is monotone: i.e., if R 1 c R2, then f~(Rt) ~ f~(R2). Let Sa := Sup R_'(L).
Then the following lemma is immediate.

Lemma 5.1. SR = O(SR).

Proof. Trivially, f~(SR) c SR. Let s~ Sn. Then Nc~M - l ['Mff)] c N n
M -t [M(SR)] = S R, where the equality follows from the fact that S R is (M, N)-
recognizable. Thus s E fI(Sa). This proves that S a c f~(Sa). �9

Define a sequence of sublanguages {Rj} of L by

Ro := L,

Rj+ 1 := f~(Rj).

Clearly, {Rj} is monotone decreasing; i.e., Rj+t ~ Rj for al l j >_ 0.

Lemma 5.2.

(1) S a c Rjfor allj >_ O.
(2) I f Rj = Rj+I, then Rj ~ SR.

Proof. (1) Clearly, SR c L = Ro. Suppose that S R c R~, i > 0. Using Lemma 5.1,
we have S R = f~(Sa) c f~(Ri) = R~+t. Thus S a c Rj for all j >_ 0.

(2) Assume that Rj =_ R~+t, or equivalently, Rj = f~(Rj). From the definition of
f~, N c~ M -~ [M(~-)] ~ Rj for all s e g~. Thus N c~ M -t [M(R-jj)] ~ ~ . Hence R--~. is
(M, N)-recognizable. Since Rj c L, we have that R; e R'(L). Therefore R i c S a. �9

By Lemma 5.2, it is clear that if the sequence {R j} converges after a finite number
of terms, then the limit is Sup _R'(L).

64 Hangju Cho and S. I. Marcus

w n

Observe now that I)(Rj) = Sup_R(Rj) by Lemma 3.1 and the definition of f2.
Also, it is easy to see from the definition that f2(Rj) = Rj ca f~(Rj). Thus we have
that f~(Rj) = Rj c~ Sup _R(Rj). This observation therefore suggests that we could use
the algorithms developed in Section 3 to compute ft(Rj) for eachj.

In fact, Algorithm A in Section 3 computes ft(L) without any modification. This
can be easily seen by noting in Algorithm A that steps 1 and 2 yield the same
regardless of whether L is__closed or not (recall that the construction of DFAs T and
T~ is such that ITI - M(IGI) and IT~I -- M(IG, I), and that ~ is determined entirely
by the structural properties between T and T~), and that the last step computes
L c~ M -1 [1 ~1] = L ca (I_, c~ M -1 [I ~1]) = L ca Sup __R(L). A similar observation can
be made concerning Algorithm B with a minor modification; that is, we replace
the set of marked states ~ of d~ by Qsm := ~ ca Qsm where Qsm is the set of marked
states of Gs. Then this modified version, called Algorithm B', effectively computes
f)(L). We summarize the above argument in

Lemma 5.3. Let R c N be a regular language over E*. Then Algorithm A (or
Algorithm B') effectively computes f~(R).

Thus the sequence {Ri} can be computed by repeatedly applying Algorithm A
or Algorithm B'. The convergence of this sequence is now obvious in view of
procedures involved in these algorithms, and can be argued as in Section 4; that is,
after the first iteration, we could use Algorithm B' exclusively so that at each
iteration, the procedure is simply to remove some states from a subautomaton of
a fixed M-recognizable NFA. Therefore the whole procedure must stop after a finite
number of iterations. A proof of convergence which is similar to the one presented
for Algorithm D in Appendix A can also be constructed.

Now we consider Algorithm D with Sup _C(-) and Sup __R(-) replaced by Sup C_'(.)
and Sup __R'(.). We call this modified version Algorithm D'. It is easy to verify
that Lemma 4.1 still holds with S and {Ki+I} interpreted as Sup D'(L) and
{Sup R'(Sup _C'(Ki))}, respectively. Again, the convergence of Algorithm D' can be
shown in the same manner as in Section 4. Thus we have

Theorem 5.1. Algorithm D' effectively computes Sup _D'(L).

6. Concluding Remarks

A graphical characterization of (M, N)-recognizable sublanguages of a given lan-
guage L has been presented and has led to the development of an algorithm which
effectively computes Sup _D(L) under the assumption that N and L are regular.
No restrictions on the mask M have been made, although some conditions, one
being the same condition imposed in the algorithm of [CDFV], guarantee that
Algorithm D yields Sup _D(L) after a single iteration of the procedure. Moreover,
the results have been extended to the case where we desire to obtain Sup_D'(L)
and L is not necessarily closed. Thus Algorithm D' effectively computes Sup _D'(L)
which is a minimally restrictive solution within a smaller class to SMP. Also,
the notion of M-recognizable automata has been introduced in order to construct

Supremal Languages of Classes of Sublanguages 65

an algorithm (Algorithm B or B') with a simpler structure than that of Algorithm A
or the corresponding algorithm in [CDFV] to compute Sup R(L) or Sup R_'(L).
This simply structured algorithm not only makes the entire procedure of extracting
Sup D(L) or Sup _D'(L) much more straightforward so that the procedure consists
of simply removing some states from the automaton obtained in the previous step,
but also simplifies the proofs of convergence for various algorithms. It is expected
that the concept of M-recognizable automata will play a key role in the develop-
ment of algorithms which compute other sublanguages of L that solve supervisor
synthesis problems with partial observation.

It is clear fromtheir structures that all of the algorithms for Sup _R(L) (Algorithm
A, B, B', and that of [CDFV]) are of exponential worst-case complexity; thus so
are Algorithms D and D'. In Algorithm A the exponentia3 time complexity results
from the construction of the DFAs T, T~, and ~; i.e., the state spaces of these DFAs
have cardinality that is, in general, exponential in the size of the state spaces of G
and G~. The algorithm of [CDFV] includes the construction of DFAs similar to T,
T~, and T~. The state space of T in Algorithm B (B') has cardinality less than or equal
to that of G, since G is M-recognizable. However, if G is not M-recognizable in
the first place, the M-recognizable version of G has to be obtained in order for
Algorithm B to be applied.]'he procedure of obtaining an M-recognizable automaton
will be of exponential-time complexity.

The fact that all algorithms in the paper are of exponential-time complexity
is not surprising. Indeed, the same argument as in IT] can be shown to lead to
the conclusion that unless P = NP, there is no polynomial-time algorithm for the
decision problem corresponding to the problem of obtaining Sup _R(L). In other
words, all the problems considered in this paper are "intractable" from the point
of view of computational complexity theory. Note, however, that this view comes
from the worst-case analysis of the problems. Also, there are exponential-time
algorithms that are successfully used in practice. The practicality of the algorithms
presented in this paper is yet to be determined in applications to real problems.

Appendix A. An Alternative Proof of the Convergence of Algorithm D

In this appendix we give an alternative proof of the convergence of Algorithm D.
We begin with definitions of some equivalence relations on Y~*.

For any K ~ N ~ E*, we define equivalence relations =X and "~x on Y.* as
follows:

(i) s --r t if for all w e Z*, sw e K if and only if tw e K.
(ii) s " r t if S ------N t and s --r t-

Also, we define an equivalence relation ~K on P(Z*) according to

(iii) O1 " x 02 if for all s e 01, there exists t e 02 such that s " x t, and vice versa.

Recall that the sequence of regular languages {K~} generated by Algorithm D are
defined recursively by K o = L, K~ = Sup _C(Kj), and Kj+I = Sup _R(K~). We note
again that for all j, Ki+ 1 c K~ c Kj, so the sequence {Ki} is monotone decreasing.
Now, it has been shown in [WRI] that if a sequence of regular languages {Kj} is

66 Hangju Cho and S. I. Marcus

decreasing and the sequence {Card(Z*/=r~)} is bounded, then there is i e IN such
that Ki = Ki for all j > i. To prove the convergence of Algori thm D, it is therefore
enough to show that the sequence {Card(Z*/---r~)} is bounded. For this purpose,
we proceed asfol lows.

We first state a lemma which is a direct consequence of Theorem 3.1 of [W R I]
and the p roo f of Lemma 3.4 of [W R I].

Lemma A.I. Let s, t �9 K ~ , j > O. l f s "r~ t, then s ~x~ t.

Note that K~ = K~ in our case. We recall from Lemma 3.1 that

K~+~ = Sup R(K~) = {s �9 K~IN c~ M - t [M(g)] ~ K~}. (*)

Lemma A.2. Let s �9 K~+~. I f w ~ N ~ M - t [M(s)] , then w �9 Ki+~.

Proof. Let w �9 N ca M -~ [M(s)] . Since s ~ K~+~, w �9 K~ by (.). Also, M(w) =
M(s), so M(~) = M(~). Thus N n M -~ [M(~)] = N ca M -~ [-M(~-)] ~ K~. Therefore
w ~ K~+~. �9

Lemma A.3. Let s, t �9 KI+~, j >_ O. I f s - K ~ t and N c a M - ~ [M (s)] ~ N ca
M -~ ['M(t)], then s =-x~., t and N ca M -~ [M(s)] "~r~+, N c~ M -1 I'M(t)].

Proof. (Part A) It will be shown that if s ~x~ t and N c~ M - I [M (s)] ~ r) N n
M - ~ [M (t)] , then s-=r j . , t. Let su �9 Ki+ t. Then su �9 K~ and therefore tu �9 K~.
Suppose that w e N ca M -1 [M(/-ff)]. We show that w �9 K~. If w e M -1 [M(T)], then
w �9 K~ by (.) since t �9 Kj+ 1. So let w e M -1 [M(t~)], fi �9 ~. Thus w = w I w 2 where
w~ e M - ~ [M (t)] and w 2 �9 M-~[M(~)] . Note that w~ �9 N since N is closed. By the
assumption, there exists v �9 N ca M -~ [M(s)] such that v ~K5 wl. Thus vw 2 �9 N. Also
vw2 �9 M -~ [M(sa)]. Hence, vw 2 e K~ by (.) and by the assumpt ion that su �9 Kj+~.
But this implies that w = w~w 2 �9 K~ since v ~r~ w~. Thus we have proved that
tu e Kj+t, and therefore that s ---Kj., t.

(Part B) We show that N :a M - l l 'M(s)] "~xj., N ca M -~[M(t)] . Let x �9 N ca
M -~ [M(s)]. By the assumption, there exists y �9 N ca M -~ [M(t)] such that x "~x~ Y.
By Lemma A.2, x, y �9 K~+~. No te that N ca M - ~ [M (x)] " r~ N ca M - ~ [M (y)] since
M (x) = M(s) and M (y) = M(t) . Thus, by par t A, x ---rj§ Y, and therefore x "~r~., Y.
Hence we have shown that N ca M -~ i 'M(s)] "~g~§ N ca M -~ [M(t)] . �9

Lemma A.4. Let s, t ~ K j , j > O. l f s ~i. t and N ca M -1 I 'M(s)] " L N ca M -l ['M(t)'l,
then s..~xj t and N c~ M -I I 'M(s)] "~xj N ca M -1 [M(t)-I.

Proof. We use induction on j. I f j = 0, the assertion trivially holds. Suppose that
s, t �9 Ki+a, i > 0, such that s "~L t and N c~ M -11-M(s)] "~L N c~ M -1 [M(t)']. Then
s, t e K i since Ki+~ c Ki. By induct ion hypothesis, s ~~, t and N ca M - t [M(s)] ~x,
N n M - t [M(t)] . Note also that s, t ~ K~ since Ki+ 1 c K~. By Lemma A.1, s ~xf t.
Suppose now that x �9 N c~ M -1 [M(s)] . Then there exists y �9 N ca M -1 [M(t)] such
that x " x , Y- By Lemma A.2, x, y e K~+~. Thus x, y e K~., and it follows f rom
Lemma A.1 that x ~x~ Y. Hence N c~ M-11-M(s)] " r~ N c~ M - t i M (t) '] . N o w we

Supremal Languages of Classes of Sublanguages 67

apply Lemma A.3 to get s ~ r , . , t and N c~ M -~ [M(s)] ~r,. , N r~ M -~ [M(t)] . This
completes the induct ion step. []

We define another equivalence relation .~ on E* according to

(iv) s ~ r t if s ~ r t and N c~ M - l [M (s)] ~ r N c~ M - : [M(t)] .

Then we have the following corollary.

Corollary A.I. For allj >_ 0, Card(E*/=x~) _< Card(KJ,.~z) + 1 < Card(Z*/~.L) +
1. In particular, Card(Y-*/-r~) _< Card(K1/~L) + 1 for allj >_ 1.

Proof. Note that the subset Z* - Kj of E* forms at most one equivalence class
under -x j . Thus the assertion follows from L e m m a A.4. []

Recall that L = K o is regular. To show that the sequence {Card (E* / - - r)} is
bounded, it therefore suffices to prove that Card (Kl /~ , .) < 03.

We consider again D F A s G = (Q, Z,f , qo, Q), G, = (Q,, Y.,fs, qo, Q,), and (~ =
(~ , Z,f~, qo, ~.,) which were defined in Section 3. Thus IGI = N, IGsl = L, and
I~1 = Sup R_(L). Also, G is M-recognizable and G, is a s t r ic t -subautomaton of G.
We recall here that such D F A s can always be effectively constructed. We also note
that K 1 c IC~I since K 1 = Sup R_(K~) ~ Sup _R(L).

Define equivalence relations ---G and =o, on E* as follows:

(v) s =a t if either s, t ~ IGI and f(s, qo) = f(t, qo), or s, t ~ IGI.
(vi) s - a . t if either s, t ~ Ia~l and f~(s, qo) = f~(t, qo), or s, t ~ Ia~l.

Then it is easy to check that s - G t implies s - N t and s =G. t implies s --L t. Also,
we have

Lemma A.5. Card(K1/-~L) < Card (L / -G,) < oo.

Proof. Let s, t e [Csl. Then s, t ~ IGsl. We first show that s -G , t implies s ~L t. Let
s =G, t. Since Gs is a subautomaton of G, s =6 t so that s "L t. Thus f(s, qo) = f(t, qo).
Note that f(s, qo) e Q6(M(s)) and f(t, qo) ~ QG(M(t)). Thus Q~(M(s)) = Q6(M(t))
since G is M-recognizable. Moreover , we have, from Lemmas 3.6 and 3.2, that
{f~(u, qo)lM(u)= M(s)} = QG(M(s)) and {f~(v, qo)lM(v)= M(t)} = QG(M(t)). Hence

{f~(u, qo)lM(u) = M(s)} = {f~(v, qo)lM(v) = M(t)}. (**)

N o w let w ~ N c~ M-I[M(s)]. Then M(w)= M(s). Since s ~ I Csl = Sup R_(L), it
follows from L e m m a A.2 (with K~+ 1 and K~ replaced by I~sl and IG~I, respectively)
that w ~ I~1- Thus fs(w, qo)!. By (**), there exists w' e Z* such that f~(w', qo) =
f~(w, qo) and M (w ') = M (t) . Thus w ' = G w and w ' ~ N c ~ M - l [M (t)] . Note
that w' ~L w by the same argument as in the beginning of the proof. Thus
N n M -1 [M(s)] ~r. N n M -1 [M(t)] .

Hence, we have shown that for s, t ~ IC~I, s---G, t implies s ~L t. Therefore
Card(ld~l/~L) < Card(Id~l/---G,). Since K~ c IC~I, it follows that C a r d (K J - ~ L) <
Card(lC~l/~L) < Card(IG~i/=~,) < Card(L/=~ ,) < 03. []

68 Hangju Cho and S. I. Marcus

Thus we have established that the sequence {Card(Z*/=r) } is bounded. Hence

Theorem A.I. The sequence {Ki} of regular languages finitely converoes, Thus
Aloorithm D cohverges after a finite number of iterations.

Appendix B. Minimally Restrictive Solution of SMP

In this appendix we discuss a minimally restrictive solution within a smaller class
to SMP. We first note the following result which can be easily verified using
the results in [CDFV] (the same result can be found in [LW], where the mask is
assumed to be a projection).

Lemma B.I. Given a languaoe K, ;~ ~ K c Lm(G), there exists a proper supervisor
S such that Lm(S/Gr = K if and only if:

(i) K is (M, K, n Lm(G))-recoonizable.
(ii) /(is (Z u, L(G))-invariant and (M, Zc, L(G))-controllable. 1

Let DD(L) be a class of sublanguages of L which satisfy conditions (i) and (ii)
above. Then DD(L) is the solution set for SMP. However, DD(L) is not closed
under union and does not have a supremal element; the same example as in [CDFV]
illustrates this fact.

Consider now the class DD'(L) of sublanguages of L introduced in Section 5.
If we identify Lm and N in DD'(L) with Lm(G) and L(G), then it is straightforward
to check that DD'(L) c DD(L) (see, e.g., Proposition 4.1 of [LW]). Since Sup DD'(L)
always exists, we regard it as a minimally restrictive solution to the restricted
SMP. Let

_F(L, Lm):= {0 c-- L[O is Lm-Closed}.

Then _F(L, Lm) is closed under arbitrary union and possesses a unique supremal
element [RW]. Note that Sup DD'(L)~F_(L, Lm), and therefore Sup DD' (L)c
Sup F_(L, Lm). It follows that

Sup DD'(L) = Sup DD'(Sup F_ (L, Lm)).

Thus we may assume that the given language L c L m is Lm-Closed. If not, we first
obtain Sup F(L, L~) and consider it as a given sublanguage of Lm. The procedure
which effectively computes the language Sup_F(L, Lm) can be given in a simple
manner: for example, let A := (Q, Z,f , qo, Qm)and As := (Qs, Y-,f s, qo, Qsm) be DFAs
such that [A[= Lm, IA~[= L c Lm and A s is a subautomaton of A. Define a DFA
As := Tr (Qs, Z,f~, qo, Osm) by:

(A) q ~ Os if and only if q ~ Qsm whenever q ~ Qm.
(B) ~.sm = Os n O,m (= Q,m).
(C) f~(a, q)! if and only if f~(a, q)! and f~(a, q) ~ 0s. In this case, fAa, q) = f~(a, q).

Then it is not hard to check that 1,4sl = Sup F_(L, Lm).

J ~:c is the set ofcontrollable events; i.e., Zr = Y - Y u. A language 0 c L(G) is said to be (M, 5z, L(G))-
controllable if s, t ~ O, a 6 Zr sa ~ O, ta ~ L(G), and M(s) = M(t) implies ta ~ O.

Supremal Languages of Classes of Sublanguages 69

Consider the class _D'(L) of sublanguages of L defined in Section 5. We prove in
the following a result similar to the one in [WR2]; our proof is, however, more
straightforward.

Lemma B.2. I f L is Lm-closed, then Sup _D'(L) is Lm-closed.

Proof. Let S := Sup_D'(L). Then it suffices to show that S nL,~ c S, since the
reverse inclusion trivially holds. Thus if we show that S n Lm ~ _D'(L), we are done.
By hypothesis, S-c~ Lm c L n L m = L. Note also that Sc~ L m -- S(clearly, Sc~ Lm c
S; also, S ~ S n Lm since S e S and S c L ~ L,~), and that S is (Eu, N)-invariant and
(M, N)-recognizable since S ~ _D'(L). Thus we have proved that S n Lme D'(L). �9

Now we prove the claim made in Section 5.

Theorem B.I. Let L be Lm-closed. Then Sup DD'(L) = Sup _D'(L).

Proof. Clearly, DD'(L) c _D'(L). Therefore Sup DD'(L) c Sup _D'(L). To prove the
reverse inclusion, we note that Sup_D'(L) is L,~-closed by the hypothesis and
Lemma B.2. Thus Sup _D'(L) ~ DD'(L). Hence Sup _D'(L) ~ Sup DD'(L). �9

References

[CDFV]

[E]
[HU]

[LW]

l a w]

[s]
[1"]

[WR1]

[WR2]

R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, Supervisory control of discrete-event
processes with partial observations, IEEE Trans. Automat. Control, 33 (1988), 249-260.
S. Eilenberg, Automata, Languages, and Machines, Academic Press, New York, 1974.
J. E. Hopcroft and J. D. UIIman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.
F. Lin and W. M. Wonham, On Observability of Discrete-Event Systems, Systems Control
Group Report No. 8701, Department of Electrical Engineering University of Toronto, 1987.
P. J. Ramadge and W. M. Wonham, Supervisory control of a class of discrete-event processes,
SIAM d. Control Optim., 25 (1987), 206-230.
R. Smedinga, Control of Discrete Events, Preprint, University of Groningen, Groningen, 1987.
J, N. Tsitsiklis, On the control of discrete-event dynamical systems, Proceedings of the 26th
IEEE Conference on Decision and Control, Los Angeles, 1987, pp. 419-422.
W. M. Wonham and P. J. Ramadge, On the supremal controllable sublanguage of a given
language, SIAM J. Control Optim., 25 (1987), 637-659.
W. M. Wonham and P. J. Ramadge, Modular supervisory control of discrete-event systems,
Math. Control Signals Systems, 1 (1988), 13-30.

