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T W O - B O D Y  P R O B L E M  O N  S P A C E S  O F  C O N S T A N T  C U R V A T U R E :  

I. D E P E N D E N C E  O F  T H E  H A M I L T O N I A N  ON T H E  S Y M M E T R Y  

G R O U P  A N D  T H E  R E D U C T I O N  O F  T H E  C L A S S I C A L  S Y S T E M  

A. V .  S h c h e p e t i l o v  I 

tVe consider the problem of two bodies with central interaction that propaNate in a simply connected space 
with a constant curvature and an arbitra,w dimension. We obtain the explicit expression for the quantum 
ttamiltonian via the radial diffbrential operator and generators of the isometrv group of a configuration 
space. We describe the reduced classical mechanical system determined on the homogeneous space of a Lie 
group in terms of  orbits of the coadjoint representation of  this group. We describe the reduced cl&ssical 
two-body problem. 

1. I n t r o d u c t i o n  

The simply connected constant-curvature spaces S n and H" possess isometry groups as wide as tile 
isometry group of the space E" and have no selected points  or directions [1]. A geodesic flow on these 
spaces is equivalent to the energy-preserving motion of a classical particle in a Coulomb field in a Euclidean 
space [2-5]. The classical and quantum problems of a single particle propagat ing in the central potential 
field in such spaces were revie, wed in [6]. (We also mention [7-10], which were not ,nentioned in [6].) 

In contrast to the Euclidean ease, the phase spaces S r' x g" and H '~ x ]HI n of two-body problelns are 
not spaces of constant curvature. Only space isometries tha t  preserve the interaction potential enter the 
symmetry group of such a problem a priori. However, this group does not suffice to ensure the integrability 
of a two-particle problem. At the same time, no "hiddmf' symmetries or other  integrability tools are known 
for nontrivial potentials. Moreover, mnnerieal experiments in [11, 12] supported the nonintegrability of the 
classical restricted two-body problem with natural potentials on the two-dimensional sphere. 

The classical mechanical two-body problem was first considered in [6], where the, method of the Hamil- 
tonian reduction of systems with symmetries [13] was used to exchlde the motion of a system as a whole. 
The description of reduced mechanical systems, their classification, and the existence conditions fbr a global 
dyimmics were obtained using explicit analytic coordinate calculations on a computer. In [14], an analo- 
gous quantum mechanical system was considered in the two-dimensionM case, i.e., on the spaces 5 .9 and ]HI 2. 
There, the quantum mechanical Hamiltonian was expressed through the isometry group generators and the 
radial ditti~,rential operator. The expression obtained is similar to the s t ructure  of the reduced Hamilton 
flmction. The idea arises to seek a general procedure for using the symmetry  group to simultaneously sim- 
plify both the classical and quantum problelns without peribnning cumbersome calculations. VV'e present 
such a proc, edure in this paper. The obtained quantmn mechanical Hamiltonian is useful for so'lving at least 
three probleins. 

First, we can derive the Hamilt<m flmction of a reduced classical mechaifical system starting fl'om 
thc obtained quantum mechani(:al Hamiltonian describing the reduced classical mechaifical system on the 
homogeneous space of a Lie groul) in terms of orbits of the coa(tjoint representation of this group (see 
Set:. 4). Second, using this expression, we can prove tha t  Hamiltonians of a two-parti(:le system with 
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a singular interact ion are self-adjoint. Third ,  using the group representa t ion theory ,  we can reduce the  
prot)lem of finding the  energy levels of the Hami l ton ian  to a sequence of sys tems  of  ord inary  differential 
equat ions  enumera ted  by the irreducible representat ions  of the isometry group.  T h e  two latter p roblems 
will be considered in a forthconfing paper.  

2 .  N o t a t i o n  

The sI)here gn is described as the space 1R n U {oo} with the metric 

g~ = (4R2 f i  dz~) / (l + f i  z~) 9-, 
i = 1  *=1 

(1) 

where  x,, i = 1 . . . .  , n, are the Cartesian coordina tes  in R" and R is the curva ture  radius .  Let  pS(., .) deno te  
the  distance between two points in S n. The  connected  component  of  the i somet ry  g r o u p  of  the space S"  
wi th  the left act ion is SO(n + 1), while the Killing vector  fields on g" ,  

0 0 
X ~  = x i - -  l < i < j < Ozj  - x j  ~ ,  _ _ n, 

j = j = 1 ( ) Z j  
jr  jT~i 

i = l , . . . , n ,  

(2) 

cor respond ' to  a basis in the algel)ra so(n + 1). 
The hyperbolic space H a is a unit ball D '~ C R n with the metric 

','z '~,', 2 n 

= - .,, , x, i < 1. (3) 
i = 1  i = 1  i = 1  

Let  ph(., .) denote  the  distance between two points  in the space H n. The  c o n n e c t e d  component  of  the  
i sometry  group wi th  the left action is then the  g roup  SO(1, n) with the Lie a lgebra  so ( i ,  n),  and the Kill ing 
vector  fields are 

0 0 
Xihj = x i - -  - x j  , l <  i < j < n, 

Oxj  0a:i - - 

1 .2 0 ~ 0 (4) 
~ h  = 2 1 - -  aq + X ~ -- Xi Xj ,':V-'--, i = 1 , . . . , n .  

j = l  / = OXj 
j5~i  j r  

3 .  R e p r e s e n t i n g  f r e e  H a m i l t o n i a n s  

W> now consider the configuration spaces of  the two-body problems Qs = S r~ x S '~ and Qh = H n x 1HI"; 
tile respectNe Hamil tonians  are 

� 9  - -  ~ 8 , h  
~ I , ~  h - -  J_ Z2Xl _ 1 A9 + U(p  s'h) =_ ~ o  + U(PS'h),  (5) 

2rod 2m2  

where  Al  and 5.2 are the Bel t rami-Laplace  opera tors  of  tile first and second par t ic le  in either the space ~;" 
or  H "  and U is a ~entral potential. 
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The general principle of quantmn mechanics s ta tes  [15] tha t  tile o p e r a t o r  /~s,h must be determined on 
the proper everywhere dense subspace of the space s dps,h) of flmctions integrated with the square 
on the space Qs,h. This subspace nmst be such tha t  the opera to r  becomes self-adjoint; the corresponding 
measure (tp~ or dph is the product of two invariants w.r.t, the action of the respective group SO(n + 1) or 
SO(l,  n) measure on the space g" or H n. 

To express the total  Hamiltonian H,~,h through the radial  difl>rential opera to r  and generators of the 
isometry group, it suffices to find such an expression for the free Hainiltonian. We recall [16, 17] that  the 
Beltrami Laplace opera tor  A acting on tile space S" or H '~ is a self-adjoint opera tor  with the domains of 
definition 

: = {r  c C2(an ,d+ , )  t A r  

i,~,2 : = {r  E ~ 2 ( ~ ' , d l ,  h) l /Xr E s 

The action of an opera tor  A must be considered in the sense of distributions. The operator A on S ~ is 
essentiallyself-adjoint on the space C ~'(S n) of smooth  functions, and tile opera to r  A on H"  is essentially 

self-adjoint on the space C ~ ( H " )  of finite smoottl  fimctions. Hence, the free Hamiltonian &r~ 'h is self- 
adjoint Oi1 the product  lVs,h := IV:}~ q~) 1~1~2)~ of two copies of spaces lI,~2,)~ resi)ectively corresponding to tile 
first and second particles. 

Let subnlanifolds Fi, ~ and F,~! ~ of tile respective spaces Q,~ and Qh correspond to a constant  value r 
of tile respective functions tan(p~/2R) and tanh(ph/2R). The  sublnanifolds F0 ~ and F ~  are diffeolnorphic 
to S n (the value r = ~ corresponds to two dianletrically opposite points on the sphere ~,z), and F(~ ~ is 
diffeonlorphic to ]HI n. For 0 < r < oc, the sublnanifold Fp s is a homogeneous Riemannian space of tile 
group SO(n, + 1) with the stationary subgroup K = SO(n  - 1). For 0 < r < 1, the submanifold F/" is a 
homogeneous Riemannian  space of the group SO(I ,  n) wi th  tile s tat ionary subgroul) K.  

Up to a zero umasure set, Q,~ = 1I{+ x (SO(r,,+ 1 ) / I ( ) ,  where IR+ = (0, oc), and Qh = I • (SO(I ,  'n) /K),  
c(1) where I (0, 1). The  ol)erators ~ , h  are tile Bel t rami Laplace operators for the metric 0,~,h = zrrqy,~,h + 

2m2g~,~{ on O~,h, where the metrics g~l,) and .9 (2)s,h have. ei ther form (1)or  (3) and are dctcrmined on diffi~rent 
copies of the spaces g"  or H n corresponding to tile first and second particles. 

3.1. T h e  H a m i l t o n l a n  on  t h e  s p h e r e  gn.  Given the point x0 ~ F,,, we can identify the layer F~ 
with tile factor space SO(n + 1)/SO(n - 1) using tile formula  x = gKxo, where .qK is the left coset of tile 
clenlent 9 in tile group SO(n + 1). Let (r, y~ . . . .  , Y2,,,-~) be local coordinates ill the neighborhood W of tile 
l)oint x0 C Q~ such tha t  (Ya, . . . ,  Y2,.-1) are the coordinates  ill any nonempty  open subset W rq F,. of tile 
space Q~. Tile metric  0~ in W then becomes 

2~--1 

9~ = g~(r) dr2 + E go(r 'Ya' '" 'Y2"- l )dyidyj"  
i , j=l  

The second te rm in this fornmla is the restric.tion of a metr ic  gf  fronl the layer Fr to the set U N F~. Using 
the standard exl)ression fbr the Beltrami Laplace opera tor  in tile local coordinates,  we obtain 

AO O ( O) 
v/.q,, det  :j j + LX,,. (6) 

To exl)ress tile opera tor  A.qr on F,. through the generators  of tile Lie group SO(n + 1), we exi)and this 
ot)erator to the group SO(n + 1) using the construction in [18]. Let F be a Lie group and F 0 be its compact 
subgrouI). The group F acts from the left oil the homogeneous space F/F0. Left-inwu'iant differential opera- 
tors on the space F /F0  can be represented by left-invariant opera tors  on tile group F that  are simultaneously 
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invar iant  w.r . t ,  t h e  r i gh t  ac t ion  of the  g r o u p  P0. This  r ep resen ta t ion  is de t e rmine d  una mbiguous ly  up to 

ope ra to r  t e rms  v a n i s h i n g  when ac t ing  on f lmct ions  tha t  a re  r ight  invariant  w.r . t ,  the  ac t ion  of  F0. 

Indeed,  f unc t i ons  on the  fac tor  space  F / F 0  are  in one- to -one  corres i )ondence wi th  fulmtions on the  

group P t ha t  a r e  i n v a r i a n t  w.r . t ,  the  r igh t  ac t ion  of the  subgroui)  F0. This  cor res i )ondence  is descr ibed  

by the fo rnmla  A: f --+ f :=  f o rr, where  ~r is the  canonica l  p ro jec t ion  F --+ F / F 0  and  .f is a funct ion on 

the factor space  F / F 0 .  Le t  D be a differentia.l  ope ra to r  on F t h a t  is le f t - invar iant  w.r . t ,  the  groui) F and 

s imul taneous ly  r i g h t  i nva r i an t  w.r . t .  F0, a n d  let  f 1)e a s m o o t h  function on the  fac tor  space  F / F 0 .  If D,~ is 

a differential  o p e r a t o r  t h a t  acts  on the  fac to r  sI)ace F / F 0  and  is invariant  w.r . t ,  the  left ac t ion  of F, then  

the  fornmla D ~ f  = D] yie lds  the  c o r r e s p o n d e n c e  D --+ D~. 

Let e l , . . . ,  eN be  a basis  of  the  Lie a l g e b r a  of the  g roup  F, N : d i m F ,  and  let  L,  r and  R~ denote  
the  respect ive  left  a n d  r ight  shifts  by the  e l emen t  ~/. The  a lge b ra  of lef t - invar iant  d i f ferent ia l  o p e r a t o r s  on 

z(,,/) = dL . r ( e i )  ' the  group F over  t h e  field IR is g e n e r a t e d  by  lef t - invar iant  vec to r  fields ell . . . .  , C~g, where, e. i 

7 f f F ,  i = l  . . . .  , N  [18]. 

Now let P = S O ( n  + 1), F0 = I<, e~'(7) = dR,r(e~) ,  i = 1 . . . . .  N .  N = ( u +  1 ) ( n + 2 ) / 2 ,  and  

x 0  = ( r l ,  0 . . . .  , 0 ,  r >  0 . . . .  , 0 )  C g'~ x g " ,  w h e r e  

n--1 n - -1  

) r l  = t a n  IY/1 -1-'/D,2 a r c t a n  1" , /' 2 ---- -- t a n  \ m l  -}- ~'II2 

The  set of Ki l l ing  v e c t o r s  X~sj, Y~, i, j = 1 , . . . ,  n, on the  space  S n • S n, which c o r r e spond  to (2), coincides 

(tip to p e r m u t a t i o n s )  w i t h  the  set 

{ }N d exp(rei ) 'TX0 , x0 = x0(r) ,  0 < r < oc, (7) 

under  a p r o p e r  choice  of  t he  basis  e~ . . . .  , e~v. Let  A f  be a second-order  different ia l  o p e r a t o r  on the  group 

F such t ha t  (A  f ) ,  = A g , .  This  o p e r a t o r  is t hen  left invar ian t  and  can be expressed  in the  form 2 

N N 
V ~ ciel  (~,~ 

i , j = l  i = l  

where c ij ,  c i a re  c o n s t a n t  on  the  layer  F t .  Let  e be  the  unit  e l ement  of the  g roup  P. Obviously ,  e~'(e) = e~(e), 

i = 1 , . . . , N ,  a n d  

N N 

zx lo = Z (8) 
i , j = l  i=1  

Therefore,  

N N 
Ag., Ixo = ~ c i J c ~ ( x ~  ( * ~  + ~ ,i~r , A(2) + ~(1)1 c e i (.to) =:  g./ tx,, .q.r ,xo" 

i . j = l  i = l  

We can f ind t i le  coefficients e '~ ms follows. VV> can t r e a t  an ordcr(,d set of vec tors  

{ Y? (xo),. . . ,  Y;;? (xo), xf2 (xo),..., x;,, (xo) } 

2Here, we identify left-invariant vector fiekls oil P all(! tile elements of Tel'. 
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as a basis in the  space  T• I f  { Y ] , . . . ,  Y" ,  X 2 , . . . ,  X n} is the  dual  basis, then  

gflxo = (t~'l @ V1 + y l  @ ((t.iyi Jr-/],i x ' i )  Jr- E ( o z i j r i  @ YJ 4-/]i jX i @ X j 4- ^' }/-i ~ j  ~'_? X j )  , 
i=2 u j=2 

whe re  

= 0Ix,, ( F ( •  Yl~(xo)) = 2R:(,,~, + ,,,~2), 

~ ,  = <x, , (Y~(~o) ,  ~ ( x o ) )  = 0, 

[4i = .qlx,, ( Yls(xo) '  X]i (Xo))  = 0, 

2 
ct,,:j = 01x,~ (Y~S(xo), yjS(xo)) = 2R2 E ink(1 - r'~.)2~ 

k=l ~ ~72-~_ 9 0(j, 

2 i n k 4  a , i .  
[4{j = O l •  = 8R2Ek:, (1 + "k)-7~ ') 

2 m k r k ( 1 - - r  2) 
%~, = 0 L ~ , , ( F ( x o ) , X ; , ( x o ) )  = 4 >  ~ ~ - - - ~ :  ~ , ,  

~:=l ( 1 + % ) -  

W'e therefore o b t a i n  

i , j  = 2 . . . . .  n. 

z x P t  = •  2 ~ ~ ~ '-' . . . . . .  ~, ,x , ,  0 . .  + Z I A ~ ( X i { ( x o ) )  + c . ~ ( ~ ( x o ) )  + B ~ { x , , ( x o ) , ~ ( x o ) } ] ,  
i=2 

where  {-,-} deno te s  the  a n t i e o m m u t a t o r  and 

B~ = 

C,~= 

m l ( 1  -- ,'1)2(1 + ,.~)2 + m2(1  + r~)2(1  -- 'r~)) 2 
8R2ntl 'm2(r l  -- r2)2(1 + 1"1 r2) 2 

'D21Pl(1 7"2)(1 4- T2) 2 4- 1 l t 2 ' 1 " 2 ( 1  - -  r~)(1 + 'r~) 2 
4/~,2mlm2(rl -r ,2) '~(1 + rl 'r2) 2 

22 .,,~_r?,(1 2', m l r r ( l + r 2 )  + + ' q )  

2 / ~ 2 1 1 ~ , l T Y t 2 ( F 1  - -  r2)2(1 + rl r2) 2" 

T h e  flmctions As,  Bs, and Cs can  be expressed through the  coord ina te  r, 

A~(,r) = 1 {(1__+12) 2 1 - r  4 l + r  2 

4m] mar 
(?rt 1 7D,2) SiIl 4 )  ' 

1, ( m 2  2_ml (1 + r 2 ) c o s ( + l - ' r  I s i n ( )  
B~(r) ~ \ m l - W "  2 m r  ------5--' ' 

1 ( ( 1 + ' , ' 2 ) 2  1 - r  1 
c s ( , )  = ~ \ ~7, , ,7 s,,,,,,,.~ 

l + r  2 
- -  C O S  

4'ml 1II,2F 
- - ( m l  m2)sinC) , 

- -  H t  I T D , ' )  = 2 m ] m2 a rc tan  r, m -- - 
m t +  'm2 ml  -t7 m2 

(9) 

(10) 
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The operators Ag., Ixo and Alga. ) xo (10) are invariant w.r.t, reflections of the sphere S", Tk: xk ---+ - x k ,  

xj ~ zj ,  j r k; the operator  A (1) is then also invariant w.r.t, these transformations.  However. this is g t' xll 

possil)le only for vanishing first-order operators with constant coefficients, and we have c i = 0, i = 1 , . . . ,  N. 
Letting yl~,t,, Xi.S,l, and Yi s'z &mote the left-invariant vector fields on the group S O (n +1 )  that correspond 

to the resi)ective vectors I~S (x0), Xfi(x0), and y/8 (x0), i = 2 , . . . ,  n, we obtain 

Af = (yl~'l) 2 + A~(X:'I) 2 + C~(? i ' )- + 5 ~'l} . 
i=2 

(Ii) 

We. thus find tile operator Af  up to terms annihilated by tile flmctions that  are right invariant w.r.t, the 
subgroup F0. Direct cak:ulations show that this operator is right invariant w.r.t, the  subgroup K.  

We now find the first term in expression (6) for the opera tor  AO. At the point  x0, we have 

and therefore 

0 rn,2 l + r ~  0 m l  l + r ~  0 

Or ml  + m,2 1 + r 2 0 r l  m l  + 'm,2 1 + r 2 07"2 

0 , 0 ) 8R2mlrn,2 
.(]rr = ~l ~ ~ = (m,1 -F m:.))(1 4- r2) 2" 

By virtue of formulas (9), we obtain 

(12) 

A ~ =  ( 1 + r 2 )  n 0 ( r n - '  O'~ 
8N'tR21 'n-1 OF (1 + 7"2) ",-2 -07r J + Ag f '  

where the first t(~rm is the radial part of the Hamiltonian of a single particle with tile mass m. 
The explicit expression for the measure d#s, which corresponds to the metric ~ on the space Q, at tile 

point x0, is (uI) to a constant multiplier) 

r n -  1 +six, - (1 + r2) - - - - - - - ~  dr A y1  A . . . A y , t  A X 2 A . . . A X n. 

The measure d , ,  is invariant w.r.t, tile left action of the group SO(n + 1) and can therefore be represented 
in the form d#, = dr ,  c~ dl, y, where the measure on the set R+ = (0, oc) du~ = r ' ~ - l d r / ( 1  + r2) n coincides 
with tile one-particle measure and dp f  is the measure oil the space SO(n + 1 ) / K  t ha t  is left invariant w.r.t. 
tile action of the group SO(n + 1). 

Each Lie group admits unique (up to a constant multiplier) left-invariant and right-invariant measures 
(the Haar measures [19]). For the groups SO(n + 1) and SO( l ,  n) under consideration, such measures are 
two-side invariant. There hence exists a unique two-side-invariant measure d~?~ on the group SO(n + 1) such 
that the integral of an integrable function f on the space SO(n + 1 ) / K  w.r.t, the  measure d#y equals the 
integral of the fimction f on the group SO(n + 1) w.r.t, the measure dqs. 

Given a subgroup F0 of a Lie grouI) F, we let g2(F, F0,dq) denote the space of square-integral)le 
filnctions on the group P (w.r.t. the measure d'q on F) that  are invariant w.r.t ,  tile right action of the 
subgroup F0. 

T h e o r e m  1. The  ti'ee quan t um  Hamil tonian of  the two-part icle  ,s:v:stem on the  sphere S'" is a, self- 

adjoint differential operator  (on the manifi)ld 0s  = IR+ x SO(n q- 1)) in the space ?-is, 

~ (1+r2)"  0 ( r ' - I  ) 
H i  = 8,7~R2r '~-----1 Or (1 ~Tr-7ffy ' ' -2  ~" - A f ,  (la) 
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with tile donlain of  definition 

D~ := D~ 1) ,~ D~ 2) C 7g,s := s d~'s) ~ s + 1), I(, &Is), 

where 

D(1) : :  {0  E /:-~(IR+, &is) I A~1)0 E L;2(]R+,&J~)}, 

D (2) := {0 E s + 1),K,&I,) I Aid) E s + 1),K,d,]~)}, 

(1+r-9),~ 0 ( , 1  .... 0 )  
A ( 1 )  1 =  I " n - 1  Or (1 § r2) ''-2 ~" ' 

tile subgroup K is isonlorphic to tile group SO(n - 1), and drls is an unambiguousl.v deternlined (up to a 
constant multiplier) two-side-inyariant measure on the group SO(n, + 1). There hence exists an isometz;y of  
the initial space of filnctions ~2 (Qs, dps) oil the space ~ s  that generates the isomorphisnl of Hanliltonians. 
Tile space Ds is evez;t'where dense in ?'fs. 

P r o o f ,  Expression (6) represents the Hanfiltonian H~ in the coordinate system in which Os is pre- 
sented as tile direct product  IR+ • S O ( n +  1 ) / S O ( n - 1 )  up to a zero-measure set F~ OF s ,  which is inessential 
when studying functions that are integrable over this measure. Theretbre, 

s  = 9 s 1 ) / S O ( n -  1), . z; (I~+, d,,s) ,~ + d,#s) 

The isonletry A: f + ] of the spaces L:2(S()(n + 1 ) /SO(n  - 1), dltf) and Z:2(S()(n + 1), SO(n - 1), d,j,~) 
generates the isometry id,~A of the spaces L;-O(R+, dz~,) r Z:2(SO(n + 1)/SO(n - 1),dpf)  aud 7-/~. The 
ealcula.tions inlply that  tile isometry id ~)A transforms opera tor  (6) into operator (13); tile space Ws then 
transfornls into the space D,. 

R e m a r k .  In the case n = 2, this result call be obta ined by treating the basis of left-invariant vector 
fiehls on tile group SO(n + 1) = SO(3) as the movable repel" on the layer F,. [14]. For n > 2, such a 
consideration is impossible because the action of the group SO(n + 1) on the layer F~. is not free and the 
projections of left-invariant vector fields on the group SO(n  + 1) to the space SO(n + 1)/SO(n - 1) are not 
uniquely determined. Lifting tile Hamil tonian to the symmet ry  group, we express the Hamiltonian via the 
group generators. 

3 . 2 .  T h e  H a m i l t o n i a n  on  t h e  h y p e r b o l i c  s p a c e  H n. The formal change xj --+ ix),  j = 1 , . . . ,  n, 
r --+ it ,  R -~ iR  (i is tile inlaginary unit)  transforms objects  on tile sphere S'" into objects on the hyperbolic 
space H n (see also [6]), and we thus obta in  the expression for tile two-particle free Hamiltonian on the space 
HI ?z , 

H h  : __ S I / ' , / ~ , 2 1  . . . . .  1 0," (1 --7--~) ",-2 &" - ,(Y/*")" - 

~-~ f A ,x,,.z,., y/~,, o 1 B ,Xh,Z y h,Z,] (14) 

where the vector fe lds  yl~,z and y~,Z ,,~. correspond to fields (4) as tile fields XS'/k and y~,l correspond to 
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fields (2), 

1 ( ( 1  -- r2) 9- 1 - r  4 1 - -  7 .2 
An(,') = ~ \ Star2 + ~ c o s h ~  4mlm,2r - -  (mq - m2) sinh r  , 

1 -- 1.4 . ) 
1 o ( ' m ' 2 Z m l  (1 -- r 2) cosh~  § ~ s i n h (  

Bh(r) = ~ \ m lm2r  2mr- ' 

1 ( (1  - r2) 2 1 - r  4 1 - r  2 ) 
Ch(r) = ~ k 8mr2 8'mr 2 cosh(  + 411ZllI12,I__('nZ1 -- m2) s inh(  , 

= 2 rnq - m~. a r c t a n h  r. 
l~'ll -}- 11"12 

T h e o r e m  2. The fi'ee quantum t~vo-particle Hamiltonian on the hyperbolic space ]HI '~ is a self-adjoint 
differential operator (14) (on the manifoM Qh = I x SO(1, n) ) in the space ~h  with the domain of  definition 

where 

(SO(l, ,0, K, Dh : :  D}, 1) @ D(h "9) C ~h : :  g (IR+, (hJh)'~ 

D O) := {r C g2(R+,duh)[  A(hl)4)C L;2(R+, dub)}, 

D ;  2) := {r E g2(SO(1, n) ,K,  dr]h) I Ahr  ~ s  dr]h) }, 

,.--' 0)  ,.n-ld,. 
ASz~) := r "-;--f 0, .-2. (1 ~ r ' - ~  n'-2 s ' dleh -- (1 --r2) n '  

Ah := __(y[ , , l )2_  Ah(X~.'t) ~" C Q~ht,o 1B ,xh,Z Eh,t,] 
k=2 

and drlh is a unique (up to a constant multiplier) two-side-invm'iant measure on the group SO(l ,  n). 

P r o o f .  The proof  is analogous to the proof of Theorem 1. 

4 .  R e d u c i n g  t h e  H a m i l t o n i a n  d y n a m i c  s y s t e m  o n  a c o t a n g e n t  f i b e r  

b u n d l e  o f  a h o m o g e n e o u s  s p a c e  

Let F be a Lie group with tile algebra g and F0 be a subgr9u p of the group F with the algebra g0 C g 
tha t  acts on F from the right. We let M = T'F1 denote the cotangent fiber bundle of the homogeneous 
space F1 = F/F0 endowed with the standard symplectic structure. The  standard left action of tile group F 
on M is Poissonian [13]. We let 55: M --~ g* denote the corresponding moment map and H be a F-invariant 
flmction on M. W'e now apply the Marsdain--Weinstein reduction method to the Hamiltonian dynamic  

s y s t e m  with the function H on the manifold M. It is well known [13] that for F0 = {e}, the reduced 
phase space is sylnplectomorphic to an orbit of the group F in the cotangent fiber bundle endowed with 
the Kirillov for,n. The  construction below generalizes this statement. 

Let 0;~,, be the orbi t  of the cotangent action of tim group F on 9* that  contains the point ~0 E g*, and 

A * ' ) '  ' * ' O~o be le t  o Z :-- O ol l ,, ; 0}. Obvious ly ,  (tFo (7)f:~,~ = (" ~o" Let 0Zo = Oa,/Adro a.lld 7r: O~o --+ 

the canonical projection. Let w be the restriction of the KMllov form on O5~,. Therelbre, tor the elements 
/ X,  Y E Tz~O/~,,, fl E O'/~,,, of the tbrm 

= Adexp(tX, ) YA, 
d 

Y ,@~ Ad~xp(tY, )/3, X' ,  Y' E 9, 
t--0.-- 
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we have w(X, Y) = fl([X', Y']). Because Ad~xp(tX, )/31~,, = o ,  we have 

d t=0 /3([X', Yd]) = ~ Ad2• = 0 

for any element Yd E 90- The 2-form ~ is therefore correctly defined on TOao, and we have c5(2(, Y) = 
co(drr-lx, drc-lY) for 32 E T~/~()~o and Y C T~fi0~o. 

T h e o r e m  3. The reduced phase space M~o that corresponds to the value/3o of  the moment map is 

symplectomorphically equivalent to the symplectic space (Oao, ~). 

P r o o f .  We treat a point x C 2~I;~ o : =  (I)-1( /30)  C M as a n  orbit O~, of a point  x' = ( % p )  c T ' p ,  "r ~ r,  
p ~ 2r~F, w.r.t, the right action of the subgroup F0 on T*F. To avoid cumbersome notation, we preserve 
the symbols L~  and R~ for the respective left, (%p) --+ (9~% L;f,p),  a n d  right, (%p) --+ (~'Yl, R ; f , p ) ,  

actions of the element 9~ ~ F on T*F. Following.the definition of the moment  map, if 

X ~ t=0 
= Lexp(tX,)~/, X '  E g, X E T~/F, 

then p(X) =/30(X') ,  i.e., p = R~_,/30. If X '  C Ad~ g0, then X E drrl(rx,Ox,), where ~1: T * F  ---+ r is the 

standard projection, and p(X) = 0. Hence, Ad~/30I~,, = 0. We. set O = {x'  = (7,t)) c r * r  I Adw/301~,, - 

0,1) = R* /3o }. Let r :  O --+ 9* = T*F be the mapping ~-(~',p) = L;p. The diagram ,y 1 

L /  1 
T*F T*F 

1~ 1~ 
A(I.~ 

9* .q* 

is commutative [13], and the mapping 7- sends an orbit of the stabilizing subgroup F~c , on T*F to a single 
point. By the definition of the set O, we have r(O) = O~o, and tile map r sends the element (% p) to 
A(I~/3o, and tile element R~,, (% p) is therefore sent to A(t~ ~ = Ad~. o Ad.y/3o. Orbits of the right action 
of tile group F0 on O are therefore transibrmed into orbits of the coadjoint act ion of the grou t) F0 on O~ o. 
The mapping r therefore induces the diffeomorphism 

--+ )r 

The. remaining fact that the symplectic form ~ on 2II~(, is transformed by the mapping (/) into the form -co 

follows from its validity for the ease F0 = {e}, the possibility to represent t angent  vectors on the space 2lift,, 
via. tangent vectors on O, and the eomnmtat ivi ty  of the diagram 

for any ")0 C F0. 

0 ) 0 

Because tile fornl ~ is symplectic, we obtain tile following corollary. 

C o r o l l a r y .  The form ~ is s~mplectic (i.e., nondegenerate and closed) on Oflo. 
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5. R e d u c i n g  t h e  c las s i ca l  t w o - b o d y  d y n a m i c  s y s t e m  

I t  was noted in [6] t ha t  a two-body problem in the spaces H '~ and S", n >_ 3, already becomes generous  
for n = 3 because the  mot ion  of two elements fl'om the st)ace T*H n or T*~ n is always restr icted to  a 
subspace  T*H 3 C T ' H "  or T*$ 3 C T*g n. Two material points  with central  interaction are therefore a lways  
bound  to a subspace  H a or S 3, and we consider the case n = 3 in wha t  follows. 

5 .1 .  T w o - p a r t i c l e  p r o b l e m  o n  t h e  s p h e r e  ga. We endow the space M = T*Q~ with the s t a n d a r d  
symplec t ic  s t ructure .  Following Sec. 3.1, we can represent the manifold M in the form 

_M = T ' R +  x T* (SO(4) /SO(2) )  (15) 

up to a zero-measure  set corresponding to the w~lues r = 0, oc. The  symmet ry  group SO(4) acts only  on  
the  second multiplier  in p roduc t  (15), and the construct ion in Sec. 4 is easily generalized to this case. Af te r  
the  reduction,  we ob ta in  the space 

_M~,, = T ' R +  x O~o, 

ins tead of (15), where  Q;3o is constructed for the spaces F = SO(4) and F0 = SO(2) as in Sec. 4. 

We, in t roduce ac tua l  coordinates on the space 5if~ o and express the Hamil ton fimction th rough  these 
coord ina tes  using forinula (13). In the case n = 3.. Killing vector  fields (2) are Xf2, X s31, X23,s y{,  Y'2, and  
Y:{. For simplicity, we use the same nota t ion  for the basis of the  algebra so(4) (omit t ing the superscr ipt  s) 
in accordance  wi th  (7). Let  X 12, X 31, X 2a, y 1  y2 ,  and y 3  be the dual  basis. We also introduce ano the r  

basis of  the a lgebra  so(4), 

L, = ~( .  ~3 + Yi'), 

1 
G1 = '  ~ (X23  - y/s) ,  

In  this basis, we have 

L~ = ~ ( X ~ l  @ Y28), 

1 C2 = ~(xa~ - ~ ) ,  

1 8 

1 

3 3 

[Li,Lj] = Ecij~,L,,, [Gi,Gj] = E c i j k G k ,  [Li,Gj] = O, i , j  = 1,2 ,3 ,  (16) 
k=l  k=l 

where s is the  to ta l ly  ant isymmetr ic  tensor and c123 = 1. This basis corresponds to the decompos i t ion  
so(4) = so(3) (~ so(3). Let  

L 1 = X 23 ~_ ]/'1, 

G 1 = X23 _ y i ,  

be the  duM basis. We let 

L 2 = X31 + y2 ,  

G 2 = Xal _ y 2 ,  

L 3 = X 1 2 - } - y 3  

G 3 = X12 _ y 3  

3 
p = p l X 2 3  § p2X31 + p3X12 + p~y1 + p5y2 + p6y3 = E( ,u iLi  + viGi) (17) 

i=1 

S * denote  all a rb i t r a ry  e lement  of tile space :o  (4). Tile correspondenc, e between tile classical and q u a n t u m  
Hamil tonians  and formulas  (11) and (13) iinply the classical Hami l ton  function 

( 1 + r 2 ) 2 ' 2  ~ 1B 
H, -- ~m-~- 5 p~ + p] + A,(p~ + p~) + C,(p~ + p~) + ~ ~(P3Po - P 2 P 6 )  + U(r) ,  
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where  PT is the  n lo lnentum con juga te  to  the  coord ina t e  'r. S u b s t i t u t i n g  Pi = u i  + v i  an(t P3+i = u i  - -  v,i, 

i = 1, 2, 3, we o b t a i n  

(1 + , ' 2 )2  2 1 As ( ( ,~  + ~,2) ~ (~,.3 va)2) + H ~ -  ~ p~+-(u~(~ - , ~ ) ~ +  , _ + + 

+ c ~  ((<~ - ~.,)~ + 0 ,3  - ,.,a) ~) + &(',,_~',,3 - v2, ,3)  + u( ,~) .  

~Ve now c o n s t r u c t  the  canonicMly coRiugate  coord ina tes  on the  space  ()~o- B e c a u s e  of  the  spec ia l  choice 

of  the  po in t  x0 on the layer F~ in See. 3.1, i ts  s tab i l izer  SO(2) is g e n e r a t e d  by  t h e  e lement  X23. I t  is well 

known tha t  o rb i t s  of the coad jo in t  ac t ion  of  the  group SO(3) a re  spheres  a n d  the i r  Kir i l lov fo rm is the  

sphere  area.  T h e  orbi t  Oe, , can therefore  be represented  as the  set of  e l enmnts  of  form (17) such t h a t  the  

coord ina tes  ui  and  vi, i = 1, 2, 3, sat is(y the  re la t ions  

u 2 • u~ + u 2 = p2.. v~ + *'~,. + v2 = ,,2, ( lS)  

where  l* and  t / a r e  nommgat ive  real  immbers .  T h e  subset  O '  ~,, c O~o c o m p r i s e s  t h o s e  e lements  of  O~o tha t  

a re  ann ih i la ted  by  the e lements  X23, and  we mus t  therefore  add  the  c o n d i t i o n  Pt  = Ul + Vl = 0 to  Eqs .  ( t8)  

in order  to  desc r ibe  the  set O~, .  

Vv'e first consider  the  case 1', u > 0. Let  u, '(;, and ~ be the  c o o r d i n a t e s  on  t h e  space O'eo d e t e r m i n e d  

by  the equa t ions  

//'1 = 'U1 = 'U., U2 = V/1.2 -- 'tt 2 sin f.,, u3 = x/p, 2 -- u 2 cos '6', 

~,~ ~/,,'-' - ,,,~ si~, ~,  ,,3 = ~ ,~,,~ cos x - , n i n { ~ ,  ' 4  < ~' < r a in{ # ,  ' 4 .  

Res t r i c t ing  the  Kiri l lov fi)rm fi'om O8o to O '  , e,, we ob ta in  

1 
w ~ (~q dr,,,_ A dv,:~ + ~L2 d'~f.;~ A d',,1 + ua d u l  A du2)  + 

+ 1-~.2 ('Vl dr2 A dr3 + "v2 d'v3 A 'Vl 4- va d'Vl A d'v2) = d'~t A d('~" - X) .  (19) 

T h e  coadjo in t  ac, t ion of the, o n e - p a r a m e t e r  g roup  corres l )onding to  the  e l e m e n t  X23 on O r is u -+ u, /3o 
'(; -~ '6' + ~, X ~ X + ~,c 0 _< ~ < 27r; the  coo rd ina t e s  4) = (,, - .y and  pr  = u on  ()~,, a r e  therefore  canon icMly  

conjugate .  T h e  space ()e,, is ac tua l ly  d i f feomorphic  to the  two-d imens ionM sphere .  T h e  c o o r d i n a t e  sy s t em 

p+, 0 is s ingu la r  a t  the  points  pO = • ra in{#,  u}. I t  differs fi 'om the  c o o r d i n a t e  s y s t e m  on the r e d u c e d  space 

used in [6]. T h e  reduced Hamilt, on funct ion is 

o 9' 2 ~1/ ,2  __ p 2  S i I l ~  -~- U ( ' F ) .  

In the  case # = 0 and u > 0 (or u = 0 and I t > 0), we ob t a in  the  c ond i t i ons  'u, = u~ = u3 = 'vl = 0 for 

0~, ' ,  therefore,  O ~,, = S 1 and ()3,, = pt .  T h e  reduced  phase space is T ' R +  w i t h  t h e  Hami l ton  func t ion  

�9 8"m,R'-' 1)7 + ~ . 

In tim, case  i t = u = O, we ob t a in  

5~, ,  = o '9 .  = p t ,  M = T ' R + ,  
~ ( l + r 2 )  2 2 
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5 . 2 .  T w o - p a r t i c l e  p r o b l e m  in  t h e  s p a c e  H a . Because tile Lie algebra so( l ,  3) is simple, we cannot  
represent orbi ts  of tile adjoint act ion of  tile g roup  SO(l ,  3) in the  direct p roduc t  form similarly to See. 5.1. 
However, dynanfic systems oil tile sphere g3 and  in the space ]HI 3 are  related by the  formal subst i tut ion (see 
Sec. 3.2 and [6]), and we can use the following construct ion.  

Let L1 = X_~a, L2 = Xaa, La = Xm,  Y1, Y2, and Ya be the  basis in the algebra so( l ,  3) tha t  corresponds 
to Killing vector fields (4) and L I, L 2, L a, y 1 ,  y~,  and y 3  comprise  the dual  basis. Let p = pi L1 + 
p2L 2 + paL a + p4Y 1 + psY  2 + p6Y a be an  a rb i t r a ry  element f rom so* (1, 3). Direct  calculation shows that  
the expressions 

I1 = p2 @ p2 jr_ p2 _ p24 _ 1)2 _ p~, I2 = piP4 + P2P5 @ P3P6 

are invariant  w.r.t, the adjoint  act ion of  t he  g roup  SO(1, 3). Similar ly to Sec. 5.1, we express the Hamil ton 
fimction th rough  the coordinates  on so*(1, 3), 

o o 1/3 (1 - r2)2p;  + l p ]  + Ah (p2 + p2) _ Ch(p;o + p2) + -2 h(P3P5 -- P2P6) + U(r). (20) 

Let O~0 be the orbit of the coadjoint  ac t ion  of  tile group S O ( l ,  3) determined by the conditions 11 = # 
and /2 = t,, l*,U E R. TILe stabil izing s u b g r o u p  of the poin t  x0 E Fr is genera ted  by the elenmnt L1. 
This subgroup  acts by s imul taneous r o t a t i o n  in the planes (P2,Pa) and (Ps,P6). The  submanifold O '  ~% is 
de termined by the equations I1 = p, I2 = u, and  Pl = 0. T h e  coordina tes  P4, "(~, and X on this subnlanitbld 
are 

P2 = ucosh'Ocosx + v sinh*/~ sin X, P3 = v s inh#)cos  X - u cosh'(;  sin X, 
(21) 

P5 = v cosh '~ cos X - u sinh ~, sin ;t, P6 = - u  sinh ~!, cos .X - v cosh "(, sin ~, 

where P4, '~ ~ R, X C R (rood 2r0, and u and  v are deternIined by tile equat ions 

,tt2 ') - v z = I* + p ~ ,  "up = u .  ( 2 2 )  

Two solutions of Eqs. (22) (lifter in sign, and  it suffices to choose e i ther  of them. T h e  action of the s ta t ionary  

subgroup SO(2) is the ro ta t ion X -~ )C+{. T h e  reduced phase space  ()~0 is ob ta ined  fi'om O '  if we "forget" 

the coord ina te  X. The space ()~0 is d i f feomophic  to R 2. 
We use the degenerate Poisson brackets  on so*(1, 3) t ha t  correspond to the  Kirillov form to construct  

the canonical ly  conjugate coordina tes  on the  space O~o. These  brackets  (:an be cons t ruc ted  for an arbi t rary  
Lie a lgebra  g as follows [20]. 

Let  {ei}'t'=l be a basis of  an a lgebra  g, [ei, er = @jek, and  {z,;}:"_ l be the  coordinates on q* tha t  
correspond to the dual basis i ,, {e }z=l. Let  f l  and  f2 be smoo th  funct ions on g*- Their  Poisson brackets are 
then 

k Ofl Of  2 
{f l ,  f2} = -- CijXk OX---~i OXj" 

,~,j,k=l 

The  restr ict ion of these brackets to  the  coadjo in t  action orb i t  is nondegenerate .  In the problem under 
considerat ion,  direct calculations wi th  the  formulas  

~ ( ( P 2 - - p 6 ) 2 + ( P 5 + P 3 ) 2  I 
'~!, = log (P2 + P6) 2 + (P5 - P3) 2 ' 

~i = ~ arc tan  + - -  - a rc tan  
\ t)2 - t)6 / / 

3 3 

[L.i, Lj] = Z ~ijkL~,, [ ~ '  YJ] = - Z eij~:Lk, 
li:= l k = l  

= o !4, 

k=l 
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yield the relations 

{p4, = 1, x }  = 0, {'r x }  = 0. 

The symplectic s t ruc tu re  on ()~0 is then  dp4 A d'(~. By virtue of (21), we obtain 

i( ) p~+p2 = 2 / t + p 4 +  t , + p ] ) 2  +4~2 cosh2~(; , 

1 
~ ( #  + p~)2 + 4u2 cosh 2g,), pg + = ( -  t, - + 

P3P5 - P2P6 = ~. (It + p])2 + 4u2 sinh 2'0. 

Introducing the new canonically conjugate  coordinates p~ = p4/2 and ~b = 2.(~, we obtain  the final expression 
for the reduced Hami l ton  fimction f rom (20): 

Hh ( 1 - - r 2 ) 2  2 4pg 2 2 + p ,  + cosh0 + 
;~nR--fi p~ + - - a  + Ah + 2p, + -~  

+ C h  7 + 2 p ~ - 2  - ~ + p  +--~ coshch + B h  + p c  + - ~ -  s i n h 4 ) + U ( r ) .  

6. C o n c l u s i o n  

~Ve have cons t ruc ted  the rel)resentation of the quantuln mechanical Hamil ton |an of a system of two 
particles in the spaces S r' and IHI n t ha t  explicitly takes the symmetries of the prol)lem into account. We will 
use this expression elsewhere to es tabl ish that  the corresponding spectral problem is quasi-exactly solvable 
for some potentials .  The  reduced Hami l ton  fimction explicitly expressed in canonical coordiimtes in [6] 
using analytic s imulat ions was used there  to i)rove the absence of particle collisions. In the present paper, 
we have derived the  explicit forln of the  reduced Hamil ton flmction and clarified its relation to the quantum 
mechanical Hami l ton ian .  
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