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TWO-BODY PROBLEM ON SPACES OF CONSTANT CURVATURE:
I. DEPENDENCE OF THE HAMILTONIAN ON THE SYMMETRY
GROUP AND THE REDUCTION OF THE CLASSICAL SYSTEM

A. V. Shchepetilov!

We consider the problem of two bodies with central interaction that propagate in a simply connected space
with a constant curvature and an arbitrary dimension. We obtain the explicit expression for the quantum
Hamiltonian via the radial differential operator and generators of the isometry group of a configuration
space. We describe the reduced classical mechanical system determined on the homogeneous space of a Lie
group in terms of orbits of the coadjoint representation of this group. We describe the reduced classical
two-body problem.

1. Introduction

The simply connected constant-curvature spaces S™ and H" possess isometry groups as wide as the
isometry group of the space E™ and have no selected points or directions [1]. A geodesic low on these
spaces is equivalent to the energy-preserving motion of a classical particle in a Coulomb field in a Euclidean
space [2-5]. The classical and quantuin problems of a single particle propagating in the central potential
field in such spaces were reviewed in [6]. (We also mention [7-10], which were not mentioned in [6].)

In contrast to the Euclidean case, the phase spaces S™ x §" and H" x H" of two-body problens are
not spaces of constant curvature. Only space isometries that preserve the interaction potential enter the
svinmetry group of such a problem a priori. However, this group does not suffice to ensure the integrability
of a two-particle problem. At the same time, no “hidden” symmetries or other integrability tools are known
for nontrivial potentials. Morcover, numerical experiments in [11, 12] supported the nonintegrability of the
classical restricted two-body problemn with natural potentials on the two-dimensional sphere.

The classical mechanical two-body problem was first considered in [6], where the method of the Hamil-
tonian reduction of systems with symmetries [13] was used to exclude the motion of a system as a whole.
The description of reduced mechanical systems, their classification, and the existence conditions for a global
dvnamics were obtained using explicit analytic coordinate calculations on a computer. In [14], an analo-
gous quantum mechanical system was considered in the two-dimensional case, i.e., on the spaces S and H?2.
There, the quantum mechanical Hamiltonian was expressed through the isometry group generators and the
radial differential operator. The expression obtained is similar to the structure of the reduced Hamilton
function. The idea arises to seek a general procedure for using the symmetry group to simultaneously sim-
plify both the classical and quantum problems without performing cumbersome calculations. We present
stuch a procedure in this paper. The obtained quantum mechanical Hamiltonian s useful for solving at least
three problems.

First, we can derive the Hamilton function of a reduced classical mechanical system starting from
the obtained quantum mechanical Hamiltonian describing the reduced classical mechanical system on the
homogeneous space of a Lie group in terms of orbits of the coadjoint representation of this group (see
Sec. 4). Second, using this expression, we can prove that Hamiltonians of a two-particle system with
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a singular interaction are self-adjoint. Third, using the group representation theory, we can reduce the
problem of finding the energy levels of the Hamiltonian to a sequence of systems of ordinary differential
equations enumerated by the irreducible representations of the isometry group. The two latter problems
will be considered in a forthcoming paper.

2. Notation

The sphere S™ is described as the space R™ U {oo} with the metric

= (432§dz3> / (1+§r2) (1)

where z;, 7= 1,...,n, are the Cartesian coordinates in R™ and R is the curvature radius. Let p°(-,-) denote
the distance between two points in S™. The connected component of the isometry group of the space S
with the left action is SO(n + 1), while the Killing vector fields on S,

0 0 .
X? J /EJ()_T»L 1<i<y3<n,
W , 2)
0 (
Y? (1+T —Z’I‘) +TLZT]——, 1=1,...,n,
G i#i

correspond to a basis in the algebra so(n + 1).
The hyperbolic space H" is a unit ball D™ C R™ with the metric

= <4R2§;dx$> / (1—ix?)2, Z:;T" <1 (3)

i=1

Let p"(-,-) denote the distance between two points in the space H”. The connected component of the
isometry group with the left action is then the group SO(1,n) with the Lie algebra so(1,n), and the Killing
vector fields are

J a

—_— s —
L), 7 . . )
()fI/]' d’lZ

Y (1—1 + w) %ZT]():E 1=1,...,n.
i ];éL

Jsﬁ

Xk =z 1<i<j<n,

(4)

3. Representing free Hamiltonians

We now consider the configuration spaces of the two-body problems Q; = S™ x §™ and @y = H™ x H";
the respective Hamiltonians are

A9+U( sh)__ sh_I_U( sh.) (5)

1—
2my 2mf>

where Ay and A, are the Beltrami-Laplace operators of the first and second particle in either the space S™
or H" and U is a central potential.
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The general principle of quantum mechanics states [15] that the operator H s.n must be determined on
the proper everywhere dense subspace of the space £2(Qs ., djis.p) of functions integrated with the square
on the space Q5 p. This subspace must be such that the operator becomes self-adjoint; the corresponding
measure dji; or dpy, is the product of two invariants w.r.t. the action of the respective group SO(n + 1) or
SO(1,n) measure on the space S™ or H™.

To express the total Hamiltonian H s.» through the radial differential operator and generators of the
isometry group, it suffices to find such an expression for the free Hamiltonian. We recall [16, 17] that the
Beltrami—Laplace operator A acting on the space S" or H" is a self-adjoint operator with the domains of
definition

W22 = (¢ € L3S™, dps) | A¢ € LS dps)},
Wit = {¢ € L2(H" dup) | Ag € L2(H", dun)}.

The action of an operator A must be considered in the sense of distributions. The operator A on S” is
essentially self-adjoint on the space C*(S™) of smooth functions, and the operator A on H" is essentially
self-adjoint on the space C§°(H") of finite smooth functions. Hence, the free Hamiltonian ﬁg’h is self-
adjoint on the product W, := Wﬁ ‘,;“) 2V ’j,(f of two copies of spaces W, 3 ,;“) respectively corresponding to the
first and second particles.

Let submanifolds F? and F" of the respective spaces Qs and @), correspond to a constant value r
of the respective functions tan(p®/2R) and tanh(p"/2R). The submanifolds Fj and F? are diffeomorphic
to S (the value r = oo corresponds to two diametrically opposite points on the sphere S"), and EF} is
diffeomorphic to H™. For 0 < » < oo, the submanifold F? is a homogeneous Riemannian space of the
group SO(n + 1) with the stationary subgroup K = SO(n — 1). For 0 < r < 1, the submanifold F" is a
howmogeneous Riemannian space of the group SO(1,n) with the stationary subgroup i

Up to a zero measure set, Qs = Ry x (SO(n+1)/K), where Ry = (0,00), and Qp = I x (SO(1,n)/K),
where I = (0,1). The operators PAIS" are the Beltrami-Laplace operators for the ietric g, = 2my gilh) +

2 . 1 2 . . . .
2”1,2_(]; ,)l on Qs p, where the metrics gi‘ ,)L and qﬁ ,1 have either form (1) or (3) and are determined on different

copies of the spaces S™ or H" corresponding to the first and second particles.

3.1. The Hamiltonian on the sphere S™. Given the point x4 € F}., we can identify the layer F,.
with the factor space SO(n + 1}/SO(n — 1) using the formula x = gA'xg, where gk is the left coset of the
element ¢ in the group SO(n+1). Let (r,y1....,y2n—1) be local coordinates in the neighborhood W of the
point xg € Qs such that (y1,....y2,—1) are the coordinates in any nonempty open subset W N F. of the
space (Q,. The metric g in W then becomes

2n—1
> 2 . )
Js = grr(r) dr= + E Gig (1 Y15 -+ s Yon—1) dy; dy;.
ij=1
The second term in this formula is the restriction of a metric gy from the layer F;. to the set U N F,.. Using
the standard expression for the Beltrami-Laplace operator in the local coordinates, we obtain

—172 O — J .
A(} = (.(]7"1' det .(]7;_7‘) / |V g’ det Yii 7 + Aqr . (())
or o

To express the operator Ay, on F,. through the generators of the Lie group SO(n + 1). we expand this
operator to the group SO(n + 1) using the construction in [18]. Let I" be a Lie group and I’y be its compact
subgroup. The group I acts from the left on the homogeneous space I'/Ty. Left-invariant differential opera-
tors on the space I' /T can be represented by left-invariant operators on the group I that are simultaneously
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invariant w.r.t. the right action of the group I'y. This representation is determined unambiguously up to
operator terms vanishing when acting on functions that are right invariant w.r.t. the action of T'y.

Indeed, functions on the factor space I'/T'y are in one-to-one correspondence with functions on the
group I’ that are invariant w.r.t. the right action of the subgroup I'y. This correspondence is described
by the formula A\: f — f := fon, where 7 is the canonical projection I' — T'/T'g and f is a function on
the factor space I'/Ty. Let D be a differential operator on ' that is left-invariant w.r.t. the group T' and
simultaneously right invariant w.r.t. I, and let f be a smooth function on the factor space I'/Ty. If D, is
a differential operator that acts on the factor space I'/T'y and is invariant w.r.t. the left action of T', then
the formula D f=D f vields the correspondence D — D,,.

Let e1,...,en be a basis of the Lie algebra of the group I', N := dimT, and let L, and R, denote
the respective left and right shifts by the element ~. The algebra of left- im ariant differential operators on
the group T over the field R is generated by left-invariant vector fields ¢}, .., ¢! N where el(v) = dL(e;),
vel,i=1,...,N [18].

Now let F = SO(n+ 1), Iy = K, e7(y) = dR,(e;), i = 1,....N, N = (n + 1)(n + 2)/2, and
x9 = (r1,0....,0,72,0,...,0) € S* x §", where

N’ N’

n—1 n—1

ma mi
r; = tan | ———— arctanr }, ro = —tan | ———— arctanr } .
my + me mi -+ mso

The set of Killing vectors X7, Y5, 4,5 =1,...,n, on the space S" x 8", which correspond to (2}, coincides

{(up to permutations) with the set

N
cxp(rei)’yxo} , xp =xg(r), 0<r < oc, (7)
i=1

_r d
{(z (vao) = ar

under a proper choice of the basis e,ll, RN elN. Let Ay be a second-order differential operator on the group
[ such that (Af), = Ag,. This operator is then left invariant and can be expressed in the form?

=0

N N
= Z c”eﬁ(’y)eé»('y) + Z cel(v),
i=1

i,j=1

where ¢, ¢ are constant on the layer F,.. Let e be the unit element of the group I'. Obviously, ef(e) = €!(e),
i=1,...,N, and

Z el (e)el (e) +Zc (8)

t,j=1
Therefore,
N
. R |
Bgrly, = D & (@0) (o +ZC (w0) = A, + AP,
ij=1

We can find the coefficients ¢ as follows. We can treat an ordered set of vectors

{¥7'(x0), - ¥ (x0). Xia(%0). - - . X7, (x0) |

2Here7 we identify left-invariant vector fields on I' and the elements of T,I".
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as a basis in the space Ty, F,.. If {Y1 ... Y™, X2,..., X"} is the dual basis, then

gf|x”_aY1@Y1+Z[ (Y + 3.XY) +Z Y'Y 48X e X 45 2 X9 |,
=2 j=2

where
a = g‘x“ (}fls(X()), Yls(Xo)) = 2R2(m1 + 772,2),

a; = gl (Y (%0). Y’ (%0)) = 0,

=gl (¥ (x0). X3;(x0)) =0,

2 212
_ s R mi(l —1r;
s = il (V700 Y ) = 280 T, o)

mkr
/31] = (]‘ (Xh XO) Xl] XO SRQZ (1 )) z]

. mgri(1 —1 o
Yij :-’fix,(Y (x0), X13<X0)) = 4R? ZT)-A)(S”’ hi=2,....n.

We therefore obtain

n

AR - %(Yf‘(xo))Q + Z[AS(X@(XO)) + Cu(Y; (xo)) + B, { X}i(x0). ¥ (x0) }], (10)

where {-,-} denotes the anticommutator and

\JIQ

ma(1 =)’ (1 +73)* + ma(l + r])?(1 - r3)?

Ag - kl
) 8R2myma(ry — r2)2(1 + ryr2)?
B. = mlrl(lfr(f)(l—l-r(,) + mara(1 -73)( (1")
T 4R2mimo(ry — ro)2(1 + rire)? !
o Mt 2(1+72)2 + mar2(1+12)2

2R%2mama(ry — ro)2(1 +ryre)?’

The functions A, B,, and C, can be expressed through the coordinate r,

1 (1 + 7,2)2 1— ,,A 1+ 7,2
Ag(r) = — = + = COS ——(mqy —ms)sin( |,
+(7) 2R? ( 8mir? 8mr? ¢ 4771/1771/27‘( ! 2)sing
1 ma — my 1—d
B(r) = e <—m,1mgr (14 7%)cosC + sin C)
1 (L4022 191 14172
Ci(r) = — — — — 08 — —————(my — mo)si ,
5(r) 2R2 ( 82 S €084 4711/1711/27’(”]1 M) sinC
my — me mims
=2—— = arctanr, m= —- .
mi + mso mi + me
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The operators A, ’xo and Agi) o (10) are invariant w.r.t. reflections of the sphere S™, Ty : ¢ — —uz,
x; — x4, ] # k; the operator Aglf) xy 18 then also invariant w.r.t. these transformations. However, this is
possible only for vanishing first-order operators with constant coefficients, and we have ¢ = 0,7 =1,..., N.

Letting Yls’l, X; ’l, and Y,L-S'l denote the left-invariant vector fields on the group SO(n+1) that correspond
to the respective vectors Y*(x¢), X{;(x0), and Y*(x¢), i = 2,...,n, we obtain

Ay y“ +Z[ (XI? (v 4 = B{X“Y“’l} (11)

We thus find the operator Ay up to terms annihilated by the functions that are right invariant w.r.t. the
subgroup I'g. Direct calculations show that this operator is right invariant w.r.t. the subgroup K.
We now find the first term in expression (6) for the operator Az. At the point xq, we have

o  mo 1407 0 my 1+7§
07‘7m1+m>1+72()r1 M+ me 1120
and therefore
g o 8RZmimeo
grr - J 2\2° (12)
o or (m1 +meo)(1 4 r?)?

By virtue of formulas (9), we obtain

97 8mR2rr—1 or

(1 + 7,2)11 ) Tn—l i
(1 + 7.2)71,—‘2 0,,, + Agf’

where the first term is the radial part of the Hamiltonian of a single particle with the mass m.
The explicit expression for the measure dpu, which corresponds to the metric § on the space Q5 at the
point Xg, is (up to a constant multiplier)

n—1
dps|, = ——5—dr AY' AL AYTAXEALLAX™
0 (1 + 7-2)71
The measure dys is invariant w.r.t. the left action of the group SO(n + 1) and can therefore be represented
in the form dp, = dvg @ dpy, where the measure on the set R, = (0,00) dv, = ro=tdr/(1+ r2)" coincides
with the one-particle measure and dpy is the measure on the space SO(n +1)/K that is left invariant w.r.t.
the action of the group SO(n + 1).

Each Lie group admits unique (up to a constant multiplier) left-invariant and right-invariant measures
(the Haar measures [19]). For the groups SO(n + 1) and SO(1,n) under consideration, such measures are
two-side invariant. There hence exists a unique two-side-invariant measure drs on the group SO(n+1) such
that the integral of an integrable function f on the space SO(n + 1)/K w.r.t. the measure duy equals the
integral of the function f on the group SO(n + 1) w.r.t. the measure dn;.

Given a subgroup Tg of a Lie group T, we let £2(I',Tg,dn) denote the space of square-integrable
functions on the group I' (w.r.t. the measure dny on I') that are invariant w.r.t. the right action of the
subgroup [y.

Theorem 1. The free quantum Hamiltonian of the two-particle system on the sphere S" is a self-
adjoint differential operator (on the manifold Qs = Ry x SO(n + 1)) in the space Hs.

— (1 + 7.2)71, ) ,,,n—l o .
S - _ . - _ A 1
Hy mnRZrn=1 gr \ (1 +r2)n=2 9r A (13)
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with the domain of definition

D, =DM 2 D® C H, = LRy, dvs) @ L2(SO(n + 1), K. dns).
where

DV :=1p e L2(Ry,dvy) | AV € L2(Ry, dvy) ),

D =g e L2(SO(n +1).K.,dns) | Ase € L2(SO(n + 1), K. dns) },

A(l) . A(1+T2)n i ,,,n—l _Q_
s T pn—1 or (1 + 7.2)71,—2 or /)’

the subgroup K is isomorphic to the group SO(n — 1), and dn, is an unambiguously determined (up to a
constant nuiltiplier) two-side-invariant measure on the group SO(n + 1). There hence exists an isometry of
the initial space of functions L*(Qy, dus) on the space H, that generates the isomorphism of Hamiltonians.
The space D, is everywhere dense in M.

Proof. Expression (6) represents the Hamiltonian H§ in the coordinate system in which is pre-
P 1 0 ) s 13 P
sented as the direct product Ry x SO{n+1)/SO(n—1) up to a zero-measure set FfUF?,, which is inessential

when studying functions that are integrable over this measure. Therefore,

L2(Qsrdps) = L2(Ry, drg) @ L2(SO(n + 1)/SO(n — 1), duy).

The isometry X: f — f of the spaces £2 (SO(n 4+ 1)/SO(n — 1),duy) and L2(SO(n +1),SO(n — 1), dns)
generates the isometry id A of the spaces L2(Ry, dvs) © L£2(SO(n + 1)/SO(n — 1).dus) and H,. The
calculations imply that the isometry id @\ transforins operator (6) into operator {13); the space W, then
transforms into the space Dy.

Remark. In the case n = 2, this result can be obtained by treating the basis of left-invariant vector
fields on the group SO(n + 1) = SO(3) as the movable reper on the layer F, [14]. For n > 2, such a
consideration is impossible because the action of the group SO(n 4+ 1) on the layer F,. is not free and the
projections of left-invariant vector fields on the group SO(n + 1) to the space SO(n +1)/SO{(n — 1) are not
uniquely determined. Lifting the Hamiltonian to the symmetry group, we express the Hamiltonian via the
group generators.

3.2. The Hamiltonian on the hyperbolic space H". The formal change z; — ix;, j =1,....n,
r — ir, R — iR (i is the lmaginary unit) transforms objects on the sphere ™ into objects on the hyperbolic
space H" (see also [6]), and we thus obtain the expression for the two-particle free Hamiltonian on the space
]:HI'II7

~, (1 _ ,.2)71, J 7,nA1 ] 1 huls2
= — —_— — —_— = Y ’ —_
Ho 8mR2rn—L gr \ (1 —r2)7=2 0r (1,( )
n 1
- [AIL(XA’-,L'[)“) = CR(Y)? + ZB’L{XI?J’ Yzjl'l}} ~ (14)
k=2

where the vector fields X,i,l‘l and Ykh’l correspond to fields (4) as the fields X,‘:‘l and Y, * correspond to
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fields (2),

1 (1 _ 7.2)2 1— ,.4 1— 7.2
A — — cosh ¢ — —— (m, —ms)sinh( ),
w(r) = 2R? < 8mr2 + 8mr? Gosh 6 4m1m2r(m] mz) sin C)

1 (ma—m { 1—r?
By(r) = — (u(l — %) cosh ¢ + 2"17"2 sinh C) ,

2RZ \ mimoar

— 22 _ .2
Chu(r) = _}-3 ((1 r)” 1 72 cosh( + —7( my —mg)SiIth),

2R? Smr? smr dmimar
Ty — Mo
= 2—— = arctanhr.
miy + mo

Theorem 2. The free quantum two-particle Hamiltonian on the hyperbolic space H" is a self-adjoint
differential operator (14) (on the manifold Qp, = I xSO(1,n)) in the space Hy, with the domain of definition

Dy =DV © DY € My, := L2(Ry, diy,)  L2(SO(1,n), K, dipy),
where

DY = {¢ € L2Ry.dvn) | AV d € L3R, dun)},

DY = {¢ € £2(SO(1,n), K,dny) | And € L2(SO(L,n), K, dny)},
O _(1 _ 7.2)71& 7.n-1 O B r"‘ldr

A= 1 gr \(1 - r2)n—2 or dvy, = —‘—(1 T

Ah e—— Yh [ Z {Ah Xh AN2 Ch (yrh l) + B}L{Xh l Yh l}

and dny, is a unique (up to a constant multiplier) two-side-invariant measure on the group SO(1,n).

Proof. The proof is analogous to the proof of Theorem 1.

4. Reducing the Hamiltonian dynamic system on a cotangent fiber
bundle of a homogeneous space

Let T" be a Lie group with the algebra g and I'y be a subgroup of the group I' with the algebra go C ¢
that acts on I' from the right. We let M = T"I"; denote the cotangent fiber bundle of the homogeneous
space I'1 = I'/T'y endowed with the standard symplectic structure. The standard left action of the group I'
on M is Poissonian [13]. We let &: A — g¢* denote the corresponding moment map and H be a '-invariant
function on M. We now apply the Marsdain—-Weinstein reduction method to the Hamiltonian dynamic

‘system with the function H on the manifold M. It is well known [13] that for Ty = {e}, the reduced
phase space is symplectomorphic to an orbit of the group I" in the cotangent fiber bundle endowed with
the Kirillov form. The construction below generalizes this statement.

Let Og, be the orbit of the cotangent action of the group I' on g* that contains the point Gy € ¢g*, and
let O = {# € Og, |[3|g0 = 0}. Obviously, Adj, 0}, = Op, . Let (33{, = 0y, / Adp, and 7: O — (5/3(, be
the canonical projection. Let w be the restriction of the Kirillov forin on ()%“. Therefore, for the elements
XY € T30, 8 € O, of the form

([ * d *
E Adexp(tX’) ﬁ, Y = — Adexp(tY’) ﬂ, X/, Y/ S a,
7 t=0

. X =
dt|,—o

1075



we have w(X,Y) = 8([X’,Y"]). Because Ad X7 ﬁ‘g” =0, we have

exp(

’ d * ’
T 1t=0

for any element Yy € go. The 2-form & is therefore correctly defined on TOpg,, and we have G(X,Y) =
w(dr 1 X, dr= 1Y) for X € Tr30g, and Y € Trs0p,.

Theorem 3. The reduced phase space M, 8, that corresponds to the value By of the moment map is
symplectomorphically equivalent to the symplectic space (Og,, ).

Proof. We treat a point x € Mg, := ®7 () C M as an orbit O, of a point ' = (v,p) € T*T", v € T,
p € I70, w.r.t. the right action of the subgroup I'y on T*T". To avoid cumbersome notation, we preserve
the symbols L., and R, for the respective left, (v,p) — ("/1“/»L:~1P), and right, (v,p) — (yn, R:,lp),

1 1

actions of the element v; € I' on T*T". Following the definition of the moment map, if

_d

ot =0
then p(X) = Bo(X'), e, p= R 5. If X' € Ad, go, then X € dm1(TxOy), where m: T*T — T is the
w =0 We set O = {2/ = (7.p) € T*FI Ad’ B
0,p= R’;,lﬂo}. Let 7: O — ¢* =TT be the mapping 7(v,p) = L;p. The diagram

Lexpiexyy, X' €9, X eT,T,

standard projection, and p(X) = 0. Hence, Adfy ﬂ()‘ P

L _
T*r ——L, T*T

ool

" Ad,

g — g

is commutative [13], and the mapping 7 sends an orbit of the stabilizing subgroup I'g, on T*T to a single
point. By the definition of the set O, we have 7(0) = Of , and the map 7 sends the element (v, p) to
AdZ 3y, and the element R, (v, p) is therefore sent to Adfw“ fo = Ad7, o Ad: Bo- Orbits of the right action
of the group I'y on O are therefore transformed into orbits of the coadjoint action of the group Iy on ();30.

The mapping 7 therefore induces the diffeomorphism

¢: ﬂﬁn = Fﬁn\A/[Bu - F@,\(O/F(}) - ()/Bo/ Ad;“ - 6,30’

The remaining fact that the symplectic form & on M 3 18 transformed by the mapping ¢ into the form —&
follows from its validity for the case I'g = {e}, the possibility to represent tangent vectors on the space Mg,
via tangent vectors on O, and the commutativity of the diagram

o . 0

| &
o, o

B0 Bo

for any vy € I'y.
Because the forin & is symplectic, we obtain the following corollary.

Corollary. The form w is symplectic (i.e., nondegenerate and closed) on (330.
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5. Reducing the classical two-body dynamic system

It was noted in [6] that a two-body problem in the spaces H" and S™, n > 3, already becoines generous
for n = 3 because the motion of two elements from the space T*H™ or T*S" is always restricted to a
subspace T*H? ¢ T*H" or T*S? C T*S". Two material points with central interaction are therefore always
bound to a subspace H? or S, and we consider the case n = 3 in what follows.

5.1. Two-particle problem on the sphere S2. We endow the space M = T*(Q, with the standard
symplectic structure. Following Sec. 3.1, we can represent the manifold M in the form

M = T*Ry x T*(SO(4)/30(2)) (15)

up to a zero-measure set corresponding to the values r = 0, 00. The symmetry group SO(4) acts only on
the second multiplier in product (15), and the construction in Sec. 4 is easily generalized to this case. After
the reduction, we obtain the space

]\Iﬁ(v = T*R-l- X Q/J’oa

instead of (15), where ng is constructed for the spaces I' = SO(4) and [y = SO(2) as in Sec. 4.

We introduce actual coordinates on the space ]\7;;0 and express the Hamilton function through these
coordinates using formula (13). In the case n = 3, Killing vector fields (2) are X?,, X3,, X34, Y{?, Y5, and
Y. For simplicity, we use the same notation for the basis of the algebra so{4) (omitting the superscript s)
in accordance with (7). Let X 12531 X238 ¥ Y2 and Y2 be the dual basis. We also introduce another
basis of the algebra so(4),

1 1 L
Ly=5(X5+Y0),  Le=g(X5 +Y5),  Ls= (X +Y5),

. 1 1 s 1 ] 5
Gy = §<X2s3 - YY), G2 = §(X31 - Y5, Gs = §(Xi2 - Y3).
In this basis, we have

3

3
[L;, L;] = ZfijkLkn G, G| = Zeijka:v Li,G;] =0, 4,j=12,3, (16)
k=1 k=1

where €5 is the totally antisymmetric tensor and €123 = 1. This basis corresponds to the decomposition
so(4) = s0(3) & so(3). Let

'=x¥4+v!,  DP=Xx"4Y? LP=XxP4Y°
Gl:X23__Y1 GZ:X3]_Y2 Gg:Xlg“YS

be the dual basis. We let

3
P=p1 X 4+ p X 4 p3 X2 4 p YV 4 psY? 4 peY S = Z(/IL,,;Li + ;G (17)
i=1
denote an arbitrary element of the space so*(4). The correspondence between the classical and quantum
Hamiltonians and formulas (11) and (13) imply the classical Hamilton function
(14 1r2)?

1 . 1
Hy = "=y + i + As(p +3) + Co(05 + 9g) + 5 Be(paps — pave) + U (1),
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where p, is the momentum conjugate to the coordinate r. Substituting p; = u; 4+ v, and p34; = u; — vy,
7 =1.2,3, we obtain
1+ 5 1 2 2 2
H, = ————p 4+ —{(u; —v1)° + A;((uo +v2)° + (us +v3)°) +
; 8mR2 Pr (z< ! 1) 3(( S ) )

+ Cs((ug — v2)? + (ug — v3)*) + Bs(ugvs — voug) + U(r).

We now construct the canonically conjugate coordinates on the space (3,30. Because of the special choice
of the point xg on the layer F, in Sec. 3.1, its stabilizer SO(2) is generated by the element Xog. It is well
known that orbits of the coadjoint action of the group SO(3) are spheres and their Kirillov form is the
sphere area. The orbit Og, can therefore be represented as the set of elements of form (17) such that the
coordinates u; and v;, 1 = 1,2, 3, satisfy the relations

2 2 2 2, .2 .2 2
uy + ug +uz =p”, v + vy vy =17, (18)

where o and v are nonnegative real numbers. The subset O C Og, comprises those elements of Og, that
are annihilated by the elements X3, and we must therefore add the condition p; = u; +v1 = 0 to Egs. (18)
in order to describe the set Oy .

We first consider the case . > 0. Let u, ¢, and x be the coordinates on the space OZ,O determined
by the equations

U = —v = U, g = / p? — u? sin, uz = / p? — u? cos,
vo = V12 —u? siny, v3 = V12 —u? cosy, —min{y, v} < u < min{u, v}.

Restricting the Kirillov form from Opg, to O , we obtain

1
w = —5 {1y dus A dus + us dug A duy +uzdug Adug) +
i

1
+ —(v1 dva A dvs + vadus A vy 4 v3doy Adus) = du AN d(¢ — X). (19)
2

The coadjoint action of the one-parameter group corresponding to the element Xs3 on O,’60 is u — wu,
Y= +E x > x+E& 0 < &< 2m; the coordinates ¢ = ¢ — x and py = u on 5@, are therefore canonically
conjugate. The space (35(, is actually diffeomorphic to the two-dimensional sphere. The coordinate systein
Dy, ¢ is singular at the points py = £ min{u, v}. It differs from the coordinate system on the reduced space
used in [6]. The reduced Hamilton function is
G0+ 7-2)21)2 43
8mR?> T a

+ Cs (/L2 + 17 —2p] — 2\/u2 - \/1/2 — pj cos (/)) + B, \/yQ ~p3/V? —p sinéd + U(7)

In the case p = 0 and v > 0 (or ¥ = 0 and p > (), we obtain the conditions uy = w2 = u3 = v; = 0 for
0y,; therefore, ()23“ =S! and Op, = pt. The reduced phase space is T*R,. with the Hawmilton function

=@, 2
Hs = SR Pt 2/

0 * 7 (1+"’2)2 9
()B“ = ()/,30 = pt’ M=T R+~ Hs = Wp7

+ A, (/LQ +v2 - Qpi + 2\//12 -3 \/112 — pj cos (/)) +

In the case p = v =0, we obtain
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5.2. Two-particle problem in the space H®. Because the Lie algebra so(1, 3) is simple, we cannot
represent orbits of the adjoint action of the group SO(1,3) in the direct product form similarly to Sec. 5.1.
However, dynamic systems on the sphere S and in the space H? are related by the formal substitution (see
Sec. 3.2 and [6]), and we can use the following construction.

Let Ly = Xo3, Lo = X351, Ly = X192, Y1, Y3, and Y3 be the basis in the algebra so(1, 3) that corresponds
to Killing vector fields (4) and LY, L2, L3, Y'!, Y?, and Y3 comprise the dual basis. Let p = p;L! +
p2L? + p3L® + paY! + psY? + pgY? be an arbitrary element from so*(1,3). Direct calculation shows that
the expressions

Li=pi+p3+p3—pi —p3 - 12 =pipa+ paps + Pape
are invariant w.r.t. the adjoint action of the group SO(1,3). Similarly to Sec. 5.1, we express the Hamilton
function through the coordinates on so*(1, 3),

(1 _ ,,,‘2)2
8mR?

Let Og, be the orbit of the coadjoint action of the group SO(1, 3) determined by the conditions I1 =

and I» = v, u,v € R. The stabilizing subgroup of the point xg € F, is generated by the element L.

This subgroup acts by simultaneous rotation in the planes (p2,p3) and (ps,ps). The submanifold Ol’g0 is

determined by the equations Iy = u, Is = v, and p; = 0. The coordinates py4, ¥, and x on this submanifold

1 1
Hy, = P2+ api + Ap(P% + p2) - Ch(p? + p2) + §Bh(p3ps — pape) +U(r). (20)

are
P2 = ucosh ) cos y + vsinh ¢ sin y, p3 = vsinh ¥ cos xy — ucoshy siny,
(21)
ps = vcoshi cos x — usinh ¢ sin x, Ps = —usinhi cos y — v coshsin y,
where py, 9 € R, ¥ € R (mod 2r7), and u and v are determined by the equations
u? —v% = p+pj, UY = V. (22)

Two solutions of Eqs. (22) differ in sign, and it suffices to choose either of them. The action of the stationary
subgroup SO(2) is the rotation y — x+&. The reduced phase space (jg“ is obtained from Oj  if we “forget”
the coordinate x. The space 650 is diffeomophic to R>.

We use the degenerate Poisson brackets on so*(1,3) that correspond to the Kirillov form to construct
the canonically conjugate coordinates on the space 650‘ These brackets can be constructed for an arbitrary
Lie algebra ¢ as follows [20].

Let {e;}7_, be a basis of an algebra g, [e;, ;] = cfep, and {z;}7_, be the coordinates on g* that
correspond to the dual basis {e'}*,. Let f1 and f» be smooth functions on g*. Their Poisson brackets are
then

) N, Of10f
. k. .
{f1, fo} = § GOk G oz,

i.7.k=1

The restriction of these brackets to the coadjoint action orbit is nondegenerate. In the problem under
consideration, direct calculations with the formulas

((1)2 —pe)® + (ps +p3)2>
(p2 +p6)? + (ps — p3)?

L Ps — p: ps + p:
X == (ar(ttan (u) — arctan <‘l—-——~1-)3>> y
2 P2+ Ds P2 — pe

3 3 3

[Li, Lj] = ZfijkLk:a [Y;,Yj] =~ Zfijk:Lka [Li,Y;] = ZfijkYkn
k=1 k=1 k=1

1
v = = log
(% 1 2
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yield the relations
{pevy =1 Apsxt=0.  {¢,x}=0.

The symplectic structure on 650 is then dpy A dip. By virtue of (21), we obtain
2 2 1 2 2192 2
Ps+p3 == (,u +py+ o/ (4 p7)? + 402 cosh?@b),

2
1
’2 2:—
p5+p6 2

(—/L —p3+\/(p+p3)? + 42 cosh 21/)),

(1 + p3)? + 42 sinh 2¢.

b =

P3Ps — P2Ps =

Introducing the new canonically conjugate coordinates py, = pa/2 and ¢ = 2¢, we obtain the final expression
for the reduced Hamilton function from (20):

Booo\?
(G+m) +

7 coshi | +
8mR? 2 g e

L e, 4 ,
Hh:upz'{—%ﬁ-/lh E+2pi+2

5

22 2 2
+C (% _|_2pi_2\/(% —|—pi) + % coshgb) +Bh\/(% +pi) + % sinh ¢ + U(r).

6. Conclusion

We have constructed the representation of the quantum mechanical Hamiltonian of a system of two
particles in the spaces S™ and H" that explicitly takes the symnetries of the problem into account. We will
use this expression elsewhere to establish that the corresponding spectral problem is quasi-exactly solvable
for some potentials. The reduced Hamilton function explicitly expressed in canonical coordinates in [6]
using analytic simulations was used there to prove the absence of particle collisions. In the present paper,
we have derived the explicit fori of the reduced Hamilton function and clarified its relation to the quantum

mechanical Hamiltonian.
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