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E X A C T  L I N E A R I Z A T I O N  O F  T H E  S L I D I N G  P R O B L E M  F O R  A 

D I L U T E  G A S  I N  T H E  B H A T N A G A R - G R O S S - K R O O K  M O D E L  

N .  B.  E n g i b a r y a n  1 a n d  A.  Kh.  K h a c h a t r y a n  1 

We consider the nonlinear Boltzmann equation in the Bhathnagar-Gross-Krook model for the gas flow 
in a half-space (the Kramers problem). The problem can be exactly linearized, and its solution can be 
reduced to a linear integral equation with an addition difference kernel and a simple nonlinear relation. 

1. I n t r o d u c t i o n  

One of the main models in physical kinetics is the B h a t n a g a r - G r o s s - K r o o k  (BGK) model  of the 
Bol tzmann equation. It  has numerous applications in investigating the s implest  or nml t icomponent  gases 
in a half-space bounded by a solid wall (the Kramers problem) and the gas flow between two paral lel  walls 
(the Couet te  problem) [1, 2]. 

Applying the BGK model involves approximately linearizing the nonlinear integral-differential equat ion 
obtained. The  locally Maxwell velocity parti t ion function of the gas is then replaced by the sum of the first 
two terms of the power series with respect to the mean mass velocity U, where it is assumed t h a t  

IUI << <tvl> (1) 

with V being the molecular velocity of tile gas [1-3]. This model is called the  linearized B G K  model .  For 
the Kramers  problem, applying the linearized BGK model leads to a contradic tory  result: the  function 
U = U ( x )  (where x is the dis tance fl'om the wall) determined from the linearized equation grows infinitely 
as x --~ +oc,  which is inconsistent with the original assumption (1). 

Our analysis of the Kram er s  and Couette problems shows tha t  they can be exactly l inearized and 
effectively solved within the B G K  model. In what follows, we restrict ourselves to considering the  Kramers  
problem. 

2. T h e  e x a c t  l i n e a r i z a t i o n  o f  t h e  p r o b l e m  

We let (x ,y ,z )  be a Car tes ian  coordinate system in the space R 3 and let a one-component  gas fill 
the half-space x > 0 bounded by a solid wall coinciding with the plane x = 0. We consider the  gas flow 
problem in the Oy-axis direction. We let f ( x , . g )  denote the sought gas par t i t ion  function wi th  respect  to 

the velocities ~" = (sl, s2, s3). We let U(x) denote the gas mean mass velocity U(x) = (0, U, 0), where  

u(x) = f s2f(x, d3s. (2) 
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In the BGK model, the Boltzmann equat ion has the form [1, 2 4] 

Of(x, ~) 
Sl  ~ X  - a f (x ,g )  +/3e -~lg-[7(~)l~, 

where a = 1/7, r is the relaxation time, ct = m/(2kT), /3 = oTt(oz/Tr) 3/2, 
T is the gas temperature, and k is the Bol tzmann constant.  

We introduce the auxiliary functions 

(3) 

m is the mass of the molecules, 

f + ( x , g )  = { 0f(X'Sl'S2'S3) ififsls1 <~0'0, 

0 if s 1 < 0, 

f -  (x, ~) = f(x,  - S l ,  82, 83) if s 1 ~ 0. 

(4) 

Equation (3) is completed by the boundary  condition near the wall, 

f+(0, ~) l~>o = q f f ( ~ )  § (1 -- q) f - (0 ,  g)l~,< o, (,5) 

where q is tile accolnodation coefficient tha t  gives tile fl'action of the molecules that  after interacting with 
the wall, leave it with the Maxwell velocity distribution 

foM(.~) = ~-e ..... ~. {7 

Tile remaining part (1  - q)  of tile molecules is mirror reflected fl'om tile wall surface. 

It follows from Eq. (3) that 

0 x f+(x,s  = Ce -~ /~ '  + e_(~_O~/s, q2(t,.r ) --,dt (6) 
81 

jfX ~ f - ( x ,  .~) = e -(t-x)"/s' q2(t, ~) --,dt (7) 
S1 

where 

�9 (x, .~') = lJe -(q'~-0(~)12 = 8e-{~S~e-(~]e -{*(~2-U(~))2. (8) 

Taking Eq. (5) into account, we obtain 

C = q f o M ( K ) + ( 1 - q )  e-t~/s'q2(t,.r dt 
S1 

(9) 

from Eqs. (6) and (7). 
mean mass velocity 

h}serting Eqs. (6) and (7) in (2) and taking Eq. (9) into account, we obtain the 

U(x) = s(x) + Q(x), (lO) 
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where 

1 i_iSoL" dt S(x) ds3 s2ds2 ds~ e-iX-lt~'ls'o(t,g) 
7~ ~ j _ ~  81 

/_/_ /o /o Q(x) ( l - q )  1 .oc ~ s2ds2ds3 dsl e_(~+t)~/,~kO(t,~)_dt 
n oc oc 51 

(11) 

(12) 

L 
O G  

S(x) = K(ix - tl)q(t ) dt, 

is then satisfied. 

K(x) V ~  L ~ e - ~ / ~ e  -"s~ dsl 
81 

q(t) = S2 e - ~ [ s 2 - g ( t ) l ~  ds2. 
O 0  

Passing to the new integration variable p = s2 - U(t), we obtain 

q(t) = [p + U(t)]e -~p- dp = U(t) 
O 0  

and therefore 

I7 co(z) = K ( l x  - t l )U( t )  dr. 

We obtain a similar expression for the function Q. As result, expression (10) becomes 

U ( x )  = K ( I z  - t l ) U ( t )  d t  + e K ( x  + t ) U ( t )  dt, e = 1 - q. 

It can be easily verified tha t  the conservation condition 

~ K(x) dx 1 
O 0  

determined in accordance with  Eqs. (6)-(8). 
The problem in Eqs. (2) and (3) for the nonlinear integral-differential equation is thus exactly linearized. 

Its solution is reduced to linear conservative integral equation (14) and simple nonlinear relations (6)-(8). 
We also investigated the exact  solution of conservative linear equation (14) in [5]. We note that  the results 
given above can be generalized to multicomponent gas flows in the half-space. 
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(13) 

(14) 

With the function U(x) found from Eq. (14), the sought velocity partition function is 

where 

Relation (10) together with Eqs. (8), (11), and (12) is a nonlinear integral equation for U. We now consider 
transforming this equation. 

From Eqs. (8) and (11), we obtain 
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