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Abstract .  Let G be a complex connected reductive group. Well known wonderful 
G-varieties are those of rank zero, namely the generalized flag varieties G/P, those 
of rank one, classified in [A], and certain complete symmetric varieties described 
in [DP] such as the famous space of complete conics. Recently, there is a renewed 
interest in wonderful varieties of rank two since they were shown to hold a keystone 
position in the theory of spherical varieties, see [L], [BP], and [K]. 

The purpose of this paper is to give a classification of wonderful varieties of 
rank two. These are nonsingular complete G-varieties containing four orbits, a 
dense orbit and two orbits of codimension one whose closures D1 and D2 intersect 
transversally in the fourth orbit which is of codimension two. We have gathered 
our results in tables, including isotropy groups, explicit basis of Picard groups, 
and several combinatorial data in relation with the theory of spherical varieties. 

1. I n t r o d u c t i o n  

We start by defining wonderful G-varieties for a complex connected re- 
ductive group G, and we sum up a few of their remarkable properties. Then 
we shall introduce our results. 

Recall that  a divisor with normal crossings on a nonsingular variety is a 
divisor D = U Di such that  each irreducible component Di is nonsingular, 
and whenever r irreducible components Di meet at a point p, then their 
intersection at p is transversal, i.e., the local equations fi of the Di form 
part of a regular system of parameters at p. 

De f in i t i on  1.1. A wonderful G-variety is a nonsingular complete G-variety 
X having the following properties: 

(1) The group G preserves a divisor with normal crossings D = UieI Di. 
(2) The intersection f~ieI Di of all the Di is nonempty. 
(3) Two points of X are in the same orbit if and only if they are in the same 

set of divisors Di- 

The rank of X is the number r -- card I of irreducible components Di of 
D. Note that  G has 2 r orbits in X and ~ i e I  Di is the unique closed one. 
The orbit closures are the ~ i e J  Di where J runs through all subsets of I, 
and each NieJ Di is a wonderful variety of rank r - card J. 
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It is shown in [L] that  a Borel subgroup B in G has a dense orbit in 
X. When a normal G-variety has this property, then it is called spherical. 
Moreover the following condition is necessary for a spherical homogeneous 
variety G / H  to have a wonderful completion, see [BP]: 

(aut) The automorphism group A u t c  G / H  : N a ( H ) / H  is finite. 

If this condition is satisfied, then there is a unique candidate X for a won- 
derful completion of G/H,  and it is wonderful if and only if it has no singu- 
larities. This is the case for example if H = No(H) ,  see [K]. Furthermore 
the following universal property is satisfied by this candidate X, see [LV]: 

(uni)  Let Y be a normal complete G-variety containing only one closed or- 
bit. Then any dominant G-equivariant morphism G / H  -+ Y extends 
equivariantly to X -+ Y.  

Wonderful varieties were shown to play a central role in the theory of spher- 
ical varieties, see [BP] and [K]. As in [B3] and ILl, many questions about 
wonderful varieties may be handled by reducing them to the rank two case, 
namely the lowest rank for which [-JieI Di r NieI Di- 

The goal of this paper is to classify wonderful G-varieties of rank two. 
An essential difficulty is that  most isotropy groups are not reductive. So we 
made the following observation. The well-known weight decomposition on 
the Lie algebra b ~ of the unipotent radical of B naturally generalizes for an 
arbitrary parabolic subgroup P in G: Indeed, let L be a Levi subgroup in P 
and let M be an irreducible L-module in pu. Denote by XM the character 
through which the radical of L acts on M. 

L e m m a  1.2. The L-module M C p~ is uniquely determined by XM. 

See Lemma 5.5 for a proof. Lemma 1.2 is a practical tool to deal with the 
radical of H. It enables us to determine the pairs (9, [~) (where G / H  ~-+ X is 
of rank two and [~ = Lie(H) is not semisimple) by choosing a nice parabolic 
subalgebra p in g containing ~). The few remaining cases readily follow 
from the known classification of connected reductive spherical subgroups, 
see [Kr], [U], and [B]. Lemma 1.2 also gives us the eigenvectors of [~ in the 
rational representations of G. 

Our target is to obtain the following theorem. For a parabolic subgroup 
P in G, let _G be the universal covering of__G = p / p r ,  where p r  denotes the 
radical of P .  Split _G into simple components 1-I Gr where a runs through 
an index set, say ~. Recall that  if there exists an equivariant morphism r : 
X -+ G/P ,  then there is an equivariant isomorphism X ~_ G • r  
see [Bi]. In Theorem 1.3 below, we refer to tables which lie in Sections 2 
and 3. 

T h e o r e m  1.3. Wonderful G-varieties of rank two are the G • X ,  where 
P C G is any subgroup which strictly contains B and X is any wonderful 
G-variety G-equivariantly isomorphic to either one of the following varieties: 
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(a) A Go-variety in Tables A-G, where Go = I-[~Er. o G~ and Zo C Z. 
(b) A Gl-variety times a G2-variety both in Table 1, where Gi = ~ e ~ ,  G~ 

and ~1 II ~2 C E. 

See Lemma 2.2 and Theorem 7.8 for a proof. We have identified the G- 
orbits in D1 U D2 as follows. Fix a Borel subgroup B -  opposite to B and 
let {z} = X B- . It can be seen, thanks to Table 1, that  the set O of weights 
with multiplicities (see for example case 8 in Table A and Theorem 5.6) of 
T := B A B -  in the tangent space T z X  uniquely determines the group action 
on Dx and D2. These sets O also enable us to determine the normalizer 
NG(H). 

Furthermore 0 almost determines X up to isomorphism. Indeed, let 
X(B)  denote the group of characters of B, and let E be the lattice of char- 
acters XI E X(B)  of all rational B-eigenfunctions f on X. It is routine 
to identify two weights of 0 which yield a basis of E. Let A be the set of 
colors, namely the B-stable prime divisors in X which are not G-stable. If 
VD denotes the discrete valuation associated with D E A, then there is a 
natural  map ~ : A -+ Horn(E, Z) which maps D ~-~ (XI ~ vD(f)). (Note 
that  Xf determines f up to a scalar.) 

T h e o r e m  1.4. Fix G and let X be a wonderful G-variety of rank two. The 
sets 0 and o( A ) determine X up to isomorphism. 

Theorem 1.4, which yields a combinatorial description of wonderful vari- 
eties of rank two, follows from Theorem 1.3 and Tables A-G. Observe that  
it is not necessary to know how many colors yield a given point in o(A). 

Remark 1.5. The group action on any normal G-variety is locally projective 
rational, see [S, p. 8]. Because X has a unique closed orbit, X is projective, 
and for any equivariant embedding of X in a projective space P (V), and any 
one parameter subgroup in the center of G, the quasi-affine cone over X lies 
in a unique grading subspace of V. Therefore the action of the connected 
center of G in X is trivial. Without loss of generality, we assume that  G is 
semi-simple and simply connected. 

Acknowledgements. I am grateful to D. Akhiezer, M. Brion, H. Kraft, 
F. Knop, P. Littelmann, D. Luna, G. Schwarz, Th. Vust and R. Yu for their 
support and many useful remarks on earlier versions of this paper. 

Notation. The base field k is the field of complex numbers. Let k* :-- 
k\{0}. We denote by T a maximal torus in G, and by B a Borel subgroup in 
G containing T. Let X(T)  = X(B)  be the corresponding lattice of charac- 
ters. We denote by B -  the Borel subgroup in G containing T and opposite 
to B. Let S be the basis of the root system R of (G, T) determined by the 
choice of B. Notations used for groups, roots.and weights are those of [BN]. 
In a few formulas, B1, C1 and D1 are used for brevity to mean type A1, 
and D2 to mean type A1 x A1. For a root/~, let w = s~ be the reflection in 
the Weyl group W = NG (T ) /T  of G canonically defined by fL Consider the 
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quotient NG(T) -+ W and choose @ in the preimage ofw. Let (@) C NG(T) 
be the subgroup generated by @. For a dominant weight ~, let Vx be the 
irreducible G-module with highest weight X, and V~ its dual. If S is an 
algebraic subgroup in G, let CG(S) denote its centralizer, S O its identity 
component and S u its unipotent radical. Let Cs denote the center of S. 
The letter X is used to denote the (candidate) wonderful completion of a 
spherical homogeneous space G/H satisfying (au t ) ,  and A is used for its 
colors, see Theorem 1.4. By k(X) (B) we denote the multiplicative group of 
B-eigenvectors in the field of rational functions on X. Consider the abelian 
group homomorphism k(X) (B) --~ X(T) = X(B) which associates to each 
B-eigenfunction f its character Xf. The image of this homomorphism is 
denoted by E. 

2. O n  w o n d e r f u l  var ie t ies  o f  rank  o n e  

This section has no pretention to originality. Its goal is to present known 
results of Akhiezer [A], see also [B1], in a simpler way when one aims at 
determining the wonderful subvarieties of rank one lying in a wonderful 
variety X of rank r. 

Let z E X be the unique point fixed by B - .  

Def in i t i on  2.1. A spherical root 7 of X is a weight of T in the T-module 
TzX/TzG.z. 

Let Gz be the isotropy subgroup of G at z. Then the set of spherical 
roots 7i, i E I, of X yield a Z-basis of E. Indeed, the point z lies in a toric 
T-subvariety W C X stable under the Levi subgroup of G~ containing T, 
such that  the following map is an open immersion [BLV, p. 621]: 

( G ; F  x w - ,  ( a ; ) u w  c x 

where G [  contains B and is opposite to (the parabolic subgroup) Gz. There- 
fore, the spherical roots of X give a basis of the image of k(W) (T) in 9Y(T), 
see IF, p. 29] and observe that  d im W = codim G.z = r. So rk ~ = r. 

The lattice .~. can be determined in the following way. Recall that  the 
algebra of regular functions on G has a natural  G x G-module structure 
k[G] ~ (~  Vx | V~, where A runs through all dominant weights in X(B). 
Let ~r : G --~ G/H denote the projection, where G/H ~-~ X is the open 
orbit. For each color D E A, choose an equation fD E k[G] defining 
~r -1 (D). Since H is spherical in G and 2C(G) is trivial thanks to Remark 1.5, 

fD E k[G] (BxH) and fD is determined up to a scalar by Xy, E X(B) x X(H). 
Furthermore, (XfD)DeA generates (with the scalar functions) the multi- 

plicative semi-group k[G] (BxH) since k[G~ is factorial, see Remark 1.5 and 
[KKLV, p. 74]. Thereby we can easily recover k(G/H) (B), and hence E. In 
particular, card A < r +  rk X(H). 

Our goal is to find all possible spherical roots. The following lemma yields 
an important  reduction for this calculation. 
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L e m m a  2.2. Let P be a parabolic subgroup in G such that p r  C H C P.  
Then X = G • P )(, where f (  is a wonderful P/pr-variety of rank r with 
open orbit P / H .  

Proof. Consider the projection G / H  --+ G/P.  By the property (uni) ,  see 
the introduction, it extends equivariantly to r : X -> G/P .  Let X :-- 
d~-l(PIP). 

By [Bi], G x P X is an algebraic G-variety, and it is G-equivariantly iso- 
morphic to X. Now observe that  P / H  can be identified with the open 
P/pr-orbi t  in X and that  X is a wonderful P/Pr=variety of rank r. [] 

Def in i t i on  2.3. A prime group in G is a subgroup S having the following 
properties: 

( ind)  If  p r  C S C P for a parabolic subgroup P in G, then P = G. 
(pro)  The only pairs o/semi-simple groups (G1, G2) such that G = G1 x G2 

and S = $1 x $2 with Si C Gi are (G, 1) and (1, G). 

Thanks to Lemma 2.2, it will be sufficient to focus on prime wonderful G- 
varieties, i. e., those for which H is prime in G. Even then, we will see further 
on that  H is often not reductive. So we use the following decomposition. 
Let U := H ~ = (H~ ~. By [Mo, p. 200], there exists a connected reductive 
subgroup K C H such that  H ~ ---- K U  is a direct product. Moreover, there 
exists a parabolic subgroup P C G containing NG(U) such tha t  U C P~ 
[BT, p. 102] (I have learned that  this result was found independently by 
B. Weisfeiler.) Hence we can choose a minimal parabolic subgroup Q c G 
containing H ~ such that  U C QU. Let L be a Levi subgroup in Q containing 
K.  From now on, we fix B C Q and T C L. 

Since all spherical roots come from the case r=l ,  we have listed in Table 
1 the prime wonderful G-varieties of rank one. 

How to read Table 1. According to [BN], types An, Bn, Cn, and Dn 
start respectively with n -- 1, n = 2, n = 2, and n = 3. Also, bear in mind 
Remark 1.5 while reading column 2. 

In column 1, labels were designed for the use of spherical roots which we 
will make in Section 3. Two labels such as 7B and 7C share the same number 
7: this means tha t  when types B and C match, i.e., when n -- 2, then the 
two corresponding cases are G-isomorphic. Case 5 shares the same number 
5 as case 5D: it expresses the fact that  there is an outer automorphism of 
Spin s which maps the first Spin 7 on the second (for n = 4). 

In column 3, the connected group K is given up to a finite covering, and 
if the Lie algebra u of U is nontrivial, then we split it into irreducible K-  
modules. The group H is either KU,  KU(@) if an element w 6 W is given 
in column 3 (then the pair (K, U) is found one case above), or KUCG if the 
letter c appears in cohlmn 4. If Cv ~ H, then H C G / H  ~- Z/2Z.  

In columu 4, we compute XfD for each color D 6 A. The letters c and e 
denote nontrivial characters in X'(H) satisfying c 2 = 1 and e 2 = 1. When 
a fundamental weight wi is used as a character of H,  then H C Q and Q 
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is the largest parabolic subgroup in G containing B such that  wi E X(Q). 
Case 5 corresponds to two distinct cases: w3/4 means w3, respectively w4. 

In column 5, we give the unique spherical root ~fl- (We have seen above 
that  E can be easily recovered from (XfD)DeA, therefore 71 is also deter- 
mined since it is positive in X(B), see [B3, p. 130].) Because of the following 
remark, we label 71 as in column 1, and we give the dimension of X in col- 
111"!"11'1 7. 

Finally, for col-ran 6, we refer to the last paragraph of this section. 

Remark 2.4. Reading through columns 4, 5 and 7 of Table 1, we immediately 
see that  if X is a prime wonderful G-variety of rank one, then for a given 
group G, X is uniquely determined by 71 and another data  such as card A 
or dim X. This shows that  a (not necessarily prime) wonderful G-variety of 
rank one is uniquely determined by "rl and Gz, see Lemma 2.2. 

Here is a beautiful interpretation of the expression of the spherical roots 
7i, i G I, in terms of the XI~,D E A. See also [L1]. Let fi E k(X) (B) 
be up to a scalar the unique function satisfying X/~ -- -7 i -  If Xi denotes 
the unique wonderful G-variety of rank one having 7i as spherical root and 
G/Gz as closed orbit, then N "r Dj  _~ Xi with Di -- f / - l (0)  [B3, p. 126]. 
Moreover Pic X ---- {~)DeA Z-~/~}, where {D} denotes the class of D in. the 
Picard group Pic X [B2, p. 405]. Since we can express 7i = ~DeA n'DXf~ 
with n~ G Z, we get {Di} = ~-~DeZX n~{D}. In column 6 of Table 1, we 
give n~), D E A, with A ordered as in column 4. 

3.  P r i m e  w o n d e r f u l  v a r i e t i e s  o f  r a n k  t w o  

In this section, we gather our classification results in Tables A-G which 
contain the prime wonderful G-varieties of rank two, see Definition 2.3 (and 
Theorem 1.3). Proofs will be given in the following sections. 

How to read Tables A-G. Labels in column 1 refer to Theorem 5.6, 
Proposition 5.7 and the propositions of Section 6. These labels were designed 
to help keeping track of the isomorphism between different types, such as in 
Tables B and C; cases 7 are the same for n -- 2. 

Columns 2 and 3 can be read as in Table 1. When useful, weights of 
T M K are given for U, such as in case A8. 

In column 4, we sometimes have c 3 = 1 instead of c 2 = 1. For Q, follow 
How to read Table 1 (with sometimes more than one wi) except in the second 
cases of BC8 where Q is the same as one case above. 

In colnmn 5, a basis (~i) of .~. is given, see Theorem 1.4. Each 3'i is a 
combination of the characters of column 4: the corresponding coefficients 
are given in column 6. For Tables A-G,  we identify -~| Q and Homz (.~., Q) 
by choosing the length of 71 to be V~, shorter than ~/2. In the last column, 
71 and 72 are represented by arrows. The cone ]) dual to the cone generated 
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G Finite covering of K XID E X(B) x A'(H) ~(col. 1) /1 n 1 dim X 
U as a K-module with fD E k[G] (BxI-l) 

T a b l e  1 

1A SLn+I 

2 SL2 

3 SL2• 

4 SL2xSL2 

5A SL4 

6A SL4 

n_>2 GLn (wl,-Wl) al+..:+(x (1) 11 2n 

(Wn, Wl) 

Se~I (2Wl,E:) 2/X~ 2) 2 2 

SL2 (wrOa~, 1) : _ _: , (3)  1 3 ~r 1 

SL2 (r C) O~l-}<X~ (4) 2 3 

SP4 (w2,1) 1 . . . .  1 ~(5) ~ Cll-rCz2-r~ 3 1 5 

Sp 4 (w2, c) al+2a2-{-~i 6) 2 5 

7B Spin2n+l n_> 2 

8B Spin2n+l n > 2 

9B Spin2n+l n > 2 

10 Spin 7 

11 Spin 7 

Spin2n (Wl, 1) 

SLnxk* (wl, 1) 
A2k n (wn,wn) 

G2 (w3, 1) 

C2 (w3,c) 

al+...-{-~ ) 1 2n 

2~1+...+2a~ ) 2 2n 

al+.. .+a~ ) 10 �89 

1 . . . .  3 ̂ .(10) 
~ u(1-I-tI2-1-~ L~ 3 1 7 

oq+2ol2-l-3a1:1) 2 7 

7C Sp2n n_> 2 

8C Sp 4 

9C Sp2n n > 2 

SL2• 

]g*xSp2n_ 2 
k 

(w2,1) ,~+2a2+...+2,m_l-r 7) 

(W2, E:) 2al-}-20~(28) 

(W2,1) a2+2~X2+...+2Oh-lJr (9) 

1 4n--4 

2 4 

1 0 4n--3 

1D Spin 6 

5D Spin2n n > 3 

5 Spin s 

6D Spin2n n >  3 

6 Spin s 

GL3 

Spin2,,..-1 

Spin7 

Spin2n-1 

Spin 7 

(w2, -w2) al-~Z+a(a 1) 11 6 
( ~ , ~ 2 )  

i 1 (5) (u~,l)al+.. .-h~-2+~h-l+~ 1 2n-- 1 
1 . . . . . . .  1 (5) 

(w314,1) 2-r 1 7 

(~0 2o~+...+2o~:z+~_1+~ (6) 2 2 n -  1 

2 7 

12 F4 Spi% (w4,1) al+2a2+3a3+2a (12} 1 16 

13 G2 

14 G2 

15 G2 

SL3 (w1,1) 2al+a(2 TM 1 6 

Sckl (tO1, E) 40~1"}-2~2 (14) 2 S 

k*xSL2 (r O~1-}-~(215) 1-1 7 
a~k 2 (wl, wl) 
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P r i m e  w o n d e r f u l  G - v a r i e t i e s  o f  r a n k  t w o  

G Finite covering of K Xfo E X(B) x X(H) _ (Table I) y: ~'b ~,(A), v 
11 as a K-module with fD E k[G] (BxH) "I'2- (Table :) n2 

Table A 

1 SL3 SO3 (2wi,2c)(2w2,c) 2r 2) 2-1 ~ .  
2a (2) -12 

2 SL3• SL3 (Wl-I-WI1,2C)(W2+Wl2,C) a l - ~  (4) 2-1 
a2-~2 (4) -1 2 

3 SL6 Sp6 (w2,2c)(w4,c) Otl+2a2-t-al 6) 2-1 q k / ~  

a3+2a4q-~ 6) -1 2 

4 SL4 

4 SL4 

SLn+l 

n > 4  

SL2• (w:-Ho3, 1)(w2,-"w2) a (I) -111 
.... (4) (W2, W2) CZl-l-tz 3 2-1-1 

SO/20~1.~2..~3 (Wl-Ho3, Z)(2W2,1 ) Otlq'O~i 4) 2-1 
2a (2) -2 2 

SL2•215 (Wl+Wn, 1)(w2,-w2) a2-{-...-{-~(l_) 1 -1 1 1 

(Wn--1, W2) O~1+O~ (4) 2-1-1 

5 SL4 

5 SL4 

1_ --1~(3) ~/ V • (,,,2,1)(,,,,+,,,3, ,,,2) o1-1 
S2k 2 (W2, W2) 1-1 1 

k*• (w2,c)(wl-t-wZ,w2-t'c) 0((21) 1-11 
..... (4) S2k 2 (w2, w2) ,--,1-,-~,:~ 02-2 

6 SL3 k*xk* 

k 

6 SLn+I k*xSLn-lXk* 
n > 3 k n-1  

6 SLn-I-1 k*• 
n > 3 k n-l* 

6 st,m ~st~xle~xsh 
n >/-t-2 > 4 kn-l~k l* 

a~l) 1410 (,,,1, ~1)(,,,2,,,,2~1) ~(21) 
Oox, ,,2)(w2, w~) 01-11 
(Wl,--tOl)(W2, Wn--Wl) a~ 1) 1-1 10 
(,,,1, ,,,,)(,0,, ~,1) o,2+...~(~ :) o1-11 

(wl,-Wl)(Wn.w2--Wl) a ' i + . . . - ~  1-110 

(Wn-:, W2)(lOn, 1131_) O((n 1) 0 14 1 

(,,a,--~X,m-~,,~a-m-~ ~a+-.--@ ~) 1-110 
(I/)I,'Wn_/_t_I)('Wn,Wl) Ot/.i.l-{-...--f-~(n 1) 014 1 

7 SL3 k* 

7 SL4 k*• 
k2,~3r 

8 SL2xSL2 k* 
ka~"r 

('W1-'~J32, ~./JI']-C) Ot~ 1) 1 1-2 ~ P  
(~1,~)(~2,~1) J21) 1-21 ...:?r 
('W2, C ) ~1"~'~(21) 1 1-1 oo~o 
(Wl, w3)(w3, Wl) ot2-t-~i 1) 1-11 

(,,,1+,4, c) ~,~1) 11-1 oofo 
(w1,w1)(w11,Wll) o(~ (I) 14 1 
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1 SpinsxSL2 SL2xSL2 

2 SPinsxSpin s Spin 5 

2 Spin5xSpin s Spin s 

3 Spin 9 Spin 7 

4 Spin s k*xSL2 

4 Spin s sar~2 

4 Spin2n+l k*• 1 
n>3  

4 Spin2n+l Sal+...-~, 
n>3  

5 Spin s SL2• 

5 Spin s S a  l-~-2a 2 

(Wl, 1)(U2-PW i, c) Oq'+~(2 9) 1 0 L 
a2-R~ (4) -12 

(~+~,lXu~;1) ~+~(~) 1-1 
~2-t~2 (4) -12 

(~+~,lXu~+%~ .~(~)-12 
~_~(4) 2-2 

(u~,l)(u4,~) ~ + ~ 2 ~ 4  9) I0 
~2-~-2o~3-f3cx~ II) -12 

(U1, --U1)(2U2, 1) 0:~ 1) 1-11 
(U1, Wl) 20((2) -12-1 
(2Ul, 1)(2u2, ~) 2c~(22) -12 

2o~ 2) 2-2 
(U1, --'Wl)(U2, 1) 0~ 1) I-I 1 
(U1, U1) 2c~2+...+2c~ (8) -12-1 
(2wi, 1)(w2, ~) 2c~2+...-{-2c~ (8) -12 

2o~ 2) 2-2 
(Wl, 1)(W2, "-U2) O~(21) -111 o ~  
(w2, w2) al-t-~(29) 100 

1 

(U1, 1)(2U2, ~:) Oq-~(2 9) 10 L 
2o~ 2) -22 

6 Spi~n_ H SI-~k~Spinm_2p 
n _~p-~2 _~ 3 kP~k2n-2P(~A2kP 

6 Spin2n+l so, 
n_>p+2>3 

(u~lXu~l, Wp+l) ~ . . . - o ~  7) 0 1-1 
(up, up) al+.. .-~ (1) 1-11 

(u,l, ~Xwp.t_l, wp-l-e) al-t-...-t-a (1) 1-11 
(wp, wp) 2ap+lT...§ (8) 02-2 

7 Spin2n+l 
n>2  

8 Spin2n+l 
n>2  

8 Spin2n+l 
n>2  

8 Spin2n+l 
n>q+2>3 

k*xSLn-lXk* 
kn-l(Bkn-l(BA2kn-1 

SLn-1 xk*xk* 
kn--l(~kn--i(BA 2 kn-1 

S(~ n 

S~x~xSL~xk* 

( ~ k q ~ n ~  2 kq 

( ~ _ ~ 2 ~ - - ~ , ~ - - ~  ~(1) 
(U1, U1)(Un, Un) 0r "[- ' _(1) 1 ----t~n-- 1 
(u1,1)(u., u~_l-~.) ~(1) 
(~-~-~(~) ~ + . ~  
(wbEX2t/~ ~--1-I -C ) ~ 1 + ' " - ~  
(Wn---1, Wn--I ) 2a (2) 
(w~ 1X%+l, Wq) Oq.{-X +. �9 . ' ~  (9) 
(Uq~Uq)(UnlUn) Oq-[-...-['~ l) 

4101 
101-2 
01-11 ~ 
1414 
141 

02-2 

01-10 ~ 
1410 

9 Spin s 

9 Spin 7 

k* 
kal=,~2~ 

k*xSL2 
2 2 k,~l~S(Bk(B~Bk 

(Wl'PW2, W2"O.0112) 0((21) 1-21 
(Wl~ U1)(U2, W2) ~1) 11-3 
(U2, UI) 0~2-["~ ~ 9) 1-10 

(U1, U1)(U3, W3) a1-~-~(21) 11-2 := 
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Table C 

WONDERFUL VARIETIES OF RANK TWO 

1 SP4xSL 2 SL2xSL2 ('ol-{-w~, c)(w2, 1) al-l-a(29) 01 
a l - ~  (4) 2-1 

2 Sp4xSp4 Sp4 (Wl+W~,l)(w2+w~,l) la2-Fla'(3) ~ 2 - i i  
cq-l-~ (4) 2-1 

2 SP4• SP4 ('ol-{-w~,c)('o2Ww~,l) al-~-~il:l 2-1 
C~2-I-~ 2 -22 

3 SP2 n SP4xSP2n--4 ('o2,1)(w4, 1) oL3+2o4+...-~ (7) -11 
n > 4  cq-{-2a2+~(36) 2-1 

3 SP8 Sal-ta~osartas ('o2,~)(w4,1) al+2a2-{-~ (6) 2-1 
2a3+2a: 8) -22 

4 Sp4 SL2xk* 

4 SP4 Sar{-a2 

4' Sp2 n SLn-lXk*xSL2 
n > 3 S 2 k n-1 

SP2 n k*xSP2n- 2 
n > 2  

Sp2n s2a:+...+2a n--:"l'r ~ 
n > 2  

(2"Ol; I) ('O2, -"W2) C~(2 :' -111 
('o2,'o2) 2~ 2) 2-:-1 
(2Wl, 6)(2w2, 1) 2a~ 2) 2-1 

2a (2) -22 

('o:+~,,'o~-:)('o2,1) ~2+...+~(~:_)~ -111 
(Wn--1, Wre-1) O~l-~(n 4) 2-1-2 

(Wl, --Wl)(W2, I) a~ I) I-ii 
('Ol, Wl) Oq+20~2-{-...-']-2OLn--l-+~(n 9) 0 10 

(2w1,e)(w2, 1) t~+2a2+...+~ 9) 01 
2a~ 2) 2-2 

6 SP6 SL2xk* 
S2k2$S2k 2 

6' Sp2 n k*xSL2xSP2n._4 
n > 3 k2n-4~k 

Sp2n SLn_lXk*xk* 

('ol-f'o3,3"o212)('o2,'o2/2) 0~(21) -111 
('O2, "O2) Oq'Jf~(34) 2 0"3 

('o2,1)('o3,'oi) ~ i-~:::~ (:) 1-11 .~ 
('Ol, "Ol) a2-{-2c~3+...+2an-l-~ (9) 0 1-1 

('WI~?.D~.-I~X%b~2~I~-I~)~I...O~__I~ 1 1-11 0 

(wn.---1,Wn--l)(Wn,'on) O/n 1) 01-21 

8 

8' 

n > 2 k'~"l~s2k re-I 

Sp4 k*xk* 

ka2~k2al.,{.,a2 
Sp 4 Sa: 

Sp2 n S I-p x ]g~ ] ~  S p2 n--2p--2 
n_>p+2_> 3 k ~ 2  n-2p-~k 

ekpeS2k p 

~:) 101-: ('o:,'o~-~l)('o2,1) ~r i) 
('Ol, "Ol)('O2, "O2) -114 1 
(2"o:,'o~+~)('o2,:) J2 :) -111 
('o2,,o2) 2~: 2) 2 0-2 
( , ~ - : - ~ X ~ + ~ )  ~+...+o~ :) 101-1 
(w~wpXwp.t-l, Wp.t.1 ) q~i-1%2o~-~,..~ (9) 01-10 

Sp4 k* (w:+w2, w:+w2/2) 
k~,~,,e~k ('o:,'o:)('o2,'o2) 

11-2 

a(2 I) 1-31 
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Table  D 
1 Spin e 

1 Spin s 

1 Spin2. 

n>4 

1 Spin2n 

n>4 

2 Spin s 

2 Spin s 

3 Spinlo 

k*xSL2xSL2 

SalO S0~1-~(~3 

k*• 2 

S~lO S~1+2a2+... 

+2a.-z+~.-l+c% 

SL4xk * 

Sa4/3 0 Sal-~-2~Z+~3-~ 4 

SLsxk* 

4 Spin2, SLn-2xk*• 
n > 3 kn-2~S2k2~g~2k n-2 

4 Spin2n SL~2xk*xSL 2 
n > 3 kn'2~2k2~A2 k n-2 

4 Spin2, SI~ xk*xSpin~__2p__ 1 
n>_p+ 3> 4 k~c2"-2~-~g~2F 

4 Spin2, SLp x/c*xSpin~_.2p._ 1 
n > p+ 3>_ 4 F@k2n-2P--I~A2k~ 

4 Spin s SL2xk*xSL 2 

4 Spin 8 SL2xk*xSL2 
S2k2~k2~k 

5 Spin s SP4xk* 
k s 

5 Spin s SP4xk* 
k s 

(wl,-wl)(w2+w3, 1) a~ 1) 1-11 
(Wl,Wl) a 2 - ~  4) -12-I 
(2wl, 1) (w2-+'w3, e:) ~ 2 - ~  4) -12 

2c~ 2) 2-2 

(~z, ~i)(w2,1) ~i) 1-11 
(wz, Wl ) 2 a 2 + . . . + 2 e ~ . . ~ l + ~  6) -124 
(2wl, lXw~e) 2a2...2an-2-bah_l-~ (6) -12 

2a~ 2) 2-2 

(w2,1)(w4/3,--w4/3) a(4~ ) -111 

(w4/3,w4/3) a l+2a,z-~(~)4 2-1-1 

(~,~.~)(2w./3.1) ~ + 2 ~  21 
. (2) -22 
z ( ~ 4 / 3  

(W2, 1) (W4, -"tU4) 0~3"+r (51) -111 
(W5, W4) al+2a'2--[-~ 6) 2-1-1 
(~IX~-~+~-~ ~-~+~)01-1 
(Wry-2, Wn..-2) a Z+...+~ (~._1)2 1-11 
( ~ X ~ - l + ~ - ~  ~+..+o~!~ 1-11 ~ (  
(~,-2, w~_2) ~_~+~2 ) 02-2 
(wj.,1Xulwq, wp) ~-l-'[-...br,...l'[-~ 5) 01-1 
('Wp, "~p) al+...'~:~ (1) 1-11 

(w~,~)(wm,-,p+~) ~l+...+Jp~) 1-11 
(~,~,) 2~,+1+...+2~_2+~_1+~ (6) 02-2 

L~_~L~(3) (W4l:~lXwt+W3l.W2) w..._ 2.~14 01-1 
(w2 ,  w2) . . . .  (z) ~2-t-u413 I-1 1 

.~_~(z) (tV4/3~ ~z '~4/3 14 1 
(w2,w2) _ ,..(4) 02-2 ~l'r~3/4 

I~_~_L~(s)  (w413~1Xw2,w4]3) 2... ..... 2.~3/4 01-1 

(w4/3, w4/3) a(~)1-11 

(w4/3,e)(w2,w4/3+c) a ~  ) 1-11 ~ 

(~...~./~) ~,+2~)~ 02-2 

6 Spin 6 SL2xk*xk* (Wl, U~/3---w3/2)(u~/:~--~/2)al-~ 101-1 

Spin2n 
n>3  

SL.-IXk* 
kn--i ,r,a2bn--i 

(Wl, C) al+...+~n._2+~(~_l)l 11-1 o ~  
(,~,--~w~X,~wj) ~ + . . . + ~ _ z ~  (1) 1-11 
even n--~+l:j, odd n=/-=j+l 
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Table  E 

WONDERFUL VARIETIES OF RANK TWO 

1 E6 F4 

2 E6 k*xSpinlo 

(Wl, 2C)(w6, C)2Otl-i~2-{-2a3-l-2a4-{-~i 6) 24 

a2-~3+2a4+2o~5+2a~ 6) -12 
(~ ,  -~)(~2,1) ~ x ~ 3 - ~ 4 + ~  ~) 1-11 
(W6, Wl) 2o~2-O:~3-{-2a4-~-a~ 6) 424 

Table F 

1 F4 SL3xk*xSL2 (Wl-I'~4, W3)(W2, t03) ~2-"["~I 9) -110 
]f3~S2k2~k2~k3 (w3, u)3) 0~1"~-~I 4) 2-1-1 

2 F4 SpinTxk* (~/73,U)4)(t174,1) O~i 1) 411 
k 7 (u)4~ w4) al-l-2Ct2+30~i 11) 2-1-2 

3 F4 Spin6xk* (Wl, w4)(w3, w4) Ot1~2"~(39) 104 
k4(Bk 7 (w4, w4) 0~2-[-2a3"[-~(49) 410  

4 F4 G2xk* (w3,3w4/2)(w4, w4/2) a l  1) 411 
k7(~ 7 ( W 4 , W 4 )  OtlT20~2"{-3Ot(311) 204 

5 F 4 SL3xk*xk* (W1,W4)(W4,W3--~4) O~1-~O:2"t~(3 9) 100-1 
k3(~3"(~3"(~ (tO3, W3)(W4, W4) O~(41) O 141 

6 F4 SL2xk*xk*xSL2 (Wl,2W3-'~2)(W4,W2-'~3) Ot3-'I-~(41) 0141 
k2~2*~2~S2k 2. (w2, to2)(w3,w3) 0~1--~0~ (1) 101-2 
q ~ S 2 k 2 * ~ 2 * ~  2 

Tab le  G 

1 G2 SL2xSL2 (2Wl, 1)(2w2,1) 2a~ 2) 24 
2a (2) 42 

2 G2xG2 G2 (wl-t-w~, 1)(w2+w~, 1) o~1-}~ (4) 2-1 
~ 2 ~  (4) 42 

3 G2 k*xSL,2 (W1,1)(W2,Wl) a~ 1) 
k 2 (Wl, t/)l) a 1--}-~ (215) 

4 G2 ktxk* (U)l, tO2-'~l)(W2, 3Wl-'~2 ) O~ 1) 
kO~r"l~2~2a r.~2 ('WI, 'Wl)(W2, W2) ~(1) 

4 G2 k*xk* (tO1, W2---I/)I) (W.]2, Wl) ~1) 

k ~ 2 ~ , - ~  (~a, ~n)(~2,~2) ~,(2 ~) 
(l~3arl-~2 (~]c.3a1+ ~2 

1 4 1  

014 

1014 ~ 
0141 

41-21 . 
":'i 

5 G2 k* (w1+w2, Tw1/3) 
k ~ ~  (~,~, ~n)(~2, ~2) 

(~1) 11-2 

c~ 1) 1-41 
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by ( -7 i )  is shadowed. The circles represent the image of A by Q (see The- 
orem 1.4). Their precise coordinates in the basis (~'1,~'2) are given by the 
coefficients of column 6, as in Table 1. 

Remark 3.1. Note that  the combinatorial data  given in Tables A-G are 
precisely the data  needed to classify all equivariant normal embeddings of 
G/H,  using [LV] or [K1]. 

Remark 3.2. One can define the little Weyl group W x  C W of a wonderful 
G-variety X to be the reflection group of Q having ~) as a chamber, see 
[B3]. Namely, W x  is the group generated by the reflections si about the 
hyperplanes {7i = 0}: ifTi is not a multiple of a root of (G,T),  then it is 
easily seen that  there exists a multiple of 7i which can be writ ten as a sum 
of two orthogonal roots f~ and f~'. Therefore si is induced by sz o sf~, E W. 

4. The triplets (L, K, Kx) 

The purpose of this section is to describe the homogeneous space L / K  
(We keep the setting K U  = H ~ C Q = LQ u, U c QU and K C L.) One of 
the main features of L / K  is that  it is L-spherical. In fact, to claim that  H is 
spherical in G is equivalent to saying that  K has an open orbit K.x C Q~'/U 
and that  L / K x  C Q / H  ~ is open and L-spherical [B, p. 191]. 

This decomposition yields the following basic lemma. For any G-variety 
Y (not necessarily spherical), let 

rka  Y : =  minyEy codimyBU.y. 

L e m m a  4.1. Let X be a wonderful G-variety of rank r. Then 

rkL L / K x  -~ rkG X = r. 

Proof. Let B~ be a Borel subgroup in G such that  B~H is open in G. Because 
B~Q is open in G, there exists a Levi subgroup LQ of Q such that  B~ NQ is a 
Borel subgroup in LQ. Then codimG B~ H ~ = codimQ (B~ N Q)H ~ Hence 

rkG G / H  ~ = rkLQ Q / H  ~ Finally note that  L / K x  is the open L-orbit in 
Q / H  ~ and that rkG G / H  ~ = rkG X ---- r k r  W = r, see the beginning of 
Section 2. [] 

L e m m a  4.2. A wonderful G-variety X is prime if  and only if H ~ satisfies 
the property (pro)  and the following condition: 

( ind)  ~ If  Pu C H ~ C P for a parabolic subgroup P in G, then P = G. 

Proof. Assume that  H satisfies the property ( ind)  and that  p r  C H ~ C P 
for a parabolic subgroup P in G. Recall that  there exists, see Section 2, 
a parabolic subgroup P~ in G such that  U C P~' and H C P~. Since 
pu  C U C P~, it follows that  P~ c P .  H e n c e P r  C H C P a n d P =  G. 
Therefore H ~ satisfies the property ( ind).  
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It remains to prove tha t  i f H  ~ satisfies the property ( ind) ,  then it satisfies 
the condition (ind)~. So assume that  pu  C H ~ C P for a parabolic sub- 
group P in G. Then the radical of a Levi subgroup in P normalizes H ~ hence 
is in H ~ thanks to the condition ( au t )  (and the fact that  NG(H ~ = NG(H), 
see [BP, p. 283]). Hence p r  C H ~ C P .  [] 

Thus our main goal will be (until the end of Section 6) to determine the set 
of prime connected spherical subgroups S C G which satisfy the conditions 
( au t )  and rkG G / S  = 2. Indeed by Lemma 4.2 this set is one-to-one with 
the se t  of G / H  ~ of all prime wonderful G-varieties of rank two. 

P r o p o s i t i o n  4.3. Assume that X ks prime of rank two. Then 

rkL L I K  + rkg  Qu/U -~ 2. 

Proof. Let BL be a Borel subgroup in L such that  BLKx is open in L. Then 
we have 

rkL L /Kx  = codimL B~Kx : codimL B ~ K  § codimK (B~ I"I K)K~ 

and rkK K I K z  <_ codimK (B~ n K)Kx.  So rkL L / K +  rkK Qu/U < 2. 
Conversely, assume that  K r L, and Q r G. Because K is reductive, 

K is not parabolic in L. Hence rkL L / K  _> 1. Now observe that  U r Q~, 
otherwise QU c H ~ C Q, see the condition ( ind)  ~. Therefore r k g  Qu/U ~ 1 
since Qu/U is afllne. So rkLL /K+ rk/r Qu/U > 2. [] 

C o r o l l a r y  4.4. Assume that X ks prime of rank two and Q ~ G. Then 
either K = L,  C ~ C K ys L or there exists a character X E X(L) such that 
K - -  (ker X) ~ 

Proof. Assume that  C ~ ~ K.  Since K is connected, there exists X E X(L) 
such that  K C K + := (ker X) ~ We have 

rkL L / K  = codimL B ~ K  = codimL B ~ K  + + codimK+ (B~ n K + ) K  

Since U r Q~, see the condition (ind)~, we get rkL L / K  = 1. Moreover, 
codimL B ~ K  + = rkL L / K  + = 1. Therefore rkg+ K + / K  = O, i.e., K is 
parabolic in K +. Now recall that  K is reductive, so K = K +. [] 

Let (L, L) denote the derived group of L. 

C o r o l l a r y  4.5. Assume that X is prime of rank two, Q ~ G, and C ~ C 
K ~ L. Then K = SC ~ where S := K M (L, L) is semisimple. Moreover 
(L, L ) /S  is, up to a finite covering, the open orbit of the wonderful (L, L)- 
variety o.f rank one corresponding to cases 3, 5, 7 or 10 in Table 1. 
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Proof. By [BP, p. 283], N L ( K ) / K  is a diagonalizable group and it is easily 
seen that  rkL L/NL (K) + dim NL ( g ) / g  = rkL L / K  = 1. Hence NL ( g ) / g  
is finite. Otherwise rkL L/NL(K)  = O, i.e., NL(K) is parabolic in L, and 
since we have chosen Q minimal such that  H ~ C Q and U C Q~, no strict 
parabolic subgroup in L contains K: so NL(K) = L. "But then K would be 
a reductive group of codimension one in L with C ~ C K. Contradiction. 

Therefore L / K  is up to a finite covering isomorphic to the open orbit of a 
wonderful L-variety of rank one, and clearly K is prime in L. We can forget 
about cases 4, 6, and 11 in Table 1 thanks to cases 3, 5, and 10 respectively. 
Since K is connected, cases 2, 8 and 14 are ruled out. Cases 1, 9 and 15 
cannot occur because no strict parabolic subgroup in L contains K. Finally, 
cases 12 and 13 are ruled out as well since L r G. [] 

5. T h e  L - m o d u l e  s t r u c t u r e  on  qu 

We keep the setting K U  = H ~ C Q = LQ ~ as we have done so far. In 
this section, we estimate the rank of X(Q) (for arbitrary r) and thereby 
the rank of Pic X. Then, by investigating the L-module structure on qu -- 
Lie (QU), we describe the K-module qu/U when r=2.  We start with the 
foUowing basic lemma. Denote by S the basis of the root system R of (G, T) 
corresponding to B (recall that  B C Q and  T C L, see Section 2). For any 
positive root/3 = ~ e s  )~(~, define the support of/3 by 

s := e s > o }  

L e m m a  5.1. Assume that/3 g S. Fix ap, aq E S ~ such that A~p > 2 if 
ap = aq. Then there exists a pair of positive roots ~ , ~  E R satisfying the 
following conditions: 

(1) a p e S  ~ a n d ~ q E S  ~4. 
(2) 
Proof. Assume that  the lemma is not true for some positive roots. Choose 
fll of minimal height among them. Let a E S\{ap, aq} such that  fl = fls _ a 
is a positive root. Fix a decomposition/3 -- ~ + ft, according to properties 
(1) and (2). It is easily seen that  either a + ~ or a +/3~ is a root (use the 
Jacobi identity). Contradiction. [] 

Let g~ denote the weight space in t] corresponding to ft. For a Lie subalge- 

b r a n  c b u, let R(n) := {/3 E R [ g~\{0} C b~\n} and S(n) := U~eR(n)S ~. 

L e m m a  5.2. For any Lie subalgebra n c b u, )-~ea(n)  Z-fl = {~aes(n) Z.c~. 

Proof. Observe that  if card R(n) _< 1 then R(n) = S(n). So let us assume 
that  card R(n) >_ 2 and let f~l E R(n) N S. Clearly, there exists/32 E R(n) 
such that  ~ a r  Ag 2 = 1 (apply Lemma 5.1 with exp, aq E Sf3\{f~l})- Thus 

Z-f~l + Z'f~2 ---- Z'f~l (B Z-a  where {a} = S ~ \ { f l l  }. 
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Now assume that  there is an integer i >_ 2 and that  there are distinct 
elements ]31, ..., f~i E R(n) such that  Z.f~l + ... + Z-f~i = ~ Z-a where a runs 
through all elements of Si := S ~1 U ... U S z~ . If card R(n) r i, then thanks 
to Lemma 5.1 there exists a root ~i+1 E R(n)\{f~l, . . . ,~i} such that  our 

assumption remains true for i + 1 instead of i, i.e., ~-~aes\s~ A~+I < 2. [] 

It turns out that  Lemma 5.2 implies a key bounding statement for the 
rank of X(Q).  Let SQ denote the subset of S associated to Q, i.e., the subset 
satisfying L = CG((NaesQ ker a)~ 

T h e o r e m  5.3. Assume that X is prime of rank r. Then rkX(Q) < r. 

Proof. Let BL be a Borel subgroup of L such that  dim B ~ K s  is maximal. 
Since rk X(Q) = dim C ~ and r -- codimL B~Ks  (see Lemma 4.1) it suffices 
to prove that  F := C ~ N B~ Ks  = C ~ M Ks  is finite. 

Observe that  C ~ C NaesQ ker a and that  Ks C N ker f~ where ~ runs 
through all roots such that  1~\{0} C qU\u. In particular, F C NzeR(u) 
ker f~. So by Lemma 5.2, F C N~es(u) ker a. Now note that  if P is the 
parabolic subgroup in G containing B associated to S(u), then P~ C U and 
Q c P.  Hence P~ C H ~ C P.  So P -- G by the condition ( ind)  $. Therefore 
S(U) = S and F is finite. [] 

C o r o l l a r y  5.4. Let P be a minimal parabolic subgroup in G such that p r  C 
H c P.  Then r < rk Pic X - rk X ( P )  < 2r. 

Proof. Let [-I = H I P  r C G = p / p r  and let )~ be as in Lemma 2.2. Con- 
sider the setting k / )  = / ~ 0  c Q = ~Qu as we have done so far for H. By 
Theorem 5.3, we have rk X(L) = rk X((~) ~ r. Moreover, /~ is reductive 
spherical in L and no strict parabolic subgroup in L contains/~.  In partic- 
ular, rk X ( k )  < rk X(L),  see for example [Kr, p. 149], [B, p. 190]. Hence 
rk X(/~) = rk X ( k )  < r. Since rk Pic X -- card A < r +  rk X(H) ,  see Sec- 
tion 2, and rk 2r --- rk A'(/~)§ rk X(P) ,  we get rk Pic X - r k  )='(P) < 2r. 
Finally, the remaining inequality means that  card A >_ r +  rk X ( P )  and this 
is clear (see Section 2). [] 

The following lemma is just  a generalization of the well-known T-module 
b ~ decomposition on (and it implies Lemma 1.2). For a positive root f~ such 

that  g~ C q~, let (L.  g~) C qU denote the irreducible L-module generated 
by l~- 

L e m m a  5.5. Let P be a parabolic subgroup in G containing B,  and choose 
~ C pu. Let Lp = CG((Naesp ker a)~ Then V := (Lp . ~ )  is uniquely 
determined by (,k~a)aes\sp. Moreover these integers do not depend on the 
choice of 1~ C V. 

Proof. Let Ap C A denote the root lattices of ((Lp, Lp), Tp) C (G, T) where 
Tp = T M (Lp, Lp). Then the weights of T in V are in f~ + Ap.  Moreover 
we know from representation theory that  the convex hull of these weights 
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(which looks like the convex hull of the corresponding (Lv, Lp)-irreducible 
module) should meet the convex hull of the weights of any irreducible L- 
submodule V ~ C pu whose weights lie in/3 + Ap. So V and W should share 
a T-eigenspace. Therefore V = V t C pu. 

Finally note that  V is an irreducible (Lp, Lv)-module.  So the last state- 
ment of the !emma is clear. [] 

Now we apply our previous results to start  the classification of the groups 
H ~ for X prime of rank two. 

Theorem 5.6. Assume that X is prime of rank two and Q ~ G. If G is 
not simple, then G = SL2 x SL2 and H ~ is a Borel group in the diagonal. 
(See case (AS) in the tables of Section 3, i.e., case 8 in Table A.) 

Proof. Split G into simple components G1 x ... x Gi, l > 2. Then S = 
$1 U ... U St and Q = Q1 x ... x Qt, with Levi decompositions Qi = LiQ'~. 
First note that  thanks to the condition (ind)g, Q~' r U for all i. 

We claim that  C ~ ~ K.  For otherwise, M ~ N for any pair of irreducible 
K-modules M, N such that  M C q~', N C q~ with i r j (a consequence of 
Lemma 1.2) and therefore U -- U1 x . . .  x Ul. So K r L thanks to the 
property (pro) .  Hence, by Proposition 4.3, q~/t t  is a K-module of rank 
one. In particular q~/u is an irreducible K-module and Ui = QU for all i 
except one. Contradiction. This proves the claim. 

Thanks to Proposition 4.3 and Corollary 4.4, K = (ker X) ~ with X E 
X(L), and q~ /u  is an irreducible K-module  of rank one. In particular, 
q~ /u  is isomorphic to a K-module  lying in q~' for each i since QU ~ U. This 
shows that l = 2 because codimT K fq T = 1. Besides (L, L) C K. Hence 
there exists a pair of simple roots a E SI \S  O, a ~ E S2\SQ such that go ~ u 
and ~ta, ~ 11. Therefore K = ker ( a - a ' )  ~ and q~ /u-~  ( K . g ~ )  ~ (K .~a , ) .  

Thanks to Theorem 5.3, S\SQ = {a ,a ' } .  It follows that $1 = {a} and 
$2 = {a'} since ( K .  ~ta) ~- ( K .  ga ')  and (L,L) C K. Hence G is of type 
A1 x A1 and K is the diagonal torus. [] 

A nice consequence of this result is that  the group G is simple for most 
prime wonderful varieties of rank two. Indeed, if Q -- G, then a computat ion 
of ranks, using [Kr, p. 149] and [B, p. 190-191] leads us to the following list. 
The labels we use below refer to Tables A-G,  for instance label BC1 refers 
to Tables B and C, cases 1. 

Proposition 5.7. Assume that X is prime of rank two and Q = G. Then 
G/H ~ is isomorphic to either one of the following homogeneous spaces: 

(AI) SL3/SO3. 

(A3) SLs/Sp6. 

(BCI) Sp4 x SL2/SL2 x SL2. 

(B3) Sping/Spin 7. 

(C3) SP2n/SP4 x SP2n_ 4 for n > 4. 
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(El) Es/F4. 

(G1) G2/SL2 • SL2. 

(ABCG2) G • G / G  where G = SL3, Sp4 or G2. 

It remains to consider the cases where G is simple and Q ~ G. Thanks to 
Theorem 5.3, we know that  either card S\SQ = 1 or card S\SQ = 2. In the 
following two theorems, ;6 will denote a positive root satisfying g~ C qu. 

T h e o r e m  5.8. Assume that X is prime of rank two. If G is simple and 
S\SQ = {o~p}, then either one of the following possibilities occurs: 

(a) K = L, qu/u ~_ (L.  gap) is of rank two. 

(b) K = L, qu/u ~_ (L . gap) ~ (L.  g#) is of rank two, and A~p ~_ 2. 

(c) rkL L / K  = 1, C ~ C K,  qU/u is of rank one, and the projection qu _+ 
qU/U factors through the L-equivariant projection qu _~ (L.  gap)" 

Proof. We claim that  (L-  gap) ~ u. Indeed, if (L .  gap ) C u, then fix fl 

(with minimal height) such that ga\{0} C qU\u, see the condition ( ind)  ~, 
Section 4. Since g# ~ (L- gap), we can apply Lemma 5.1 (with ap = aq). 
This yields f~ = / ~  + f~ with gap, ga~ C u. Hence g# C u since u is a Lie 

subalgebra in b u. Contradiction. This proves the claim. Now we go through 
the three cases of Corollary 4.4. 

If K = L, then by Proposition 4.3, qu/u is a K-module of rank two. If 
it is irreducible, then we get case (a); if it is not, then we get case (b). 

If C ~ C K r L, then by Proposition 4.3, rkK qu/u = 1. Hence qU/u 
is an irreducible K-module.  Moreover, by Lemma 5.5, (L- gap) is the only 

L-module in q~ on which C ~ acts with weight ap. In particular, (L-g/~) C U 

whenever Aa~ p > 2, see Lemma 5.5. This yields (c). 

Finally, assume that  K = (ker X) ~ with X E X(L). Then (L,L) C 
K, and by Proposition 4.3, rkK qU/u = 1. Hence qu/u is an irreducible 
(L, L)-module isomorphic to (L �9 gap)" Thanks to the condition (au t ) ,  U 
is embedded diagonally in qu, i.e., there exists (at least one) irreducible 
L-module V\{0} C q ~ \ u  such that  V ~ (L.gap) as L-modules but V --- (L- 
gap) as K-modules. Fix fl with maximal height such that  g#\{0} C qU\u. 

Lemma 5.5 yields A~p _> 2. So we apply Lemma 5.1 (with ap ~- c~q) as many 
times as necessary to find a set off~i such that  ;6 = ~-~ f~i and g~  C (L-gap), 

i.e., A ~ = 1. Then for each i, there exists a K N T-eigenvector vi E 11 such Op 

that  its component (with respect to the T-decomposition on b u) on g#~ is 
non zero. In particular, these vectors vi generate in tt a Lie subalgebra 
containing a vector v having a non zero component on ga. Now note that  
all the remaining components of v are in 11 since the height of fl was chosen 
maximal. Hence g# E 11. Contradiction. Therefore this last case is ruled 
out. [] 

T h e o r e m  5.9. Assume that X is prime of rank two. If G is simple and 
S\SQ = {ap, (~q} with p ~ q, then either of the following possibilities ocurs: 
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(a) K = L, q u / u  ~- (L. 1~,) �9 (L. g~) is of rank two, and ~q = 1. 
(b) K = ker (up - ~q)o and qu/ t t  _~ ( K .  gap) ~_ (K .  9aq) is o.f rank one. 

Proof. By Lemmas 5.1 and 5.5, there is an irreducible L-module in qU/u 
with lowest weight a simple root. So there exists a E S\SQ such tha t  
(L .  g,,) ~ u, say a = up. If P is the parabolic subgroup in G containing 
B associated to SQ U (up}, then p u  ~ U thanks to the condition ( ind)  ~. 
Hence there exists a root f~ such tha t  ~ \ { 0 }  C p~\tt .  In particular aq �9 S ~ 
and 0a\{0} C qu\tt.  Choose fl (respectively i f )  with maximal (respectively 

minimal) height. (Note that  Lemma 5.1 yields A~: = 1.) Again, we go 
through the cases of Corollary 4.4. 

If  K = L, then q" /U is of rank two by Proposit ion 4.3. Thanks to the 
condition (ind)~, q ~ / u  is not irreducible. Moreover the rank of the sum of 
m irreducible L-modules is at least m. So q ~ / u  -~ (L- gap) ~ (L- g;~) and 
(L-1]~) = (L-g~, ) .  This yields case (a). 

Assume that  C ~ C K r L. Then there are two irreducible K-modules  
M C (L - 9 u p ) a n d  N C (L �9 ~B) such tha t  the two corresponding classes 
of irreducible K-modules  occur in qu/u .  Moreover, M ~ N thanks to 
Lemma 5.5. Therefore r k g  qU/u > rkK M $ N :> 2. This contradicts 
Proposit ion 4.3. 

If K = (ker X) ~ with X �9 ,~'(L), then rkK qU/u = 1. So there are K-  
module isomorphisms qu/tt ~_ ( Z .  ~ap) ~- ( g .  Of~) "" ( g .  ~ , ) .  Moreover 

Agv +Aa~q __2 never occurs. Indeed, for otherwise apply Lemma 5.1 as many 

times as necessary to find a set of fli such that  fl -- ~ fli and A ~ + A ~ = 1 O~p ~q 

for all i, and then follow the end of the proof of Theorem 5.8 to obtain a 
contradiction. Therefore ~ p  + ~ q  -- 1. Since ~q �9 S ~, we get ~ q  = 1 and 

A~p = 0. So (L-l~;~) = (L.g~q) and ~'  = aq. Thus K = ker (up - a q )  ~ and 
this yields (b). [] 

6. T h e  pa i r s  (g, ~) 

The purpose of this section is to make a list containing all pairs (~, [~) for 
X prime of rank two. Thanks  to Theorem 5.6 and Proposition 5.7, we shall 
assume that  G is simple and Q r G. We say that  (gl, [~1) is isomorphic to 
(g2, [~2) if H ~ is conjugate to H ~ in e l  = G2, see Remark 1.5. Our goal is 
to determine the pairs (g, [J) up to isomorphism. 

Remark 6.1. The pairs (~, D) that  we give in this section are pairwise non 
isomorphic (unless otherwise stated). This might not be clear at once. But  it 
will follow from the combinatorial data  computed in Section 7 (and gathered 
in columns 5 and 7 of Tables A-G).  Similarly, the condition (nu t )  will follow 
f~om these combinatorial data  together with the eigenvectors of H ~ in the 
representations of G (gathered in column 4 of Tables A-G) except for the 
pairs (g, ~) corresponding to Theorem 5.6 and Proposit ion 6.8 for which the 
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condition ( a u t )  can be easily checked on the Lie algebra level. (Note that  
NG(S  ~ = NG(S)  for a spherical subgroup S in G [BP, p. 283].) 

First ofaU, let us state the following routine lemma when G is of type Y = 
An, Bn, Cn or Dn. Let Prs be a parabolic subgroup in G such that  Spr. = 
S\{ar ,  as} with r < s. Define M := Horn (V, ks-r)E9 Horn (k s-r ,  kr)E9 Horn 
(V, kr), where V denotes the irreducible representation of highest weight wl 
for Y , - s .  

L e m m a  6.2. Assume that Y = An, Bn, Cn or Dn. Then the semisimple 
type of Levi subgroups in Prs is At-1 X As-r -1  • Y n - s .  Moreover, for  

�9 

Y = An : Prs -~ M,  
Y = Bn : PUs ~- M ~ kr |  s -r  ~ A 2 k  r $ A2k s -r ,  

Y = Cn : pu s ~- M ~ kr@k s-r  ~ S 2 k  r ~ S2k s-r, 
Y = D ,  : PUs ~- M ~ kr |  s -r  ~ A2k r (9 A2k s -r  when s r n - 1. 

Remark 6.3. One can easily compute similar formulas for the exceptional 
groups. For instance, if G is of type E6, then the semisimple type of Levi 
subgroups of P12 is A4 and p1~2 ---- k 5. ~ A2k 5. $ A2k 5 @ k. In the proofs of 
this section , we shall freely use these decompositions. 

Now we go through the five cases of Theorems 5.8 and 5.9. In the following 
propositions, we check that  K has an open orbit in Q u / U  and that  Q / H  ~ is 
L-spherical of rank two, see the notations of Section 4. Recall that  the rank 
of an L-variety Y is the minimal codimeusion of B~-orbits in Y, where BL 
is a Borel subgroup in L. The labels below refer to Tables A-G, for instance 
label BC4 refers to Tables B and C, cases 4. 

Proposition 6.4. Assume that S\SQ = {ap}, K = L, and that qu/U ~- 
(L .gap)  is of rank two. Then up to isomorphism, (Y,p) is either one of the 
following pairs: 

(A4) (An,2) for n > 3. 

(BC4) (B, ,1)  for n >_ 2. 

(C4') ( C n , n - 1 )  for n > 3. 

(D1) (Dn, 1) for n >_ 3. 

(D2) (D4, 3(respectively 4)). 

(D3) (Dh, 4). 

(E2) 1). 
(F1) (F4, 3). 

(F2) (F4, 4). 
Furthermore, cases (A4) and (D1) yield isomorphic pairs (If, ~ ) when n = 3. 

Proof. I fY = An, then by Lemma 6.2, we have qu = p~p ~_ Hom(kn-p+l ,  k p) 
and (L, L) is up to a finite covering SLp • SL,_p+I. Hence tt = {0}. More- 
over, ppup is L-spherical and rkL pp~ = min (p, n -- p + 1). Therefore n > 3, 
a n d p  = 2 or p = n -  1. Now note that  ( A n , 2 ) - ~ w ( A n , n -  1) where 
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w =  sal+...+a,_l o sa2+...+a,, i.e., the corresponding groups H ~ are con- 
jugate  in G b y  @ E NG(T) (see the introduction). Since q u / u  is obviously 
spherical, this gives (D1) for n = 3 and (A4) for all n. 

When Y = D n ,  n_>4, we have q"___M$A2k p with M=Hom(k2(n -P) , k  p) 
(this is only true for p r n - 1, but  this restriction can easily be overcome 
thanks to the involution of the Dynkin diagram of Dn). If  p = n, then 
M = {0}, and rkL A 2 k p = 2 if and only if n = 4 or n = 5. Moreover, for 
n = 5 we have (Ds, 4)~-w(Ds, 5) where w =  sa3+a4 o sa3+as. This gives (D2) 
and (D3). I fp  < n , 2 ,  then qu/U _ M, and rkL M = 2 if and only i fp  = 1. 
This gives (D1) for n > 4. 

If Y = Bn, n >_ 2, then we find that  qU = M ~ A2kV with q u / u  -- M = 
Horn (k 2(n-v)+1, kV). Now rkL M = 2 if and only i fp  = 1. This gives (BC4). 

For Y = Cn, n >_ 3, q~ ~_ M ~ S2k p with M = Horn (k 2(n-p),kp). If 
p =  n t h e n  M = 0 a n d r k L  S2k p > 2. Thereforep  < h a n d  qu/ t t  ~ M.  
Since rkL M = 2 if and only i f p  = n - 1, this gives (C41). 

I f Y  = En, n = 6, 7 or 8, then rkL (L- gap) = 2 if and only i f n  = 6 and 

p = 1 or 6. Then (L,L)  is of type D5 and (L "gap) -~ k16 is one of the two 

(nonequivalent) half spin representations of Ds. Moreover, (E6, 1)~-w(E6, 6) 
where w :  sal +a2 +a3 "Jt'20r + 2 a s - ] - a  6 0  Sa l  +or2 +2ol 3 q_2~t4..~a 5`Jt.~6 �9 This gives (E2). 

If  Y = F4, then rkL (L-  l~ap) : 2 if and only if p = 3 or p : 4. When 

p = 3, (L, L) is of type A2 • A1 and (L "{]ap) ~ k3 | k2- When p = 4, (L, L) 

is of type B3 and (L- gap) -- ks is the spin representation of B3. This gives 
(F1) and (F2). 

Finally the case Y = G2 is ruled out since we get rkL (L- gal )  = 1 and 
rkL (L-g~2)  = 3. [] 

P r o p o s i t i o n  6.5. Assume that S\SQ = {ap}, K = L and that q=/tt ~_ 
(L.  ga~) ~ (L .  g[3) is of rank two, with $~p >__ 2. Then up to isomorphism, 
(Y, p, tt) is either one of the following triplets: 

(BC5) (Cn, l , {0 ) )  for n > 2. 
(G3) (G2,1,k2). 

Proof. First make the observation that  a necessary condition for rkL qu/ t t  = 
2 is that  rkL (L "gap) = rkL (L .gB) = 1. 

When Y = An, qU is irreducible. So this case is obviously ruled out. 
If  Y = On, n > 2, then we need to have p < n and tt = 0 in order to get 

a non irreducible quirt. Moreover, rkL S2k p = 1 if and only if p = 1. So 
p = 1 and thus quirt is obviously spherical. This gives (BCS). 

If Y = Bn, n > 3, then rkL Hom(k 2(n-p)+1, k p) = 1 if and only i f p  = n. 
Therefore we need p = n. Now rkL A 2 k p = 1 if and only if n = 3. Thus 
qu _ Hom(k, k 3) $ A2k 3 = k 3 @ k 3.. Therefore q~ is of rank 3. So this case 
is ruled out. 

The case Y = D~, n >  4 is also ruled out. Indeed,  p < n - 2 (otherwise 
q'~ is irreducible) and hence rkL Hom(k 2(n-p), k p) > 2. 

I f Y  = E6, Ez, Es or F4, then rkL (L- t]ap) -> 2 for all p. 
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Finally when Y = G2, rkL (L- ga:)  = 3. Therefore p = 1 and this gives 
(C3). [] 

A subgroup S C G is called horospherical if it contains a maximal unipo- 
tent subgroup in G. By [P], this is equivalent to S being spherical in G and 
dim NG(S) /S  = rkG G/S.  Let YL and YK denote the semisimple types of 
L and K respectively. 

P r o p o s i t i o n  6.6. Assume that S\SQ : {c~p}, C ~ c K,  rkL L / K  = 1, 
that qU/u is a K-module of rank one and that there is a surjective K-  
homomorphism (L .g a p )  -~ qu/U. Then (Y,p, Y L , Y K ,  qU/U) is, up to 
isomorphism, either one of the following data: 

(A5) (A3, 2, A1 x A1,A1, k). 

(B6) (Bn,p, Ap_l • Ap_l XDn_p,k p) for n - p > 2 .  

(C6) (C3, 2, A1 x A1,A1, k). 

(C6') (Cn, 1, C n - I , A I  • Cn-2, k 2) for n >_ 3. 
(D4) (Dn,p, Ap-1 x Dn-p ,Al  x Bn_p_l,k p) -for n - p  >_ 2. 

(D5) (D4, 3(respectively 4), A3, C2, k). 

(F3) (F4,4, B3,D3, k4). 

(F4) (F4,4, Ba, G2,k). 

Furthermore, cases (A5) and (D4) -for n = 3 yield isomorphic pairs (g, ~). 

Proof. Recall that  Corollary 4.5 gives us the candidates for L / K .  I f Y  = An, 
then case 3 in Table 1 yields (A3, 2, A1 • A1, A1, k). This gives (A5) and (D4) 
for n = 3, since L / K x  (see the notations of Section 4) is in this case up to 
a finite covering SL2 x k* • SL2/S where S - SL2 is embedded diagonally. 
Case 5A yields (A4, 1, A3, C2, k 4) and (A4, 4, A3, 62, k4). Indeed, (L-ga  ~) ~- 

k p | k 4 (respectively k 4 | k n-a)  is an irreducible SLp x Sp4 (respectively 
Sp4 x SLn_a)-module and rk  K k p |  4 (respectively k 4 |  - 1 if and only 
if p = 1 (respectively n = 4). Now note that  in both situations rkL L / K x  >_ 
dim L / K +  dim q U / u -  dim B~. So rkL L/Kx  > 5 + 4 - 6 = 3. Hence case 
5A is ruled out. 

I f Y  = Bn, n > 2, then case 3 in Table 1 yields (Ba,2,A1 • A1,AI,  k 2) 
because we have (L.  ga2) ~- $3k2  (~ k2 (as K-modules) and rkg S 3 k  2 = 3. 
But this case is not good since dim L / K  = 3, dim qu/t t  = 2 and dim B~ = 2. 
Case 5A yields (B4, 4,A3, C2, k4). Indeed, (L .  ga4) ~- ]c4 @ k2(n-4)+l is an 

irreducible K-module,  and rkK k 4 | k 2(n-4)+1 = 1 if and only if n = 4. 
But when n = 4, dim L / K x  -- 9 and dim B~. = 6. Thus case 5A is 
again ruled out. Case 7B yields (Bn,p, Ap-1 • Bn-p, Ap_l x Dn_p, k p) for 
n - p  > 2. For there is a K-module isomorphism (L.fJap) ~_ kP| 2(n-p) ~ k  p 

and clearly rkK k p @ k 2(n-p) > 1 for n - p >_ 2. This gives (B6) since 
L / K x  is then up to a finite covering SLp x k* x Spin2(n_p)+l/S • Spin2(n_p) 
where S is a generic isotropy group of SLp x k* in k p. Finally case 10 is 
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ruled out since (L- gap) - kp @ k 7  is art irreducible SLp x G2-module and 

rkG2 k 7 >_ rkspin 7 k T = 2. 

If Y = Cn, n _> 3, then case 3 gives clearly (C6) (see case AS)). 
Case 5A yields (C4,4,A3, C2, S2k 4) because if n > 4, then (L �9 ga4) -~ 
k 4 | k 2(n-4) is an irreducible K-module  and r k r  k 4 @ k 2(n-4) • 1. 
But since r k r  S2k 4 > 1, this case is ruled out. It remains to look 
at case 7C which yields (Cn,p, Ap-1 x Cn_p, An_l x A1 x Cn_p_l ,k  p | 
k 2 (respectively k n | k2(n-P-1))) for n - p > 2. Indeed, {L �9 gap) -~ 

k p | k 2(n-p) ~-- k n | k 2 ~ k p | k 2 ( n - p - l )  as  K-modules. Moreover 
r k r  k p | k a (respectively k p | k a(n-p-1)) = 1 if and only i fp  = 1. So we 
get (Cn, 1, Cn-1, Az x Cn-2, k 2 (respectively kan-4)). Furthermore, when 
n -- 3, sa2 identifies (see the proof of Proposition 6.4) the two candidates 
for (g, D). We claim that  qU/u r k 2n-4 when n > 4. Let P be a parabolic 
subgroup in Sp2n-4 such that  Span-4 /P  -~ p(k2n-4) �9 Then SP2n_2/SLa x P 
is not spherical of rank one: otherwise, since it is prime and not in Table 
1, it would be horospherical. Therefore L/K= cannot be spherical of rank 
two when q~/u  = k 2n-4 since, up to a finite covering, L/K= would be 
SP2n_ a • k*/SL2 x S where S is a generic isotropy group of SP2n_ 4 • k* 
in k a~-4. This proves our claim. So q~/tt  = k a. Then L / K z  is up to a 
finite covering k* x SP2n_2/S X SP2n_ 4 where S is a generic isotropy group 
of k* x SL2 in k a. Hence L/K= is spherical of rank two, see 7C and 9C in 
Table 1. This gives (C6~). 

I f Y  = Dn, n > 4, then case 3 yields ( D n , n -  2, An-3 x Az x Az,An-3 x 
A1, k n-2) since we have necessarily p = n - 2  and (L.ga._2) ~--kn-2|174 2 "~ 

k n - a  | S2k a ~ k n - 2  | k as K-modules. This gives clearly (D4) for n - p = 
2 (see case (A5)). Cases 5A-5D yield (D4, 4 (respectively 3),A3, Ca, k), 
(Dn,p, An-z x Da-p, Ap-1 x Bn-p-z,  k p) for n - p  _> 3, and (D, ,  n - 4 ,  An-5 x 
D4, An-5 x B3, k " -4  x k s) where k s is the spin representation of B3. Indeed, 
rkspin2~ k 21 = 2, hence either n = 4, p = 4 (respectively 3) and (L- gap) -~ 

A2k 4 --~ k 5 $ k as Ca-modules, or n - p > 3 and (L.  gap) -~ kn | k2(n-n) -- 

k p @ k a(n-p-z)+z E9 k p | k as Ap-z x Bn_p_z-module (observe tha t  C2 --- B2 
and rkspin2~+~ k az+z = 2). This gives clearly (D5), and also (D4) for n - p  _ > 3 

(see case (B6)). But the last candidate is ruled out since rkK k n-4 | k s > 1. 
If Y = Es, E7 or Es, then case 5A yields p = 4 for E7 (respectively p = 5 

for Es) with (L- gap) ~ k3 | k2 | k4 (respectively A2k 5 | k 4) as an SL3 x 

SL2 x Sp4 (respectively SL5 x Sp4)-module. But then rkg  (L-gap) > 1. Case 

5D (n > 4) yields p = 1 or 6 (for the three groups) with (L- gap) ~- kat |  

as a Dz+l x Am_z-module, where k az is one of the two spin representations 

of Dt+z (l=4, 5 or 6). Moreover k a~ is also the spin representation of Bl, 

hence k 2~ @ k m is an irreducible K-module. But rkspin2~+~ k 2~ -- 1 if and 

only if I = 2. So type E is ruled out. 
If Y = F4, then case 7B requires that  p = 4 and this yields (F4,4,Ba,D3,k 4) 
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~--w (Fa, 4, B3, D3, k 4.) where w =  sal +a2 +as ~ +a3 ~ and (L-i~a,) - k s -~ 
k4(9 k 4. as a Spin~-module. Then L / K x  is up to a finite covering Spin z x k* 
where S is a generic isotropy group of Spin~ x k* in k a. Hence L / K x  is 
spherical of rank two (see 9B for n=3, Table 1) and this gives (F3). Case 
7C yields (F4, 1, Ca, C2 x A1, k4). Indeed, (L -ga l )  -~ k14 - ks | k2 ~ ka @ k 
as C2 x Al-modules and rkg  k s | k 2 > 1. Now observe that  if P denotes 
a parabolic subgroup in SpA such that  S p J P  ~- p(ka) ,  then SP6/P  • SL2 
is not spherical of rank one: otherwise, since it is prime and not in Table 1, 
it would be horospherical. Therefore L / K ~  cannot be spherical of rank two 
because it is up to a finite covering isomorphic to k* x Sp6/S x SL2 where S 
is a generic isotropy group of k* • SpA in k a. Case 10 yields (Fa, 4, B3, Gz, k) 
since (L- ga4) ~- ks -~ k7 (9 k as a G2-module and rkG2 k 7 >_ rkspin  7 k 7 = 2. 

This gives (F4). 
Finally, Y = G2 is obviously ruled out. [] 

Now we go through the cases of Theorem 5.9. In the following propo- 
sitions, fl is chosen to be the lowest weight in t he  L-module (L-  9~). Let 
r < s be such that  {r, s} = {p, q}. 

P r o p o s i t i o n  6.7. Assume that S\SQ = {ap, aq} with p r q, K = L and 
that q~/u  ~_ (L . g~p) (9 (L . ~ )  is of rank two with A~. = 1. Then up to 
isomorphism, (Y,r, s, ~p,f~) is either one oJ the following data: 

(AD6) 

(BT) 

(BC8) 

(c7) 
(c8') 
(F5) 

(F6) 

(G4) 
Furthermore, 

(An, 1, q,(~l,ax + -.. + ~q) 

(Bn ,  1, n,  a l ,  a l  + -.. + an)  

( Bn, q, n, Otn, Ot q "t" ... -t- Otn) 

(Cn, n - 1, n, an,  (~n-Z + an) 

(Cn,p,p + 1, ap, c~p+l) 

(F4, 3, 4, a3, aa). 

(F4, 2, 3, or a3). 

for n > q > 2 .  

for n > 2 .  

for n > q + l > 2 .  

for n > 2 .  

for n _ > p + 2 > 3 .  

(Gu, 1, 2, ax, a2 (respectively a l  + a2)). 

cases (B7) and (C7) yield isomorphic pairs (~, ~)) when n = 2. 

Proof. First recall that  if Ml denotes a representation for SLt isomorphic to 
k t or k z*, then rkSL~xSL., Ml | Mm = rain (k, l). Recall also (see the proof 
of Proposition 6.5) that  rkL (L- l~ap) = rkL (L- l~Z) = 1 and have in mind 
the fact tha t  u is a Lie algebra. 

I f Y  -- An, then qu ~_ kr •ks - r*  @kS-r@kn-s+l* (gkr|  Hence 
r = l  or s - r = l  or n - s + l = l .  So we get (An, 1, q, aX, al-t-. . .+~q)~-w(A,, l, l+  
1, oq, Oq+l)~--w,(An,m,n, Otn,Otm + ... WOrn) for n > q = l +  1 = m +  1 > 2, 
where w= saq_l o ... o Sal and w' = sa.  o ... o sa,+l. This gives (AD6). 

I f Y  = Bn, n > 2 (observe that  for l > 1, rkspin2,+~ k zz+l = 2 and 

rksL ' k t (9 k z* > 2) then (Bn, q, n, (~n, aq + .-. + c~n) for n > p + 1 > 2 and 

(Bn, n -  1, n, an,  an -z  +2an)=w(Bn,  n -  1, n, an -z ,  (~n)~--w' (Bn, 1, n, a l ,  a l  + 
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... + a . )  for n > 2, where w=  sa. and w ~ = Sa1+...+a._1- This gives (BC8), 
(BT) and also (C7) for n -- 2. 

I f Y  -- C , ,  n > 3 (note that  for I ~ I, rksp2~ k 21 = 1 and rksL z SZk I > I) 

then we find (Cn, n-=l, n, an,  a , - 1  + a n ) - w ( C , ,  n - l ,  n, a n - i ,  an)~w, (Cn, 1, 
n,  a l ,  2a1 -J-...+2an-1 Wan) for n > 3 and (Cn,p, p + l ,  ap, ap+l)--'~-w" (Cn, 1,1, 
ax, aa + ... + at) for n _> p + 2 = l + 1 _> 3, where the isomorphisms are 

W t given by w=  sa , ,  = sal+...+a,_l and w" = sa~+...+ap. This gives (C7) 
for n _> 3, and (C8'). 

It is elementary to check that  the cases Y ---- Dn for n >_ 4, E6, E7 and Es 
are ruled out, using the fact that  rkspin2z k 2z = 2 for l _> 1. 

If Y = F4, then we find (F4, 1, 3, a l ,  a l  + a2 + a3)- '~(F4, 2, 3, a2, a3)-'~w , 
(F4, 2, 4, a4, a2 + 2a3 "~- 2a4) and (F4, 3, 4, a3, a4)-"%- (F4, 3, 4, a4, a3 + a4), 

w ~ and w" This gives (F6) and (F5). where w= sal+a2, ---- sas+a~ ---- s ~ .  
Finally, i fY = G2 then we get (G2,1, 2, a l ,  2al  + a2) -~(G2,  1, 2, a l ,  ax + 

a2), where w :  Sal, and also (G2, 1, 2, a l ,  a2). This gives (G4). [] 

P r o p o s i t i o n  6.8. Assume that S\SQ : {ap, aq} with p ~ q, K : ker 
(ap - aq) ~ and that q"/u ~_ (K. go,) ~_ ( K  . go , )  is of rank one. Then up 
to isomorphism, (Y, p, q) is either one of the following triplets: 

(ADT) (Dn, n - l , n )  for n>_2. 

(BC9) (B2(respectively 3), 1, 2 (respectively 3)). 
(G5) (G2,1,2). 

Proof. Let a E SQ. Since ( K  . g~p) ~_ (K  . 9~q), (a, ap) < 0 (i.e., a is 
a neighbour of ap in the Dynkin diagram of S) if and only ff (a, aq) < 0. 
Therefore ap and aq are ends of the Dynkin diagram of S, and they are not 
be separated by more than one simple root. Hence Y = An (n = 2 or 3), Bn 
(n = 2 or 3), Cn (n -- 2 or 3), Dn (n > 3) or G2. Observe that  in each case 
(K.l~av) ~_ ( K . g a , )  is of rank one except for (C3, 1,3) where (K-ga~) -- k 2 

and ( K .  9as) ~- $2k2" Now recall that  D3 = A3 and C2 = B2. [] 

7. Colors  a n d  n o r m a l i z e r s  

The goal of this section is to compute the pairs (G, H) for X prime of 
rank two. The group H is determined both geometrically and by means of 
its eigenvectors in the rational representations of G (see Tables A-G). The 
group action on X is also determined, and the irreducible components of 
the normal crossing divisor are expressed in Pic X, see Section 2. 

So far we have determined a set & of candidate pairs ( G , H  ~ for X prime 
of rank two. If one sets aside in Tables A-G all cases where an element w E 
W is given in column 3, second cases of A5, B2, C2, D4, D5, fourth case of 
D4, and sixth case of D4, then the set �9 of all triplets (G, K, tt) is one-to-one 
with ~, the correspondence being (G, K, U) ~-~ (G, KU) .  Let A0 denote the 
set of B-orbits of codimension one in G / H  ~ For each Do E A0, let fDo be 
an equation defining 1to 1 (Do) where It0 denotes the projection G -~ G / H  ~ 
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(Note that  fDo 6 k[G] (BxH~ is determined up to a scalar by its character 
Xi~o 6 X(B)  x X(H~ Observe that  c 6 X(H) is trivial on H ~ see col-ran 
4 and Section 3. 

L e m m a  7.1. / f  ( G , H  ~ 6 ~, then (XfDo)DOeAo i8 the set of characters 
given in column 4 for the corresponding (G, K, u) 6 ~.  

Proof. By Remark 1.5, if f 6 k[G] (B•176 is nonconstant, then there exists 
Do 6 Ao such that  Xf = Xfoo if and only if f #  f l  x f2 with both fi 6 

k[G] (BxH~ nonconstant.  Thereby, it is easy to check that  if we take c = 1, 
then the characters coresponding to @ in col,,mn 4 are the XfDo' Do 6 Ao. 
Indeed, if the weight in X(B)  of a candidate fDo in the tables is a sum 
wr + ws of fundamental  weights (with possibly r = s), then fDo cannot be 
split into a pair of eigenfunctions with weight wr and ws in X(B)  respectively 
(th~mks to card A < 2+ rk X(K),  see Section 2), except in the following 
cases: first A7, A8, first B9, C9, G5. For these five cases, we notice that  in 
the irreducible G-module Vwl, respectively Vw2, the highest weight line is 
the only one fixed by U. [] 

L e m m a  7.2. Each (G, H ~ 6 r satisfies the condition ( au t ) .  

Proof. We shall check the condition ( au t )  for all cases except those men- 
tioned in Remark 6.1. Let .~.o = k(G/H~ If 1)0 denotes the cone of 
invariant valuations in Qo = Homz(E0, Q), see for example [K1, p. 231 and 
242], then we have dim 1)0 f3 (-Vo) = dim NG(H~ ~ Since H ~ is clearly 
not horospherical, see Section 6, we have V0 ~ Qo (see [P]). So it remains 
to show that  dim V0 fl (-1)o) is not one-dimensional. If it is, then H ~ would 
be contained in a parabolic subgroup P in G such that  card Ao = X(P)  + 1 
(see [K1, p. 239]) which is clearly not the case. [] 

By Lemma 7.2, for each group lying between H ~ and NG(H~ the cor- 
responding homogeneous space G/H has a (unique normal) candidate won- 
derful completion X, see the condition ( au t )  and Remark 6.1. In Tables 
A-G, we have gathered some of these candidates X. 

It is easily seen that  the set of characters in X(B)  x X(H) given in column 
4 correspond to (XfD)DeA, see Section 2 for this notation and the proof of 
Lemma 7.1. This yields E and the closed orbit G.z C X since G~- is the 

stabilizer of the line through I-IDea fD 6 k[G] (B), see Section 2 and for 
example [K 1, p. 244]. 

P r o p o s i t i o n  7.3. The candidates X given in Tables A-G are wonderful. 

Proof. Note that  a candidate X always contains two wonderful subvarieties 
of rank one, since normal singularities do not occur in codimension one. Let 
71, 72 be the corresponding spherical roots. Recall from the introduction 
that  X is wonderful if and only if X is nonsingular, i. e., 71, 72 generate E, 
see Section 2. Since G.z is known and 71, 72 are linearly independent, it 
follows that  71 and 72 are uniquely determined thanks to Table 1, except in 
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cases mentioned in Examples 7.4, 7.5 and 7.6 below. Therefore the proof of 
this proposition will be completed by the end of Example 7.6. 

Example  7.4. (first cases of B5 and C5 for n = 2) Consider the projection 
G/H --~ G/@H where w E W is given in the tables one case below (namely 
second cases of B5 and C5). By the property (uni),  see the introduction, we 
get an equivariant morphism X -+ Xw, where X and Xw are the candidate 
wonderful completions of G/H and G/@H respectively. In particular, the 
(well defined, see above) spherical roots of X and X~ lie on the same half- 
lines in .~. | Q- Since the spherical roots for Xw are known thanks to Table 
1, we get those of X. 

Example  7.5. (case G3) We claim that in this case the pair of spherical 
roots of X is not (c~1, a2). For otherwise, consider the projection G/H 
G/H1 where (G,/-/1) is given in case 15, Table 1. By [K1, p. 239], there 
would be a quotient of Q = Homz(~, Q) by a one-dimensional colored vector 
space V yielding Homz(Z(al  + a2), Q), and by [K1, p. 238], V should be 
generated as a cone by elements of ~(A) (see Theorem 1.4 for this notation) 
and by elements of the cone l) dual to the cone generated by - a l  and -c~2. 
But it is easily checked that this is not the case (note that V fl l) = {0}). 
Contradiction. 

Example  7.6. (cases where H C B) Consider the projection G/H --r G/B. 
By the property (uni), we get an equivariant morphism X --~ G/B. In 
particular, codimension one C-orbits in X have solvable isotropy groups. 
Therefore the spherical roots of X are simple roots, see Table 1. [] 

Remark 7.7. In cases A1, A2, A3, A7, A8, B1, B3, C1, DT, and E1 of Tables 
A-G, the candidate wonderful completion X0 of G/H ~ is singular. Indeed, 
the spherical roots of X0 (see the proof of Proposition 7.3) are in these cases 
the same as those of X and in particular they do not generate the lattice E0 
corresponding to X0. Note that in all other cases X0 is wonderful thanks to 
Proposition 7.3. 

By Lemma 2.2, the following theorem yields Theorem 1.3 while Theo- 
rem 1.4 can be deduced from Tables A-G. 

T h e o r e m  7.8. The prime wonderful varieties of rank two are the varieties 
given in Tables A-G. 

Proof. Observe that for each pair (G, H ~ E ~, there is at most two corre- 
sponding subgroups H~ and H in Tables A-G, always ordered by inclusion, 
with H/H~, respectively H~/H ~ containing at most two elements. So by 
Proposition 7.3 and Remark 7.7, it suffices to prove that H = NG(H), i.e., 
that there are no pairs of spherical roots other than those given in the tables, 
see Remark 6.1 and Introduction. This point is clear thanks to Table 1 (see 
the proof of Proposition 7.3) except in cases A5, first A6, first AT, A8, B6 for 
p = 1, B7, first and second B8 for n = 2, first Bg, C7 for n = 2, C8, C9, first 
and second D4 for n = 3, third and fourth D4 for p = 1, D5, G4 and G5. For 
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these, assume that NG(H) ~ H. Note that 71 (see column 5) for G/H is a 
simple root a of (G, T) and that 2a should be a spherical root for G/NG(H). 
By [L1, 3.2] there should be a unique color of G/NG(H), represented by a 
pair (X, k/) E 2'(B) x X(NG(H)) such that the following property is satis- 
fied: X(a v) r 0. Moreover, for G/H, there are two colors D +, D-  (with 
equations f+,  respectively f -  E k[G](B x H)) having this property. Therefore 
the product f + f -  E k[G] (BxN~ So 72 r EN @Z Q = E ~ z  Q where 
~g "" k(G/NG(H))(B)/k *. Contradiction. [] 
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