
Numerical determination of long-range stress history 
from strain history in concrete 

Z.P. B A Z A N T  (I) 

The paper presents an efficient and highly accurate step- 
by-step numerical algorithm for computation of stress history 
from any prescribed strain history in a linear age-dependent 
viscoelastic material. The method is applicable for any form 
of the creep function, including the typical case when the slope 
of the creep curve in the logarithmic time scale is significant 
over many orders of magnitude of the elapsed time period 
(i.e. retardation spectrum is broad). The time division must 
be in geometric progression or nearly so. The creep function 
may be defined by formulas or by a table of values. A FORTRAN 
program is presented which allows quick and economical com- 
puter solution. Numerical examples are given and excellent 
convergence is demonstrated. For the special case of strains 
varying linearly with the creep coefficient a useful new theorem 
is proved. 

N O T A T I O N S  

E ( 0  = J (t, t )  = 

E R  (t,  t ' )  = 
Ett 

J (t,  t ' )  = 

t, t ' ,  to = 

GO 

tp 
E 

Young ' s  modulus (instantaneous); 

relaxation function (Eq. 12); 
fictitious elastic modulus in Eq. (4) 
or (14); 
creep function (Eq. 1); 
time, time as integration variable, 
and time of  first stress introduction 
(all in days); 
normal  strain; 
prescribed stress-independent ine- 
lastic strain, e.g.  thermal dilatation, 
shrinkage (Eq. I); 
fictitious inelastic strain in Eq. (5 a) 
or (15 a); 

(1) Ph.D., S.E., Dr., Eng., Associate Professor of Civil En- 
gineering, Northwestern University, Evanston, Illinois 60201. 

e0, el = constants in Eq. (16); 
(t, t ') : creep coefficient (Eq. 6); 

ff = normal  stress; 

Subscripts r, s stand for discrete times tT, t~. 

I N T R O D U C T I O N  

The conversion of  creep data into relaxation data 
for  concrete is a problem of  considerable importance.  
It  is needed for determination of  the stress response 
to prescribed deformation history of  any concrete 
structure which can be assumed as homogeneous  
( i .e .  having the same creep properties in all points), 
for evaluation o f  stresses in concrete f rom measured 
strain histories, for computa t ion of  shrinkage stresses, 
etc. However,  analytical solution to this problem is 
rather complicated because of  the fact that  creep 
properties of  concrete are strongly age-dependent 
(aging). To make an analytical solution feasible, 
various simplifications of  the creep law have been 
introduced in the past, among  which the effective 
modulus  method [1, 2, 3], the rate-of-creep method 
due to Glanville [3] (called Dischinger 's  law in 
Germany),  the creep laws of  McHenry  [4], Aru tyunyan  
and Maslov [5] and Levi [6], and the methods  o f  
Hansen [7] and Klug and Wit tmann [8] could be 
named [cf. 9, 10]. Such simplifications, however, 
introduce a substantial error and are unnecessary 
because the solution can be determined accurately by 
some of  the numerical methods.  

The simplest numerical method, which has been 
used by Raphael  [I1], England and Illston [12] and 
others, is to assume the stress history as a series o f  
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C ~ D~-IAy ~ 5T~-5~ PEs TQ 6 PPEqCPIB~'n s HISTOPY (BA7ANT 1967) 
5 I ~ N S T O N  r ' S T P l ] ~ 5 ) ,  n f ) E F ( l g q ) ~  T ( 1 9 5 )  
D~T^ TIn.,q.,.IIoF)DF_FIO.,I..Iq3~O.I,AGEI/IO./,NINT/83/,AP/16./* 

] ~,9/G/,P, ST;~/II./ 

O0 q I = i,, NTNT 
5 T ( I )  = T ( I - I )  ~ r.TP 

C ~L.TF~N.ATIVF - TO GET RESPONSE FOR VAPlOLIS DO 50 K = l,t~ 

C V~L! IFS OF AGE1,  INCLUDE THESE TWO STATEMENTS AGE1 = 10 , . * ' aK  
STPESS = O. 

DO 50 I = 2 ,  h l INT 
TIK4E = AGE1 + T ( I )  
II = I " ] 
7 = 0. 

00 30 J = 2, II 
30 Z = Z + (DSTR(J)~.S)~'(CREEP(TIME~AGEI+T(J))'CREEP(A6 E I+T( I1 )  

1 , A G E I + T ( J ) ) * C P E E P ( T I # E , A G E I + T ( J - 1 ) ) - C P E E P ( A G E I + T ( I I I ' A G E I §  
Ds ( I ) = ( ( DDEF ( I ) -7 ) *2 .  ) / ( CREEP ( f I ~AE, T I NE ) +CREEP ( TIME, AGE I * f  ( I ! ) ) ) 
IF(  I .EO.2)  F)STR(P) = DDEF(2I / CPEEP(-AGEI§ AGEI§ ) 
STPESS = STRESS + OSTR(I) 

qO TF(I .I_F. ? .OQ. ( ( I - 3 ) /NP)~NP .EO. I - 3 )  ~RINT 81, I ,  f ( I ) ,  STRESS 
81 FnP~T(3H r= 13, ~.H T(1) = E13.4,  IOH STPESS = E13.4} 

STOP 
E.~.;D 

FUD.!CTION CPEF p(X,,Y) 
V = ( x - Y ) e ~ . 6  
CPFFP = (3.~i-7 ~ S O P T ( . 8 5 + z ~ , / Y ) } ' : ' ( | . §  §  
~FTIJPN 

ENO 

Fig. 1. - -  FORTRAN IV program for stress response to a prescribed strain history. TIME = t,  T = t - -  to, AGEI = to, 
CREEP(t, t') = J(t, t'), DDEF = Aer  - -  A e r ~  = prescribed array,  which is defined here as a step function, DSTR = Aar, STRESS 

a t ,  Z = A e / '  = Aer  o, NINT = total number of  steps, AR = n = number of steps per loglo 10 in log (t - -  to) - -  scale, 1 = r + 2, 
J = s + 2, NP  = interval between the values to be printed, DDEF (1) must be set as 0. I f  relaxation is to be computed for various 
t0-values, e.g., to = 10, 10 2, 10 3, 10 4 days, include the two alternative statements. 

sudden (discontinuous) stress increments and to solve 
the algebraic equations resulting from superposition 
of creep responses due to all individual stress incre- 
ments. In relation to the formulation of the creep 
law in terms of the integral equation, the error of  this 
method is of  the order of the time step (first order 
method). More accurate second order methods have 
been used in the broader context of structural analyses 
[13-17]. However, no study of the accuracy and con- 
vergence seems to have been presented so far. Further- 
more, no attention seems to have been paid to the 
fact that the creep curves of  concrete exhibit in the 
logarithmic time scale a significant slope over many 
orders of  magnitude of the elapsed time period, ranging 
from seconds to at least 50 years. (In other words, 
concrete has a very broad retardation spectrum.) 
Consequently, for accurate results, the first time 
step ought to be of  the order of  0.0001 to 0.01 day, 
and if the long range response (for 30 years, e . g . )  

is to be computed, the time step cannot be kept 
constant but must be gradually increased during 
computation (according to time division in a geometric 
progression or nearly so) if the number of  steps 
should not become unacceptably large. Thus, the time 
step at the end of computation is inevitably quite 
large. The numerical implications of  this fact have not 
yet been examined (1) and in the past practice the 
creep has been considered to occur only within a 
limited time range, such as from 5 to 500 days, to 

allow keeping the time step about constant and still 
reaching the final values with no more than about  
100 steps. 

A study of  the above aspects, and especially the 
presentation of an algorithm admitting time division 
in a geometric series, is the main objective of  this 
paper. In addition, a fast and economical F O R T R A N  
IV program will be presented (which, on such a com- 
puter as CDC 6400, converts any concrete creep 
function to the relaxation function with a three-digit 
accuracy in less than 20 seconds and for a cost of  less 
than eight dollars). Finally, a useful new theorem for 
the case of  strain histories depending linearly on the 
creep coefficient will be given. 

CREEP LAW 

If  one neglects the complex dependence of strain 
on the histories of  water content and temperature [18] 
(which is at present insufficiently understood), the 
strain of concrete is a functional of stress history. 
Rejecting the possibility that there could be some 
abrupt  changes of  microstructure involved in the 
creep process, this functional must be continuous. 

(z) Time division in a geometric progression has been utilized 
already in a previous author 's  paper [17]. 
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Then the functional admits a generalized Taylor  
series expansion whose first term, which is linear 
and expresses the linear principle of  superposition, 
must be a sufficiently good approximation of  the 
material behavior for sufficiently small stresses and 
their changes, and sufficiently short time histories. 
Practically, the linear principle of  superposition has 
been found acceptable for stresses less than about  
0.5 of  the strength, provided the strain reversals are 
excluded. In fact, no better general stress-strain law 
for this range is known today (1). According to this 
principle, the uniaxial creep law may then be expressed 
in the form : 

( t ) - - e  ~  = ~ J ( t , t ' ) d t r ( t ' )  

(Stieltjes integral [19]) (1) 

where t = time f rom casting of  concrete; tr, e = 
normal  stress and strain; e ~ = prescribed stress- 
independent inelastic strain, for example shrink- 
age or thermal dilatation; J (t, t ') = creep function = 
strain in time t caused by a constant unit stress applied 
in time t'. (Note that 1/J  (t, t) = E (t) = Young ' s  
modulus in time t.) 

N U M E R I C A L  A L G O R I T H M  

When the history of  strain e (t)  is prescribed, Eq. (I) 
represents a linear Volterra 's  integral equation for 

(t). The most  straightforward method for its numer-  
ical solution may be based on replacement o f  the 
Stieltjes hereditary integral in Eq. (1) by a finite 
sum [19]. For  this purpose time t may be subdivided 
by discrete times to, h,  t2, ..., t~v into subintervals 
Atr = t ~ - -  tr-1 (r = 1, 2 . . . . .  N),  which will be 
considered as unequal. Applying the trapezoidal 
rule, whose error is of  order At 2 (second order method),  
Eq. (I) yields : 

o :~ �89 (J,,~ + Jr,~-~) •  (2) 8 r - -  8 r 
8=1 

where Aa~ --  as - -  a~-t and subscript r refers to time 
t~, e.g. e~ = e (tr), J~,~ = J (tr, t~) etc. It  should be 
noted that Eq. (2) is valid even for instantaneous 
changes o f  e and (r; if an instantaneous change is to 
be considered at a certain time, say t~, one simply 
puts At,~+1 = 0 or tm+l : tin. 

Rewriting Eq. (2) for e~-l, 

r - -1  

o Z �89 ( J r - i , s  -~ J r - i , s - i )  A~ys (2 a) E r - 1 -  6r_  1 = 

(for r > 1) 

(1) For certain special situations, other stress-strain laws 
than Eq. (1) may give better prediction. This can be said, e.g., 
of the rate-of-flow method of England and Illston [12] when 
creep recovery is considered. However, it must be kept in mind 
that this creep law is also linear and implies, therefore, the super- 
position (as in Eq. 1) of certain unit creep curves, although not 
the actual ones but distorted ones, which would necessarily 
give poor prediction of creep in most other situations, e.g. for 
concrete loaded at a high age. Correctly, deviations from Eq. (1) 
must be regarded as nonlinear effects and cannot thus be 
generally formulated by some modified linear stress-strain laws. 

Z.P. BAZANT 

TABLE I. - -  Exact values of the stress relaxation ratios 
(t)/tr (t') obtained with the program in figure 1, and 

their comparison with the predictions of the effective 
modulus method and the rate-of-creep method, giving 
values 1/(1 § qJ (t, to)) and e-~(~,to), respectively, and 
the exact solution when the variation of E is neglected. 
(Creep function (7)-(10) with q~ (m, 7) = 2.5.) 

Method 

present method 
(variable E) 

present method 
(constant E) 

effective modulus 
method 

rate-of-creep 
method 

to i 
in 

d a y s  101 

101 
102 
103 104 
101 1.568 
t02 ].640 
103 J.704 
104 1.760 

101 .596 
10z .659 
10 a .717 
104 .769 

101 ! ~  
102 
103 
104 E.741 

t - -  to (in days) 

10 2 10 3 10 4 

.555 .328 .220 .179 

.640 .455 .373 .343 

.704 .529 .451 .425 

.760 .598 .521 .496 

,369 .278 .244 
.456 .375 .346 
.529 .451 .425 
.598 .521 .496 

.406 .327 .304 

.473 .390 .364 

.541 .456 .429 

.607 .524 .497 

.232 .128 .101 

.329 .209 .175 

.428 .303 .264 

.524 .403 .363 

and subtracting this equation from (2), one can 
obtain (see also [13]) : 

A~r = E7 (Aer - -  Ae~) (3) 
where 

E'~ ~- 2/(Jr ,  r -? J . . . .  1) (4) 
r--1 

A e  r = Z A~rs �89 (Jr,s + J . . . .  1 - -  J r - l , s  - -  J r - l , s - 1 )  

~:1 + • (5 a) 
(for r > 1) 

Ae; ----- Ae~ (5 b) 
(for r = 1) 

Equations (3), (4), (5 a), (5 b) are recurrent algebraic 
equations which allow a step-by-step computa t ion  o f  
the values Atrr when Aer- values are given. A 
F O R T R A N  IV program based on these equations is 
presented in Figure 1. 

A P P L I C A T I O N ,  E X A M P L E S  AND D I S C U S S I O N  

For  computa t ion o f  the long-range response o f  
concrete it is necessary to restrict admissible strain 
histories to those in which the prescribed strain 
history exhibits an immediate (discontinuous) change 
(if any) only in time of  loading, to, and is followed by 
a continuous change at a gradually decreasing rate, 
such that in log (t - -  to)- scale the slope o f  the 
e- curve is nowhere too large. The variation o f  
strain in structures under steady load, shrinkage and 
steady support  conditions for t > to is practically 
always of  this type. (If e (t)  is prescribed with sudden 
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changes at several times, the linearity of  Eq. (1) allows 
the strain history to be decomposed into several 
components,  each of which is of  the type defined 
above.) 

The restriction to strain histories just  introduced 
is necessary to allow gradual increase of  the t ime 
interval Atr with r, which is needed for reaching 
final values of  interest, e.g. the values for t -  to 
= 10,000 days, with an acceptable number  of  steps. 
The steps Atr are best chosen in such a way that  
J (tr, to) - -  J (tr-~, to) is nearly constant  and equal, 
for high accuracy, about  0.02 of  J (tr, to) or less. 

For  practical computat ion it is most  convenient  
to choose the discrete times tr in a geometric progres-  
sion, that  is tr/t~-i = constant.  In the log (t - -  to) 
time scale the time step then appears  as constant  
and putting t~ = t0~/~ t~-i or log t~ = 1In + log 
t~-l, n represents the number  of  steps per  decade log 10. 
(For the creep law (7) - (10) below one should chose 
At1 -<, 0.1 day and n > 8 if good accuracy is desired.) 

As an example, the computer  results are shown 
in Table I for the following creep function : 

] (t, t ') = (1 q- q~ (t, t ' ) ) /E (t') (6) 

E (t') = E (28) It '/(4 -q- 0.85 t')]& (7) 

q~ (t, t ') = q~u ( t ' ) f  ( t -  t ') (8) 

~u (t ') = q) ( ~ ,  7) 1.25 t '-~ (9) 

f ( t  - -  t') = (t - -  t')~ § (t - -  t ') ~ (10) 

where t is expressed in days, q~ = creep coefficient. 
(Equations (7)-(9) have been recently recommended  
by ACI  Commit tee  209 [20], along with a method 
of  determination of  constants q~ ( ~ ,  7) and E (28).) 
Practical demonstrat ion of  convergence of  the numer-  
ical algorithm is given in Table II. Compar i son  in 
Table I with the prediction of  the old simplified 
methods for concrete creep indicates the importance  
of  an accurate numerical analysis. It  is also seen f rom 
Table I that a neglect of  the variat ion of  elastic 
modulus E results in a serious error. In Ref  [21] one 
can find application of  the p rogram to shrinkage 
induced stresses. It  should be noted that  the p rog ram 
works for any creep function, including functions 
without a bounded final value of  creep (which is a more  
realistic assumption than a bounded final value). 

It  is no complication if the creep function is given 
in a tabular  form rather than an analytical expression. 
In this case the subroutine for J (t, to) may  be modified 
as is shown in Figure 2. (This subroutine can be 
somewhat simplified if q~ (t, t ') is assumed as a p roduc t  
of  two functions of  one variable as in Eq. (8).) This 
is the case of  the CEB creep function, for  which the 
values of  relaxation function obtained with the above 
program can be found in Ref. 21. 

The subroutine in Figure 2 is useful especially for 
direct conversion of  measured creep data  into relaxa- 
tion data. Application of  a p rogram such as presented 
is inevitable when stresses in concrete structures are 
to be determined f rom strain histories measured by 
strain gages. 

Somewhat  simpler expressions are obtained if the 
Stieltjes integral in Eq. (1) is replaced with the sum 

Jr,s A~s whose error is of  the order At (first order  

TABLE II. - -  Computed stress relaxation ratio ~r (t.v)/ 
(to) for various numbers N of subdivision of time interval 

(to, tx), using the second order method (Eqs. (3), (4), 
(5a), (5b), program in figure 1) and the first order method 
(Eqs. (3), (11)); t,v - -  to = 1,000 days; beginning of 
relaxation at to = 35 days; At1 = 0.1 day; constant step 
in log (t - -  to) scale; creep function (7)-(10) with 
q~ (0% 7) = 2.35. 

number 
of 

steps 
N 

8 
16 
32 
64 

128 
256 

2 na order 
method 

.3532 

.3592 

.3618 

.3630 

.3635 

.3637 

l st order 
method 

.3311 

.3468 

.3556 

.3599 

.3619 

.3629 

method).  Then Eq. (3) is again obtained but  instead 
o f  Eqs. (4)-(5 a). 

g--1 

E" r' = Er ,  A s ;  = S], A(7s (Jr ,s  - -  J r - l , s )  -]- A 8  0 ( 1 1 )  
s = 1  

Accuracy  of  the first order  me thod  is lower, as is 
seen f rom Table  II.  

The  uniaxial creep law is of ten expressed in a diffe- 
rent  fo rm which is obta ined f rom Eq. (I)  on integration 
by parts .  I f  a replacement  by finite sum is carried out  
in this formulat ion,  a somewhat  different, a l though 
analogous,  a lgori thm is obta ined ( C f  [13], [15], 
[16]). It  has been found,  however,  that  this a lgor i thm 
does not  allow the t ime step to be increased arbi t rar i ly  
and becomes numerical ly unstable when the t ime step 
significantly exceeds the shortest  re tardat ion t ime 
needed for the approx imat ion  of  the creep curves by 
a generalized Kelvin model.  In the case of  creep 
funct ion (8)-(10) it would thus be necessary to keep 
Atr  smaller  than abou t  1 day, and so at  least 10,000 
steps would be needed to determine the 30-year res- 
ponse. 

F U R T H E R  E X T E N S I O N S  

The relaxation data can be conver ted into creep 
data  with a similar algori thm. In  this case the creep 
law is defined as follows 

~ ( t ) =  f l E R ( t , t ' ) ( d e ( t ' ) - - d e O ( t ' )  ) (12) 

(Stieltjes integral) 

in which ER (t, t ')  = relaxat ion funct ion = stress in 
t ime t caused by a constant  unit  strain in t roduced in 
t ime t ' .  Replacing the Stieltjes heredi tary integral 
in Eq. (12) with a finite sum according to the trape- 
zoidal  rule, one can derive 

H Aer  = A ~ , I E ,  + A e ,  (i 3) 
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"3. 

F!IN(~T I O.xl CP[FP(X,Y)  
CO~A;~C'N / P F L /  A J ( 1 6 , A ) ,  

ALL = ALC)GIO(Y) 
L = 1 
L = L + I 
a = 4L(L)  - ALL 
IF (A  . L T .  0 . )  GO TO 3 
AA = ALL - A I_ (L - I )  
IF (X  .GT. Y) GO TO 5 

T L ( I 6 ) ,  AL(8} 

COFEP = ( A J ( I , L . - I ) ~ A  * A J ( 1 , L ) * A A ) / ( A L t L ) - A L ( L - 1 ) )  
P FTIJRN 

5 TLL = ALOGIO(X - Y) 

K = 1 

6 K = K + 1 
B = T L ( K }  - TLL 

IF(B .LT. 0.) GO TO 6 

RR = TLL - TLIK-I) 

C~FEP = ( ( / ~ . J ( K - 1 , L - 1 ) ~ ' A  + A J ( K " I , L ) * A A ) ' ~ B  + 

l ( A J ( K , L - 1 ) * A  + A J ( K , L ) * A A ) * B B ) / ( ( I ' L ( K ) - T L ( K - I ) ) * ( A L ( L ) - A L ( L - I ) ) )  
P~TIJPN 
E~IO 

Fig. 2. - -  Alternative subroutine for program in Fig. 1, for the case when J(t,  t ' ) is  defined by a table of  discrete values AJ(k ,  I) = J(vt 
+ 0~, zt )  for arbitrarily selected discrete times zt ,  I = 1, 2, ... (ages at loading) and 0~, k = 1, 2 . . . .  (times elapsed from loading). 
The C O M M O N  statement must also be inserted in Fig. 1, and the values AJ(k, l), TL (k) (= loglo Ok) and AL(I) (= loglo zl) must 
be assigned in Fig. 1. The J(t,  t')-values are determined by double linear interpolation in log t'- and log (t - -  t') - scales. The values 
Ok = t' - -  t and vt = t' must be selected sufficiently close to each other and must cover the whole field of  values t' - -  t and  t' 
called from the main program. AJ  (1, i) = 1/E(T0 and 01 should be set equal to the time to which the E-value pertains, usually 
about 0.001 day. The largest T: and 0x must be greater than the largest t' and t - -  t' called. 

where 
E~' : �89 (ERr, r + ER . . . .  1) (14) 

1 r-1 
A e  r : -~7, y" A e s  �89 (Enr,  s -1- E R r , s _  1 - -  E R r _ l ,  s 

g r  s=z 
- -  E~r_l,8_ 0 + Ae ~ (15 a) 

(for r > 1) 
Ae r = Ae ~ (15 b) 

(for r = 1). 

The above algorithm can be easily generalized to 
multiaxial stress states. Then one has instead of 
J (t, t ') two creep functions, one for the volumetric 
and one for the deviatoric components [17]. However, 
in view of the present poor  knowledge of multiaxial 
creep, no more sophisticated assumption than a cons- 
tant Poisson ratio can be justified. Then both creep 
functions are proportional to J (t, t') and the response 
is also fully characterized by the uniaxial relaxation 
function. 

It  should be pointed out that Eqs. (3)-(5b) or 
(13)-(15 b) may be also used as basis for the analysis 
of  creep effects in a general nonhomogeneous structure. 
Namely, Eq. (3) or (13) can be regarded as a fictitious 
elastic stress-strain law with pseudo-instantaneous 
elastic modulus E r and pseudo-inelastic strain Ae~ 
because both E~' and Ae~ can be computed. The 
values A a r  and A e r  may thus be determined as the 
elastic solution for elastic moduli E~', inelastic strains 
Ae" and given changes of loads and boundary displa- 
cements during time interval A t , .  The creep problem 
is thus converted to a series of  elasticity problems 
[10, 9]. (For details and examples References [15] 
and [16] may be consulted.) Nevertheless, in practical 
application this method is not feasible if the structural 
system involves too many unknowns, as in three- 
dimensional finite element analyses, because the 

requirement for storing the complete history of stress 
for all elements of the structure overtaxes the capacity 
of computers presently available. A modification of 
the method which avoids this difficulty has been derived 
in Ref. [17]. 

T H E  SPECIAL CASE OF STRAINS VARYING 
LINEARLY W I T H  THE CREEP COEFFICIENT 

In the case that the strain history has the form 

e ( t ) - - e  ~  = c o §  e l ~ ( t ,  to) f o r t > t o  (16) 

and also 
(~(t)----0 f o r 0 <  t < to (17) 

where eo and el are arbitrary constants, the solution 
of stress history can be simply obtained from the 
solution for el = 0, eo = 1, i.e. from the relaxation 
function. The following t h e o r e m  holds true. 

I f  conditions (16) and (17) are satisfied, stress 
(t) varies linearly with Ea (t, to) and the stress-strain 

relations may be written (exactly) in the form of an 
incremental elastic law : 

Atr ( t ) =  E" (t, to) (Ae (t) - -  Ae" (t)) (18) 

in which 

Ae (t) = e (t) - -  e (to), Atr (t) = tr (t) --~r (to) (19) 

Ae" (t) tr (to) 
- -  E ( to )  q) ( t ,  to)  -t- e ~ ( t )  - -  e ~ ( to )  ( 2 0 )  

E" (t,  to) = E ( t o )  - -  ER (t,  to) _ E (to) - -  ER (t ,  to) (21) 
cp (t,  to) E (to) J (t,  to) - -  I 
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P r o o f  First it is necessary to formulate the Volterra 
integral equation relating the creep function J (t, t') 
and relaxation function En (t, t'). To this end, one may 
consider the strain history as a unit step function, 
that i s e =  l f o r t  > / t 0 a n d e  = 0 f o r t < t o ,  in which 
case the stress response is, by definition, a (t) 
= ER (t, to) for t >/ to. Substitution in Eq. (1) with 
e ~ = 0 then yields, after rearrangements, 

f ~ OER (t', to) dt" = 1 J (t, to) E (to) § J (t, t ') Ot" 
to 

(t >/to) 

Now, assume 
substitutes Eq. 
in Eq. (18) and 
becomes 

a ( t )  : a ( t o ) §  
(for t /> to) 

Insertion of this 
yields : 

(22) 

that Eqs. (18)-(21) are true. If one 
(21) with Eqs. (16), (19) and (20) 

notes that a (to)/E (to) = co, Eq. (18) 

(E (to) - -  En (t, to)) (el - -  e0) (23) 

expression and Eq. (16) into Eq. (I) 

eo § el (E (to) J (t, to) - -  1) = J (t, to) a (to) 

- -  (el - -  e0) .j-tj (t, t') 
OER (t', to) 

,o Ot" dt' (24) 

o r  

eo - -  el = E(to) J (t, to) (co - -  el) 

+ ( e o - - e ~ ) f f J ( t , t ' ) O E n ( t ' t ' ) d t '  (25) 
to Ot' 

If eo = el, this equation is identically satisfied, and 
if eo @- el, Eq. (25) may be divided by (co - -  el), 
which yields identity (22). On the other hand if Eqs. 
(18)-(21) were false, Eq. (25) would be also false 
which is impossible because identity (22) would be 
violated. Eqs. (18)-(21) are thus proved to be true 
(and exact) for any eo and e~. (This theorem with 
proof has been first published in Ref. [21] and is here 
given for reader's convenience.) 

It should also be noted that the theorem just 
proved can serve as basis of a very efficient approxi- 

mate method of analysis of creep problems for 
nonhomogeneous structures which has been outlined 
in Ref. [21]. Namely, in most of such problems (e.g., 
prestress loss, composite cross sections, shrinkage 
stresses, differential creep, creep buckling) the varia- 
tion of strain with time is well approximated by a 
function of form (16) linearly dependent on creep 
coefficient ~p (t, to) or creep function J (t, to). Because 
Eq. (18) has the form of a fictitious incremental 
elastic law, the approximate solution of the creep 
problem may be obtained carrying out a single 
elastic analysis with fictitious elastic moduli E" (t, to) 
for inelastic strains (20). Moduli E" may be conve- 
niently expressed in a form reminiscent of the effective 
modulus 

E (to) 
E" (t, to) = 1 -}- -Z (t, to) q) (t, to) (26) 

where, according to (21), 

ER (t, to)'~ -1 1 (27) 
Z (t, to) : 1 E-~-o) ] 99 (t, to) 

The values of )~ usually lie between 0.5 and 1.0. 
Because in absence of aging Z "-- 1, coefficient Z 
introduces a correction due to aging. For this reason 
Z has been named aging coefficient and E" age-adjusted 
effective modulus. A detailed discussion of this method, 
with tables of z-values for the ACI and CEB creep 
functions, is given in Ref. [21], along with examples of 
application, showing distinct superiority of the 
method over the well-known simplified methods, such 
as the rate-of-creep method and the effective modulus 
method. 

CONCLUSION 

With the algorithm described, conversion of creep 
data into relaxation data becomes a simple task 
and can be carried out for any form of a linear age- 
dependent viscoelastic stress-strain law. 

ACKNOWLEDGEMENT 

The results presented herein have in part been 
obtained in connection with the project sponsored 
by the U.S. National Science Foundation under Grant 
GK-26030. 

140 



Z.P. BA Z~A NT 

RI~SUMI~ 

D&ermination num6rique de l'~volution h long terme 
des contraintes h partir de r~volution des d~formations 
dans le b6ton. - -  Cet article prdsente un algorithme 
num~rique pas ~ pas propre au calcul de la variation des 
contraintes ~ partir de [a variation de toute d~formation 
d~termin~e dans un mat$riau dont les propridt$s visco- 
~lastiques sont une fonction lindaire du temps. La base 
de l'algorithme est une approximation par somme 
finie de l'int~grale de Stieljes, qui exprime la superpo- 
sition des d6formations en rdponse d tousles accrois- 
sements de contrainte ant~rieurs. On pr~sente un pro- 
gramme en F O R T R A N  I V  qui permet d'obtenir par 
ordinateur une solution rapide et dconomique. Ce 
programme peut s'appliquer d quelque forme que ce 
soit de la fonction fluage, m~me dans le cas olt la pente 
de la courbe de fluage sur une ~chelle de temps logarith- 
mique est importante pour plusieurs ordres de grandeur 
du temps ~coul~, c'est-d-dire lorsque [e spectre de 

retardation est ~tendu. Afin de tenir compte du fait, 
on divise [e temps se[on une progression gOomdtrique 
(ou presque). On peut d~finir [a fonction de fluage par 
des formules, et aussi bien par une table de valeurs, 
propre d opdrer la conversion directe des ddformations 
mesurdes en contraintes. On donne des exemples num~- 
riques et une exce[[ente convergence apparait. On peut 
entreprendre de mYme la conversion des donn~es de 
relaxation des contraintes en donndes de fluage. Dans 
le cas particulier des ddformations qui varient en fonc- 
tion lindaire du coefficient de fluage, on d~montre un 
nouveau thdorOme dont l'uti[itd est d'~tablir que la 
variation de contrainte correspondante est une fonction 
lin~aire de la courbe de relaxation des contraintes. Ce 
th~orOme permet une g~ndralisation de [a mdthode 
du module effectif, ce qui am~liore notab[ement la prd- 
cision lorsque les propri~t~s de fluage d~pendent de 
l'dge. 
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